WO1997038996A1 - Herbizide heterocyclisch substituierte benzoylisothiazole - Google Patents

Herbizide heterocyclisch substituierte benzoylisothiazole Download PDF

Info

Publication number
WO1997038996A1
WO1997038996A1 PCT/EP1997/001855 EP9701855W WO9738996A1 WO 1997038996 A1 WO1997038996 A1 WO 1997038996A1 EP 9701855 W EP9701855 W EP 9701855W WO 9738996 A1 WO9738996 A1 WO 9738996A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
general formula
aryl
optionally
aryloxy
Prior art date
Application number
PCT/EP1997/001855
Other languages
English (en)
French (fr)
Inventor
Stefan Engel
Wolfgang Von Deyn
Regina Luise Hill
Uwe Kardorff
Martina Otten
Peter Plath
Marcus Vossen
Ulf Misslitz
Helmut Walter
Karl-Otto Westphalen
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP97919354A priority Critical patent/EP0898570A1/de
Priority to JP9536743A priority patent/JP2000508650A/ja
Priority to US09/171,199 priority patent/US6046137A/en
Priority to AU23858/97A priority patent/AU2385897A/en
Publication of WO1997038996A1 publication Critical patent/WO1997038996A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D275/00Heterocyclic compounds containing 1,2-thiazole or hydrogenated 1,2-thiazole rings
    • C07D275/02Heterocyclic compounds containing 1,2-thiazole or hydrogenated 1,2-thiazole rings not condensed with other rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/80Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings

Definitions

  • the present invention relates to new substituted benzoylisothiazoles, processes for their preparation and their use as herbicides. From the patent literature (EP 0 527 036, EP 0 527 037, EP 0 560 482, EP 0 580 439, EP 0 588 357, EP 609 797, EP 0 609 798,
  • WO 95/16678 is known that substituted 4-benzoyl-5-cycloalkylisoxazoles represent a class of compounds with pronounced herbicidal activity in the pre-emergence process.
  • the herbicidal activity of the known compounds is only partially satisfactory in the case of inadequate activity in the post-emergence process, even in the pre-emergence process, if the crop plant tolerance is incomplete.
  • the object of the invention was to provide new herbicidal active compounds with an improved active profile and crop tolerance.
  • the benzoylisothiazoles of the general formula 1 according to the invention show pronounced herbicidal activity against harmful plants when tolerated by crop plants.
  • the present invention relates to 4-benzoylisothiazoles of the general formula 1
  • R 1 is hydrogen, alkyl, alkenyl, alkynyl; if necessary subst. Alkoxycarbonyl;
  • R 2 is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl or
  • Cycloalkenyl where these radicals can carry one or more of the following groups: halogen, alkyl, alkenyl or alkynyl;
  • Alkylthio or alkenylthio where these radicals can be partially or completely halogenated or one or can carry several of the following groups:
  • Alkylsulfonyl or alkoxycarbonyl Alkylsulfonyl or alkoxycarbonyl
  • Mono- or dialkylamino optionally subst.
  • N-alkyl-N-arylamino where alkyl and aryl can be the same or different;
  • Hetaryl or heterocyclyl where these radicals can be partially or completely halogenated or can carry one or more of the following groups:
  • Alkyl, alkoxy or aryl and in the case of heterocyclyl at least one of the nitrogen can carry one of the following groups:
  • R 3 is a radical of the general formula 2
  • Nitrogen optionally by halogen, cyano, nitro, a group -CO-R 8 , alkyl, haloalkyl, cycloalkyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, di-alkylamino or optionally by halogen, cyano, nitro, C 1 -C 4- alkyl or C 1 -C 4 -haloalkyl-substituted phenyl or an oxo group, which may optionally also be present in the tautomeric form as a hydroxyl group, or which is substituted with a fused-on halogen, cyano,
  • Nitro, alkyl or haloalkyl substituted phenyl ring, a fused carbocycle or a fused, optionally by halogen, cyano, nitro, alkyl, di-al kylamino, alkoxy, haloalkoxy, or haloalkyl-substituted second heterocycle forms a bicyclic system
  • R 4 -R 7 can be the same or different and are independently hydrogen, alkyl, alkenyl, alkynyl,
  • alkylN-arylamino where alkyl and aryl can be the same or different, alkenylamino, alkynylamino, cycloalkylamino, cycloalkenylamino, sulfonyl, alkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, cycloalkylsulfonyl, cycloalkylalkylsulfonyl, cycloalkylalkenylsulfonylsulfonylsulfonylsulfonylsulfonylsulfonylsulfonylsulfonylsulfonylsulfonylsulfonyl Alkylsulfoxyl, alkenylsulfoxyl, alkynylsulfoxyl, cycloalkylsulfoxyl, cycloalkylalken
  • Dialkylaminocarbonyl optionally subst.
  • Mono- or diarylaminocarbonyl optionally subst.
  • N-alkyl-N-arylaminocarbonyl where alkyl and aryl can be the same or different, optionally subst.
  • Mono- or dialkylcarbonylamino optionally subst.
  • Mono or diarylcarbonylamino optionally subst.
  • alkyl and aryl can be the same or different, alkoxyaminocarbonyl, alkenyloxycarbonyl amino, Alkinyloxycarbonylamino, Cycloalkoxycarbonylamino, Cycloalkylalkoxycarbonylamino, Cycloalkylalkenyloxycarbonylamino, Cycloalkylalkinyloxycarbonylamino, aryloxycarbonylamino, Arylalkoxycarbonylamino, Arylalkenyloxycarbo- nylamino, Arylalkinyloxycarbonylamino, halo, haloalkyl, haloalkenyl, haloalkynyl, haloalkoxy, haloalkenyloxy, Haloalkinyloxy, haloalkylthio, Haloalkenylthio, Haloalkinylthio, Haloalkyla
  • R 4 , R 5 together can be a five- or six-membered, saturated or unsaturated, aromatic or non-aromatic, optionally subst.
  • R 8 alkyl, haloalkyl, alkoxy, or NR 9 R 10 ,
  • R 9 is hydrogen or alkyl
  • R 10 alkyl as well as customary salts of 4-benzoylisothiazoles of the general formula 1.
  • Halogen fluorine, chlorine, bromine and iodine
  • Alkyl straight-chain or branched alkyl groups with 1 to 6 or 10 carbon atoms, for example C 1 -C 6 -alkyl such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methyl-propyl, 2-methylpropyl,
  • Alkylamino an amino group which carries a straight-chain or branched alkyl group having 1 to 6 carbon atoms as mentioned above;
  • Dialkylamino an amino group which carries two independent, straight-chain or branched alkyl groups each having 1 to 6 carbon atoms as mentioned above;
  • Alkylcarbonyl straight-chain or branched alkyl groups with 1 to 10 carbon atoms, which are bonded to the skeleton via a carbonyl group (-CO-);
  • Alkylsulfonyl straight-chain or branched alkyl groups with 1 to 6 or 10 carbon atoms, which are bonded to the skeleton via a sulfonyl group (-SO 2 -);
  • Alkylsulfoxyl straight-chain or branched alkyl groups with 1 to 6 carbon atoms, which have a sulfoxyl group
  • Alkylaminocarbonyl alkylamino groups with 1 to 6 carbon atoms as mentioned above, which are bonded to the skeleton via a carbonyl group (-CO-);
  • Dialkylaminocarbonyl dialkylamino groups each having 1 to 6 carbon atoms per alkyl radical as mentioned above, which are bonded to the skeleton via a carbonyl group (-CO-);
  • Alkylaminothiocarbonyl alkylamino groups with 1 to 6 carbon atoms as mentioned above, which are bonded to the skeleton via a thiocarbonyl group (-CS-);
  • Dialkylaminothiocarbonyl dialkylamino groups each having 1 to 6 carbon atoms per alkyl radical as mentioned above, which are bonded to the skeleton via a thiocarbonyl group (-CS-);
  • Haloalkyl straight-chain or branched alkyl groups with 1 to 6 carbon atoms, in which groups the hydrogen atoms can be partially or completely replaced by halogen atoms as mentioned above, for example C 1 -C 2 -haloalkyl such as chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl , Chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2.2 -Dichlor-2-fluoroethyl, 2,2,2-trichloroethyl and pentafluoroethyl;
  • Alkoxy straight-chain or branched alkyl groups with 1 to 6 carbon atoms as mentioned above, which are bonded to the structure via an oxygen atom (-O-), for example C 1 -C 6 -alkoxy such as methyloxy, ethyloxy, propyloxy, 1-methylethyloxy, butyloxy , 1-methyl-propyloxy, 2-methylpropyloxy, 1,1-dimethylethyloxy, pentyloxy, 1-methylbutyloxy, 2-methylbutyloxy, 3-methylbutyloxy,
  • Haloalkoxy straight-chain or branched alkyl groups with 1 to 6 carbon atoms, in which groups the hydrogen atoms can be partially or completely replaced by halogen atoms as mentioned above, and where these groups are bonded to the structure via an oxygen atom;
  • Alkylthio straight-chain or branched alkyl groups with 1 to 4 or 6 carbon atoms as mentioned above, which are bonded to the structure via a sulfur atom (-S-), e.g.
  • C 1 -C 6 alkylthio such as methylthio, ethylthio, propylthio, 1-methylethylthio, butylthio, 1-methylpropylthio, 2-methylpropylthio, 1,1-dimethylethylthio, pentylthio, 1-methylbutylthio, 2-methylbutylthio, 3-methylbutylthio, 2, 2-dimethylpropylthio, 1-ethylpropylthio, hexylthio, 1,1-dimethylpropylthio, 1,2-dimethylpropylthio, 1-methylpentylthio, 2-methylpentylthio, 3-methylpentylthio, 4-methylpentylthio, 1,1-dimethylbutylthio,
  • Cvcloalkyl monocyclic alkyl groups with 3 to 6 carbon ring members, e.g. Cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl;
  • Alkenyl straight-chain or branched alkenyl groups with 2 to 6 or 10 carbon atoms and a double bond in any position, for example C 2 -C 6 alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2- Butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl,
  • Alkenyloxy straight-chain or branched alkenyl groups with 2 to 6 carbon atoms and a double bond in any position, which are bonded to the structure via an oxygen atom (-O-);
  • Alkenylthio or alkenylamino straight-chain or branched alkenyl groups with 2 to 6 carbon atoms and a double bond in any position which (alkenylthio) are bonded to the skeleton via a sulfur atom or (alkenylamino) a nitrogen atom.
  • Alkenylcarbonyl straight-chain or branched alkenyl groups with 2 to 10 carbon atoms and a double bond in any position, which are bonded to the skeleton via a carbonyl group (-CO-);
  • Alkynyl straight-chain or branched alkynyl groups with 2 to 10 carbon atoms and a triple bond in any position, for example C 2 -C 6 -alkynyl such as ethynyl, 2-propynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl, 2-pentinyl,
  • Alkynyloxy or alkynylthio and alkynylamino straight-chain or branched alkynyl groups with 2 to 6 carbon atoms and a triple bond in any position, which (alkynyloxy) via an oxygen atom or (alkynylthio) via a sulfur atom or (alkynylamino) are attached to the skeleton via a nitrogen atom.
  • Alkynylcarbonyl straight-chain or branched alkynyl groups with 3 to 10 carbon atoms and a triple bond in any position, which are bonded to the skeleton via a carbonyl group (-CO-);
  • Cycloalkenyl or cycloalkenyloxy, cycloalkenylthio and cycloalkenylamino monocyclic alkenyl groups with 3 to 6 carbon ring members which are bonded to the structure directly or (cycloalkenyloxy) via an oxygen atom or (cycloalkenylthio) via a nitrogen atom, e.g. cycloalkenylamino) Cyclopropenyl, cyclobutenyl, cyclopentenyl or cyclohexenyl.
  • Cycloalkoxy or cycloalkylthio and cycloalkylamino monocyclic alkyl groups with 3 to 6 carbon ring members which (cycloalkyloxy) are bonded to the skeleton via an oxygen atom or (cycloalkylthio) a sulfur atom or (cycloalkylamino) via a nitrogen atom, e.g. Cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl;
  • Cycloalkylcarbonyl cycloalk groups, as defined above, which are bonded to the skeleton via a carbonyl group (-CO-);
  • Cycloalkoxycarbonyl cycloalkoxy groups, as defined above, which are bonded to the skeleton via a carbonyl group (-CO-);
  • Alkenyloxycarbonyl alkenyloxy groups, as defined above, which are bonded to the skeleton via a carbonyl group (-CO-);
  • Alkynyloxycarbonyl alkynyloxy groups, as defined above, which are bonded to the skeleton via a carbonyl group (-CO-);
  • Heterocyclyl three- to six-membered, saturated or partially unsaturated mono- or polycyclic heterocycles, which contain one to three heteroatoms selected from a group consisting of oxygen, nitrogen and sulfur, and which are bonded directly to the structure via carbon, e.g. 2-tetrahydrofuranyl, oxiranyl, 3-tetrahydrofuranyl, 2-tetrahydrothienyl,
  • Arylamino aromatic mono- or polycyclic hydrocarbon residues, which are bound to the structure via a nitrogen atom.
  • Hetaryl aromatic mono- or polycyclic radicals which, in addition to carbon ring members, can additionally contain one to four nitrogen atoms or one to three nitrogen atoms and one oxygen or one sulfur atom or one oxygen or one sulfur atom and which are bonded directly to the structure via carbon, e.g. 5-membered heteroaryl containing one to three nitrogen atoms: 5-ring heteroaryl groups which, in addition to carbon atoms, can contain one to three nitrogen atoms as ring members, e.g. 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl,
  • 5-membered heteroaryl containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom or one oxygen or one sulfur atom: 5-ring heteroaryl groups which, in addition to carbon atoms, contain one to four nitrogen atoms or one to three nitrogen atoms and one sulfur atom. or may contain oxygen atom or an oxygen or sulfur atom as ring members, for example 2-furyl, 3-furyl, 2-thienyl, 3-thienyl,
  • 5-membered carbocyclic fused heteroaryl containing one to three nitrogen atoms or one nitrogen atom and / or one oxygen or sulfur atom 5-ring heteroaryl groups, which in addition to carbon atoms can contain one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom or one oxygen or one sulfur atom as ring members, and in which two adjacent carbon ring members or one nitrogen and one adjacent carbon ring member by a buta-1, 3-diene-1,4-diyl group can be bridged; 6-membered heteroaryl containing one to three or one to four nitrogen atoms: 6-ring heteroaryl groups which, in addition to carbon atoms, can contain one to three or one to four nitrogen atoms as ring members, for example 2-pyridinyl, 3-pyridinyl, 4- Pyridinyl, 3-pyridazinyl, 4-pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl,
  • 6-membered heteroaryl containing one to four nitrogen atoms 6-ring heteroaryl groups in which two adjacent carbon ring members can be bridged by a buta-1,3-diene-1,4-diyl group, e.g.
  • Quinoline isoquinoline, quinazoline and quinoxaline, or the corresponding oxy, thio, carbonyl or sulfonyl groups.
  • Preferred substituents are hydrogen, alkyl, alkenyl,
  • N-alkyl-N-arylamino where alkyl and aryl can be the same or different, alkenylamino, cycloalkylamino, cycloalkenylamino, sulfonyl, alkylsulfonyl, alkenylsulfonyl, cycloalkylsulfonyl, cycloalkylalkylsulfonyl, arylsulfonyl, arylalkylsulfonyl, alkenylsulfyl, sulfoxyl, alkylsulfoxyl foxyl, cycloalkylsulfoxyl, cycloalkylalkylsulfoxyl, arylsulfoxyl, arylalkylsulfoxyl, alkylcarbonyl, alkenylcarbonyl, cycloalkylcarbonyl, cycloalkylcarbonyl, cycloalkylcarbon
  • Particularly preferred substituents are hydrogen, alkyl,
  • alkyl and aryl may be the same or different, cycloalkylamino, sulfonyl, alkylsulfonyl, cycloalkylsulfonyl, arylsulfonyl, sulfoxyl, alkylsulfoxyl, arylsulfoxyl, alkylcarbonyl, arylcarbonyl, carboxyl, alkoxycarbonyl, aryloxycarbonyl, aminocarbonyl, optionally subst.
  • Mono- or dialkylaminocarbonyl if necessary
  • N-alkyl-N-arylaminocarbonyl where alkyl and aryl may be the same or different, alkoxyaminocarbonyl, aryloxycarbonylamino, halogen, haloalkyl, haloalkoxy, haloalkylthio, haloalkylamino, haloalkylsulfonyl, haloalkylsulfoxyl, haloalkylcarbonyl, haloalkoxycarbonyl, haloalkoxycarbonylamino, haloalkoxycarbonylamino.
  • R 1 is hydrogen or alkoxycarbonyl having 1 to 6 carbon atoms, which can be mono- or polysubstituted by fluorine, chlorine or bromine.
  • R 1 is hydrogen, methoxycarbonyl or ethoxycarbonyl are particularly preferred.
  • R 2 is alkyl having 1 to 6 carbon atoms, particularly preferably methyl, ethyl, isopropyl or tertiary butyl; or cycloalkyl having 3 to 6 carbon atoms, particularly preferably cyclopropyl or 1-methylcyclopropyl; or phenyl, which radical can carry one or more of the following groups:
  • R 4 -R 1 may be the same or different and are independently hydrogen, alkyl, cycloalkyl, aryl,
  • R 8 is C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 1 -C 4 alkoxy, or NR 9 R 10 ;
  • R 9 is hydrogen or C 1 -C 4 alkyl;
  • R 10 is C 1 -C 4 alkyl
  • Z and the substituents R 4 -R 7 have the meanings given under general formula 2 or have the following meanings: Z 5- or 6-membered heterocyclic, saturated or unsaturated radicals containing one to three heteroatoms selected from the group consisting of oxygen, sulfur or nitrogen, which may be replaced by halogen, cyano, nitro, a group -CO-R 8 , C 1 - C 4 alkyl, C 1 -C 4 haloalkyl, C 3 -C 8 cycloalkyl, C 1 -C 4 alkoxy, C 1 -C 4 haloalkoxy, C 1 -C 4 alkylthio, C 1 -C 4 -Halogenalkylthio, Di-C 1 -C 4 alkylamino, optionally substituted by halogen, cyano, nitro, C 1 -C 4 alkyl or C 1 -C 4 haloalkyl or an oxo group, which may also be in the tautomeric form
  • N-alkyl-N-arylamino where alkyl and aryl can be identical or different, alkenylamino, alkynylamino, cycloalkylamino, cycloalkenylamino, sulfonyl, alkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, cycloalkylsulfonyl, cycloalkylalkylsulfonyl, cycloalkylalkenylsulfonylsulfonylsulfonylsulfonylsulfonylsulfonylsulfonyl Arylalkynylsulfonyl, sulfoxyl, alkylsulfoxyl, alkenylsulfoxyl, alkynylsulfoxyl, cycloalkylsulfoxyl, cycloalkyl, cycl
  • Mono- or dialkylaminocarbonyl optionally subst.
  • Mono- or diarylaminocarbonyl optionally subst.
  • N-alkyl-N-arylaminocarbonyl where alkyl and aryl can be the same or different, optionally subst.
  • Mono- or dialkylcarbonylamino optionally subst.
  • Mono or diarylcarbonylamino optionally subst.
  • alkyl and aryl may be the same or different, alkoxyaminocarbonyl, alkenyloxycarbonylamino, alkynyloxycarbonylamino, cycloalkoxycarbonylamino, cycloalkylalkoxycarbonylamino, cycloalkylalkenyloxycarbonylaminooxy haloalkyl, haloalkenyl, haloalkynyl, haloalkoxy, haloalkenyloxy, Haloalkinyloxy, haloalkylthio, Haloalkenylthio, Haloalkinylthio, Haloalkylamino, Haloalkenylamino, Haloalkinylamino, haloalkylsulfonyl, Haloalkenylsulfonyl, Haloalkinylsulfonyl, Haloalkylsulfonyl, Haloalkenylsulfony
  • R 4 -R 7 can be the same or different and are independently hydrogen, C 1 -C 6 alkyl, preferably
  • C 2 -C 6 alkynyl ethynyl, 2-propynyl, 2-butynyl or 3-butynyl
  • C 3 -C 6 cycloalkyl preferably cyclopropyl
  • Aryl-C 2 -C 6 alkynyl Hydroxy, C 1 -C 6 alkoxy, preferably methyloxy, ethyloxy, propyloxy, 1-methylethloxy, butyloxy, pentyloxy or hexyloxy, C 2 -C 6 alkenyloxy, preferably ethenyloxy, 2-propenyloxy, 2-butenyloxy or 3-butenyloxy; C 2 -C 6 alkynyloxy, preferably ethynyloxy, 2-propynyloxy, 2-butynyloxy or 3-butynyloxy; C 3 -C 6 cycloalkoxy, preferably cyclopropyloxy, cyclobutyloxy, cyclopentyloxy or cyclohexyloxy, C 3 -C 6 cycloalkyl-C 1 -C 6 alkoxy,
  • C 1 -C 6 alkylthio preferably methylthio, ethylthio, propylthio, 1-methylethylthio, butylthio, pentylthio or hexylthio;
  • C 2 -C 6 alkenylthio preferably ethenylthio, 2-propenylthio, 2-butenylthio or 3-butenylthio;
  • C 2 -C 6 alkynylthio preferably ethynylthio, 2-propynylthio, 2-butynylthio or 3-butynylthio;
  • C 3 -C 6 cycloalkylthio preferably cyclopropylthio, cyclobutylthio, cyclopentylthio or cyclohexylthio, C 3 -C 6 cycloalkyl-C 1 -C 6 alkylthio, C 3 -C 6 cycloalkyl-C 2 -C 6 alkenylthio, C 3 -C 6 cycloalkyl-C 2 -C 6 alkynylthio;
  • Arylthio preferably phenylthio or naphthylthio, aryl-C 1 -C 6 -alkylthio,
  • NC 1 -C 6 alkyl-N-arylamino where alkyl and aryl may be the same or different; Sulfonyl; C 1 -C 6 alkylsulfonyl, preferably methylsulfonyl, ethylsulfonyl, propylsulfonyl, 1-methylethylsulfonyl, butylsulfonyl, 2-methylpropylsulfonyl, pentylsulfonyl or hexylsulfonyl; C 3 -C 6 cycloalkylsulfonyl, preferably cyclopropylsulfonyl, cyclobutylsulfonyl, cyclopentylsulfonyl or cyclohexylsulfonyl, C 3 -C 6 cycloalkyl-C 1 -C 6 alkylsulfonyl, C 3 -C 6
  • Mono- or diarylaminocarbonyl optionally subst.
  • NC 1 -C 6 alkyl-N-arylaminocarbonyl where alkyl and aryl can be the same or different, optionally subst.
  • Mono or di-C 1 -C 6 alkylcarbonylamino optionally subst.
  • Mono- or diarylcarbonylamino optionally subst.
  • NC 1 -C 6 alkyl-N-arylcarbonylamino where alkyl and aryl may be the same or different, C 1 -C 6 alkoxyaminocarbonyl, preferably methyloxyaminocarbonyl, ethyloxyaminocarbonyl, propyloxyaminocarbonyl, 1-methylethyloxyaminocarbonyl, butyloxyaminocarbonyl, 2-methylpropyloxyylylaminocarbonylamine, pentane ; C 2 -C 6 alkenyloxycarbonylamino, preferably ethyleneoxyaminocarbonyl, 2-propenyloxyaminocarbonyl, 2-butenyloxyaminocarbonyl or 3-butenyloxyaminocarbonyl; C 2 -C 6 alkynyloxycarbonylamino, preferably ethynyloxyaminocarbonyl, 2-propynyloxyaminocarbonyl, 2-butyn
  • C 2 -C 6 haloalkynylthio preferably chloromethylamino, dichloromethylamino, trichloromethylamino, fluoromethylamino, difluoromethylamino, trifluoromethylamino, chlorofluoromethylamino, dichlorofluoromethylamino, chlorodifluoromethylamino, 1-fluoroethylamino,
  • C 1 -C 6 -Haloalkoxycarbonyl preferably Chlormethyloxycarbonyl, Dichlormethyloxycarbonyl, Trichlormethyloxycarbonyl, fluoromethyloxycarbonyl, Difluormethyloxycarbonyl, Trifluormethyloxycarbonyl, Chlorfluormethyloxycarbonyl, Dichlorfluormethyloxycarbonyl, Chlordifluormethyloxycarbonyl, 1-Fluorethyloxycarbonyl, 2-Fluorethyloxycarbonyl, 2,2-difluoro-ethyloxycarbonyl, 2,2,2-Trifluorethyloxycarbonyl , 2-chloro-2-fluoroethyl-oxycarbonyl, 2-chloro-2,2-di-fluoroethyloxycarbonyl, 2,2-dichloro-2-fluoro-ethyloxycarbonyl, 2,2,2-trichloroethyloxycarbonyl or pentafluoroethyloxycarbon
  • 2-chloro-2 2-difluoroethylaminocarbonyl, 2,2-dichloro-2-fluoroethylaminocarbonyl, 2,2,2-trichloroethylaminocarbonyl or pentafluoroethylaminocarbonyl, C 2 -C 6 haloalkenylaminocarbonyl, C 2 -C 6 haloalkynylaminocarbonyl; C 1 -C 6 haloalkoxycarbonylamino, chloromethyloxyaminocarbonyl, dichloromethyloxycarbonyl, trichloromethyloxyaminocarbonyl, fluoromethyloxyaminocarbonyl, difluoromethyloxyaminocarbonyl, trifluoromethyloxyaminocarbonyl, chlorofluoromethyloxyaminocarbonyl, fluorofluoromethyloxyaminocarbonyl, fluorocyloxyloxy, oxy-2-oxy-oxy-2-yl-2
  • 2-chloro-2 2-difluoroethyloxyaminocarbonyl, 2,2-di-chloro-2-fluoroethyloxy-aminocarbonyl, 2,2,2-trichloroethyloxyamioocarbonyl or pentafluoroethyloxyaminocarbonyl, C 2 -C 6 haloalkenyloxycarbonylamino, C 2 -C 6 haloalkynyloxycarbonylamino, cyano or nitro.
  • R 4 and R 6 are the same or different and independently of one another for alkyl, preferably methyl or ethyl, alkylsulfonyl, preferably methylsulfonyl or ethylsulfonyl; Halogen, preferably fluorine, chlorine or bromine, haloalkyl, preferably difluoromethyl, trifluoromethyl, tetrafluoroethyl or trichloromethyl.
  • R 4 , R 5 and R 6 are identical or different and independently of one another are alkyl, preferably methyl or ethyl, alkoxy, preferably methoxy, ethoxy or aryloxy, preferably phenoxy; Alkylsulfonyl, preferably methylsulfonyl or ethylsulfonyl; Halogen, preferably fluorine, chlorine, bromine or iodine; Haloalkyl, preferred
  • R 1 and R 2 have the meaning described above and Y is preferably chlorine, bromine or iodine with elemental magnesium, an organomagnesium or an organolithium compound and a carboxylic acid derivative of the general formula 4
  • R 3 has the meaning described above and T is halogen, preferably chlorine, bromine or iodine or N-alkoxy-N-alkylamino, preferably N-methoxy-N-methyl or cyano in the presence of an inert solvent in a temperature range of -78 ° C to 111 ° C, preferably in a temperature range from -20 ° C to 111 ° C (A. Alberola, F. Alonso, P. Cuadrado, MC Sanudo, Synth. Commun. 17 (1987) 1207), or b. by reacting a halogenobenzene of the general formula 5 in which R 3 has the meaning described above and Y means halogen, preferably chlorine, bromine or iodine with elemental
  • X, R 1 and R 2 have the meaning described above and R 11 is halogen, preferably chlorine, bromine or iodine and N-alkoxy-N-alkylamino, preferably N-methoxy-N-methyl in the presence of an inert solvent5 accessible in a temperature range from -78 ° C to 111 ° C, preferably in a temperature range from -20 ° C to 111 ° C (A. Alberola, F. Alonso, P Cuadrado, MC Sanudo, J. Heterocyclic Chem. 25 (1988 ) 235).
  • the synthesis of the isothiazole halogen compounds 3 is carried out by halogenation according to methods known from the literature (representative: a. A. Alberola, F. Alonso, P. Cuadrado, M. C. Sanudo, Synth.
  • Isothiazole compounds of the general formula 7 are known in principle and are prepared according to methods known from the literature (representative: a. D. N NcGregor. U. Corbin, JE Swigor, IC Cheney, Tetrahedron 25 (1968) 389; b. F. Lucchesini, N Picci. M. Pocci., Heterocycles 29 (1989) 97).
  • the synthesis of the isothiazolecarboxylic acid derivatives of the general formula 6b is carried out by reacting the isothiazole halogen compounds 3 with inorganic cyanides, such as, for example, copper (I) cyanide, according to processes known from the literature (representative: A. Alberola, F. Alonso, P Cuadrado, MC Sanudo, J. Heterocyclic Chem. 25: 235 (1988).
  • the corresponding isothiazolecarboxylic acid derivatives of the general formula 6a can be prepared starting from isothiazolecarboxylic acid derivatives of the general formula 6b using methods known from the literature.
  • Preferred organomagnesium compounds are alkylmagnesium halides, such as, for example, methyl or ethylmagnesium bromide or chloride.
  • Preferred organolithium compounds are aliphatic lithium compounds, such as lithium diisopropylamide, n-butyl or secondary butyllithium.
  • the organic solvent is selected depending on the starting materials used.
  • any inert solvent is suitable.
  • Preferred inert solvents are aliphatic, cyclic or acyclic ethers, such as, for example, diethyl ether, tetrahydrofuran, dioxane or 1,2-dimethoxyethane.
  • inert aromatic solvents such as benzene or toluene, are also used.
  • the starting materials are usually reacted with one another in stoichiometric amounts. However, it may be advantageous, for example to increase the yield, to use one of the starting materials in an excess of 0.1 to 10 mol equivalents.
  • Benzoic acid derivatives of the formula 4 can be prepared as follows:
  • arylhalogen compounds or arylsulfonates 8 can then be prepared in a known manner using heteroarylstannanes (Stille couplings), heteroaryl-boron compounds (Suzuki couplings) or heteroaryl-zinc compounds (Negishi reaction) V (see, for example, Synthesis 1987, 51- 53, Synthesis 1992, 413) in the presence of a palladium or nickel transition metal catalyst and, if appropriate, a base to give the new compounds of the general formula 4.
  • the benzoic acid derivatives of the formula 4a can also be obtained by corresponding bromo or iodine substituted
  • substituents R 4 , R 5 , R 6 and R 7 have the abovementioned meaning, in the presence of a palladium, nickel, cobalt or rhodium transition metal catalyst and a base with carbon monoxide and water under elevated pressure.
  • Palladium can be metallic or in the form of customary salts such as in the form of halogen compounds, for example PdCl 2 , RhCl 3 -H 2 O, acetates, for example Pd (OAc) 2 , cyanides etc. in the known valence levels.
  • phosphine ligand is widely variable. For example, they can be represented by the following formulas: where n denotes the numbers 1, 2, 3 or 4 and the radicals R 12 to R 15 for low molecular weight alkyl, for example C 1 -C 6 alkyl, aryl,
  • C 1 -C 4 alkylaryl for example benzyl, phenethyl or aryloxy.
  • Aryl is, for example, naphthyl, anthryl and preferably optionally substituted phenyl, the substituents only having to be considered for their inertness to the carboxylation reaction, otherwise they can be varied widely and include all inert C-organic radicals such as C 1 -C 6 -alkyl radicals , e.g.
  • Methyl, carboxyl radicals such as COOH, COOM (M is, for example, an alkali metal, alkaline earth metal or ammonium salt), or C-organic radicals bound via oxygen, such as C 1 -C 6 alkoxy radicals.
  • the phosphine complexes can be prepared in a known manner, for example as described in the documents mentioned at the outset.
  • customary commercially available metal salts such as PdCl 2 or Pd (OCOCH 3 ) 2 are used and the phosphine is added, for example P (C 6 H 5 ) 3 , P (nC 4 H 9 ) 3 , PCH 3 (C 6 H 5 ) 2 , 1,2-bis (diphenylphosphino) ethane was added.
  • the amount of phosphine, based on the transition metal is usually 0 to 20, in particular 0.1 to 10 molar equivalents, particularly preferably 1 to 5 molar equivalents.
  • the amount of transition metal is not critical. Of course, for reasons of cost, you will rather get a small amount, e.g. from 0.1 to 10 mol%, in particular 1 to 5 mol%, based on the starting material of formula 4.
  • the reactant water can also serve as a solvent, i.e. the maximum amount is not critical. However, depending on the nature of the starting materials and the catalysts used, it can also be advantageous to use another inert solvent instead of the reactant or those for
  • Carboxylation used base to use as a solvent Inert solvents which are customary for carboxylation reactions, such as hydrocarbons, for example toluene, xylene, hexane, pentane, cyclohexane, ethers, for example methyl tert-butyl ether, Tetrahydrofuran, dioxane, dimethoxyethane, substituted amides such as dimethylformamide, per-substituted ureas such as
  • one of the reactants in particular the base, is used in excess, so that no additional solvent is required.
  • Bases suitable for the process are all inert bases which are able to bind the hydrogen iodide or hydrogen bromide released during the reaction.
  • tertiary amines such as tert-alkylamines, for example trialkylamines such as triethylamine, cyclic amines such as N-methylpiperidine or N, N'-dimethylpiperazine, pyridine, alkali metal or hydrogen carbonates, or tetraalkyl-substituted urea derivatives such as tetra-C 1 -C 4 - alkyl urea, for example tetramethyl urea.
  • trialkylamines such as triethylamine
  • cyclic amines such as N-methylpiperidine or N, N'-dimethylpiperazine, pyridine, alkali metal or hydrogen carbonates
  • tetraalkyl-substituted urea derivatives such as tetra-C 1 -C 4 - alkyl urea, for example tetramethyl urea.
  • the amount of base is not critical, usually 1 to 10, in particular 1 to 5, moles are used.
  • the amount is generally such that the reactants are dissolved, unnecessarily high excesses being avoided for reasons of practicality in order to save costs, to be able to use small reaction vessels and to ensure maximum contact for the reactants.
  • the carbon monoxide pressure is adjusted so that there is always an excess of CO, based on the compound of the formula 10.
  • the carbon monoxide pressure at room temperature is preferably 1 to 250 bar, in particular 5 to 150 bar CO.
  • the carbonylation is generally carried out continuously or batchwise at temperatures from 20 to 250 ° C., in particular at 30 to 150 ° C.
  • carbon monoxide is expediently pressed continuously onto the reaction mixture in order to maintain a constant pressure.
  • the aryl halogen compounds of the formula 10 used as starting compounds are known or can easily be prepared by a suitable combination of known syntheses.
  • the aryl bromides 10 can also by direct bromination of suitable starting compounds can be obtained [cf. eg monthly Chem. 99, 815-822 (1968)].
  • R 16 is hydrogen, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 3 -C 8 cycloalkyl, optionally subst. Phenyl or trimethylsilyl, R 17 is hydrogen, C 1 -C 4 haloalkyl, C 3 -C 8 cycloalkyl or optionally
  • aryl methyl ketones 11 can be prepared in the presence of a palladium or nickel transition metal catalyst and optionally a base by processes known from the literature by reaction with vinyl alkyl ethers and subsequent hydrolysis [cf. e.g. Tetrahedron Lett. 32, 1753-1756 (1991)].
  • the ethynylated aromatics 12 can be prepared in a known manner by reacting aryl halogen compounds or aryl sulfonates 8 with substituted acetylenes in the presence of a palladium or nickel transition metal catalyst (for example Heterocycles, 24, 31-32 (1986)).
  • a palladium or nickel transition metal catalyst for example Heterocycles, 24, 31-32 (1986)
  • the aryl alkenes 13 are obtained by Heck reaction of aryl halogen compounds or aryl sulfonates 4b with olefins in the presence of a palladium catalyst (cf., for example, Heck, Palladium Reagents in Organic Synthesis, Academic Pres, London 1985 or Synthesis 1993, 735-762).
  • a palladium catalyst cf., for example, Heck, Palladium Reagents in Organic Synthesis, Academic Pres, London 1985 or Synthesis 1993, 735-762.
  • the benzoyl derivatives 4b used as starting compounds are known [cf. e.g. Coll. Czech. Chem. Commn. 40, 3009-3019 (1975)] or can be easily prepared by a suitable combination of known syntheses.
  • T is C 1 -C 4 alkoxy and substituents R 4 -R 7 as defined above.
  • Isophthalic acid derivatives 16 can be prepared from the aldehydes 15 by known processes [see. J. March Advanced Organic Chemistry 3rd ed., Pp. 629ff, Wiley-Interscience
  • the oximes 17 are advantageously obtained by reacting aldehydes 15 with hydroxylamine in a known manner [see. J. March Advanced Organic Chemistry 3rd ed., Pp. 805-806, Wiley-Interscience
  • the conversion of the oximes 17 into nitriles 18 can also be carried out by known processes [see. J. March Advanced Organic
  • the aldehydes 15 required as starting compounds are known or can be prepared by known methods. For example, they can be synthesized from methyl compounds 22 according to Scheme 5.
  • the radicals T and R 4 , R 5 , R 6 and R 7 have the meaning given under scheme 4.
  • the methyl compounds 22 can be converted to the benzyl bromides 23 by generally known methods, for example using N-bromosuccinimide or 1,3-dibromo-5,5-dimethylhydantoin.
  • the conversion of benzyl bromides to benzaldehydes 15 is also known from the literature [cf. Synth. Commun. 22
  • the precursors 11 to 18 are suitable for the construction of heterocyclic intermediates 4.
  • the acetylenes 12 and the alkenes 13 are suitable for the formation of 4-isoxazolyl, 5-isoxazolyl, 4,5-dihydroisoxazol-4-yl, 4,5-di-hydroisoxazol-5-yl derivatives [cf. e.g. Houben-Weyl, Methods of Organic Chemistry, 4th ed., Vol. X / 3, pp. 843ff (1965)].
  • 2-oxazolyl-, 1,2,4-oxadiazol-5-yl, 1,3,4-oxadiazol-2-yl derivatives can be obtained from the benzoic acids 16 or the acid chlorides 19 obtainable therefrom by standard processes, for example by processes known from the literature [ see. e.g. J. Heterocyclic Chem., 28, 17-28 (1991)] or 2-pyrrolyl derivatives [cf. e.g. Heterocycles 26, 3141-3151 (1987)].
  • 1,2,4-triazol-3-yl derivatives are derived from benzonitriles 18 by known methods [cf. e.g. J. Chem. Soc. 3461-3464 (1954)].
  • the benzonitriles 18 can via the intermediate stage of the thioamides, amidoximes or amdines 21 in 1,2,4-oxadiazol-3-yl- [cf. eg J. Heterocyclic Chem., 28, 17-28 (1991)] 2-thiazolyl-, 4,5-dihydro-thiazol-2-yl- or 5,6-dihydro-4-H-1,3-thiazine 2-yl derivatives [see. e.g. Houben-Weyl, Methods of Organic Chemistry, 4.
  • oximes 17 into 3-isoxazolyl derivatives can be carried out in a known manner via the intermediate stage of the hydroxamic acid chlorides 20 [cf. e.g. Houben-Weyl, Methods of Organic Chemistry, 4th ed., Vol. X / 3, pp. 843ff (1965)].
  • the compounds I and their agriculturally useful salts are suitable - both as isomer mixtures and in the form of the pure isomers - as herbicides.
  • the herbicidal compositions containing I control vegetation very well on non-cultivated areas, particularly when high amounts are applied. In crops such as wheat, rice, corn, soybeans and cotton, they act against weeds and grass weeds without significantly damaging the crop plants. This effect occurs especially at low application rates.
  • the compounds I or compositions containing them can also be used in a further number of crop plants for eliminating undesired plants.
  • the following crops are considered, for example:
  • napobrassica Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis
  • the compounds I can also be used in crops which are tolerant to the action of herbicides by breeding, including genetic engineering methods.
  • the herbicidal compositions or the active compounds can be applied pre- or post-emergence. If the active ingredients are less compatible with certain crop plants, application techniques can be used in which the herbicidal compositions are sprayed with the aid of sprayers in such a way that the leaves of the sensitive crop plants are, if possible not be hit while the active ingredients get on the leaves of unwanted plants growing underneath or the uncovered floor area (post-directed, lay-by).
  • the compounds I or the herbicidal compositions comprising them can be sprayed or atomized, for example in the form of directly sprayable aqueous solutions, powders, suspensions, including high-strength aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, sprays or granules , Dusting, scattering or pouring.
  • the application forms depend on the purposes; in any case, they should ensure the finest possible distribution of the active compounds according to the invention. The following are essentially considered as inert additives:
  • Mineral oil fractions from medium to high boiling point such as kerosene or diesel oil, also coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. Paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivatives, alkylated benzenes or their derivatives, alcohols such as methanol, ethanol, propanol, butanol, cyclohexanol, ketones such as cyclohexanone or strongly polar solvents, e.g. B. amines such as N-methylpyrrolidone or water.
  • Aqueous use forms can be prepared from emulsion concentrates, suspensions, pastes, wettable powders or water-dispersible granules by adding water. For the production of emulsions, pastes or oil dispersions
  • Substrates as such or dissolved in an oil or solvent can be homogenized in water by means of wetting agents, adhesives, dispersants or emulsifiers.
  • wetting agents adhesives, dispersants or emulsifiers.
  • concentrates consisting of active substance, wetting agent, adhesive, dispersant or emulsifier and possibly solvent or oil can also be prepared which are suitable for dilution with water.
  • the surface-active substances are the alkali, alkaline earth, ammonium salts of aromatic sulfonic acids, for example lignin, phenol, naphthalene and dibutylnaphthalenesulfonic acid, and of fatty acids, alkyl and alkylarylsulfonates, alkyl, lauryl ether and fatty alcohol sulfates, and salts sulfated hexa-, hepta- and octadecanols as well as fatty alcohol glycol ether, condensation products of sulfonated naphthalene and its derivatives with formaldehyde, condensation products of naphthalene or naphthalenesulfonic acids with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isooctyl, octyl, phenyl or nonyl phenyl or phen
  • Powders, materials for broadcasting and dusts can be prepared by mixing or grinding the active substances together with a solid carrier.
  • Granules e.g. Coated, impregnated and homogeneous granules can be produced by binding the active ingredients to solid carriers.
  • Solid carriers are mineral soils such as silicas, silica gels, silicates, talc, kaolin, limestone, lime, chalk, bolus, loess, clay, dolomite, diatomaceous earth, calcium and magnesium sulfate, magnesium oxide, ground plastics, fertilizers such as ammonium sulfate, ammonium phosphate, ammonium nitrate, Urea and vegetable products such as cereal flour, tree bark, wood and nutshell flour, cellulose powder or other solid
  • the concentrations of the active ingredients I in the ready-to-use preparations can be varied over a wide range.
  • the formulations generally contain 0.001 to 98% by weight, preferably 0.01 to 95% by weight, of active ingredient.
  • the active ingredients are used in a purity of 90% to 100%, preferably 95% to 100% (according to the NMR spectrum).
  • connection 24.33 according to the invention can be formulated, for example, as follows:
  • Dissolved mixture which consists of 80 parts by weight of alkylated benzene, 10 parts by weight of the adduct of 8 to 10 moles of ethylene oxide and 1 mole of oleic acid-N-monoethanolamide, 5 parts by weight of calcium salt of dodecylbenzenesulfonic acid and 5 parts by weight of the adduct of 40 moles of ethylene oxide and 1 mole of castor oil.
  • Dissolved mixture which consists of 40 parts by weight of cyclohexanone, 30 parts by weight of isobutanol, 20 parts by weight of the adduct of 7 moles of ethylene oxide and 1 mole of isooctylphenol and 10 parts by weight of the adduct of 40 moles of ethylene oxide and 1 mole of castor oil.
  • a pouring and finely distributing the solution in 100,000 parts by weight of water gives an aqueous dispersion which contains 0.02% by weight of the active ingredient.
  • 20 parts by weight of the active ingredient 24.33 are in one
  • Dissolved mixture which consists of 25 parts by weight of cyclohexanone, 65 parts by weight of a mineral oil fraction from the boiling point 210 to 280 ° C and 10 parts by weight of the adduct of 40 moles of ethylene oxide and 1 mole of castor oil.
  • Parts by weight of water give an aqueous dispersion which contains 0.02% by weight of the active ingredient.
  • Parts by weight of the sodium salt of diisobutylnaphthalenesulfonic acid, 17 parts by weight of the sodium salt of a lignosulfonic acid from a sulfite waste liquor and 60 parts by weight of powdered silica gel are mixed well and ground in a hammer mill. By finely distributing the mixture in 20,000 parts by weight of water, a spray liquor is obtained which contains 0.1% by weight of the active ingredient.
  • Emulphor EL ethoxylated castor oil / casteroil
  • a stable emulsion concentrate is obtained.
  • the heterocyclically substituted benzoylisothiazoles I can be mixed with numerous representatives of other herbicidal or growth-regulating active compound groups and applied together.
  • 1,2,4-thiadiazoles, 1,3,4-thiadiazoles, amides, aminophosphoric acid and their derivatives, aminotriazoles, anilides, (het) -aryloxyalkanoic acid and their derivatives, benzoic acid and their derivatives, benzothiadiazinones, 2-aroyl come as mixing partners -1,3-cyclohexanediones, hetaryl aryl ketones, benzylisoxazolidinones, meta-CF3-phenyl derivatives, carbamates, quinoline carboxylic acids and their derivatives, chloroacetanilides, cyclohexane-1,3-dione derivatives, diazines, dichloropropionic acid and their derivatives, dihydrobenzofuranane -ones, dinitroanilines, dinitrophenols, diphenyl ethers, dipyridyls, halocarboxylic acids and their derivatives, ureas,
  • Pyridazines pyridinecarboxylic acid and their derivatives, pyrimidyl ethers, sulfonamides, sulfonylureas, triazines, triazinones, triazolinones, triazolecarboxamides, uraciles.
  • the active compound application rates are 0.001 to 3.0, preferably 0.01 to 1.0 kg / ha of active substance (see p.)
  • Example 2 Using the procedure described in Example 1, the active ingredients of the general formula 1 described in Examples 2 and 3 were prepared in a corresponding manner by reacting the isothiazole halogen compounds of the general formula 3 with carboxylic acid derivatives of the general formula 4.
  • Plastic flower pots with loamy sand with about 3.0% humus as substrate served as culture vessels.
  • the seeds of the test plants were sown separately according to species.
  • test plants In pre-emergence treatment, the active ingredients suspended or emulsified in water were applied directly after sowing using finely distributing nozzles. The tubes were lightly sprinkled to promote germination and growth, and then covered with clear plastic hoods until the plants had grown. This cover causes the test plants to germinate evenly, unless this was affected by the active ingredients.
  • the test plants depending on the growth habit, are first grown to a height of 3 to 15 cm and only then treated with the active ingredients suspended or emulsified in water. The test plants are either sown directly and grown in the same containers, or they are first grown separately as seedlings and transplanted into the test containers a few days before the treatment.
  • the application rate for post-emergence treatment 0.5 or 0.25 kg / ha a.S.
  • the plants were kept at temperatures of 10 - 25 ° C or 20 - 35 ° C depending on the species.
  • the trial period lasted 2 to 4 weeks. During this time, the plants were cared for and their response to each treatment was evaluated.

Abstract

4-Benzoylisothiazole der allgemeinen Formel (1), in der die Substituenten die folgende Bedeutung haben: X Sauerstoff oder Schwefel; R1 Wasserstoff, Alkyl, Alkenyl, Alkinyl; ggf. subst. Alkoxycarbonyl; ggf. subst. Aryl, ggf. subst. Heterocyclyl oder ggf. subst. Hetaryl; R2 Wasserstoff, Alkyl, Alkenyl, Alkinyl, Cycloalkyl oder Cycloalkenyl, wobei diese Reste eine oder mehrere der folgenden Gruppen tragen können: Halogen, Alkyl, Alkenyl oder Alkinyl; Aryl, Hetaryl oder Heterocyclyl; R3 ein Rest der allgemeinen Formel (2), in der Z und die Substituenten R?4, R5, R6 und R7¿ die in Anspruch 1 angegebene Bedeutung haben, sowie landwirtschaftlich übliche Salze der 4-Benzoylisothiazole der allgemeinen Formel (1), Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide.

Description

Herbizide heterocyclisch substituierte Benzoylisothiazole
Beschreibung
Die vorliegende Erfindung betrifft neue substituierte Benzoylisothiazole, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide. Aus der Patentliteratur (EP 0 527 036, EP 0 527 037, EP 0 560 482, EP 0 580 439, EP 0 588 357, EP 609 797, EP 0 609 798,
EP 0 636 622, WO 94/14782, WO 94/ 18179, WO 95/15691 und
WO 95/16678) ist bekannt, daß substituierte 4-Benzoyl-5-cycloalkylisoxazole eine Verbindungsklasse mit ausgeprägter herbizider Aktivität im Vorauflaufverfahren darstellen. 4-(2-Sulfonyl- methyl-4-trifluormethylbenzoyl)-5-cyclopropylisoxazol, ein Vertreter dieser Verbindungsklasse wird von Rhone-Poulenc als herbizider Wirkstoff gegen mono- und dikotyle Schadpflanzen im Vorauflaufverfahren in Mais entwickelt (RPA 201772, Technical Bulletin).
Darüber hinaus ist die herbizide und insektizide Aktivität substituierter 4-Alkyl- bzw. 4-Cycloalkyl-5-aryl- bzw.-5-hetaryl- isoxazole bekannt (GB 2 284 600, WO 95/ 22903, WO 95/22904 und WO 95/25105).
Die herbizide Aktivität der bekannten Verbindungen ist bei mangelhafter Wirkung im Nachauflaufverfahren auch im Vorauflauf- verfahren bei unvollständiger Kulturpflanzenverträglichkeit nur teilweise befriedigend.
Erfindungsgemäße herbizide oder insektizide 4-Benzoylisothiazole sind dem Stand der Technik bisher nicht zu entnehmen. 4-Benzoylisothiazole haben bisher nur geringes synthetisches Interesse erfahren. Substituierte Isothiazole und ihre carbocyclisch anellierten Derivate sind zwar Ziel grundlegender Untersuchungen gewesen (beispielsweise: D. L. Pain, B. J. Peart, K. R. H. Wooldridge, Comprehensive Heterocyclic Chemistry,
Vol. 6, Teil 4B, S. 131, Hrsq. A.R. Katritzky, Pergamon PRess, Oxford, 1984), acylierte und insbesondere benzoylierte Derivate wurden in der Literatur nur vereinzelt beschrieben (beispielsweise: A. J. Layton, E. Lunt, J. Chem. Soc. (1968) 611, A. Alberola, F. Alonso, P. Cuadrado, C. M. Sanudo, Synth. Commun. 17 (1987) 1207, A. Alberola, F. Alonso, P. Cuadrado, C. M. Sanudo, J. Heterocycl. Chem. 25 (1988) 235). Einige durch Hydroxypropylaminocarbonyl substituierte 4-Benzoylisothiazole sind in EP 0 524 781 und EP 0 617 010 als Muskelrelaxantien bzw. als geeignete therapeutische Amide bei Inkontinenz untersucht worden. 3,5-Di-(tertiärbutyl)-4-hydroxybenzoyl- isothiazole wirken laut EP 0 449 223 als Inhibitoren der 5-Lipoxygenase und Cyclooxygenase entzündungshemmend.
Aus US 5 034 385 geht hervor, daß durch Carbapeneme substituierte Benzoylisothiazole antibakterielle Wirkung aufweisen.
Der Erfindung lag die Aufgabe zugrunde, neue herbizide Wirkstoffe mit verbessertem Wirkprofil und Kulturpflanzenverträglichkeit zur Verfügung zu stellen. Überraschenderweise zeigen die erfindungsgemäßen Benzoylisothiazole der allgemeinen Formel 1 bei Kulturpflanzenverträglichkeit ausgeprägte herbizide Aktivität gegen Schadpflanzen.
Gegenstand der vorliegenden Erfindung sind 4-Benzoylisothiazole der allgemeinen Formel 1
Figure imgf000004_0001
in der die Substituenten die folgende Bedeutung haben:
X Sauerstoff oder Schwefel;
R1 Wasserstoff, Alkyl, Alkenyl, Alkinyl; ggf. subst. Alkoxycarbonyl;
ggf. subst. Aryl, ggf. subst. Heterocyclyl oder ggf.
subst, Hetaryl;
R2 Wasserstoff, Alkyl, Alkenyl, Alkinyl, Cycloalkyl oder
Cycloalkenyl, wobei diese Reste einen oder mehrere der folgenden Gruppen tragen können: Halogen, Alkyl, Alkenyl oder Alkinyl;
Aryl, wobei dieser Rest einen oder mehrere der folgenden
Gruppen tragen kann:
Alkyl, Alkenyl, Alkinyl, Alkoxy, Alkenyloxy, Alkinyloxy,
Alkylthio oder Alkenylthio, wobei diese Reste partiell oder vollständig halogeniert sein können oder einen oder mehrere der folgenden Gruppen tragen können:
Alkoxy, Alkenyloxy, Aryloxy, Alkylsulfonyl, Alkenylsulfonyl oder Arylsulfonyl;
Alkylsulfonyl oder Alkoxycarbonyl;
ggf. subst. Aryloxy oder ggf. subst. Arylthio;
ggf. subst. Mono- oder Dialkylamino, ggf. subst. Mono. oder Diarylamino oder ggf. subst. N-Alkyl-N-arylamino, wobei Alkyl und Aryl gleich oder verschieden sein können;
Halogen, Cyano oder Nitro;
Hetaryl oder Heterocyclyl, wobei diese Reste partiell oder vollständig halogeniert sein können oder einen oder mehrere der folgenden Gruppen tragen können:
Alkyl, Alkoxy oder Aryl und wobei im Fall von Heterocyclyl mindestens einer der Stickstoffe eine der folgenden Gruppen tragen kann:
Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Haloalkyl, Alkoxy, Alkenyloxy, Alkinyloxy, Cycloalkyloxy, Haloalkoxy, ggf. subst. Aryl oder ggf. subst. Aryloxy;
R3 ein Rest der allgemeinen Formel 2
Figure imgf000005_0001
in der die Substituenten die folgende Bedeutung haben:
Z 5- oder 6-gliedrige heterocyclische, gesättigte oder
ungesättigte Reste, enthaltend ein bis drei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder
Stickstoff, der gegebenenfalls durch Halogen, Cyano, Nitro, eine Gruppe -CO-R8, Alkyl, Haloalkyl, Cycloalkyl, Alkoxy, Haloalkoxy, Alkylthio, Haloalkylthio, Di-alkylamino oder ggf. durch Halogen, Cyano, Nitro, C1-C4-Alkyl oder C1-C4-Halogenalkyl substituiertes Phenyl oder eine Oxogruppe, die gegebenenfalls auch in der tautomeren Form als Hydroxygruppe vorliegen kann, substituiert ist oder der mit einem ankondensierten durch Halogen, Cyano,
Nitro, Alkyl oder Haloalkyl substituierten Phenylring, einem ankondensierten Carbocyclus oder einem ankondensierten, ggf. durch Halogen, Cyano, Nitro, Alkyl, Di-al kylamino, Alkoxy, Haloalkoxy, oder Haloalkyl substituierten zweiten Heterocyclus ein bicyclisches System bildet,
R4-R7 können gleich oder verschieden sein und stehen unabhängig voneinander für Wasserstoff, Alkyl, Alkenyl, Alkinyl,
Cycloalkyl, Cycloalkenyl, Cycloalkylalkyl, Cycloalkylalkenyl, Cycloalkylalkinyl, Aryl, Arylalkyl, Arylalkenyl, Arylalkinyl, Hydroxy, Alkoxy, Alkenyloxy, Alkinyloxy, Cycloalkoxy, Cycloalkylalkoxy, Cycloalkylalkenyloxy, Cycloalkylalkinyloxy, Cycloalkenyloxy, Aryloxy, Arylalkoxy,
Arylalkenyloxy, Arylalkinyloxy, Thio, Alkylthio, Alkenylthio, Alkinylthio, Cycloalkylthio, Cycloalkylalkylthio, Cycloalkylalkenylthio, Cycloalkylalkinylthio, Cycloalkenylthio, Arylthio, Arylalkylthio, Arylalkenylthio, Arylalkinylthio, Amino, ggf. subst. Mono- oder Dialkylamino, ggf. subst. Mono- oder Diarylamino, ggf. subst. N-AlkylN-arylamino, wobei Alkyl und Aryl gleich oder verschieden sein können, Alkenylamino, Alkinylamino, Cycloalkylamino, Cycloalkenylamino, Sulfonyl, Alkylsulfonyl, Alkenylsulfonyl, Alkinylsulfonyl, Cycloalkylsulfonyl, Cycloalkylalkylsulfonyl, Cycloalkylalkenylsulfonyl, Cycloalkylalkinylsulfonyl, Arylsulfonyl, Arylalkylsulfonyl, Arylalkenylsulfonyl, Arylalkinylsulfonyl, Sulfoxyl, Alkylsulfoxyl, Alkenylsulfoxyl, Alkinylsulfoxyl, Cycloalkylsulfoxyl, Cycloalkylalkylsulfoxyl, Cycloalkylalkenylsulfoxyl, Cycloalkylalkinylsulfoxyl, Arylsulfoxyl, Arylalkylsulfoxyl, Arylalkenylsulfoxyl, Arylalkinylsulfoxyl, ggf. subst. Mono- oder Dialkylaminosulfonyl, ggf. subst. Mono- oder Diarylaminosulfonyl, ggf. subst. N-AlkylN-arylaminosulfonyl, wobei Alkyl und Aryl gleich oder verschieden sein können, Alkylcarbonyl, Alkenylcarbonyl, Alkinylcarbonyl, Cycloalkylcarbonyl, Cycloalkylalkylcarbonyl, Cycloalkylalkenylcarbonyl, Cycloalkylalkinylcarbonyl, Arylcarbonyl, Arylalkylcarbonyl, Arylalkenylcarbonyl, Arylalkinylcarbonyl, Carboxyl, Alkoxycarbonyl, Alkenyloxycarbonyl, Alkinyloxycarbonyl, Cycloalkoxycarbonyl, Cycloalkylalkoxycarbonyl, Cycloalkylalkenyloxycarbonyl, Cycloalkylalkinyloxycarbonyl, Aryloxycarbonyl, Arylalkoxycarbonyl, Arylalkenyloxycarbonyl, Arylalkinyloxycarbonyl, Aminocarbonyl, ggf. subst. Mono- oder
Dialkylaminocarbonyl, ggf. subst. Mono- oder Diarylaminocarbonyl, ggf. subst. N-Alkyl-N-arylaminocarbonyl, wobei Alkyl und Aryl gleich oder verschieden sein können, ggf. subst. Mono- oder Dialkylcarbonylamino, ggf. subst. Monooder Diarylcarbonylamino, ggf. subst. N-Alkyl-N-arylcarbonylamino, wobei Alkyl und Aryl gleich oder verschieden sein können, Alkoxyaminocarbonyl, Alkenyloxycarbonyl amino, Alkinyloxycarbonylamino, Cycloalkoxycarbonylamino, Cycloalkylalkoxycarbonylamino, Cycloalkylalkenyloxycarbonylamino, Cycloalkylalkinyloxycarbonylamino, Aryloxycarbonylamino, Arylalkoxycarbonylamino, Arylalkenyloxycarbo- nylamino, Arylalkinyloxycarbonylamino, Halogen, Haloalkyl, Haloalkenyl, Haloalkinyl, Haloalkoxy, Haloalkenyloxy, Haloalkinyloxy, Haloalkylthio, Haloalkenylthio, Haloalkinylthio, Haloalkylamino, Haloalkenylamino, Haloalkinylamino, Haloalkylsulfonyl, Haloalkenylsulfonyl, Haloalkinylsulfonyl, Haloalkylsulfoxyl, Haloalkenylsulfoxyl, Haloalkinylsulfoxyl, Haloalkylcarbonyl, Haloalkenylcarbonyl, Haloalkinylcarbonyl, Haloalkoxycarbonyl, Haloalkenyloxycarbonyl, Haloalkinyloxycarbonyl, Haloalkylaminocarbonyl, Haloalkenylaminocarbonyl, Haloalkinylaminocarbonyl, Haloalkoxycarbonylamino, Haloalkenyloxycarbonylamino, Haloalkinyloxycarbonylamino, Cyano oder Nitro oder ein der folgenden Gruppen:
>
Figure imgf000007_0001
R4, R5 können gemeinsam eine fünf- oder sechsgliedrige, gesättigte oder ungesättigte, aromatische oder nicht aromatische, ggf. subst. Alkylen-, Alkenylen- oder Alkdienylenkette bilden;
R8 Alkyl, Haloalkyl, Alkoxy, oder NR9R10,
R9 Wasserstoff oder Alkyl,
R10 Alkyl, sowie landwirtschaftlich übliche Salze der 4-Benzoylisothiazole der allgemeinen Formel 1.
Bei der eingangs angegebenen Definitionen der Verbindungen I wurden Sammelbegriffe verwendet, die allgemein repräsentativ für die folgenden Gruppen stehen:
Halogen: Fluor, Chlor, Brom und Jod;
Alkyl: geradkettige oder verzweigte Alkylgruppen mit 1 bis 6 oder 10 Kohlenstoffatomen, z.B. C1-C6-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methyl-propyl, 2-Methylpropyl,
1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl,
3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, Hexyl,
1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl,
1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl,
2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1- Ethyl-2-methylpropyl;
Alkylamino: eine Aminogruppe, welche eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 6 Kohlenstoffatomen wie vorstehend genannt trägt; Dialkylamino: eine Aminogruppe, welche zwei voneinander unabhängige, geradkettige oder verzweigte Alkylgruppen mit jeweils 1 bis 6 Kohlenstoffatomen wie vorstehend genannt, trägt;
Alkylcarbonyl: geradkettige oder verzweigte Alkylgruppen mit 1 bis 10 Kohlenstoffatomen, welche über eine Carbonylgruppe (-CO-) an das Gerüst gebunden sind;
Alkylsulfonyl: geradkettige oder verzweigte Alkylgruppen mit 1 bis 6 oder 10 Kohlenstoffatomen, welche über eine Sulfonylgruppe (-SO2-) an das Gerüst gebunden sind; Alkylsulfoxyl: geradkettige oder verzweigte Alkylgruppen mit 1 bis 6 Kohlenstoffatomen, welche über eine Sulfoxylgruppe
(-S(=O)-) an das Gerüst gebunden sind; Alkylaminocarbonyl: Alkylaminogruppen mit 1 bis 6 Kohlenstoffatomen wie vorstehend genannt, welche über eine Carbonylgruppe (-CO-) an das Gerüst gebunden sind;
Dialkylaminocarbonyl: Dialkylaminogruppen mit jeweils 1 bis 6 Kohlenstoffatomen pro Alkylrest wie vorstehend genannt, welche über eine Carbonylgruppe (-CO-) an das Gerüst gebunden sind;
Alkylaminothiocarbonyl: Alkylaminogruppen mit 1 bis 6 Kohlenstoffatomen wie vorstehend genannt, welche über eine Thiocarbonylgruppe (-CS-) an das Gerüst gebunden sind;
Dialkylaminothiocarbonyl: Dialkylaminogruppen mit jeweils 1 bis 6 Kohlenstoffatomen pro Alkylrest wie vorstehend genannt, welche über eine Thiocarbonylgruppe (-CS-) an das Gerüst gebunden sind;
Haloalkyl: geradkettige oder verzweigte Alkylgruppen mit 1 bis 6 Kohlenstoffatomen, wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können, z.B. C1-C2-Halogenalkyl wie Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl und Pentafluorethyl;
Alkoxy: geradkettige oder verzweigte Alkylgruppen mit 1 bis 6 Kohlenstoffatomen wie vorstehend genannt, welche über ein Sauerstoffatom (-O-) an das Gerüst gebunden sind, z.B. C1-C6-Alkoxy wie Methyloxy, Ethyloxy, Propyloxy, 1-Methylethyloxy, Butyloxy, 1-Methyl-propyloxy, 2-Methylpropyloxy, 1,1-Dimethylethyloxy, Pentyloxy, 1-Methylbutyloxy, 2-Methylbutyloxy, 3-Methylbutyloxy,
2,2-Di-methylpropyloxy, 1-Ethylpropyloxy, Hexyloxy, 1,1-Dimethylpropyloxy, 1,2-Dimethylpropyloxy, 1-Methylpentyloxy, 2-Methylpentyloxy, 3-Methylpentyloxy, 4-Methylpentyloxy, 1,1-Dimethylbutyloxy, 1,2-Dimethylbutyloxy, 1,3-Dimethylbutyloxy,
2,2-Dimethylbutyloxy, 2,3-Dimethylbutyloxy, 3,3-Dimethylbutyloxy, 1-Ethyl-butyloxy, 2-Ethylbutyloxy, 1,1,2-Trimethylpropyloxy, 1,2,2-Trimethylpropyloxy, 1-Ethyl-1-methylpropyloxy und
1-Ethyl-2-methylpropyloxy; Alkoxycarbonyl: geradkettige oder verzweigte Alkylgruppen mit 1 bis 6 Kohlenstoffatomen, welche über eine Oxycarbonylgruppe (-OC(=O)-) an das Gerüst gebunden sind; Haloalkoxy: geradkettige oder verzweigte Alkylgruppen mit 1 bis 6 Kohlenstoffatomen, wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können, und wobei diese Gruppen über ein Sauerstoffatom an das Gerüst gebunden sind;
Alkylthio: geradkettige oder verzweigte Alkylgruppen mit 1 bis 4 oder 6 Kohlenstoffatomen wie vorstehend genannt, welche über ein Schwefelatom (-S-) an das Gerüst gebunden sind, z.B.
C1-C6-Alkylthio wie Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio, 1,1-Dimethylethylthio, Pentylthio, 1-Methylbutylthio, 2-Methylbutylthio, 3-Methylbutylthio, 2,2-Di-methylpropylthio, 1-Ethylpropylthio, Hexylthio, 1,1-Dimethylpropylthio, 1,2-Dimethylpropylthio, 1-Methylpentylthio, 2-Methylpentylthio, 3-Methyl- pentylthio, 4-Methylpentylthio, 1,1-Dimethylbutylthio,
1,2-Dimethylbutylthio, 1,3-Dimethylbutylthio, 2,2-Dimethylbutylthio, 2,3-Dimethylbutylthio, 3,3-Dimethylbutylthio, 1-Ethylbutylthio, 2-Ethylbutylthio, 1,1,2-Trimethylpropylthio, 1,2,2-Trimethylpropylthio, 1-Ethyl-1-methylpropylthio und
1-Ethyl-2-methylpropylthio;
Cvcloalkyl: monocyclische Alkylgruppen mit 3 bis 6 Kohlenstoff-ringgliedern, z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl und Cyclohexyl;
Alkenyl: geradkettige oder verzweigte Alkenylgruppen mit 2 bis 6 oder 10 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z.B. C2-C6-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl,
4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl,
3-Methyl-1-butenyl1 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl,
1,2-Dimethyl-1-propenyl, 1,2-Dimethyl-2-propenyl,
1-Ethyl-1-propenyl, 1-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl,
2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Di-methyl-3-butenyl,
1,2-Dimethyl-1-butenyl, 1,2-Dimethyl-2-butenyl,
1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-1-butenyl,
1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl,
2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-1-butenyl,
2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl,
3,3-Dimethyl-1-butenyl, 3,3-Dimethyl-2-butenyl,
1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl,
2-Ethyl-1-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl,
1,1,2-Trimethyl-2-propenyl, 1- Ethyl-1-methyl-2-propenyl,
1-Ethyl-2-methyl-1-propenyl und 1-Ethyl-2-methyl-2-propenyl;
Alkenyloxy: geradkettige oder verzweigte Alkenylgruppen mit 2 bis 6 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, welche über ein Sauerstoffatom (-O-) an das Gerüst gebunden sind;
Alkenylthio bzw. Alkenylamino: geradkettige oder verzweigte Alkenylgruppen mit 2 bis 6 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, welche (Alkenylthio) über ein Schwefelatom bzw. (Alkenylamino) ein Stickstoffatom an das Gerüst gebunden sind. Alkenylcarbonyl: geradkettige oder verzweigte Alkenylgruppen mit 2 bis 10 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, welche über eine Carbonylgruppe (-CO-) an das Gerüst gebunden sind; Alkinyl: geradkettige oder verzweigte Alkinylgruppen mit 2 bis 10 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, z.B. C2-C6-Alkinyl wie Ethinyl, 2-Propinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 2-Pentinyl,
3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl- 3-butinyl, 2,2-Dimethyl-3-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl- 3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl;
Alkinyloxy bzw. Alkinylthio und Alkinylamino: geradkettige oder verzweigte Alkinylgruppen mit 2 bis 6 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, welche (Alkinyloxy) über ein Sauerstoffatom bzw. (Alkinylthio) über ein Schwefelatom oder (Alkinylamino) über ein Stickstoffatom an das Gerüst gebunden sind.
Alkinylcarbonyl: geradkettige oder verzweigte Alkinylgruppen mit 3 bis 10 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, welche über eine Carbonylgruppe (-CO-) an das Gerüst gebunden sind;
Cycloalkenyl bzw. Cycloalkenyloxy, Cycloalkenylthio und Cycloalkenylamino: monocyclische Alkenylgruppen mit 3 bis 6 Kohlenstoffringgliedern, welche direkt bzw. (Cycloalkenyloxy) über ein Sauerstoffatom oder (Cycloalkenylthio) ein Schwefelatom oder Cycloalkenylamino) über ein Stickstoffatom an das Gerüst gebunden sind, z.B. Cyclopropenyl, Cyclobutenyl, Cyclopentenyl oder Cyclohexenyl.
Cycloalkoxy bzw. Cycloalkylthio und Cycloalkylamino: monocyclische Alkylgruppen mit 3 bis 6 Kohlenstoffringgliedern, welche (Cycloalkyloxy) über ein Sauerstoffatom oder (Cycloalkylthio) ein Schwefelatom oder (Cycloalkylamino) über ein Stickstoffatom an das Gerüst gebunden sind, z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl;
Cycloalkylcarbonyl: Cycloalkgruppen, wie vorstehend definiert, welche über eine Carbonylgruppe (-CO-) an das Gerüst gebunden sind;
Cycloalkoxycarbonyl: Cycloalkoxygruppen, wie vorstehend definiert, welche über eine Carbonylgruppe (-CO-) an das Gerüst gebunden sind;
Alkenyloxycarbonyl: Alkenyloxygruppen, wie vorstehend definiert, welche über eine Carbonylgruppe (-CO-) an das Gerüst gebunden sind;
Alkinyloxycarbonyl: Alkinyloxygruppen, wie vorstehend definiert, welche über eine Carbonylgruppe (-CO-) an das Gerüst gebunden sind; Heterocyclyl: drei- bis sechsgliedrige, gesättigte oder partiell ungesättigte mono- oder polycyclische Heterocyclen, die ein bis drei Heteroatome ausgewählt aus einer Gruppe bestehend aus Sauerstoff, Stickstoff und Schwefel enthalten, und welche direkt über Kohlenstoff an das Gerüst gebunden sind, wie z.B. 2-Tetrahydrofuranyl, Oxiranyl, 3-Tetrahydrofuranyl, 2-Tetrahydrothienyl,
3-Tetrahydrothienyl, 2-Pyrrolidinyl, 3-Pyrrolidinyl, 3-Isoxazoldinyl, 4-Isoxazolidinyl, 5-Isoxazolidinyl, 3-Isothiazolidinyl, 4-Isothiazolidinyl, 5-Isothiazolidinyl, 3-Pyrazolidinyl,
4-Pyrazolidinyl, 5-Pyrazolidinyl, 2-Oxazolidinyl, 4-Oxazolidinyl, 5-Oxazolidinyl, 2-Thiazolidinyl, 4-Thiazolidinyl, 5-Thiazolidinyl, 2-Imidazolidinyl, 4-Imidazolidinyl, 1,2,4-Oxadiazolidin-3-yl, 1,2,4-Oxadiazolidin-5-yl, 1,2,4-Thiadiazolidin3-yl, 1,2,4-Thiadiazolidin-5-yl, 1,2,4-Triazolidin-3-yl,
1,3,4-Oxadiazolidin-2-yl, 1,3,4-Thiadiazolidin-2-yl, 1,3,4-Triazolidin-2-yl, 2,3-Dihydrofur-2-yl, 2,3-Dihydrofur-3-yl,
2,3-Dihydro-fur-4-yl, 2,3-Dihydro-fur-5-yl, 2,5-Dihydro-fur-2-yl, 2,5-Dihydro-fur-3-yl, 2,3-Dihydrothien-2-yl, 2,3-Dihydro- thien-3-yl, 2,3-Dihydrothien-4-yl, 2,3-Dihydrothien-5-yl,
2,5-Dihydrothien-2-yl, 2,5-Dihydrothien-3-yl, 2,3-Dihydropyrrol-2-yl, 2,3-Dihydropyrrol-3-yl, 2,3-Dihydropyrrol-4-yl, 2,3-Dihydropyrrol-5-yl, 2 ,5-Dihydropyrrol-2-yl, 2,5-Dihydropyrrol-3-yl, 2,3-Dihydroisoxazol-3-yl, 2,3-Dihydroisoxazol-4-yl, 2,3-Dihydroisoxazol-5-yl, 4,5-Dihydroisoxazol-3-yl, 4,5-Dihydroisoxazol-4-yl, 4,5-Dihydroisoxazol-5-yl, 2,5-Dihydroisothiazol-3-yl, 2,5-Dihydroisothiazol-4-yl, 2,5-Dihydroisothiazol-5-yl, 2,3-Dihydroisopyrazol-3-yl, 2,3-Dihydroisopyrazol-4-yl, 2,3-Dihy- droisopyrazol-5-yl, 4,5-Dihydroisopyrazol-3-yl, 4, 5-Dihydroisopyrazol-4-yl, 4,5-Dihydroisopyrazol-5-yl, 2,5-Dihydroisopyrazol-3-yl, 2,5-Dihydroisopyrazol-4-yl, 2,5-Dihydroisopyrazol-5-yl, 2,3-Dihydrooxazol-3-yl, 2,3-Dihydrooxazol-4-yl, 2,3-Dihydrooxazol-5-yl, 4,5-Dihydrooxazol-3-yl, 4,5-Dihydrooxazol-4-yl, 4,5-Dihydrooxazol-5-yl, 2,5-Dihydrooxazol-3-yl, 2,5-Dihydro¬oxazol-4-yl, 2,5-Dihydrooxazol-5-yl, 2,3-Dihydrothiazol-2-yl, 2,3-Dihydrothiazol-4-yl, 2 ,3-Dihydrothiazol-5-yl, 4,5-Dihydrothiazol-2-yl, 4,5-Dihydrothiazol-4-yl, 4,5-Dihydrothiazol-5-yl, 2,5-Dihydrothiazol-2-yl, 2,5-Dihydrothiazol-4-yl, 2,5-Dihydrothiazol-5-yl, 2,3-Dihydroimidazol-2-yl, 2,3-Dihydroimidazol-4-yl, 2,3-Dihydroimidazol-5-yl, 4,5-Dihydroimidazol-2-yl, 4,5-Dihydro- imidazol-4-yl, 4,5-Dihydroimidazol-5--yl, 2,5-Dihydroimidazol2-yl, 2,5-Dihydroimidazol-4-yl, 2,5-Dihydroimidazol-5-yl,
2-Morpholinyl, 3-Morpholinyl, 2-Piperidinyl, 3-Piperidinyl, 4-Piperidinyl, 3-Tetrahydropyridazinyl, 4-Tetrahydropyridazinyl, 2-Tetrahydropyrimidinyl, 4-Tetrahydropyrimidinyl, 5-Tetrahydropyrimidinyl, 2-Tetrahydropyrazinyl, 1,3,5-Tetrahydrotriazin-2-yl, 1,2,4-Tetrahydrotriazin-3-yl, 1,3-Dihydrooxazin-2-yl,
1,3-Dithian-2-yl, 2-Tetrahydropyranyl, 1,3-Dioxolan-2-yl,
3,4,5,6-Tetrahydropyridin-2-yl, 4H-1,3-Thiazin-2-yl,
4H-3,1-Benzothiazin-2-yl, 1,1-Dioxo-2,3,4,5-tetrahydrothien-2-yl, 2H-1,4-Benzothiazin-3-yl, 2H-1,4-Benzoxazin-3-yl, 1,3-Dihydrooxazin-2-yl, 1,3-Dithian-2-yl, Aryl bzw. Aryloxy, Arylthio, Arylcarbonyl, Aryloxycarbonyl, Arylsulfonyl und Arylsulfoxyl; aromatische mono- oder polycyclische Kohlenwasserstoffreste welche direkt bzw. (Aryloxy) über ein Sauerstoffatom (-O-) oder (Arylthio) ein Schwefelatom (-S-), (Arylcarbonyl) über eine Carbonylgruppe (-CO-), Aryloxycarbonyl über eine Oxycarbonylgruppe (-OCO-), (Arylsulfonyl) über eine Sulfonylgruppe (-SO2-) oder Arylsulfoxyl über eine Sulfoxylgruppe (-SO-) an das Gerüst gebunden sind, z.B. Phenyl, Naphthyl und Phenanthrenyl bzw. Phenyloxy, Naphthyloxy und Phenanthrenyloxy und die entsprechenden Carbonyl- und Sulfonylreste;
Arylamino: aromatische mono- oder polycyclische Kohlenwasser- Stoffreste, welche über ein Stickstoffatom an das Gerüst gebunden sind.
Hetaryl: aromatische mono- oder polycyclische Reste welche neben Kohlenstoffringgliedern zusätzlich ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Sauerstoff- oder ein Schwefelatom oder ein Sauerstoff- oder ein Schwefelatom enthalten können und welche direkt über Kohlenstoff an das Gerüst gebunden sind, z.B. - 5-gliedriges Heteroaryl, enthaltend ein bis drei Stickstoff- atome: 5-Ring Heteroarylgruppen, welche neben Kohlenstoff- atomen ein bis drei Stickstoffatome als Ringglieder enthalten können, z.B. 2-Pyrrolyl, 3-Pyrrolyl, 3-Pyrazolyl,
4-Pyrazolyl, 5-Pyrazolyl, 2-Imidazolyl, 4-lmidazolyl,
1,2,4-Triazol-3-yl und 1,3,3-Triazol-2-yl; - 5-gliedriges Heteroaryl, enthaltend ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefeloder Sauerstoffatom oder ein Sauerstoff oder ein Schwefelatom: 5-Ring Heteroarylgruppen, welche neben Kohlenstoff- atomen ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom oder ein Sauerstoff- oder Schwefelatom als Ringglieder enthalten können, z.B. 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl,
2-Pyrrolyl, 3-Pyrrolyl, 3-Isoxazolyl, 4-Isoxazolyl,
5-Isoxazolyl, 3-lsothiazolyl, 4-Isothiazolyl, 5-Isothiazolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl,
4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl,
5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, 1,2,4-Oxadiazol- 3-yl, 1,2,4-Oxadiazol-5-yl, 1,2,4-Thiadiazol-3-yl,
1.2,4-Thiadiazol-5-yl, 1,2,4-Triazol-3-yl,
1,3,4-Oxadiazol-2-yl, 1,3,4-Thiadiazol-2-yl,
1.3,4-Triazol-2-yl; - carbocyclisch anneliertes 5-gliedriges Heteroaryl, enthaltend ein bis drei Stickstoffatome oder ein Stickstoffatom und/oder ein Sauerstoff- oder Schwefelatom: 5-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom oder ein Sauerstoff- oder ein Schwefelatom als Ringglieder enthalten können, und in welchen zwei benachbarte Kohlenstoffringglieder oder ein Stickstoff- und ein benachbartes Kohlenstoffringglied durch eine Buta-1,3-dien- 1,4-diylgruppe verbrückt sein können; - 6-gliedriges Heteroaryl, enthaltend ein bis drei bzw. ein bis vier Stickstoffatome: 6-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis drei bzw. ein bis vier Stickstoffatome als Ringglieder enthalten können, z.B. 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 3-Pyridazinyl, 4-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 5-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl, 1,2,4-Triazin-3-yl und
1,2,4,5-Tetrazin-3-yl; - benzokondensiertes 6-gliedriges Heteroaryl, enthaltend ein bis vier Stickstoffatome: 6 -Ring Heteroarylgruppen in welchen zwei benachbarte Kohlenstoffringglieder durch eine Buta-1,3-dien-1,4-diylgruppe verbrückt sein können, z.B.
Chinolin, Isochinolin, Chinazolin und Chinoxalin, bzw. die entsprechenden Oxy-, Thio-, Carbonyl- oder Sulfonyl- gruppen.
Die Angabe "partiell oder vollständig halogeniert" soll zum Ausdruck bringen, daß in den derart charakterisierten Gruppen die Wasserstoffatome zum Teil oder vollständig durch gleiche oder verschiedene Halogenatome wie vorstehend genannt ersetzt sein können.
Ggf. subst. bedeutet, daß die entsprechende organische Gruppe beliebig substituiert sein kann, wobei prinzipiell alle in dieser Anmeldung aufgeführten Substituenten in Frage kommen.
Bevorzugte Substituenten sind Wasserstoff, Alkyl, Alkenyl,
Alkinyl, Cycloalkyl, Cycloalkylalkyl, Cycloalkylalkenyl, Aryl, Arylalkyl, Arylalkenyl, Hydroxy, Alkoxy, Alkenyloxy, Cycloalkoxy, Cycloalkylalkoxy, Aryloxy, Arylalkoxy, Thio, Alkylthio, Alkenylthio, Cycloalkylthio, Cycloalkylalkylthio, Arylthio, Arylalkylthio, Amino, ggf. subst. Mono- oder Dialkylamino, ggf. subst.
Mono- oder Diarylamino, ggf. subst. N-Alkyl-N-arylamino, wobei Alkyl und Aryl gleich oder verschieden sein können, Alkenylamino, Cycloalkylamino, Cycloalkenylamino, Sulfonyl, Alkylsulfonyl, Alkenylsulfonyl, Cycloalkylsulfonyl, Cycloalkylalkylsulfonyl, Arylsulfonyl, Arylalkylsulfonyl, Sulfoxyl, Alkylsulfoxyl, Alkenylsul- foxyl, Cycloalkylsulfoxyl, Cycloalkylalkylsulfoxyl, Arylsulfoxyl, Arylalkylsulfoxyl, Alkylcarbonyl, Alkenylcarbonyl, Cycloalkylcarbonyl, Cycloalkylalkylcarbonyl, Arylcarbonyl, Arylalkylcarbonyl, Carboxyl, Alkoxycarbonyl, Alkenyloxycarbonyl, Cycloalkoxycarbonyl, Cycloalkylalkoxycarbonyl, Aryloxycarbonyl, Arylalkoxycarbonyl, Aminocarbonyl, ggf. subst. Mono- oder Dialkylamino- carbonyl, ggf. subst. Mono- oder Diarylaminocarbonyl, ggf. subst. N-Alkyl-N-arylaminocarbonyl, wobei Alkyl und Aryl gleich oder verschieden sein können, Alkoxyaminocarbonyl, Alkenyloxycarbony- lamino, Cycloalkoxycarbonylamino, Aryloxycarbonylamino, Arylalkoxycarbonylamino, Halogen, Haloalkyl, Haloalkenyl, ggf. subst. Mono- oder Dialkylamino, Haloalkoxy, Haloalkenyloxy, Haloalkylthio, Haloalkenylthio, Haloalkylamino, Haloalkenylamino, Haloalkylsulfonyl, Haloalkenylsulfonyl, Haloalkylsulfoxyl, Haloalkenylsulfoxyl, Haloalkylcarbonyl, Haloalkenylcarbonyl, Haloalkoxycarbonyl, Haloalkenyloxycarbonyl, Haloalkylaminocarbonyl, Haloalke- nylaminocarbonyl, Haloalkoxycarbonylamino, Haloalkenyloxycarbonylamino, Cyano oder Nitro. Besonders bevorzugte Substituenten sind Wasserstoff, Alkyl,
Alkenyl, Cycloalkyl, Cycloalkylalkyl, Aryl, Arylalkyl, Hydroxy, Alkoxy, Cycloalkoxy, Aryloxy, Thio, Alkylthio, Cycloalkylthio, Arylthio, Amino, ggf. subst. Mono- oder Dialkylamino, ggf. subst. Mono- oder Diarylamino, ggf. subst. N-Alkyl-N-arylamino, wobei Alkyl und Aryl gleich oder verschieden sein können, Cycloalkylamino, Sulfonyl, Alkylsulfonyl, Cycloalkylsulfonyl, Arylsulfonyl, Sulfoxyl, Alkylsulfoxyl, Arylsulfoxyl, Alkylcarbonyl, Arylcarbonyl, Carboxyl, Alkoxycarbonyl, Aryloxycarbonyl, Aminocarbonyl, ggf. subst. Mono- oder Dialkylaminocarbonyl, ggf.
subst. Mono- oder Diarylaminocarbonyl, ggf. subst. N-Alkyl- N-arylaminocarbonyl, wobei Alkyl und Aryl gleich oder verschieden sein können, Alkoxyaminocarbonyl, Aryloxycarbonylamino, Halogen, Haloalkyl, Haloalkoxy, Haloalkylthio, Haloalkylamino, Haloalkylsulfonyl, Haloalkylsulfoxyl, Haloalkylcarbonyl, Haloalkoxycarbonyl, Haloalkoxycarbonylamino, Cyano oder Nitro.
Im Hinblick auf ihre biologische Wirkung sind Verbindungen der allgemeinen Formel 1 bevorzugt, in der X Sauerstoff bedeutet. Weiterhin sind Verbindungen der allgemeinen Formel 1 bevorzugt, in der R1 Wasserstoff oder ggf. subst. Alkoxycarbonyl bedeutet.
Bevorzugt sind auch Verbindungen der allgemeinen Formel 1, in der R1 Wasserstoff oder Alkoxycarbonyl mit 1 bis 6 Kohlenstoffatomen, die einfach oder mehrfach durch Fluor, Chlor oder Brom substituiert sein können, bedeutet. Besonders bevorzugt sind Verbindungen der Formel 1, in der R1 Wasserstoff, Methoxycarbonyl oder Ethoxycarbonyl bedeuten.
Ferner sind Verbindungen der allgemeinen Formel 1 bevorzugt, in der R2 Alkyl mit 1 bis 6 Kohlenstoffatomen, besonders bevorzugt Methyl, Ethyl, Isopropyl oder tertiär Butyl; oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, besonders bevorzugt Cyclopropyl oder 1-Methylcyclopropyl; oder Phenyl, wobei dieser Rest einen oder mehrere der folgenden Gruppen tragen kann:
Alkyl, Alkoxy, Alkylthio, wobei diese Reste partiell oder vollständig halogeniert sein können oder Halogen, besonders bevorzugt 3-Trifluormethylphenyl, 2, 4-Difluorphenyl; Hetaryl oder Heterocyclyl, wobei diese Reste partiell oder vollständig halogeniert sein können oder einen oder mehrere der folgenden Gruppen tragen können: Alkyl, Alkoxy oder Phenyl, besonders bevorzugt 1,3-Benzodioxol, 2,2-Difluor-1,3-benzodioxol, 1,3-Benzoxathiol,
3,3-Dioxo-1,3-Benzoxathiol, Benzoxazol, Pyrazolyl oder Thienyl.
Bevorzugt sind weiterhin Verbindungen der allgemeinen Formel 1, in der R3 für einen Rest der allgemeinen Formel 2
Figure imgf000017_0001
steht, in der die Substituenten die folgende Bedeutung haben:
Z 5- oder 6-gliedrige heterocyclische, gesättigte oder
ungesättigte Reste, enthaltend ein bis drei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff, der gegebenenfalls durch Halogen, Cyano,
Nitro, eine Gruppe -CO-R8, C1-C4-Alkyl, C1-C4-Haloalkyl, C3-C8-Cycloalkyl, C1-C4-Alkoxy, C1-C4-Haloalkoxy, C1-C4-Alkylthio, C1-C4-Haloalkylthio, Di-C1-C4-Alkylamino, ggf. durch Halogen, Cyano, Nitro, C1-C4-Alkyl oder C1-C4-Haloalkyl substituiertes Phenyl oder eine Oxogruppe, die gegebenenfalls auch in der tautomeren Form als Hydroxygruppe vorliegen kann, substituiert ist oder der mit einem ankondensierten, gegebenenfalls durch Halogen, Cyano, Nitro, C1-C4-Alkyl oder C1-C4-Haloalkyl substituierten Phenylring, einem ankondensierten Carbocyclus oder einem ankondensierten, ggf. durch Halogen, Cyano, Nitro, C1-C4-Alkyl, Di-C1-C4-Alkylamino, C1-C4-Alkoxy, C1-C4 -Haloalkoxy, oder C1-C4 -Haloalkyl substituierten zweiten Heterocyclus ein bicyclisches System bildet;
R4-R1 können gleich oder verschieden sein und stehen unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Aryl,
Hydroxy, Alkoxy, Cycloalkoxy, Aryloxy, Thio, Alkylthio, Cycloalkylthio, Arylthio, Amino, ggf. substituiertes Mono- oder Dialkylamino bzw. Mono- oder Diarylamino bzw. N-Alkyl-N-arylamino, wobei Alkyl und Aryl gleich oder verschieden sein können, Cycloalkylamino, Sulfonyl,
Alkylsulfonyl, Cycloalkylsulfonyl, Arylsulfonyl, Sulfoxyl, Alkylsulfoxyl, Cycloalkylsulfoxyl, Arylsulfoxyl, Alkylcarbonyl, Cycloalkylcarbonyl, Arylcarbonyl, Carboxyl, Alkoxycarbonyl, Cycloalkoxycarbonyl, Aryloxycarbonyl, Aminocarbonyl, ggf. substituiertes Mono- oder Dialkylaminocarbonyl bzw. Mono- oder Diarylaminocarbonyl bzw. N-Alkyl-N-arylaminocarbonyl, wobei Alkyl und Aryl gleich oder verschieden sein können, Alkoxycarbonylamino, Cycloalkoxycarbonylamino, Aryloxycarbonylamino, Halogen, Haloalkyl, Haloalkoxy, Haloalkylthio, Haloalkylamino, Haloalkylsulfonyl, Haloalkylsulfoxyl, Haloalkylcarbonyl, Haloalkoxycarbonyl, Haloalkylamimocarbonyl, Haloalkoxycarbonylamino, Cyano oder Nitro; R4, R5 können gemeinsam eine fünf- oder sechsgliedrige, gesättigte oder ungesättigte, aromatische oder nicht aromatische, ggf. subst. Alkylen-, Alkenylen- oder Alkdienylenkette bilden; R8 C1-C4-Alkyl, C1-C4 -Halogenalkyl, C1-C4-Alkoxy, oder NR9R10; R9 Wasserstoff oder C1-C4 -Alkyl;
R10 C1-C4-Alkyl;
Bevorzugt sind auch Verbindungen der allgemeinen Formel 1, in der R3 für einen Rest der allgemeinen Formel 2a
Figure imgf000018_0001
steht, in der Z und die Substituenten R4-R7 die unter der allgemeinen Formel 2 angegebene oder die folgende Bedeutung haben: Z 5- oder 6-gliedrige heterocyclische, gesättigte oder ungesättigte Reste, enthaltend ein bis drei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff, der gegebenenfalls durch Halogen, Cyano, Nitro, eine Gruppe -CO-R8, C1-C4-Alkyl, C1-C4-Haloalkyl, C3-C8-Cycloalkyl, C1-C4-Alkoxy, C1-C4-Haloalkoxy, C1-C4-Alkylthio, C1-C4-Halogenalkylthio, Di-C1-C4-Alkylamino, ggf. durch Halogen, Cyano, Nitro, C1-C4-Alkyl oder C1-C4-Haloalkyl substituiertes Phenyl oder eine Oxogruppe, die gegebenenfalls auch in der tautomeren Form als Hydroxygruppe vorliegen kann, substituiert ist oder der mit einem ankondensierten, gegebenenfalls durch Halogen, Cyano, Nitro, C1-C4-Alkyl oder C1-C4-Haloalkyl substituierten Phenylring, einem ankondensierten Carbocyclus oder einem ankondensierten, ggf. durch Halogen, Cyano, Nitro, C1-C4-Alkyl, Di-C1-C4-Alkylamino, C1-C4-Alkoxy, C1-C4-Haloalkoxy, oder C1-C4-Haloalkyl substituierten zweiten Heterocyclus ein bicyclisches System bildet; R4-R7 können gleich oder verschieden sein und stehen unabhängig voneinander für Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkenyl, Cycloalkylalkyl, Cycloalkylalkenyl, Cycloalkylalkinyl, Aryl, Arylalkyl, Arylalkenyl, Arylalkinyl, Hydroxy, Alkoxy, Alkenyloxy, Alkinyloxy, Cycloalkoxy, Cycloalkylalkoxy, Cycloalkylalkenyloxy, Cycloalkylalkinyloxy, Cycloalkenyloxy, Aryloxy, Arylalkoxy, Arylalkenyloxy, Arylalkinyloxy, Thio, Alkylthio, Alkenylthio, Alkinylthio, Cycloalkylthio, Cycloalkylalkylthio, Cycloalkylalkenylthio, Cycloalkylalkinylthio, Cycloalkenylthio, Arylthio, Arylalkylthio, Arylalkenylthio, Arylalkinylthio, Amino, ggf. subst. Mono- oder Dialkylamino, ggf. subst. Mono- oder Diarylamino, ggf. subst. N-Alkyl-N-arylamino, wobei Alkyl und Aryl gleich oder verschieden sein können, Alkenylamino, Alkinylamino, Cycloalkylamino, Cycloalkenylamino, Sulfonyl, Alkylsulfonyl, Alkenylsulfonyl, Alkinylsulfonyl, Cycloalkylsulfonyl, Cycloalkylalkylsulfonyl, Cycloalkylalkenylsulfonyl, Cycloalkylalki nylsulfonyl , Arylsulf onyl, Arylalkylsulfonyl, Arylalkenylsulfonyl, Arylalkinylsulfonyl, Sulfoxyl, Alkylsulfoxyl, Alkenylsulfoxyl, Alkinylsulfoxyl, Cycloalkylsulfoxyl, Cycloalkylalkylsulfoxyl, Cycloalkylalkenylsulfoxyl, Cycloalkylalkinylsulfoxyl, Arylsulfoxyl, Arylalkylsulfoxyl, Arylalkenylsulfoxyl, Arylalkinylsulfoxyl, ggf. subst. Mono- oder Dialkylaminosulfonyl, ggf. subst. Mono- oder Diarylaminosulfonyl, ggf. subst. N-AlkylN-arylaminosulfonyl, wobei Alkyl und Aryl gleich oder verschieden sein können, Alkylcarbonyl, Alkenylcarbonyl, Alkinylcarbonyl, Cycloalkylcarbonyl, Cycloalkylalkylcarbonyl, Cycloalkylalkenylcarbonyl, Cycloalkylalkinylcarbonyl, Arylcarbonyl, Arylalkylcarbonyl, Arylalkenylcarbonyl, Arylalkinylcarbonyl, Carboxyl, Alkoxycarbonyl, Alkenyloxycarbonyl, Alkinyloxycarbonyl, Cycloalkoxycarbonyl, Cycloalkylalkoxycarbonyl, Cycloalkylalkenyloxy- carbonyl, Cycloalkylalkinyloxycarbonyl, Aryloxycarbonyl, Arylalkoxycarbonyl, Arylalkenyloxycarbonyl, Arylalkinyloxycarbonyl, Aminocarbonyl, ggf. subst. Mono- oder Dialkylaminocarbonyl, ggf. subst. Mono- oder Diarylaminocarbonyl, ggf. subst. N-Alkyl-N-arylaminocarbonyl, wobei Alkyl und Aryl gleich oder verschieden sein können, ggf. subst. Mono- oder Dialkylcarbonylamino, ggf. subst. Monooder Diarylcarbonylamino, ggf. subst. N-Alkyl-N-arylcar- bonylamino, wobei Alkyl und Aryl gleich oder verschieden sein können, Alkoxyaminocarbonyl, Alkenyloxycarbonyl- amino, Alkinyloxycarbonylamino, Cycloalkoxycarbonylamino, Cycloalkylalkoxycarbonylamino, Cycloalkylalkenyloxycarbo- nylamino, Cycloalkylalkinyloxycarbonylamino, Aryloxycar- bonylamino, Arylalkoxycarbonylamino, Arylalkenyloxycarbonylamino, Arylalkinyloxycarbonylamino, Halogen, Haloalkyl, Haloalkenyl, Haloalkinyl, Haloalkoxy, Haloalkenyloxy, Haloalkinyloxy, Haloalkylthio, Haloalkenylthio, Haloalkinylthio, Haloalkylamino, Haloalkenylamino, Haloalkinylamino, Haloalkylsulfonyl, Haloalkenylsulfonyl, Haloalkinylsulfonyl, Haloalkylsulfoxyl, Haloalkenylsulfoxyl, Haloalkinylsulfoxyl, Haloalkylcarbonyl, Haloalkenylcarbonyl, Haloalkinylcarbonyl, Haloalkoxycarbonyl, Haloalkenyloxycarbonyl, Haloalkinyloxycarbonyl, Haloalkylami- nocarbonyl, Haloalkenylaminocarbonyl, Haloalkinylaminocarbonyl, Haloalkoxycarbonylamino, Haloalkenyloxycarbonylamino, Haloalkinyloxycarbonylamino, Cyano oder Nitro.
Weiterhin bevorzugt sind Verbindungen der allgemeinen Formel 1, in der R3 für einen Rest der allgemeinen Formel 2b
Figure imgf000020_0001
steht, in der Z und die Substituenten R4-R7 die unter den allgemeinen Formeln 2 oder 2a angegebenen Bedeutungen haben. Bevorzugt sind auch Verbindungen der allgemeinen Formel 1, in der R3 für einen Rest der allgemeinen Formel 2c
Figure imgf000021_0001
steht, in der Z und die Substituenten R4-R7 die unter den allgemeinen Formeln 2 oder 2a angegebenen Bedeutungen haben. Darüber hinaus sind Verbindungen der allgemeinen Formel 1 bevorzugt, in der R3 einen Rest der allgemeinen Formel 2,
Figure imgf000021_0002
oder einen Rest der allgemeinen Formel 2a-c
Figure imgf000021_0003
bedeutet, in der Z die angegebene Bedeutung hat und die
Substituenten R4 bis R7 die folgende Bedeutung haben:
R4-R7 können gleich oder verschieden sein und stehen unabhängig voneinander für Wasserstoff, C1-C6 -Alkyl, bevorzugt
Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 2 -Methyl- propyl, Pentyl oder Hexyl; C2-C6-Alkenyl, bevorzugt Ethenyl, 2 -Propenyl, 2-Butenyl oder 3-Butenyl;
C2-C6-Alkinyl, Ethinyl, 2-Propinyl, 2-Butinyl oder 3-Butinyl; C3-C6-Cycloalkyl, bevorzugt Cyclopropyl,
Cyclobutyl, Cyclopentyl oder Cyclohexyl, C3-C6 -Cycloalkyl-C1-C6-alkyl, C3-C6-Cycloalkyl-C2-C6 -alkenyl, C3-C6-Cy- cloalkyl-C2-C6-alkinyl, Aryl, bevorzugt Phenyl oder
Naphthyl, Aryl-C1-C6-alkyl, Aryl -C2-C6 -alkenyl,
Aryl-C2-C6-alkinyl; Hydroxy, C1-C6-Alkoxy, bevorzugt Methyloxy, Ethyloxy, Propyloxy, 1-Methylethloxy, Butyloxy, Pentyloxy oder Hexyloxy, C2-C6-Alkenyloxy, bevorzugt Ethenyloxy, 2-Propenyloxy, 2-Butenyloxy oder 3-Butenyloxy; C2-C6 -Alkinyloxy, bevorzugt Ethinyloxy, 2-Propinyloxy, 2-Butinyloxy oder 3-Butinyloxy; C3-C6 -Cycloalkoxy, bevorzugt Cyclopropyloxy, Cyclobutyloxy, Cyclopentyloxy oder Cyclohexyloxy, C3-C6-Cycloalkyl-C1-C6-alkoxy,
C3-C6-Cycloalkyl-C2-C6-alkinyloxy; Aryloxy, bevorzugt
Phenoxy oder Naphthyloxy, Aryl-C1-C6-alkoxy,
Aryl-C2-C6-alkenyloxy, Aryl-C2-C6-alkinyloxy; Thio;
C1-C6-Alkylthio, bevorzugt Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, Pentylthio oder Hexylthio; C2-C6-Alkenylthio, bevorzugt Ethenylthio, 2-Propenylthio, 2-Butenylthio oder 3-Butenylthio;
C2-C6-Alkinylthio, bevorzugt Ethinylthio, 2 -Propinyltio, 2-Butinylthio oder 3-Butinylthio; C3-C6-Cycloalkylthio, bevorzugt Cyclopropylthio, Cyclobutylthio, Cyclopentylthio oder Cyclohexylthio, C3-C6-Cycloalkyl-C1-C6-alkylthio, C3-C6-Cycloalkyl-C2-C6-alkenylthio, C3-C6-Cycloalkyl-C2-C6-alkinylthio; Arylthio, bevorzugt Phenylthio oder Naphthylthio, Aryl-C1-C6-alkylthio,
Aryl-C2-C6-alkenylthio, Aryl-C2-C6-alkinylthio; Amino, ggf. subst. Mono- oder Di-C1-C6-alkylamino, ggf. subst. Mono- oder Diarylamino, ggf. subst. N-C1-C6-Alkyl-N-arylamino, wobei Alkyl und Aryl gleich oder verschieden sein können; Sulfonyl; C1-C6-Alkylsulfonyl, bevorzugt Methylsulfonyl, Ethylsulfonyl, Propylsulfonyl, 1-Methylethylsulfonyl, Butylsulfonyl, 2-Methylpropylsulfonyl, Pentylsulfonyl oder Hexylsulfonyl; C3-C6-Cycloalkylsulfonyl, bevorzugt Cyclopropylsulfonyl, Cyclobutylsulfonyl, Cyclopentylsulfonyl oder Cyclohexylsulfonyl, C3-C6-Cycloalkyl-C1-C6-alkylsulfonyl, C3-C6 -Cycloalkyl-C2-C6-Alkenylsulfonyl, C3-C6-Cycloalkyl-C2-C6-alkinylsulfonyl; Arylsulfonyl, bevorzugt Phenylsulfonyl oder Naphthylsulfonyl, Aryl-C1-C6-alkylsulfonyl, Aryl-C2-C6-alkenylsulfonyl, Aryl-C2-C6-alkinylsulfonyl; Sulfoxyl und ggf. subst.
Mono- oder Dialkylaminosulfonyl, ggf. subst. Mono- oder Diarylaminosulfonyl, ggf. subst. N-Alkyl-N-arylaminosulfonyl, wobei Alkyl und Aryl gleich oder verschieden sein können, C1-C6-Alkylcarbonyl, bevorzugt Methylcarbonyl, Ethylcarbonyl, Propylcarbonyl, 1-Methylethylcarbonyl, Butylcarbonyl, 2 -Methylpropylcarbonyl, Pentylcarbonyl oder Hexylcarbonyl; C2-C6-Alkenylcarbonyl, bevorzugt Ethenylcarbonyl, 2-Propenylcarbonyl, 2-Butenylcarbonyl oder 3-Butenylcarbonyl; C2-C6-Alkinylcarbonyl, bevorzugt Ethinylcarbonyl, 2-Propinylcarbonyl, 2-Butinylcarbonyl oder 3-Butinylcarbonyl; C3-C6-Cycloalkylcarbonyl, bevorzugt Cyclopropylcarbonyl, Cyclobutylcarbonyl, Cyclopentylcarbonyl oder Cyclohexylcarbonyl, C3-C6-Cycloalkyl-C1-C6-alkylcarbonyl, C3-C6-Cycloalkyl-C2-C6-alkenylcarbonyl, C3-C6-Cycloalkyl-C2-C6-alkinylcarbonyl; Arylcarbonyl, bevorzugt Phenylcarbonyl oder Naphthylcarbonyl, Aryl-C1-C6-alkylcarbonyl, Aryl-C2-C6-alkenylcarbonyl, Aryl-C2-C6-alkinylcarbonyl; Carboxyl; C1-C6-Alkoxycarbonyl, Methyloxycarbonyl, Ethyloxycarbonyl, Propyloxycarbonyl, 1-Methylethyloxycarbonyl, Butyloxycarbonyl, Pentyloxycarbonyl oder Hexyloxycarbonyl, C2-C6-Alkenyloxycarbonyl, C2-C6-Alkinyloxycarbonyl, C3 -C6-Cycloalkoxycarbonyl, Cyclopropyloxycarbonyl, Cyclobutyloxycarbonyl, Cyclopentyloxycarbonyl oder Cyclohexyloxycarbonyl,
C3-C6-Cycloalkyl-C1-C6-alkoxycarbonyl, C3-C6-Cycloalkyl-C2-C6-alkenyloxycarbonyl, C3-C6-Cycloalkyl-C2-C6-alkinyloxycarbonyl; Aryloxycarbonyl, bevorzugt Phenyloxycarbonyl oder Naphthyloxycarbonyl,
Aryl-C1-C6-alkoxycarbonyl, Aryl-C2-C6-alkenyloxycarbonyl, Aryl-C2-C6-alkinyloxycarbonyl; Aminocarbonyl; ggf. subst. Mono- oder Di-C1-C6-alkylaminocarbonyl, ggf. subst.
Mono- oder Diarylaminocarbonyl, ggf. subst.
N-C1-C6-Alkyl-N-arylaminocarbonyl, wobei Alkyl und Aryl gleich oder verschieden sein können, ggf. subst. Monooder Di-C1-C6-alkylcarbonylamino, ggf. subst. Mono- oder Diarylcarbonylamino, ggf. subst. N-C1-C6-Alkyl-N-arylcarbonylamino, wobei Alkyl und Aryl gleich oder verschieden sein können, C1-C6 -Alkoxyaminocarbonyl, bevorzugt Methyloxyaminocarbonyl, Ethyloxyaminocarbonyl, Propyloxyaminocarbonyl, 1-Methylethyloxyaminocarbonyl, Butyloxyaminocarbonyl, 2-Methylpropyloxyaminocarbonyl, Pentyloxyaminocarbonyl oder Hexyloxyaminocarbonyl; C2-C6-Alkenyloxycarbonylamino, bevorzugt Ethylenoxyaminocarbonyl, 2-Propenyloxyaminocarbonyl, 2-Butenyloxyaminocarbonyl oder 3-Butenyloxyaminocarbonyl; C2-C6-Alkinyloxycarbonylamino, bevorzugt Ethinyloxyaminocarbonyl, 2-Propinyloxyaminocarbonyl, 2-Butinyloxyaminocarbonyl oder 3-Butinyloxyaminocarbonyl; C3-C6-Cycloalkoxy-aminocarbonyl, bevorzugt Cyclopropyloxyaminocarbonyl, Cyclobutyloxyaminocarbonyl, Cyclopentyloxyaminocarbonyl oder Cyclohexyloxyaminocarbonyl, C3-C6-Cycloalkyl-Cι-C6-alkoxyaminocarbonyl, C3-C6-Cycloalkyl-C2-C6-alkenyloxyaminocarbonyl, C3-C6-Cycloalkyl-C1-C6-alkinyloxyaminocarbonyl; Aryloxyaminocarbonyl, bevorzugt Phenyloxyaminocarbonyl oder Naphthyloxyaminocarbonyl, Aryl-C1-C6-alkoxyaminocarbonylamino, Aryl-C2-C6-alkenyloxyaminocarbonyl, Aryl-C2-C6-alkinyloxyaminocarbonyl; Halogen, bevorzugt Fluor, Chlor, Brom oder Iod; C1-C6-Haloalky, bevorzugt Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Fluorethyl, 2- Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl,
2-Chlor-2,2-difluorethyl, 2,2-Dicclor-2-fluorethyl, 2,2,2-Trichlorethyl oder Pentafluorethyl, C2-C6-Haloalkenyl, C2-C6-Haloalkinyl; C1-C6-Haloalkoxy, bevorzugt Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyloxy, Difluormethyloxy, Trifluormethyloxy, Chlorfluormethyloxy, Dichlorfluormethyloxy, Chlordifluormethyloxy, 1-Fluorethyloxy, 2-Fluorethyloxy, 2,2-Difluorethyloxy,
2,2,2-Trifluorethyloxy, 2-Chlor-2-fluorethyloxy,
2-Chlor-2,2-difluorethyloxy, 2,2-Dichlor-2-fluorethyloxy, 2,2,2-Trichlorethyloxy oder Pentafluorethyloxy, C2-C6-Haloalkenyloxy, C2-C6-Haloalkinyloxy; C1-C6-Haloalkylthio, bevorzugt Chlormethylthio, Dichlormethylthio, Trichlormethylthio, Fluormethylthio, Difluormethylthio, Trifluormethylthio, Chlorfluormethylthio, Dichlorfluormethylthio, Chlordifluormethylthio, 1-Fluorethylthio, 2-Fluorethylthio, 2,2-Difluorethylthio, 2,2,2-Trifluorethylthio, 2-Chlor-2-fluorethylthio, 2-Chlor-2,2-difluorethylthio, 2,2-Dichlor-2-fluorethylthio, 2,2,2-Trichlorethylthio oder Pentafluorethylthio, C2-C6-Haloalkenylthio,
C2-C6-Haloalkinylthio; C1-C6-Haloalkylamino, bevorzugt Chlormethylamino, Dichlormethylamino, Trichlormethylamino, Fluormethylamino, Difluormethylamino, Trifluormethylamino, Chlorfluormethylamino, Dichlorfluormethylamino, Chlordifluormethylamino, 1-Fluorethylamino,
2-Fluorethylamino, 2,2-Difluorethylamino, 2,2,2-Trifluorethylamino, 2-Chlor-2-fluorethyl-amino,
2-Chlor-2,2-difluorethylamino, 2,2-Dichlor-2-fluorethylamino, 2,2,2-Trichlorethylamino oder Pentafluorethylamino, C2-C6-Haloalkenylamino, C2-C6-Haloalkinylamino, C1-C6-Haloalkylsulfonyl, bevorzugt Chlormethylsulfonyl, Dichlormethylsulfonyl, Trichlormethylsulfonyl, Fluormethylsulfonyl, Difluormethylsulfonyl, Trifluormethylsulfonyl, Chlorfluormethylsulfonyl, Dichlorfluormethylsulfonyl, Chlordifluormethylsulfonyl 1-Fluorethylsulfonyl, 2-Fluorethylsulfonyl, 2,2-Di-fluorethylsulfonyl, 2,2,2-Trifluorethylsulfonyl, 2-Chlor-2-fluorethylsulfonyl, 2-Chlor-2,2-difluorethylsulfonyl, 2,2-Dichlor-2-fluorethylsulfonyl, 2,2,2-Trichlorethylsulfonyl oder Pentafluorethylsulfonyl, C2-C6-Haloalkenylsulfonyl, C2-C6-Haloalkinylsulfonyl; C1-C6-Haloalkylcarbonyl, bevor zugt Chlormethylcarbonyl, Dichlormethylcarbonyl, Trichlormethylcarbonyl, Fluormethylcarbonyl, Difluormethylcarbonyl, Trifluormethylcarbonyl, Chlorfluormethylcarbonyl, Dichlorfluormethylcarbonyl, Chlordifluormethylcarbonyl, 1-Fluorethylcarbonyl, 2-Fluorethylcarbonyl, 2,2-Difluorethylcarbonyl, 2,2,2-Trifluorethylcarbonyl,
2-Chlor-2-fluor-ethylcarbonyl, 2-Chlor-2, 2-difluorethylcarbonyl, 2,2-Dichlor-2-fluor-ethylcarbonyl, 2-2-2-Trichlorethylcarbonyl oder Pentafluorethylcarbonyl,
C2-C6-Haloalkenylcarbonyl, C2-C6-Haloalkinylcarbonyl;
C1-C6-Haloalkoxycarbonyl, bevorzugt Chlormethyloxycarbonyl, Dichlormethyloxycarbonyl, Trichlormethyloxycarbonyl, Fluormethyloxycarbonyl, Difluormethyloxycarbonyl, Trifluormethyloxycarbonyl, Chlorfluormethyloxycarbonyl, Dichlorfluormethyloxycarbonyl, Chlordifluormethyloxycarbonyl, 1-Fluorethyloxycarbonyl, 2-Fluorethyloxycarbonyl, 2,2-Difluor-ethyloxycarbonyl, 2,2,2-Trifluorethyloxycarbonyl, 2-Chlor-2-fluorethyl-oxycarbonyl, 2-Chlor-2,2-di- fluorethyloxycarbonyl, 2,2-Dichlor-2-fluor-ethyloxycarbonyl, 2,2,2-Trichlorethyloxycarbonyl oder Pentafluorethyloxycarbonyl, C2-C6-Haloalkenyloxycarbonyl, C2-C6-Ha- loalkinyloxycarbonyl; C1-C6-Haloalkylaminocarbonyl, bevorzugt Chlormethylaminocarbonyl, Dichlormethylamino- carbonyl, Trichlormethylaminocarbonyl, Fluormethylaminocarbonyl, Difluormethylaminocarbonyl, Trifluormethylaminocarbonyl, Chlorfluormethylaminocarbonyl, Dichlorfluormethylaminocarbonyl, Chlordifluormethylaminocarbonyl, 1-Fluor-ethylaminocarbonyl, 2-Fluorethylaminocarbonyl, 2,2-Difluorethylamino-carbonyl, 2,2,2-Trifluorethylamino- carbonyl, 2-Chlor-2-fluorethylamino-carbonyl,
2-Chlor-2, 2-difluorethylaminocarbonyl, 2,2-Dichlor-2-fluor-ethylaminocarbonyl, 2,2,2-Trichlorethylaminocarbonyl oder Pentafluorethylaminocarbonyl, C2-C6-Haloalkenylaminocarbonyl, C2-C6-Halo-alkinylaminocarbonyl; C1-C6-Haloalkoxycarbonylamino, Chlormethyloxyaminocarbonyl, Dichlormethyloxycarbonyl, Trichlormethyloxyaminocarbonyl, Fluormethyloxyaminocarbonyl, Difluormethyloxyaminocarbonyl, Trifluormethyloxyaminocarbonyl, Chlorfluormethyloxyaminocarbonyl, Dichlorfluormethyloxyaminocarbo- nyl, Chlordifluormethyloxyaminocarbonyl, 1-Fluorethyl- oxyaminocarbonyl, 2-Fluorethyloxyaminocarbonyl, 2,2-Difluorethyloxyaminocarbonyl, 2,2,2-Trifluorethyloxyamino- carbonyl, 2-Chlor-2-fluorethyloxyaminocarbonyl,
2-Chlor-2, 2-difluorethyloxyaminocarbonyl, 2,2-Di- chlor-2-fluorethyloxy-aminocarbonyl, 2,2,2-Trichlorethyloxyamioocarbonyl oder Pentafluorethyloxyaminocarbonyl, C2-C6-Haloalkenyloxycarbonylamino, C2-C6-Haloalkinyloxycarbonylamino, Cyano oder Nitro.
Außerdem sind Verbindungen der allgemeinen Formel 1 besonders bevorzugt, in der R3 einen Rest der allgemeinen Formel 2d
Figure imgf000026_0001
bedeutet, wobei R4 und R6 gleich oder verschieden sind und unabhängig voneinander für Alkyl, bevorzugt Methyl oder Ethyl, Alkylsulfonyl, bevorzugt Methylsulfonyl oder Ethylsulfonyl; Halogen, bevorzugt Fluor, Chlor oder Brom, Haloalkyl, bevorzugt Difluormethyl, Trifluormethyl, Tetrafluorethyl oder Trichlormethyl stehen.
Bevorzugt sind auch Verbindungen der allgemeinen Formel 1, in der R3 für einen Rest der allgemeinen Formel 2e
Figure imgf000026_0002
steht und R4, R5 und R6 gleich oder verschieden sind und unabhängig voneinander für Alkyl, bevorzugt Methyl oder Ethyl, Alkoxy, bevorzugt Methoxy, Ethoxy oder Aryloxy, bevorzugt Phenoxy; Alkylsulfonyl, bevorzugt Methylsulfonyl oder Ethylsulfonyl; Halogen, bevorzugt Fluor, Chlor, Brom oder Iod; Haloalkyl, bevorzugt
Difluormethyl, Trifluormethyl, Tetrafluorethyl oder Trichlormethyl stehen.
Bevorzugt sind auch Verbindungen der allgemeinen Formel 1, in denen die Substituenten aus einer Kombination der oben aufgeführten bevorzugten Substituenten ausgewählt sind. 4 -Benzoylisothiazole der allgemeinen Formel 1 sind a) durch Umsetzung der Isothiazolhalogenverbindungen 3
Figure imgf000027_0001
in der R1 und R2 die oben beschriebene Bedeutung haben und Y Halogen bevorzugt Chlor, Brom oder Iod bedeutet mit elementarem Magnesium, einer magnesiumorganischen oder einer lithiumorganischen Verbindung und einem Carbonsaurederivat der allgemeinen Formel 4
Figure imgf000027_0002
in der R3 die oben beschriebene Bedeutung hat und T Halogen, bevorzugt Chlor, Brom oder Iod oder N-Alkoxy-N-alkylamino, bevorzugt N-Methoxy-N-methyl oder Cyano bedeutet in Gegenwart eines inerten Lösungsmittels in einem Temperaturbereich von -78°C bis 111°C, bevorzugt in einem Temperaturbereich von -20°C bis 111°C (A. Alberola, F. Alonso, P. Cuadrado, M. C. Sanudo, Synth. Commun. 17 (1987)1207), oder b. durch Umsetzung eines Halogenbenzols der allgemeinen Formel 5
Figure imgf000027_0003
in der R3 die oben beschriebene Bedeutung hat und Y Halogen, bevorzugt Chlor, Brom oder Iod bedeutet mit elementarem
Magnesium, einer magnesiumorganischen oder einer lithiumorganischen Verbindung und einem Isothiazolcarbonsäurederivat der allgemeinen Formel 6a oder 6b, 26
Figure imgf000028_0001
in der X, R1 und R2 die oben beschriebene Bedeutung haben und R11 Halogen, bevorzugt Chlor, Brom oder Iod und N-Alkoxy-N-al- kylamino, bevorzugt N-Methoxy-N-Methyl bedeutet in Gegenwart eines inerten Lösungsmittel5 in einem Temperaturbereich von -78°C bis 111°C , bevorzugt in einem Temperaturbereich von -20°C bis 111°C zugänglich (A. Alberola, F. Alonso, P Cuadrado, M. C. Sanudo, J. Heterocyclic Chem. 25 (1988) 235).
Die Synthese der isothiazolhalogenverbindungen 3 erfolgt durch Halogenierung nach literaturbekannten Verfahren (stellvertretend: a. A. Alberola, F. Alonso, P. Cuadrado, M. C. Sanudo, Synth.
Commun. 17 (1987)1207; b. Vasilevskii, Izv. Akad. Nauk. SSSR Ser. Khim. (1975) 616) von Isothiazolverbindungen der allgemeinen Formel 7
Figure imgf000028_0002
in der R1 und R2 die oben beschriebene Bedeutung haben.
Isothiazolverbindungen der allgemeinen Formel 7 sind prinzipiell bekannt und werden entsprechend literaturbekannter Methoden dargestellt (stellvertretend: a. D. N NcGregor. U. Corbin, J. E. Swi- gor, I. C. Cheney, Tetrahedron 25 (1968) 389; b. F. Lucchesini, N. Picci. M. Pocci., Heterocycles 29 (1989) 97).
Die Synthese der Isothiazolcarbonsäurederivate der allgemeinen Formel 6b erfolgt durch Umsetzung der Isothiazolhalogenverbindungen 3 mit anorganischen Cyaniden, wie beispielsweise Kupfer (I) cyanid nach literaturbekannten Verfahren (stellvertretend: A. Alberola, F. Alonso, P Cuadrado, M. C. Sanudo, J. Heterocyclic Chem. 25 (1988) 235). Die entsprechenden Isothiazolcarbonsäurederivate der allgemeinen Formel 6a können nach literaturbekannten Methoden von Isothiazolcärbonsäurederivaten der allgemeinen Formel 6b ausgehend dargestellt werden. Bevorzugte magnesiumorganische Verbindungen sind Alkylmagnesium- halogenide, wie beispielsweise Methyl- oder Ethylmagnesiumbromid oder -chlorid. Als lithiumorganische Verbindungen kommen bevorzugt aliphatische Lithiumverbindungen, wie Lithiumdiisopropylamid, n-Butyl- oder sekundär Butyllithium in Frage.
Das organische Lösungsmittel wird in Abhängigkeit der eingesetzten Edukte ausgewählt. Im allgemeinen ist jedes inerte Lösungsmittel geeignet. Bevorzugte inerte Lösungsmittel stellen aliphatische, cyclische oder acyclische Ether, wie beispielsweise Diethylether, Tetrahydrofuran, Dioxan oder 1,2-Dimethoxyethan dar. Darüber hinaus finden auch inerte aromatische Lösungsmittel, wie Benzol oder Toluol Verwendung. Die Edukte werden üblicherweise in stöchiometrischen Mengen miteinander umgesetzt. Es kann jedoch, beispielsweise zur Steigerung der Ausbeute vorteilhaft sein, eines der Edukte in einem Überschuß von 0.1 bis 10 mol-Equivalenten einzusetzen. Benzoesäurederivate der Formel 4 lassen sich folgendermaßen herstellen:
Benzoylhalogenide wie beispielsweise Benzoylchloride der Formel 4 (T = Cl) werden in bekannter Weise durch Umsetzung der Benzoe- säuren der Formel 4 (T = OH) mit Thionylchlorid hergestellt.
Die Benzoesäuren der Formel 4 (T = OH) können in bekannter Weise durch saure oder basische Hydrolyse aus den entsprechenden Estern der Formel 4 (T = C1-C4-Alkoxy) hergestellt werden.
Die Zwischenprodukte der Formel 4 lassen sich z.B. gemäß Schema 1 und 2 auf den im folgenden beschriebenen Wegen darstellen.
Figure imgf000029_0001
T C1-C4-Alkoxy,
Y Cl, Br, J, -OS(O)2CF3, -OS(O)2F
A1 Sn( C1-C4-Alkyl)3, B(OH)2, ZnHal, wobei Hal für Cl oder Br steht Z und die Substituenten R4, R5, R6 und R7 wie oben definiert.
Danach lassen sich die Arylhalogenverbindungen oder Aryl- sulfonate 8 in bekannter Weise mit Heteroarylstannanen (Stille- Kupplungen), Heteroaryl-Borverbindungen (Suzuki-Kupplungen) oder Heteroaryl-Zinkverbindungen (Negishi-Reaktion) V (vgl. z.B. Syn- thesis 1987, 51-53, Synthesis 1992, 413) in Gegenwart eines Palladium- oder Nickel-Übergangsmetallkatalysators und gegebenen- falls einer Base zu den neuen Verbindungen der allgemeinen Formel 4 umsetzen.
Die Benzoesäurederivate der Formel 4a können auch erhalten werden, indem man entsprechende brom- oder iodsubstituierte
Verbindungen der Formel 10
Figure imgf000030_0001
in der die Substituenten R4, R5, R6 und R7 die obengenannte Bedeutung haben, in Gegenwart eines Palladium-, Nickel-, Cobalt- oder Rhodium-Übergangsmetallkatalysators und einer Base mit Kohlenmon- oxid und Wasser unter erhöhtem Druck umsetzt. Die Katalysatoren Nickel, Cobalt, Rhodium und insbesondere
Palladium können metallisch oder in Form üblicher Salze wie in Form von Halogenverbindungen, z.B. PdCl2, RhCl3-H2O, Acetaten, z.B. Pd(OAc)2, Cyaniden usw. in den bekannten Wertigkeitsstufen vorliegen. Ferner können Metallkomplexe mit tertiären Phosphinen, Metallalkylcarbonyle, Metallcarbonyle, z.B. CO2(CO)8, Ni(CO)4, Metallcarbonyl-KompKlexe mit tertiären Phosphinen, z.B.
(PPh3)2Ni(CO)2, oder mit tertiären Phosphinen komplexierte Übergangsmetallsalze vorliegen. Die letztgenannte Ausführungsform ist insbesondere im Fall von Palladium als Katalysator bevorzugt. Dabei ist die Art der Phosphinliganden breit variabel. Beispielsweise lassen sie sich durch folgende Formeln wiedergeben:
Figure imgf000031_0001
wobei n die Zahlen 1, 2, 3 oder 4 bedeutet und die Reste R12 bis R15 für niedermolekulares Alkyl, z.B. C1-C6-Alkyl, Aryl,
C1-C4-Alkylaryl, z.B. Benzyl, Phenethyl oder Aryloxy stehen. Aryl ist z.B. Naphthyl, Anthryl und vorzugsweise gegebenenfalls substituiertes Phenyl, wobei man hinsichtlich der Substituenten nur auf deren Inertheit gegenüber der Carboxylierungsreaktion zu achten hat, ansonsten können sie breit variiert werden und umfassen alle inerten C-organischen Reste wie C1-C6-Alkylreste, z.B.
Methyl, Carboxylreste wie COOH, COOM (M ist z.B. ein Alkali-, Erdalkalimetall oder Ammoniumsalz), oder C-organische Reste über Sauerstoff gebunden wie C1-C6-Alkoxyreste.
Die Herstellung der Phosphinkomplexe kann in bekannter Weise, z.B. wie in den eingangs genannten Dokumenten beschrieben, erfolgen. Beispielsweise geht man von üblichen kommerziell erwerblichen Metallsalzen wie PdCl2 oder Pd(OCOCH3)2 aus und fügt das Phosphin z.B. P(C6H5)3, P(n-C4H9)3, PCH3(C6H5)2, 1,2-Bis(diphenylphosphino)ethan hinzu. Die Menge an Phosphin, bezogen auf das Übergangsmetall, beträgt üblicherweise 0 bis 20, insbesondere 0,1 bis 10 Moläquivalente, besonders bevorzugt 1 bis 5 Moläquivalente.
Die Menge an Übergangsmetall ist nicht kritisch. Natürlich wird man aus Kostengründen eher eine geringe Menge, z.B. von 0,1 bis 10 Mol.-%, insbesondere 1 bis 5 Mol.-%, bezogen auf den Ausgangsstoff der Formel 4 verwenden.
Zur Herstellung der Benzoesäuren 4 (T = OH) führt man die
Umsetzung mit Kohlenmonoxid und mindestens äquimolaren Mengen an Wasser, bezogen auf die Ausgangsstoffe 10 durch. Der Reaktionspartner Wasser kann gleichzeitig auch als Lösungsmittel dienen, d.h. die maximale Menge ist nicht kritisch. Es kann aber auch je nach Art der Ausgangsstoffe und der verwendeten Katalysatoren von Vorteil sein, anstelle des Reaktionspartners ein anderes inertes Lösungsmittel oder die für die
Carboxylierung verwendete Base als Lösungsmittel zu verwenden. Als inerte Lösungsmittel kommen für Carboxylierungsreaktionen übliche Lösungsmittel wie Kohlenwasserstoffe, z.B. Toluol, Xylol, Hexan, Pentan, Cyclohexan, Ether z.B. Methyl-tert.butylether, Tetrahydrofuran, Dioxan, Dimethoxyethan, substituierte Amide wie Dimethylformamid, persubstituierte Harnstoffe wie
Tetra-C1-C4-alkylharnstoffe oder Nitrile wie Benzonitril
oder Acetonitril in Betracht.
In einer bevorzugten Ausführungsform des Verfahrens verwendet man einen der Reaktionspartner, insbesondere die Base, im Überschuß, so daß kein zusätzliches Lösungsmittel erforderlich ist. Für das Verfahren geeignete Basen sind alle inerten Basen, die den bei der Umsetzung freiwerdenden Jodwasserstoff bzw. Bromwasserstoff zu binden vermögen. Beispielsweise sind hier tertiäre Amine wie tert.-Alkylamine, z.B. Trialkylamine wie Triethylamin, cyclische Amine wie N-Methylpiperidin oder N,N'-Dimethylpiperazin, Pyridin, Alkali- oder -hydrogencarbonate, oder tetraalkylsubstituierte Harnstoffderivate wie Tetra-C1-C4-alkylharnstoff, z.B. Tetramethylharnstoff, zu nennen.
Die Menge an Base ist nicht kritisch, üblicherweise werden 1 bis 10, insbesondere 1 bis 5 Mol verwendet. Bei gleichzeitiger Verwendung der Base als Lösungsmittel, wird die Menge in der Regel so bemessen, daß die Reaktionspartner gelöst sind, wobei man aus Praktikabilitätsgründen unnötig hohe Überschüsse vermeidet, um Kosten zu sparen, kleine Reaktionsgefäße einsetzen zu können und den Reaktionspartnern maximalen Kontakt zu gewährleisten.
Während der Umsetzung wird der Kohlenmonoxiddruck so eingestellt, daß immer ein Überschuß an CO, bezogen auf die Verbindung der Formel 10 vorliegt. Vorzugsweise liegt der Kohlenmonoxiddruck bei Raumtemperatur bei 1 bis 250 bar, insbesondere 5 bis 150 bar CO.
Die Carbonylierung wird in der Regel bei Temperaturen von 20 bis 250°C, insbesondere bei 30 bis 150°C kontinuierlich oder diskontinuierlich durchgeführt. Bei diskontinuierlichem Betrieb wird zweckmäßigerweise zur Aufrechterhaltung eines konstanten Druckes kontinuierlich Kohlenmonoxid auf das Umsetzungsgemisch aufgepreßt.
Die als Ausgangsverbindungen benutzten Arylhalogenverbindungen der Formel 10 sind bekannt oder können leicht durch geeignete Kombination bekannter Synthesen hergestellt werden.
Beispielsweise können die Halogenverbindungen 10 durch SandmeyerReaktion aus entsprechenden Anilinen erhalten werden, die ihrerseits durch Reduktion von geeigneten Nitroverbindungen (vgl. z.B. für Verbindung 10 mit Z1 = CN: Liebigs Ann. Chem. 1980, 768-778) synthetisiert werden. Die Arylbromide 10 können außerdem durch direkte Bromierung geeigneter Ausgangsverbindungen erhalten werden [vgl. z.B. Monatsh. Chem. 99, 815-822 (1968)].
Figure imgf000033_0001
T C1-C4 -Alkoxy
Y Cl, Br, J, -OS(O)2CF3, -OS(O)2F
Z, R4-R7 wie oben definiert
R16 Wasserstoff, C1-C4-Alkyl, C1-C4-Haloalkyl, C3-C8-Cycloalkyl, ggf. subst. Phenyl oder Trimethylsilyl, R17 Wasserstoff, C1-C4-Haloalkyl, C3-C8-Cycloalkyl oder ggf.
subst. Phenyl.
Ausgehend von den Arylhalogenverbindungen oder Arylsulfonaten 8 lassen sich in Gegenwart eines Palladium- oder Nickel-Übergangsmetallkatalysators und gegebenenfalls einer Base Arylmethylketone 11 nach literaturbekannten Verfahren durch Umsetzung mit Vinylalkylethern und anschließende Hydrolyse herstellen [vgl. z.B. Tetrahedron Lett. 32, 1753-1756 (1991)].
Die ethinylierten Aromaten 12 können in bekannter Weise durch Umsetzung von Arylhalogenverbindungen oder Arylsulfonaten 8 mit substituierten Acetylenen in Gegenwart eines Palladium- oder Nikkel-übergangsmetallkatalysators hergestellt werden (z.B. Heterocycles, 24, 31-32 (1986)). Derivate 12 mit R16= H erhält man zweckmäßigerweise aus den Silylverbindungen 12, R16= -Si(CH3)3 [J.Org.Chem. 46, 2280-2286 (1981)].
Durch Heck-Reaktion von Arylhalogenverbindungen oder Arylsulfonaten 4b mit Olefinen in Gegenwart eines Palladiumkatalysators werden die Arylalkene 13 erhalten (vgl. z.B. Heck, Palladium Reagents in Organic Synthesis, Academic Pres, London 1985 bzw. Synthesis 1993, 735-762). Die als AusgangsVerbindungen benutzten Benzoylderivate 4b sind bekannt [vgl. z.B.Coll. Czech. Chem. Commn. 40, 3009-3019 (1975)] oder können leicht durch geeignete Kombination bekannter Synthesen hergestellt werden. Beispielsweise können die Sulfonate 4b (Y = -OS(O)2CF3, -OS(O)2F) aus den entsprechenden Phenolen, die ihrerseits bekannt sind (vgl. z.B. EP 195247) oder nach bekannten Methoden hergestellt werden können, erhalten werden (vgl. z.B. Synthesis 1993,
735-762).
Die Halogenverbindungen 4b (Y = Cl, Br oder I) können beispielsweise durch Sandmeyer-Reaktion aus entsprechenden Anilinen erhalten werden.
Figure imgf000035_0001
A S, NH oder NOH
T ist C1-C4-Alkoxy und Substituenten R4-R7 wie oben definiert.
Isophthalsäurederivate 16 können aus den Aldehyden 15 nach bekannten Verfahren hergestellt werden [ s. J. March Advanced Organic Chemistry 3. Aufl., S. 629ff, Wiley-Interscience
Publication (1985)].
Die Oxime 17 erhält man vorteilhaft dadurch, daß man in bekannter Weise Aldehyde 15 mit Hydroxylamin umsetzt [s. J. March Advanced Organic Chemistry 3. Aufl., S. 805-806, Wiley-Interscience
Publication (1985)].
Die Umwandlung der Oxime 17 in Nitrile 18 kann ebenfalls nach bekannten Verfahren erfolgen [s. J. March Advanced Organic
Chemistry 3. Aufl., S. 931-932, Wiley-Interscience Publication (1985)].
Die als Ausgangsverbindungen benötigten Aldehyde 15 sind bekannt oder nach bekannten Methoden herstellbar. Beispielsweise können sie gemäß Schema 5 aus den MethylVerbindungen 22 synthetisiert werden.
Figure imgf000036_0001
Die Reste T und R4, R5, R6 und R7 haben die unter Schema 4 genannte Bedeutung. Die Methylverbindungen 22 können nach allgemein bekannten Methoden, beispielsweise mit N-Bromsuccinimid oder 1,3-Dibrom-5,5-dimethylhydantoin, zu den Benzylbromiden 23 umgesetzt werden. Die Umsetzung von Benzylbromiden zu Benzaldehyden 15 ist ebenfalls literaturbekannt [vgl. Synth. Commun. 22
1967-1971 (1992)].
Die Vorprodukte 11 bis 18 eignen sich zum Aufbau heterocyclischer Zwischenprodukte 4.
Beispielsweise können aus den Acetophenonen 11 über die
halogenierte Zwischenstufe 14 5-Oxazolyl- [ vgl. z.B. J. Heterocyclic Chem., 28, 17-28 (1991)] oder 4-Thiazolyl-derivate [vgl. z.B. Metzger, Thiazoles in : The Chemistry of Heterocyclic
Compounds, Vol.34 S. 175ff (1976)] erhalten werden.
Die Acetylene 12 bzw. die Alkene 13 eignen sich zum Aufbau von 4-Isoxazolyl-, 5-Isoxazolyl-, 4,5-Dihydroisoxazol-4-yl-, 4,5-Di- hydroisoxazol-5-yl-derivaten [vgl. z.B. Houben-Weyl, Methoden der organischen Chemie, 4. Aufl., Bd. X/3, S. 843ff (1965)].
Aus den Benzoesäuren 16 bzw. den daraus nach Standardverfahren erhältlichen Säurechloriden 19 können beispielsweise nach literaturbekannten Verfahren 2-Oxazolyl-, 1,2,4-Oxadiazol-5-yl-, 1,3,4-Oxadiazol-2-yl-derivate [ vgl. z.B. J. Heterocyclic Chem., 28, 17-28 (1991)] oder 2-Pyrrolyl-derivate [vgl. z.B. Hetero- cycles 26, 3141-3151 (1987)] hergestellt werden. 1,2,4-Triazol-3-yl-derivate sind aus Benzonitrilen 18 nach bekannten Methoden [vgl. z.B. J. Chem. Soc. 3461-3464 (1954)] herzustellen.
Die Benzonitrile 18 können über die Zwischenstufe der Thioamide, Amidoxime oder Amdine 21 in 1,2,4-Oxadiazol-3-yl- [vgl. z.B. J. Heterocyclic Chem., 28, 17-28 (1991)] 2-Thiazolyl-, 4,5-Dihydro- thiazol-2-yl- oder 5,6-Dihydro-4-H-1,3-thiazin-2-yl-derivate [vgl. z.B. Houben-Weyl, Methoden der organischen Chemie, 4.
Aufl., Bd. E5, S. 1268ff (1985)] umgewandelt werden. Aus den Thioamiden 21 (A=S) sind nach literaturbekannten Verfahren auch 1,2,4-Thiadiazol-5-yl-derivate [vgl. z.B. J.Org.Chem. 45
3750-3753 (1980)] oder 1,3,4-Thiadiazol-2-yl-derivate [vgl. z.B. J. Chem.Soc, Perkin Trans. I 1987-1991 (1982)] erhältlich.
Die Umwandlung von Oximen 17 in 3-lsoxazolyl-derivate kann in bekannter Weise über die Zwischenstufe der Hydroxamsäurechloride 20 erfolgen [vgl. z.B. Houben-Weyl, Methoden der organischen Chemie, 4. Aufl., Bd. X/3, S. 843ff (1965)].
Beispiele für besonders bevorzugte Verbindungen der allgemeinen Formel 1 sind in den folgenden Tabellen zusammengestellt. Die De- finitionen der Reste gelten nicht nur in der speziellen Kombination von Resten als besonders bevorzugt, sondern auch jeweils isoliert betrachtet.
Figure imgf000038_0001
Figure imgf000039_0001
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
Figure imgf000051_0001
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000054_0001
Figure imgf000055_0001
Figure imgf000056_0001
Figure imgf000057_0001
Figure imgf000058_0001
Figure imgf000059_0001
Figure imgf000060_0001
Figure imgf000062_0001
Figure imgf000063_0001
Figure imgf000064_0001
Figure imgf000065_0001
Figure imgf000066_0001
Figure imgf000067_0001
Figure imgf000068_0001
Figure imgf000069_0001
Figure imgf000070_0001
Figure imgf000071_0001
Figure imgf000072_0001
Figure imgf000073_0001
Figure imgf000074_0001
Figure imgf000075_0001
Figure imgf000076_0001
Figure imgf000077_0001
Figure imgf000078_0001
Figure imgf000079_0001
Figure imgf000080_0001
Figure imgf000081_0001
Figure imgf000082_0001
Figure imgf000083_0001
Figure imgf000084_0001
Figure imgf000085_0001
Figure imgf000086_0001
Figure imgf000087_0001
Figure imgf000088_0001
Figure imgf000089_0001
Figure imgf000090_0001
Figure imgf000091_0001
Figure imgf000092_0001
Figure imgf000093_0001
Figure imgf000094_0001
Figure imgf000095_0001
Figure imgf000096_0001
Figure imgf000097_0001
Figure imgf000098_0001
Figure imgf000099_0001
Figure imgf000100_0001
Figure imgf000101_0001
Figure imgf000102_0001
Figure imgf000103_0001
Die Verbindungen I und deren landwirtschaftlich brauchbaren Salze eignen sich - sowohl als Isomerengemische als auch in Form der reinen Isomeren - als Herbizide. Die I enthaltenden herbiziden Mittel bekämpfen Pflanzenwuchs auf Nichtkulturflächen sehr gut, besonders bei hohen Aufwandmengen. In Kulturen wie Weizen, Reis, Mais, Soja und Baumwolle wirken sie gegen Unkräuter und Schadgräser, ohne die Kulturpflanzen nennenswert zu schädigen. Dieser Effekt tritt vor allem bei niedrigen Aufwandmengen auf.
In Abhängigkeit von der jeweiligen Applikationsmethode können die Verbindungen I bzw. sie enthaltende Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden. In Betracht kommen beispielsweise folgende Kulturen:
Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus
officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var.
napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis
guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgäre, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec, Manihot esculenta, Medicago sativa, Musa spec, Nicotiana tabacum (N.ru- stica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec, Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylestre, Ricinus communis, Saccharum officinarum, Seeale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgäre), Theobroma cacao, Trifolium pratense,
Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera, Zea mays.
Darüber hinaus können die Verbindungen I auch in Kulturen, die durch Züchtung einschließlich gentechnischer Methoden gegen die Wirkung von Herbiziden tolerant sind, verwandt werden.
Die Applikation der herbiziden Mittel bzw. der Wirkstoffe kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by). Die Verbindungen I bzw. die sie enthaltenden herbiziden Mittel können beispielsweise in Form von direkt versprühbaren wäßrigen Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten. Als inerte Zusatzstoffe kommen im Wesentlichen in Betracht:
Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, alkylierte Benzole oder deren Derivate, Alkohole wie Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Ketone wie Cyclohexanon oder stark polare Lösungsmittel, z. B. Amine wie N-Methylpyrrolidon oder Wasser. Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Suspensionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die
Substrate als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.
Als oberflächenaktive Stoffe (Adjuvantien) kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Poly- oxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenyl-, Tributylphenylpolyglykolether, Alkyl- arylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethyleno- xid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxypropylenalkylether, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.
Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermählen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden. Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste
Trägerstoffe.
Die Konzentrationen der Wirkstoffe I in den anwendungsfertigen Zubereitungen können in weiten Bereichen variiert werden. Die Formulierungen enthalten im allgemeinen 0,001 bis 98 Gew. %, vorzugsweise 0,01 bis 95 Gew. %, Wirkstoff. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Sektrum) eingesetzt.
Die erfindungsgemäße Verbindung 24.33 kann beispielsweise wie folgt formuliert werden:
I. 20 Gewichtsteile der Verbindung 24.33 werden in einer
Mischung gelöst, die aus 80 Gewichtsteilen alkyliertem Benzol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusδl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew. % des Wirkstoffs enthält.
II. 20 Gewichtsteile der Verbindung 24.33 werden in einer
Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid und 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Ein gießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew. % des Wirkstoffs enthält. III. 20 Gewichtsteile des Wirkstoffs 24.33 werden in einer
Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000
Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew. % des Wirkstoffs enthält.
IV. 20 Gewichtsteile des Wirkstoffs 24.33 werden mit 3
Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalin- sulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermählen. Durch feines Verteilen der Mischung in 20 000 Gewichtsteilen Wasser enthält man eine Spritzbrühe, die 0,1 Gew. % des Wirkstoffs enthält.
V. 3 Gewichtsteile des Wirkstoffs 24.33 werden mit 97
Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew. % des Wirkstoffs enthält.
VI. 20 Gewichtsteile des Wirkstoffs 24.33 werden mit 2
Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkohol-polyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondensates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.
VII. 1 Gewichtsteil der Verbindung 24.33 wird in einer Mischung gelöst, die aus 70 Gewichtsteilen Cyclohexanon, 20
Gewichtsteilen ethoxyliertem Isooctylphenol und 10
Gewichtsteilen ethoxyliertem Rizinusöl besteht. Man erhält ein stabiles Emulsionskonzentrat.
VIII. 1 Gewichtsteil der Verbindung 24.33 wird in einer Mischung gelöst, die aus 80 Gewichtsteilen Cyclohexanon und 20
Gewichtsteilen Emulphor EL (ethoxyliertes Rizinusöl/casteroil) besteht. Man erhält ein stabiles Emulsionskonzentrat. Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die heterocyclisch substituierten Benzoylisothiazole I mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner 1,2,4-Thiadiazole, 1,3,4-Thiadiazole, Amide, Aminophosphorsäure und deren Derivate, Aminotriazole, Anilide, (Het)-Aryloxyalkansäure und deren Derivate, Benzoesäure und deren Derivate, Benzothiadiazinone, 2-Aroyl-1,3-cyclohexandione, Hetaryl-Aryl-Ketone, Benzylisoxazolidinone, Meta-CF3-phenylderivate, Carbamate, Chinolincarbonsäure und deren Derivate, Chloracetanilide, Cyclohexan-1,3-dionderivate, Diazine, Dichlorpropionsäure und deren Derivate, Dihydrobenzofurane, Dihydrofuran-3-one, Dinitroaniline, Dinitrophenole, Diphenylether, Dipyridyle, Halogencarbonsäuren und deren Derivate, Harnstoffe, 3-Phenyluracile, Imidazole, Imidazolinone, N-Phenyl-3,4,5,6-tetrahydrophthalimide,
Oxadiazole, Oxirane, Phenole, Aryloxy- oder Heteroaryloxyphenoxypropionsäureester, Phenylessigsäure und deren Derivate, Phenylpropionsäure und deren Derivate, Pyrazole, Phenylpyrazole,
Pyridazine, Pyridincarbonsäure und deren Derivate, Pyrimidylether, Sulfonamide, Sulfonylharnstoffe, Triazine, Triazinone, Triazolinone, Triazolcarboxamide, Uracile in Betracht.
Außerdem kann es von Nutzen sein, die Verbindungen I allein oder in Kombination mit anderen herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt, gemeinsam auszubringen,
beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.
Die Aufwandmengen an Wirkstoff betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0,001 bis 3,0, vorzugsweise 0.01 bis 1,0 kg/ha aktive Substanz (a. S.)
Synthesebeispiele
Beispiel 1:
Synthese des 4-[2'-Chlor-3'-(isoxazol-3''-yl)-4'-sulfonylmethylbenzoyl]-5-cyclopropylisothiazols 24.33
Die folgenden Operationen werden unter Ausschluß von Feuchtigkeit durchgeführt. Zu 60 ml einer 1,4 M Lösung aus (0,08 mol) Methylmagnesiumbromid in Toluol/Tetrahydrofuran 3:1 (v/v) werden 9,0 g (0,04 mol) 4-lod-5-cyclopropylisothiazol in 200 ml Tetrahydro furan unter Eiskühlung so zugegeben, daß die Reaktionstemperatur 5°C nicht übersteigt. Man versetzt das Reaktionsgemisch mit einer Lösung aus 25,6 g (0,08 mol) 2-Chlor-3-(isoxazol-3'-yl)-4-sul- fonylmethylbenzoylchlorid in 300 ml Tetrahydrofuran. Nach Abküh- lung der exothermen Reaktion werden Reste metallorganischer Verbindungen mit 100 ml 10%iger Salzsäure hydrolysiert. Das Reaktionsgemisch wird in Diethylether aufgenommen, wäßrig aufgearbeitet, mit Natriumsulfat getrocknet, filtriert und i. Vak. vom Lösungsmittel befreit. Das Rohprodukt wird an 250 g Kieselgel mit Gemischen aus Cyclohexan/Ethylacetat 10:1 bis 4:1 (v/v)
gereinigt. Ausb. 4,6 g (28 %) farbloser, amorpher Feststoff, 270 MHz 1H-NMR (CDCL3), δ [ppm]: 1.0 (m, 2 H), 1.4 (m, 2 H),
3.0 (m, 1 H), 3.3 (s, 3 H), 6.6 (s, 1 H), 7.3 (d, 1 H),
8.2 (s, 1 H), 8.6 (S, 1 H)
Unter Verwendung der in Beispiel 1 beschriebenen Arbeitsvorschrift sind in entsprechender Weise die in Beispiel 2 und 3 beschriebenen Wirkstoffe de allgemeinen Formel 1 durch Reaktion der Isothiazolhalogenverbindungen der allgemeinen Formel 3 mit Carbonsäurederivaten der allgemeinen Formel 4 dargestellt worden.
Beispiel 2:
4-[2'-Chlor-3'-(4'',5''-dihydroisoxazol-3''-yl)-4'-sulfonyl- methylbenzoyl]-5-cyclopropylisothiazol 25.33
270 MHz 1H-NMR (CDCl3), δ [ppm]: 3.2 (s, 3 H), 3.3 (m, 2 H),
4.6 (m, 2 H), 7.2 (m, 5 H), 7.4 (d, 1 H), 7.9 (d, 1 H),
8.9 (s, 1 H)
Beispiel 3:
4-[2'-Chlor-3'-(thiazol-2''-yl)-4'-sulfonylmethylben- zoyl]-5-cyclopropylisothiazol 26.33
270 MHz 1H-NMR (CDCl3), δ [ppm]: 1.0 (m, 2 H), 1.4 m, 2 H),
3.0 (m, 1 H), 3.3 (s, 3 H), 7.7 (m, 2 H), 8.0 (m, 1 H),
8.3 (d, 1 H), 8.4 (s, 1 H) Anwendungsbeispiele
Die herbizide Wirkung der heterocyclisch substituierten Benzoylisothiazole der Formel 24.33 ließ sich durch Gewächshausversuche zeigen:
Als Kulturgefäße dienten Plastikblumentöpfe mit lehmigem Sand mit etwa 3,0% Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.
Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern, und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde. Zum Zweck der Nachauflaufbehandlung werden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm angezogen und erst dann mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Testpflanzen werden dafür entweder direkt gesät und in den gleichen Gefäßen aufgezogen oder sie werden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt.
Die Aufwandmenge für die Nachauflaufbehandlung 0,5 bzw. 0,25 kg/ha a.S.
Die Pflanzen wurden artenspezifisch bei Temperaturen von 10 - 25°C bzw. 20 - 35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.
Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler
Wachstumsverlauf. Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:
Lateinischer Name Deutscher Name Englischer Name
Triticum aestivum Winterweizen winter wheat
Abutilon theophrasti Chinesischer Hanf velvet leaf
Chenopodium album Weißer Gänsefuß lambsquarters
(goosefoot)
Solanum nigrum Schwarzer Nachtblack nightshade schatten
Sinapis album Weißer Senf white mustard
Solanum nigrum Schwarzer Nachtblack nightshade schatten
Figure imgf000111_0001

Claims

Patentansprüche
1. 4-Benzoylisothiazole der allgemeinen Formel 1
Figure imgf000112_0001
in der die Substituenten die folgende Bedeutung haben: X Sauerstoff oder Schwefel;
R1 Wasserstoff, Alkyl, Alkenyl, Alkinyl; ggf. subst.
Alkoxycarbonyl;
ggf. subst. Aryl, ggf. subst. Heterocyclyl oder ggf. subst. Hetaryl;
R2 Wasserstoff, Alkyl, Alkenyl, Alkinyl, Cycloalkyl oder Cycloalkenyl, wobei diese Reste einen oder mehrere der folgenden Gruppen tragen können: Halogen, Alkyl,
Alkenyl oder Alkinyl;
Aryl, wobei dieser Rest einen oder mehrere der folgenden Gruppen tragen kann:
Alkyl, Alkenyl, Alkinyl, Alkoxy, Alkenyloxy, Alkinyloxy, Alkylthio oder Alkenylthio, wobei diese Reste partiell oder vollständig halogeniert sein können oder einen oder mehrere der folgenden Gruppen tragen können: Alkoxy, Alkenyloxy, Aryloxy, Alkylsulfonyl, Alkenylsulfonyl oder Arylsulfonyl;
Alkylsulfonyl oder Alkoxycarbonyl;
ggf. subst. Aryloxy oder ggf. subst. Arylthio; ggf. subst. Mono- oder Dialkylamino, ggf. subst.
Mono- oder Diarylamino oder ggf. subst. N-Alkyl -N-arylamino, wobei Alkyl und Aryl gleich oder verschieden sein können;
Halogen, Cyano oder Nitro; Hetaryl oder Heterocyclyl, wobei diese Reste partiell oder vollständig halogeniert sein können oder einen oder mehrere der folgenden Gruppen tragen können: Alkyl, Alkoxy oder Aryl und wobei im Fall von Heterocyclyl mindestens einer der Stickstoffe eine der folgenden Gruppen tragen kann:
Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Haloalkyl, Alkoxy, Alkenyloxy, Alkinyloxy, Cycloalkyloxy, Haloalkoxy, ggf. subst. Aryl oder ggf. subst. Aryloxy;
R3 ein Rest der allgemeinen Formel 2
Figure imgf000113_0001
in der die Substituenten die folgende Bedeutung haben:
Z 5- oder 6-gliedrige heterocyclische, gesättigte oder ungesättigte Reste, enthaltend ein bis drei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff, der gegebenenfalls durch Halogen, Cyano, Nitro, eine Gruppe -CO-R8, Alkyl, Halonalkyl, Cycloalkyl, Alkoxy, Haloalkoxy, Alkylthio, Haloalkylthio, Di-alkylamino oder gegebenenfalls durch Halogen,
Cyano, Nitro, Alkyl oder Haloalkyl substituiertes
Phenyl oder eine Oxogruppe, die gegebenenfalls auch in der tautomeren Form als Hydroxygruppe vorliegen kann, substituiert ist oder der mit einem ankondensierten durch Halogen, Cyano, Nitro, Alkyl oder Haloalkyl substituierten Phenylring, einem ankondensierten Carbocyclus oder einem ankondensierten, gegebenenfalls durch Halogen, Cyano, Nitro, Alkyl, Di-alkylamino, Alkoxy, Haloalkoxy, oder Haloalkyl substituierten zweiten
Heterocyclus ein bicyclisches System bildet,
R4-R7 können gleich oder verschieden sein und stehen unabhängig voneinander für Wasserstoff, Alkyl, Alkenyl,
Alkinyl, Cycloalkyl, Cycloalkenyl, Cycloalkylalkyl, Cycloalkylalkenyl, Cycloalkylalkinyl, Aryl, Arylalkyl,
Arylalkenyl, Arylalkinyl, Hydroxy, Alkoxy, Alkenyloxy, Alkinyloxy, Cycloalkoxy, Cycloalkylalkoxy, Cycloalky lalkenyloxy, Cycloalkylalkinyloxy, Cycloalkenyloxy, Aryloxy, Arylalkoxy, Arylalkenyloxy, Arylalkinyloxy, Thio, Alkylthio, Alkenylthio, Alkinylthio, Cycloalkylthio, Cycloalkylalkylthio, Cycloalkylalkenylthio, Cycloalkylalkinylthio, Cycloalkenylthio, Arylthio, Arylalkylthio, Arylalkenylthio, Arylalkinylthio, Amino, ggf. subst. Mono- oder Dialkylamino, ggf. subst. Monooder Diarylamino, ggf. subst. N-Alkyl-N-arylamino, wobei Alkyl und Aryl gleich oder verschieden sein können, Alkenylamino, Alkinylamino, Cycloalkylamino, Cycloalkenylamino, Sulfonyl, Alkylsulfonyl, Alkenylsulfonyl, Alkinylsulfonyl, Cycloalkylsulfonyl, Cycloalkylalkylsulfonyl, Cycloalkylalkenylsulfonyl, Cycloalkylalkinylsulfonyl, Arylsulfonyl, Arylalkylsulfonyl, Arylalkenylsulfonyl, Arylalkinylsulfonyl, Sulfoxyl, Alkylsulfoxyl,
Alkenylsulfoxyl, Alkinylsulfoxyl, Cycloalkylsulfoxyl, Cycloalkylalkylsulfoxyl, Cycloalkylalkenylsulfoxyl, Cycloalkylalkinylsulfoxyl, Arylsulfoxyl, Arylalkylsulfoxyl, Arylalkenylsulfoxyl, Arylalkinylsulfoxyl, ggf. subst. Mono- oder Dialkylaminosulfonyl, ggf. subst.
Mono- oder Diarylaminosulfonyl, ggf. subst. N-AlkylN-arylaminosulfonyl, wobei Alkyl und Aryl gleich oder verschieden sein können, Alkylcarbonyl, Alkenylcarbonyl, Alkinylcarbonyl, Cycloalkylcarbonyl, Cycloalkylalkylcarbonyl, Cycloalkylalkenylcarbonyl, Cycloalkylalkinylcarbonyl, Arylcarbonyl, Arylalkylcarbonyl, Arylalkenylcarbonyl, Arylalkinylcarbonyl, Carboxyl,
Alkoxycarbonyl, Alkenyloxycarbonyl, Alkinyloxycarbonyl, Cycloalkoxycarbonyl, Cycloalkylalkoxycarbonyl, Cycloalkylalkenyloxycarbonyl, Cycloalkylalkinyloxycarbonyl,
Aryloxycarbonyl, Arylalkoxycarbonyl, Arylalkenyloxycarbonyl, Arylalkinyloxycarbonyl, Aminocarbonyl, ggf.
subst. Mono- oder Dialkylaminocarbonyl, ggf. subst. Mono- oder Diarylaminocarbonyl, ggf. subst. N-AlkylN-arylaminocarbonyl, wobei Alkyl und Aryl gleich oder verschieden sein können, ggf. subst. Mono- oder Dialkylcarbonylamino, ggf. subst. Mono- oder Diarylcarbonylamino, ggf. subst. N-Alkyl-N-arylcarbonylamino, wobei Akyl und Aryl gleich oder verschieden sein können, AI koxyaminocarbonyl, Alkenyloxycarbonylamino, Alkinyloxycarbonylamino, Cycloalkoxycarbonylamino, Cycloalkylalkoxycarbonylamino, Cycloalkylalkenyloxycarbonylamino, Cycloalkylalkinyloxycarbonylamino, Aryloxycarbonylamino, Arylalkoxycarbonylamino, Arylalkenyloxycarbonylamino, Arylalkinyloxycarbonylamino, Halogen, Haloalkyl,
Haloalkenyl, Haloalkinyl, Haloalkoxy, Haloalkenyloxy, Haloalkinyloxy, Haloalkylthio, Haloalkenylthio, Haloal kinylthio, Haloalkylamino, Haloalkenylamino, Haloalkinylamino, Haloalkylsulfonyl, Haloalkenylsulfonyl, Haloalkinylsulfonyl, Haloalkylsulfoxyl, Haloalkenylsulfoxyl, Haloalkinylsulfoxyl, Haloalkylcarbonyl, Haloalkenylcarbonyl, Haloalkinylcarbonyl, Haloalkoxycarbonyl,
Haloalkenyloxycarbonyl, Haloalkinyloxycarbonyl, Haloalkylaminocarbonyl, Haloalkenylaminocarbonyl, Haloalkinylaminocarbonyl, Haloalkoxycarbonylamino, Haloalkenyloxycarbonylamino, Haloalkinyloxycarbonylamino, Cyano oder Nitro oder ein der folgenden Gruppen:
Figure imgf000115_0001
R4, R5 können gemeinsam eine fünf- oder sechsgliedrige, gesättigte oder ungesättigte, aromatische oder nicht aromatische, ggf. subst. Alkylen-, Alkenylen- oder Alkdienylenkette bilden;
R8 Alkyl, Haloalkyl, Alkoxy, oder NR9R10, R9 Wasserstoff oder Alkyl ,
R1 0 Alkyl , sowie landwirtschaftlich übliche Salze der 4-Benzoylisothiazole der allgemeinen Formel 1.
2. 4-Benzoylisothiazole der allgemeinen Formel 1 nach Anspruch 1, in der X Sauerstoff bedeutet.
3. 4-Benzoylisothiazole der allgemeinen Formel 1 nach Anspruch 1 oder 2, in der R1 Wasserstoff oder ggf. subst. Alkoxycarbonyl bedeutet.
4. 4 -Benzoylisothiazole der allgemeinen Formel I nach einem der Ansprüche 1 bis 3, in der R2 Alkyl, Cycloalkyl, Aryl, das einfach oder mehrfach durch Halogen oder Haloalkyl substituiert sein kann, oder Hetaryl, das einfach oder mehrfach durch Halogen substituiert sein kann.
5. 4-Benzoylisothiazole der allgemeinen Formel 1 gemäß einem der Ansprüche 1 bis 4, in der R2 Methyl, Ethyl, Isopropyl, tert. Butyl, Cyclopropyl, 1-Methylcyclopropyl, 3-Trifluormethylphenyl, 2,4-Difluorphenyl, 1,3-Benzodioxolyl, 2,2-Di- fluor-1, 3-benzodixolyl, 1,3-Benzoxathiolyl,
3,3-Dioxo-1,3-Benzoxathiolyl, Benzoxazolyl, Pyrazolyl oder Thienyl bedeutet.
6. 4-Benzoylisothiazole der allgemeinen Formel 1 nach einem der Ansprüche 1 bis 5, in der R3 für einen Rest der allgemeinen Formel 2
Figure imgf000116_0001
steht, in der Z die in Anspruch 1 angegebene Bedeutung hat und die Substituenten R4-R7 die folgende Bedeutung haben:
R4-R7 können gleich oder verschieden sein und stehen unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Aryl, Hydroxy, Alkoxy, Cycloalkoxy, Aryloxy, Thio, Alkylthio, Cycloalkylthio, Arylthio, Amino, ggf. substituiertes Mono- oder Dialkylamino bzw. Mono- oder Diarylamino bzw. N-Alkyl-N-arylamino, wobei Alkyl und Aryl gleich oder verschieden sein können, Cycloalkylamino, Sulfonyl, Alkylsulfonyl, Cycloalkylsulfonyl, Arylsulfonyl, Sulfoxyl, Alkylsulfoxyl, Cycloalkylsulfoxyl, Arylsulfoxyl, Alkylcarbonyl, Cycloalkylcarbonyl, Arylcarbonyl, Carboxyl, Alkoxycarbonyl, Cycloalkoxycarbonyl, Aryloxycarbonyl, Aminocarbonyl, ggf. substituiertes Mono- oder Dialkylaminocarbonyl bzw. Monooder Diarylaminocarbonyl bzw. N-Alkyl-N-arylaminocarbonyl, wobei Alkyl und Aryl gleich oder verschieden sein können, Alkoxycarbonylamino, Cycloalkoxycarbonylamino, Aryloxycarbonylamino, Halogen, Haloalkyl, Haloalkoxy, Haloalkylthio, Haloalkylamino, Haloalkylsulfonyl, Haloalkylsulfoxyl, Haloalkylcarbonyl, Haloalkoxycarbonyl, Haloalkylamimocarbonyl, Haloalkoxycarbonylamino, Cyano oder Nitro;
R4, R5 können gemeinsam eine fünf- oder sechsgliedrige, gesättigte oder ungesättigte, aromatische oder nicht aromatische, ggf. subst. Alkylen-, Alkenylen- oder Alkdienylenkette bilden;
7. 4-Benzoylisothiazole der allgemeinen Formel 1 nach einem der Ansprüche 1 bis 6, in der R3 für einen Rest der allgemeinen Formel 2a
R R
Figure imgf000117_0001
steht.
8. 4-Benzoylisothiazole der allgemeinen Formel 1 gemäß der Ansprüche 1 bis 6, in der R3 für einen Rest der allgemeinen Formel 2b
Figure imgf000117_0002
steht.
9. 4-Benzoylisothiazole der allgemeinen Formel 1 nach einem der Ansprüche 1 bis 6, in der R3 für einen Rest der allgemeinen Formel 2c
Figure imgf000118_0001
steht.
10. 4-Benzoylisothiazole der allgemeinen Formel 1 nach Anspruch 1 bis 6, in der R3 für einen Rest der allgemeinen Formel 2d
Figure imgf000118_0002
steht, und R4 und R6 gleich oder verschieden sind und unabhän- gig voneinander für Alkyl, Alkoxy, Alkylsulfonyl, Aryloxy, Halogen oder Haloalkyl stehen.
11. 4-Benzoylisothiazole der allgemeinen Formel 1 nach Anspruch 1 bis 6, in der R3 für einen Rest der allgemeinen Formel 2d
Figure imgf000118_0003
steht, und R4 und R6 gleich oder verschieden sind und unabhängig voneinander für Fluor, Chlor, Brom, Methylsulfonyl, Ethylsulfonyl, Difluormethyl, Trifluormethyl, Tetrafluorethyl oder Trichlormethyl stehen.
12. 4-Benzoylisothiazole der allgemeinen Formel 1 nach einem der Ansprüche 1 bis 6, in der R3 für einen Rest der allgemeinen Formel 2e
Figure imgf000119_0001
steht, und R4, R5 und R6 gleich oder verschieden sind und unabhängig voneinander für Alkyl, Alkoxy, Aryloxy, Alkylsulfonyl, Halogen oder Haloalkyl, stehen.
13. 4-Benzoylisothiazole der allgemeinen Formel 1 gemäß nach Anspruch 12, in der R3 für einen Rest der allgemeinen Formel 2e
Figure imgf000119_0002
steht, und R4, R5 und R6 gleich oder verschieden sind und unabhängig voneinander für Methoxy, Ethoxy, Phenoxy, Methylsulfonyl, Ethylsulfonyl, Fluor, Chlor, Brom, Iod, Difluormethyl, Trifluormethyl, Tetrafluorethyl oder Trichlormethyl stehen.
14. Verfahren zur Herstellung der 4-Benzoylisothiazole der allgemeinen Formel 1 gemäß Anspruch 1, dadurch gekennzeichnet, daß man eine Isothiazolhalogenverbindung der allgemeinen Formel 3
Figure imgf000119_0003
in der Y Halogen bedeutet, mit elementarem Magnesium, einer magnesiumorganischen oder einer lithiumorganischen Verbindung und einem Carbonsaurederivat der allgemeinen Formel 4,
Figure imgf000120_0003
in der T Halogen, N-Alkoxy-N-alkylamino oder Cyano bedeutet in Gegenwart eines inerten Lösungsmittels in einem
Temperaturbereich von -78 °C bis 111 °C miteinander umsetzt.
15. Verfahren zur Herstellung der 4-Benzoylisothiazole der allgemeinen Formel 1 gemäß Anspruch 1, dadurch gekennzeichnet, daß man ein Halogenbenzol der allgemeinen Formel 5
Figure imgf000120_0002
in der Y Halogen, bedeutet mit elementarem Magnesium, einer magnesiumorganischen oder einer lithiumorganischen Verbindung und einem isothiazolcarbonsäurederivat der allgemeinen Formel 6a oder 6b,
Figure imgf000120_0001
in der R11 Halogen oder N-Alkoxy-N-alkylamino bedeutet in Gegenwart eines inerten Lösungsmittels in einem Temperatur- bereich von -78°C bis 111°C miteinander umsetzt.
16. Herbizide Mittel, die ein 4-Benzoylisothiazol der allgemeinen Formel 1 gemäß Anspruch 1 und inerte Zusatzstoffe enthalten.
17. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, dadurch gekennzeichnet, daß man die unerwünschten Pflanzen und/ oder ihren Lebensraum mit einer herbizid wirksamen Menge eines 4-Benzoylisothiazols der allgemeinen Formel 1 gemäß Anspruch 1 behandelt.
PCT/EP1997/001855 1996-04-16 1997-04-14 Herbizide heterocyclisch substituierte benzoylisothiazole WO1997038996A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP97919354A EP0898570A1 (de) 1996-04-16 1997-04-14 Herbizide heterocyclisch substituierte benzoylisothiazole
JP9536743A JP2000508650A (ja) 1996-04-16 1997-04-14 除草剤に有用な複素環置換ベンゾイルイソチアゾール
US09/171,199 US6046137A (en) 1996-04-16 1997-04-14 Herbicidal heterocyclically substituted benzoylisothiazoles
AU23858/97A AU2385897A (en) 1996-04-16 1997-04-14 Herbicidal heterocyclically substituted benzoylisothiazoles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19614858.8 1996-04-16
DE19614858A DE19614858A1 (de) 1996-04-16 1996-04-16 Herbizide heterocyclisch substituierte Benzoylisothiazole

Publications (1)

Publication Number Publication Date
WO1997038996A1 true WO1997038996A1 (de) 1997-10-23

Family

ID=7791330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/001855 WO1997038996A1 (de) 1996-04-16 1997-04-14 Herbizide heterocyclisch substituierte benzoylisothiazole

Country Status (9)

Country Link
US (1) US6046137A (de)
EP (1) EP0898570A1 (de)
JP (1) JP2000508650A (de)
AR (1) AR006675A1 (de)
AU (1) AU2385897A (de)
CA (1) CA2251601A1 (de)
DE (1) DE19614858A1 (de)
WO (1) WO1997038996A1 (de)
ZA (1) ZA973178B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002514630A (ja) * 1998-05-11 2002-05-21 ビーエーエスエフ アクチェンゲゼルシャフト イソオキサゾリン−3−イルアシルベンゼンの製造方法
US7235560B2 (en) 2002-08-19 2007-06-26 Glaxo Group Limited Pyrimidine derivative as selective COX-2 inhibitors
US7446117B2 (en) 2002-09-16 2008-11-04 Glaxo Group Limited Cox-2 inhibiting pyridine derivatives

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003232551A1 (en) * 2002-06-13 2003-12-31 Qlt Inc. Methods of using isothiazole derivatives to treat cancer or inflammation
CN107522676B (zh) * 2017-08-18 2019-06-14 南通大学 含噁唑联苯硫基结构的氰基丙烯酸酯衍生物的制备和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187099A (en) * 1977-11-16 1980-02-05 Monsanto Company 3-Aryl-4-isothiazolecarboxylic acid and 3-aryl-4-isoxazolecarboxylic acid derivatives and their use as herbicides
EP0418175A2 (de) * 1989-09-11 1991-03-20 Rhone Poulenc Agriculture Ltd. Isoxazolderivate als Herbizide
EP0487357A1 (de) * 1990-11-22 1992-05-27 Rhone-Poulenc Agriculture Ltd. 4-Benzoylisoxazolderivate
WO1996026192A1 (de) * 1995-02-24 1996-08-29 Basf Aktiengesellschaft Isoxazolyl-benzoylderivate

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5086064A (en) * 1990-03-27 1992-02-04 Warner-Lambert Company 3,5-di-tertiary-butyl-4-hydroxyphenyl thiazolyl, oxazolyl, and imidazolyl methanones and related compounds as antiinflammatory agents
US5034385A (en) * 1990-06-26 1991-07-23 Merck & Co., Inc. 2-(heteroarylsubstituted)phenyl carbapenem antibacterial agents
GB9214120D0 (en) * 1991-07-25 1992-08-12 Ici Plc Therapeutic amides
IL102674A (en) * 1991-08-05 1996-11-14 Rhone Poulenc Agriculture History of 4-benzoyl isoxazole, the process for their preparation and herbicides containing the same
GB9116834D0 (en) * 1991-08-05 1991-09-18 Rhone Poulenc Agriculture Compositions of new matter
US5334753A (en) * 1992-03-12 1994-08-02 Rhone-Poulenc Agriculture Ltd Processes for preparing ortho-substituted benzoic acids
GB9215551D0 (en) * 1992-07-22 1992-09-02 Rhone Poulenc Agriculture New compositions of matter
GB9219779D0 (en) * 1992-09-18 1992-10-28 Rhone Poulenc Agriculture Compositions of new matter
NZ259331A (en) * 1992-12-18 1996-11-26 Rhone Poulenc Agriculture 4-benzoyl isoxazole derivatives and herbicidal compositions thereof; intermediates
GB9302071D0 (en) * 1993-02-03 1993-03-24 Rhone Poulenc Agriculture Compositions of matter
GB9302072D0 (en) * 1993-02-03 1993-03-24 Rhone Poulenc Agriculture New compositions of matter
GB9302049D0 (en) * 1993-02-03 1993-03-24 Rhone Poulenc Agriculture Compositions of new matter
GB9305295D0 (en) * 1993-03-15 1993-05-05 Zeneca Ltd Therapeutic compounds
CA2117413C (en) * 1993-07-30 2006-11-21 Neil Geach Herbicidal isoxazole-4-yl-methanone derivatives
GB9325284D0 (en) * 1993-12-10 1994-02-16 Rhone Poulenc Agriculture Herbicidal compositions
GB9325618D0 (en) * 1993-12-15 1994-02-16 Rhone Poulenc Agriculture New herbicides
GB2284600A (en) * 1994-01-21 1995-06-14 Shell Int Research Herbicidal 3-(hetero)aryl-4-acylisoxazole compositions and compounds
AU1758495A (en) * 1994-02-25 1995-09-11 Rhone-Poulenc Agrochimie New pesticidal method
AU1758595A (en) * 1994-02-25 1995-09-11 Rhone-Poulenc Agrochimie Pesticidal method
GB9405234D0 (en) * 1994-03-17 1994-04-27 Rhone Poulenc Agriculture New compositions of matter
CN1071757C (zh) * 1995-02-24 2001-09-26 巴斯福股份公司 吡唑基苯甲酰基衍生物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187099A (en) * 1977-11-16 1980-02-05 Monsanto Company 3-Aryl-4-isothiazolecarboxylic acid and 3-aryl-4-isoxazolecarboxylic acid derivatives and their use as herbicides
EP0418175A2 (de) * 1989-09-11 1991-03-20 Rhone Poulenc Agriculture Ltd. Isoxazolderivate als Herbizide
EP0487357A1 (de) * 1990-11-22 1992-05-27 Rhone-Poulenc Agriculture Ltd. 4-Benzoylisoxazolderivate
WO1996026192A1 (de) * 1995-02-24 1996-08-29 Basf Aktiengesellschaft Isoxazolyl-benzoylderivate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002514630A (ja) * 1998-05-11 2002-05-21 ビーエーエスエフ アクチェンゲゼルシャフト イソオキサゾリン−3−イルアシルベンゼンの製造方法
JP4786032B2 (ja) * 1998-05-11 2011-10-05 ビーエーエスエフ ソシエタス・ヨーロピア イソオキサゾリン−3−イルアシルベンゼンの製造方法
US7235560B2 (en) 2002-08-19 2007-06-26 Glaxo Group Limited Pyrimidine derivative as selective COX-2 inhibitors
US7446117B2 (en) 2002-09-16 2008-11-04 Glaxo Group Limited Cox-2 inhibiting pyridine derivatives

Also Published As

Publication number Publication date
CA2251601A1 (en) 1997-10-23
AU2385897A (en) 1997-11-07
ZA973178B (en) 1998-10-15
AR006675A1 (es) 1999-09-08
EP0898570A1 (de) 1999-03-03
DE19614858A1 (de) 1997-10-23
US6046137A (en) 2000-04-04
JP2000508650A (ja) 2000-07-11

Similar Documents

Publication Publication Date Title
EP0811007B1 (de) Pyrazol-4-yl-benzoylderivate und ihre verwendung als herbizide
EP0811005B1 (de) Herbizide benzoylderivate
EP0810998B1 (de) Phenyldiketon-derivate als herbizide
EP0888334B1 (de) 2-hetaroylcyclohexan-1,3-dione
EP0810999B1 (de) Isoxazolyl-benzoylderivate
EP0888343B1 (de) Pyrazol-4-yl-hetaroylderivate als herbizide
WO1998042703A1 (de) Thiazolimin-derivate
EP0961774B1 (de) Pyrazol-4-yl-benzoylderivate und ihre verwendung als herbizide
EP0898570A1 (de) Herbizide heterocyclisch substituierte benzoylisothiazole
EP0775125B1 (de) Saccharinderivate und ihre anwendung als herbizide
US5945381A (en) Herbicidal heterocyclically annulated benzoylisothiazoles
US6083879A (en) Herbicidal benzoylisothiazoles
DE4427998A1 (de) Saccharinderivate
DE4427997A1 (de) 5-Hydroxypyrazol-4-yl-carbonyl-substituierte Saccharinderivate
DE19518739A1 (de) N-Aminopyridonderivate
WO1997019071A1 (de) 2-cyano-1,3-dion derivate, deren herstellung und deren verwendung als herbizide
DE19607041A1 (de) Pyrazol-4-yl-hetaroylderivate
DE19607105A1 (de) 2-Hetaroylcyclohexan-1,3-dione
DE19612685A1 (de) Pyrazol-4-yl-hetaroylderivate
DE19612687A1 (de) 2-Hetaroylcyclohexan-1,3-dione

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BG BR BY CA CN CZ EE GE HU IL JP KR KZ LT LV MX NO NZ PL RO RU SG SI SK TR UA US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997919354

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2251601

Country of ref document: CA

Ref country code: CA

Ref document number: 2251601

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09171199

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997919354

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997919354

Country of ref document: EP