WO1997037794A1 - Procede de coulee continue des metaux et lingotiere pour sa mise en oeuvre - Google Patents

Procede de coulee continue des metaux et lingotiere pour sa mise en oeuvre Download PDF

Info

Publication number
WO1997037794A1
WO1997037794A1 PCT/FR1997/000595 FR9700595W WO9737794A1 WO 1997037794 A1 WO1997037794 A1 WO 1997037794A1 FR 9700595 W FR9700595 W FR 9700595W WO 9737794 A1 WO9737794 A1 WO 9737794A1
Authority
WO
WIPO (PCT)
Prior art keywords
walls
metal
ingot mold
heat flux
over
Prior art date
Application number
PCT/FR1997/000595
Other languages
English (en)
Inventor
Jean-Marc Jolivet
Eric Perrin
Cosimo Salaris
Jacques Spiquel
Original Assignee
Ugine Savoie
Sogepass
Sollac
Ascometal
Societe Anonyme Des Forges Et Acieries De Dilling
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ugine Savoie, Sogepass, Sollac, Ascometal, Societe Anonyme Des Forges Et Acieries De Dilling filed Critical Ugine Savoie
Priority to EP97919470A priority Critical patent/EP0891237B1/fr
Priority to CA002250786A priority patent/CA2250786C/fr
Priority to JP53590397A priority patent/JP4058561B2/ja
Priority to BR9708509A priority patent/BR9708509A/pt
Priority to DK97919470T priority patent/DK0891237T3/da
Priority to AT97919470T priority patent/ATE198285T1/de
Priority to AU23929/97A priority patent/AU2392997A/en
Priority to DE69703793T priority patent/DE69703793T2/de
Publication of WO1997037794A1 publication Critical patent/WO1997037794A1/fr
Priority to GR20010400441T priority patent/GR3035596T3/el

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/0401Moulds provided with a feed head

Definitions

  • the present invention relates to the continuous casting of metals, in particular steel.
  • the continuous casting operation schematically consists, as is known, of pouring a molten metal into an ingot mold, essentially consisting of a bottomless tubular element defining a passage for the cast metal, but whose walls, of copper (more generally made of copper alloy), are vigorously cooled by circulation of water, and from which a product already solidified externally is also continuously extracted. Solidification then progresses towards the axis of the product and ends during the descent of the latter downstream of the mold in the so-called "secondary cooling" zone under the effect of water spray bars.
  • the product obtained (bloom, billet or slab) is then cut to length, then laminated before shipment to the customer or processing on site, into bars, wires, profiles, plates, sheets, etc.
  • the thermal contraction of the solid skin is all the more important as the heat extraction is strong and that the cast metal has a natural tendency to contract during cooling, for example by change of solid phase at the end of solidification, as this is the case in particular for low or medium carbon steel grades or stainless steels.
  • This perimeter contraction tends to cause a separation of the solidified skin relative to the wall of the mold, and therefore a decrease in the heat exchange due to the fact that the contact of said skin with the cold walls is degraded.
  • This detachment is generally uneven depending on the perimeter of the solidified skin, which is a source of surface defects on the final product obtained.
  • the present invention aims to solve the problems indicated above and is particularly aimed at obtaining a cast product having a very good surface quality, by ensuring an effective reduction of the heat flux extracted during the formation and the start of growth of the solidified film, and in particular avoiding the harmful effect of fluctuations in the level of the free surface of the liquid metal in the mold.
  • the subject of the invention is a process for the continuous casting of molten metals, in particular steel, in an ingot mold having energetically cooled metal walls extending substantially vertically and defining a passage for the cast metal, and ensuring over their entire height extraction of heat flow from the cast metal causing said metal to cool and gradually solidify, process by which the intensity of the heat flow extracted is reduced near the level where said metal begins to solidify on contact with said walls, characterized in what is placed above said cooled metal walls a thermally insulating riser and, during casting, the level of the free surface of the cast metal is maintained inside the said riser, and in that one injects at this height, and preferably at least at its lower end, a gas emerging in jets distributed over the inner periphery of the mold.
  • the free surface of the liquid metal bath (the meniscus) is located in the riser.
  • the film of solidified metal begins to form regularly only from the upper edge of the metal walls, and this thanks to the blowing of the sweeping gas at the base of the riser which allows to separate this regular solidification desired on the cooled metal part from any parasitic local solidifications which may occur on the refractory part.
  • the solidification of the cast metal begins only at a certain distance from the meniscus.
  • the area where this solidification begins is therefore almost perfectly flat, horizontal, and not subject to fluctuations or disturbances which inevitably stir the free surface of the bath.
  • the solid ring formed by the first solidification skin is therefore geometrically perfectly regular, and its continuous renewal is also almost perfectly regular, as is the growth of this solidified skin, as the poured product descends.
  • the cast metal does not initiate its solidification in the enhancement, there is no metal contraction at this level.
  • the latter remains in contact with the wall of the riser and prevents slag infiltration between the metal and said wall.
  • the heat extraction carried out in the upper part of the metal walls can also be carried out uniformly over the entire periphery of the product, avoiding localized detachments and the under-thicknesses of solid skin which would result, and 1 'the intensity of the heat flux extracted in the zone of beginning of solidification can be ensured very uniformly over the entire periphery of the passage defined by the metal walls.
  • the intensity of the heat flow extracted over a zone of predetermined height is reduced from the lower edge of the said riser, without however significantly modifying the amount of overall heat extracted by the ingot mold.
  • This limited height thus ensures a reduction in the heat flux extracted in the zone where the skin of solid metal is formed, and also avoids the effect of withdrawal and detachment of the metal skin observed in the casting process according to the prior art.
  • said zone has a substantially constant heat flux extraction capacity over its entire height.
  • the reduction in the extracted heat flux can be strong but over a small height, for example of the order of 10 mm.
  • said zone has an increasing capacity for extracting heat flow from the top to the bottom.
  • the reduction in the extracted heat flow progressively decreases towards the bottom of the mold, over an area of greater height.
  • the invention also relates to a continuous casting ingot mold having metal walls extending substantially vertically and defining a passage for the cast metal and means for internal cooling of said walls arranged so as to ensure vigorous cooling of said walls on substantially their entire height, said walls being provided in their upper part with means for reducing the intensity of the heat flux caused by said cooling means and passing through their internal surface defining said passage, characterized in that it comprises an extension in thermally insulating material placed above said metal walls and extending them upwards, and means for injecting a gas opening onto the inner periphery of the ingot mold, at the level of the extension and preferably at the lower end of this one just above the metal walls.
  • said means for reducing the intensity of the heat flux consist of a layer of a metal having a thermal conductivity lower than that of the metal constituting the walls, said layer of metal being for example constituted of nickel, deposited by an electrolytic deposition process, on the copper or copper alloy constituting the walls of the ingot mold.
  • said layer is located above the walls, and therefore between them and the refractory constituting the extension, and its thickness can be for example of the order of a millimeter.
  • said layer also extends over the internal face of the cooled metal walls, over a height which can then be of the order of a few centimeters.
  • the layer of poorly conductive metal then forms a thermal barrier between the solidified skin of cast metal and the very good thermal conductive metal of the walls of the mold. Over the entire height over which this low-conductive layer extends, the extracted heat flux is greatly reduced (the reduction being able to reach and even exceed 50%), compared to a configuration where the cast metal would be in direct contact with said metal very conductive of the walls.
  • said means for reducing the intensity of the heat flux consist of grooves extending substantially vertically produced on the internal surface of said walls.
  • said grooves are filled at least partially with a material having a thermal conductivity lower than that of the metal constituting the walls.
  • FIG. 1 is a schematic representation, in partial longitudinal section, of the upper part of the ingot mold, in a first variant embodiment
  • FIG. 2 represents the variation of the heat flow extracted during casting in such an ingot mold, depending on the distance from the upper edge of the metal walls,
  • FIGS. 1 and 2 correspond respectively in FIGS. 1 and 2 in the case of a second variant embodiment of the ingot mold
  • FIG. 5 schematically represents the upper part of an ingot mold wall, in a second embodiment, using grooving of the upper part of the metal wall,
  • FIG. 6 is a view, on an enlarged scale, of the section along a horizontal plane of the upper part of the metal wall of Figure 5, - Figure 7, is a view similar to Figure 6, in the case where the grooves are filled with a slightly conductive metal,
  • FIG. 8 illustrates a particularly advantageous embodiment of the extension, incorporating a heating resistance,
  • FIG. 9 is a schematic view of the ingot mold, on a reduced scale, in section along line IX - IX of Figure 8.
  • the mold shown in FIG. 1 has metal walls 1 cooled, in a manner known per se, by an internal circulation of water, which form a tubular body and define a vertical passage for the cast steel 2.
  • the upper part of these metal walls preferably consists of an element independent of their lower part, for example in the form of an annular part 3, also made of copper or copper alloy and provided with its own cooling circuit, shown diagrammatically by the channel 4 of water circulation.
  • annular part 3 can be replaced more easily and cheaply than if the metal walls were formed in one piece over the entire height.
  • a layer 6 of electrolytic nickel On the upper face 5 of the annular part 3 is produced a layer 6 of electrolytic nickel, with a thickness for example of 1.5 mm.
  • a thermally insulating riser 7 comprising an upper part 8 made of highly insulating refractory material, with a height of 200 mm for example, and a lower part 9 in a refractory material possibly less insulating but having better mechanical resistance, for example the material known under the designation SILLON, and having for example a thickness of 20 mm.
  • a space is formed forming a slit 10 of low height, for example of a few 1/10 mm, this slit opening onto the internal surface of the ingot mold around its entire periphery, and being moreover connected to a source 110 of inert pressurized gas, such as argon, schematically shown in the figure.
  • a source 110 of inert pressurized gas such as argon
  • the ingot of liquid metal is supplied by a nozzle 11, of known type, comprising lateral openings 12, situated at the level of the refractory riser 7, for example approximately halfway up its upper part 8.
  • the molten steel contained in a distributor, not shown, to which the nozzle 11 is fixed, passes into said nozzle and its gills 12 and fills the mold.
  • the level of the free surface 13 of the liquid steel is maintained between the upper edge of the riser 7 and the gills 12, so that these gills are immersed in the bath of liquid steel 2.
  • said surface free is covered by a layer of slag 13.
  • the skin 21 of solid steel begins to form at the upper edge of the nickel layer 6 and, due to the cooling caused by the metal walls of the mold, gradually thickens downward, it being understood that this skin is actually moving continuously downward with the extraction of the cast product, and is also continuously renewed by solidification of the liquid steel coming into contact with the nickel layer 6.
  • the supply of pressurized argon through the slot 10 creates jets of gases, substantially perpendicular to the internal surface of the walls of the ingot mold, which serve to break up any solidification primers which could occur in contact with the lower part 9 of the extension, so as to ensure that said skin 21 begins to solidify around the entire periphery in the same horizontal plane, located exactly at the level of the upper edge 14 of the nickel layer 6.
  • the curve in solid line 22 represents the flow extracted in the case of the use of the ingot mold of the invention represented in FIG. 1, while the curve poi ntricee 23 represents for comparison the heat flux which would be extracted in the absence of the nickel layer 6, that is to say if the solid skin 21 began to form in direct contact with the copper of the upper part 3. It will be noted that, in the vertical zone corresponding to the thickness of the nickel layer, the extracted flux is reduced, this reduction in flux possibly being able to continue for a few millimeters below said nickel layer, but without appreciably influencing the overall flow extracted by the entire annular part 3.
  • FIG. 3 represents an alternative embodiment of the ingot mold, the same references as those in FIG. 1 being used to designate corresponding elements.
  • an additional nickel layer 15 is deposited on the inner lateral surface 16 of the annular part 3, this part annular being machined prior to the deposition of nickel so that, after formation of this layer 15, the internal surface 17 thereof remains substantially coplanar and in line with the internal surface of the lower part of the mold.
  • the thickness of the nickel layer 15 decreases progressively from top to bottom over the height of the annular part 3.
  • FIG 4 similar to Figure 2 in the case of this second variant, shows that the heat flux extracted (curve 24) overall by said annular part is very greatly reduced compared to the case where there would be no coating nickel (curve 23).
  • FIG. 5 schematically represents in perspective a portion of the upper part of an ingot mold wall according to another embodiment, in which vertical grooves 31 are produced on the internal face 32 of the annular part 3, as can be seen, shown on an enlarged scale, in Figure 6.
  • the grooves 31 may have for example a depth and a width of 0.2 mm and be spaced from each other by 1.5 mm.
  • the grooves can be filled by a deposit 33 of a weakly conductive metal, for example nickel.
  • the grooves may for example have a width of 1 mm and a depth of 0.5 mm, and be spaced from each other by 2 mm.
  • the deposit of nickel made in the grooves makes it possible to avoid the penetration of steel cast at the bottom of the groove.
  • the reduction in heat flux extracted in this variant is then identical to that which would be produced by a reduction in the exchange surface proportional to the surface occupied by the grooves replenished in said poorly conductive metal.
  • a gas injection slot has not been shown in FIG. 5 inert, it is clear that such an injection will also preferably be used in the implementation of such an ingot mold.
  • the invention is not limited to the various variants which have been described above solely by way of example.
  • a non-conductive coating metal other than nickel may be used.
  • the various embodiments described above could also be implemented directly on said metal walls only over a limited height from their upper edges.
  • an electric heating resistance for example in the form of a graphite tape 71 (type PAPYER (registered trademark) or SIGRAFLER (registered trademark)), which can be folded, without the risk of breaking it, in order to wrap it around the passage of the cast metal 2 (see Figure 9).
  • This heating tape 71 can be molded in the refractory of the riser or preferably placed in an annular groove 72 hollowed out for this purpose in the riser, which is then produced for example in two parts 73, 74 superimposed. Consequently, if care is taken to choose an inert gas, such as argon, as the purging gas, no problem of oxidation of the graphite heating resistance is encountered.
  • an inert gas such as argon

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Confectionery (AREA)
  • Steroid Compounds (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

La lingotière comporte des parois métalliques (1, 3) énergiquement refroidies pourvues dans leur partie supérieure de moyens pour réduire l'intensité du flux thermique extrait du métal coulé (2), tels qu'un revêtement (6, 15) de métal moins conducteur que celui des parois, ou des rainures (31) réalisées dans ces parois. Ces parois sont surmontées d'une rehausse thermiquement isolante (7) associée à des moyens d'injection d'un gaz débouchant en jets répartis sur le pourtour intérieur de la lingotière. Lors de la coulée, la surface libre du métal liquide est maintenue au niveau de cette rehausse, le début de solidification de la peau solide (21) commençant seulement au niveau du bord supérieur des parois métalliques (3). Application notamment à la coulée continue de l'acier.

Description

PROCEDE DE COULEE CONTINUE DES METAUX ET LINGOTIERE POUR
SA MISE EN OEUVRE.
La présente invention concerne la coulée continue des métaux, notamment de l'acier.
L'opération de coulée continue consiste schématiquement, comme on le sait, à verser un métal en fusion dans une lingotière, essentiellement constituée d'un élément tubulaire sans fond définissant un passage pour le métal coulé, mais dont les parois, en cuivre (plus généralement en alliage de cuivre) , sont énergiquement refroidies par circulation d'eau, et de laquelle on extrait également en continu un produit déjà solidifié extérieurement. La solidification progresse ensuite vers l'axe du produit et s'achève au cours de la descente de celui-ci en aval de la lingotière dans la zone dite du "refroidissement secondaire" sous l'effet de rampes d'arrosage d'eau. Le produit obtenu (bloom, billette ou brame) est ensuite découpé à longueur, puis laminé avant expédition à la clientèle ou transformation sur place, en barres, fils, profilés, plaques, tôles, etc.. Les défauts de surface ou sous-cutanés des produits issus de la coulée continue de l'acier sont souvent cause de rebut, car l'opération de laminage les supporte mal, voire les amplifie jusqu'à dégrader de façon intolérable la qualité métallurgique des produits laminés. Au cours de la coulée, le métal en fusion, déversé en lingotière, forme une pellicule solide au niveau de sa surface libre dès sa venue en contact avec les parois métalliques refroidies de la lingotière. Cette pellicule est entraînée vers le bas lors de l'extraction du produit par un mouvement saccadé rythmé par les oscillations verticales de la lingotière. Simultanément, son épaisseur croît du fait de la poursuite de l'extraction de chaleur réalisée par les parois de la lingotière. Il y a donc continuellement création d'une nouvelle pellicule de métal solide au niveau de la surface libre du métal dans la lingotière (appelée "ménisque") , cette pellicule se solidifiant sur tout le périmètre de la paroi interne de la lingotière et constituant un anneau solide susceptible de se contracter du fait du refroidissement subi lors de sa descente dans la lingotière.
La contraction thermique de la peau solide est d'autant plus importante que l'extraction de chaleur est forte et que le métal coulé a une tendance naturelle à se contracter lors du refroidissement, par exemple par changement de phase solide en fin de solidification, comme c'est le cas notamment pour des nuances d'acier à bas ou moyen carbone ou d'aciers inoxydables. Cette contraction périmétrique tend à provoquer un écartement de la peau solidifiée par rapport à la paroi de la lingotière, et donc une diminution de l'échange thermique du fait que le contact de la dite peau avec les parois froides est dégradé. Ce décollement est généralement inégal selon le périmètre de la peau solidifiée, ce qui est source de défauts de surface sur le produit final obtenu.
Pour éviter ou limiter ces défauts, on a déjà cherché à réduire le flux thermique extrait lors de la formation de la peau, au début de sa solidification.
Ainsi, il a déjà été tenté de réduire ce flux thermique en utilisant une lingotière pourvue, dans sa partie supérieure, là où se produit le début de solidification, d'un insert formant une barrière thermique en empêchant le métal en fusion de venir directement en contact avec les parois refroidies de la lingotière. La tenue dans le temps d'un tel insert s'est toutefois révélée très aléatoire, et le coût de maintenance d'une telle lingotière très élevé. II a également été tenté de réduire le flux thermique en donnant aux parois de la lingotière un état de surface susceptible de réduire l'aire des zones de contact direct du métal coulé avec le cuivre des parois refroidies, par exemple par une gravure régulière des parois formant un gaufrage de leur surface, ou par une rugosité aléatoire obtenue par exemple par sablage. Une telle méthode n'a semble-t'il cependant pas encore permis d'améliorer sensiblement la qualité de surface du produit coulé. Il semble en effet que les perturbations provoquées par les variations de niveau de la surface libre du métal coulé soient prédominantes par rapport à l'effet modérateur sur le flux thermique, obtenu par un état de surface adapté des parois de la lingotière tel qu'indiqué ci-dessus, de sorte que, les hétérogénéités de solidification subsistant, les défauts de surface ne sont pas éliminés.
Dans le même but de réduire le contact direct du métal coulé avec le cuivre froid des parois, il a encore été tenté de réaliser dans celles-ci des rainures verticales. Mais il est alors apparu que ces rainures se garnissaient rapidement du laitier classiquement utilisé comme couche de couverture de la surface libre du métal liquide, ce qui atténuait l'effet thermique recherché.
La présente invention a pour but de résoudre les problèmes indiqué ci-dessus et vise particulièrement à obtenir un produit coulé ayant une très bonne qualité de surface, en assurant une réduction efficace du flux thermique extrait lors de la formation et du début de la croissance de la pellicule solidifiée, et en évitant notamment l'effet néfaste des fluctuations du niveau de la surface libre du métal liquide en lingotière.
Avec ces objectifs vue, l'invention a pour objet un procédé de coulée continue des métaux en fusion, notamment de l'acier, dans une lingotière comportant des parois métalliques energiquement refroidies s 'étendant sensiblement verticalement et définissant un passage pour le métal coulé, et assurant sur toute leur hauteur une extraction de flux thermique du métal coulé provoquant un refroidissement et une solidification progressive du dit métal, procédé selon lequel on réduit l'intensité du flux thermique extrait au voisinage du niveau où le dit métal commence à se solidifier au contact des dites parois, caractérisé en ce que on place au dessus des dites parois métalliques refroidies une rehausse thermiquement isolante et, lors de la coulée, on maintient le niveau de la surface libre du métal coulé à 1 ' intérieur de la dite rehausse, et en ce que l'on injecte au niveau de cette rehausse, et de préférence au moins à son extrémité inférieure, un gaz débouchant en jets répartis sur le pourtour intérieur de la lingotière.
Conformément à l'invention, la surface libre du bain de métal liquide (le ménisque) est située dans la rehausse. Comme celle-ci est en matériau réfractaire thermiquement isolant, la pellicule de métal solidifié ne commence à se former régulièrement qu'à partir du bord supérieur des parois métalliques, et cela grâce au soufflage du gaz de balayage à la base de la rehausse qui permet de bien séparer cette solidification régulière voulue sur la partie métallique refroidie des éventuelles solidifications locales parasites qui peuvent advenir sur la partie réfractaire . Ainsi, la solidification du métal coulé ne débute qu'à une certaine distance du ménisque.
La zone où commence cette solidification est donc quasiment parfaitement plane, horizontale, et non soumise aux fluctuations ou perturbations qui agitent inévitablement la surface libre du bain. L'anneau solide constitué par la peau de première solidification est donc géométriquement parfaitement régulier, et son renouvellement continu est également quasiment parfaitement régulier, de même que la croissance de cette peau solidifiée, au fur et à mesure de la descente du produit coulé.
Par ailleurs, comme le métal coulé n'initie pas sa solidification dans la rehausse, il n'y a pas à ce niveau de contraction du métal. Ce dernier reste au contact de la paroi de la rehausse et empêche les infiltrations de laitier entre le métal et la dite paroi. Il en résulte qu'il ne peut donc pas non plus y avoir d'infiltrations de laitier entre les parois métalliques de la lingotière et la peau solidifiée à leur contact, même si celle-ci tend à s'en écarter du fait du retrait de solidification. On notera de plus que la pression ferrostatique du métal liquide, due à la hauteur de ce métal contenu dans la rehausse, tend à s'opposer à cet écartement et donc à maintenir la dite peau plaquée contre la surface des parois métalliques, et ceci de manière uniforme sur tout le pourtour interne de la lingotière, du fait que l'épaisseur et l'état de solidification de la peau est également uniforme sur ce pourtour.
Ainsi, du fait de cette régularité périphérique, l'extraction de chaleur réalisée dans la partie supérieure des parois métalliques peut être réalisée aussi de manière uniforme sur tout le pourtour du produit, en évitant des décollements localisés et les sous-épaisseurs de peau solide qui en résulteraient, et 1 ' intensité du flux thermique extrait dans la zone de début de solidification peut-être assurée très uniformément sur tout le pourtour du passage défini par les parois métalliques.
Préférentiellement, on réduit l'intensité du flux thermique extrait sur une zone de hauteur prédéterminée à partir du bord inférieur de la dite rehausse, sans cependant modifier sensiblement la quantité de chaleur globale extraite par la lingotière. Cette hauteur limitée assure ainsi une réduction du flux thermique extrait dans la zone où la peau de métal solide se forme, et évite aussi l'effet de retrait et de décollement de la peau de métal observé dans le procédé de coulée selon l'art antérieur. Selon une première variante, la dite zone présente une capacité d'extraction de flux thermique sensiblement constante sur toute sa hauteur. Dans ce cas, la réduction du flux thermique extrait peut être forte mais sur une faible hauteur, par exemple de l'ordre de 10 mm.
Selon une deuxième variante, la dite zone présente une capacité d'extraction de flux thermique croissante du haut vers le bas. Dans ce cas, la réduction du flux thermique extrait décroît progressivement vers le bas de la lingotière, sur une zone de plus grande hauteur. Ceci permet d'assurer une réduction du flux thermique extrait, dans la zone où est réalisée cette réduction, encore plus forte que dans le cas précédent, du fait de la hauteur supérieure de cette zone, mais aussi d'assurer une sorte de progressivité dans la variation de flux thermique extrait, entre la rehausse où le dit flux extrait est le plus faible possible, et la partie métallique refroidie de la lingotière où il est recherché une extraction maximale du flux thermique. L'invention a aussi pour objet une lingotière de coulée continue comportant des parois métalliques s 'étendant sensiblement verticalement et définissant un passage pour le métal coulé et des moyens de refroidissement interne des dites parois disposés de manière à assurer un refroidissement énergique des dites parois sur sensiblement toute leur hauteur, les dites parois étant pourvues dans leur partie supérieure de moyens pour réduire l'intensité du flux thermique provoqué par les dits moyens de refroidissement et passant à travers leur surface interne définissant le dit passage, caractérisée en ce qu'elle comporte une rehausse en matériau thermiquement isolant placée au dessus des dites parois métalliques et les prolongeant vers le haut, et des moyens d'injection d'un gaz débouchant sur le pourtour intérieur de la lingotière, au niveau de la rehausse et de préférence à l'extrémité inférieure de celle-ci juste au-dessus des parois métalliques.
Selon un premier mode de réalisation, les dits moyens de réduction de l'intensité du flux thermique sont constitués par une couche d'un métal ayant une conductibilité thermique inférieure à celle du métal constitutif des parois, la dite couche de métal étant par exemple constituée de nickel, déposé par un procédé de dépôt électrolytique, sur le cuivre ou alliage de cuivre constitutif des parois de la lingotière. Selon une première variante, la dite couche est située au-dessus des parois, et donc entre celles-ci et le réfractaire constitutif de la rehausse, et son épaisseur peut être par exemple de l'ordre du millimètre.
Selon une autre variante, la dite couche s'étend en plus sur la face interne des parois métalliques refroidies, sur une hauteur qui peut alors être de l'ordre de quelque centimètres. La couche de métal peu conducteur forme alors une barrière thermique entre la peau solidifiée de métal coulé et le métal très bon conducteur thermique des parois de la lingotière. Sur toute la hauteur sur laquelle s'étend cette couche peu conductrice, le flux thermique extrait est fortement réduit (la réduction pouvant atteindre et même dépasser 50%) , par rapport à une configuration où le métal coulé serait en contact direct avec le dit métal très conducteur des parois.
La réalisation d'une couche de métal peu conducteur à la fois au dessus des parois en cuivre ou alliage de cuivre et sur leur face latérale intérieure permet de modifier simultanément la valeur moyenne du flux extrait dans la partie supérieure des parois refroidies et l'étalement du flux en fonction de la distance à partir du bord supérieur des parois métalliques, au niveau duquel débute la solidification de la pellicule de métal coulé, cet étalement pouvant par ailleurs être pré-réglé et favorisé en diminuant progressivement 1 ' épaisseur de la dite couche du haut vers le bas.
Selon un deuxième mode de réalisation, les dits moyens de réduction de l'intensité du flux thermique sont constitués par des rainures s 'étendant sensiblement verticalement réalisées à la surface interne des dites parois. On constitue ainsi, dans la zone de formation de la pellicule solidifiée, et sur la périphérie du passage formé par les parois de la lingotière, une alternance de points de contact direct du métal coulé avec le cuivre ou alliage de cuivre des parois refroidies, et de points, correspondants aux dites rainures, où l'extraction de chaleur est réduite. On notera que, contrairement à la technique évoquée au début de ce mémoire, utilisant un tel système de rainures, et du fait que le début de solidification s'effectue, selon l'invention, à une certaine distance en dessous de la surface libre du bain de métal et donc en absence de laitier, il ne peut donc y avoir , en cours de coulée, pénétration de laitier dans ces rainures, et obstruction de celles-ci. Selon une variante de cette disposition, les dites rainures sont comblées au moins partiellement par un matériau ayant une conductibilité thermique inférieure à celle du métal constitutif des parois.
D'autres caractéristiques et avantages apparaîtront dans la description qui va être faite d'une lingotière de coulée continue d'acier conforme à l'invention et de sa mise en oeuvre.
On se reportera aux dessins annexés dans lesquels:
- la figure 1 est une représentation schématique, en coupe longitudinale partielle, de la partie haute de la lingotière, dans une première variante de réalisation, la figure 2 représente la variation du flux thermique extrait au cours d'une coulée dans une telle lingotière, en fonction de la distance à partir du bord supérieur des parois métalliques,
- les figures 3 et 4 correspondent respectivement aux figures 1 et 2 dans le cas d'une deuxième variante de réalisation de la lingotière,
- la figure 5 représente schématiquement la partie supérieure d'une paroi de lingotière, dans un second mode de réalisation, utilisant un rainurage de la partie supérieure de paroi métallique,
- la figure 6 est une vue, à échelle agrandie, de la section selon un plan horizontal de la partie supérieure de la paroi métallique de la figure 5, - la figure 7, est une vue similaire à la figure 6, dans le cas où les rainures sont comblées par un métal peu conducteur, la figure 8 illustre un mode de réalisation particulièrement avantageux de la rehausse, incorporant une résistance chauffante, la figure 9 est une vue schématique de la lingotière , à échelle réduite, en coupe selon la ligne IX - IX de la figure 8.
La lingotière représentée figure 1 comporte des parois métalliques 1 refroidies, de manière connue en soi, par une circulation interne d'eau, qui forment un corps tubulaire et définissent un passage vertical pour l'acier coulé 2. La partie supérieure de ces parois métalliques est préférentiellement constituée d'un élément indépendant de leur partie inférieure, par exemple sous forme d'une pièce annulaire 3, également en cuivre ou alliage de cuivre et doté d'un circuit de refroidissement qui lui est propre, schématisé par le canal 4 de circulation d'eau. Une telle pièce annulaire 3 peut être remplacée plus facilement et à moindre coût que si les parois métalliques étaient formées d'une seule pièce sur toute la hauteur.
Sur la face supérieure 5 de la pièce annulaire 3 est réalisé une couche 6 de nickel électrolytique, d'une épaisseur par exemple de 1,5 mm. Au dessus de cette pièce annulaire 3, dont la hauteur est par exemple de 40 mm, est disposée une rehausse 7 thermiquement isolante comportant une partie supérieure 8 en réfractaire très isolant, d'une hauteur de 200 mm par exemple, et une partie inférieure 9 en un matériau réfractaire éventuellement moins isolant mais présentant une meilleure résistance mécanique, par exemple le matériau connu sous la désignation SILLON, et ayant par exemple une épaisseur de 20 mm. Entre la couche de nickel 6 est le SILLON 9 est ménagé un espace formant une fente 10 de faible hauteur, par exemple de quelques 1/10 mm, cette fente débouchant à la surface interne de la lingotière sur tout son pourtour, et étant par ailleurs reliée à une source 110 de gaz inerte sous pression, tel que de l'argon, schématiquement représentée sur la figure.
L'alimentation de la lingotière en métal liquide est réalisée par une busette 11, de type connu, comportant des ouïes latérales 12, situées au niveau de la rehausse réfractaire 7, par exemple environ à mi- hauteur de sa partie supérieure 8.
Lors d'une coulée, l'acier en fusion, contenu dans un répartiteur, non représenté, auquel est fixé la busette 11, passe dans la dite busette et ses ouïes 12 et remplit la lingotière. Le niveau de la surface libre 13 de l'acier liquide est maintenu entre le bord supérieur de la rehausse 7 et les ouïes 12, de sorte que ces ouïes sont immergées dans le bain d'acier liquide 2. De manière classique, la dite surface libre est couverte par une couche de laitier 13.
Comme on le voit sur la figure 1, la peau 21 d'acier solide commence à se former au niveau du bord supérieur de la couche de nickel 6 et, du fait du refroidissement provoqué par les parois métalliques de la lingotière, s'épaissit progressivement vers le bas, étant bien entendu que cette peau se déplace en fait continuellement vers le bas avec l'extraction du produit coulé, et se renouvelle également continuellement par solidification de l'acier liquide arrivant au contact de la couche de nickel 6. L'alimentation d'argon sous pression par la fente 10 crée des jets de gaz, sensiblement perpendiculaires à la surface interne des parois de la lingotière, qui servent à briser les éventuels amorces de solidification qui pourraient se produire au contact de la partie inférieure 9 de la rehausse, de manière à assurer que la dite peau 21 commence à se solidifier sur tout le pourtour dans un même plan horizontal, situé exactement au niveau de l'arrête 14 supérieure de la couche de nickel 6. La figure 2 représente la variation du flux thermique extrait Φ, en fonction de la distance verticale d à partir de cette arrête 14. La courbe en trait plein 22 représente le flux extrait dans le cas de l'utilisation de la lingotière de l'invention représentée figure l, alors que la courbe pointillée 23 représente à titre comparatif le flux thermique qui serait extrait en l'absence de la couche de nickel 6, c'est à dire si la peau solide 21 commençait à se former au contact direct du cuivre de la partie supérieure 3. On remarquera que, dans la zone verticale correspondant à l'épaisseur de la couche de nickel, le flux extrait est réduit, cette réduction du flux pouvant d'ailleurs se poursuivre sur quelques millimètres en dessous de la dite couche de nickel, mais sans influencer sensiblement le flux global extrait par l'ensemble de la pièce annulaire 3.
La figure 3 représente une variante de réalisation de la lingotière, les mêmes repères que ceux de la figure 1 étant utilisés pour désigner des éléments correspondants. Dans cette variante, une couche 15 de nickel supplémentaire est déposée sur la surface latérale 16 intérieure de la pièce annulaire 3, cette pièce annulaire étant usinée préalablement au dépôt du nickel de manière que, après formation de cette couche 15, la surface interne 17 de celle-ci reste sensiblement coplanaire et dans le prolongement de la surface interne de la partie inférieure de la lingotière. Préférentiellement, l'épaisseur de la couche de nickel 15 décroît progressivement du haut vers le bas sur la hauteur de la pièce annulaire 3.
La figure 4, similaire à la figure 2 dans le cas de cette deuxième variante, montre que le flux thermique extrait (courbe 24) globalement par la dite pièce annulaire est très fortement réduit par rapport au cas où il n'y aurait pas de revêtement de nickel (courbe 23) .
La figure 5 représente schématiquement en perspective une portion de la partie supérieure d'une paroi de lingotière selon un autre mode de réalisation, dans lequel des rainures verticales 31 sont réalisées sur la face interne 32 de la pièce annulaire 3, comme on le voit, représenté à échelle agrandie, sur la figure 6. Les rainures 31 peuvent avoir par exemple une profondeur et une largeur de 0,2 mm et être distantes l'une de l'autre de 1,5 mm.
En variante, comme illustrée figure 7, les rainures peuvent être comblées par un dépôt 33 d'un métal faiblement conducteur, par exemple du nickel. Dans ce cas, les rainures peuvent avoir par exemple une largeur de 1 mm et une profondeur de 0,5 mm, et être distantes l'une de l'autre de 2 mm. Le dépôt de nickel réalisé dans les rainures permet d'éviter la pénétration d'acier coulé en fond de rainure. La réduction de flux thermique extrait dans cette variante est alors identique à celle qui serait produite par une réduction de la surface d'échange proportionnelle à la surface occupée par les rainures regarnies en dit métal peu conducteur. Bien que, pour simplifier le dessin, on n'ait pas représenté sur la figure 5 de fente d'injection de gaz inerte, il est clair qu'une telle injection sera aussi préférentiellement utilisée dans la mise en oeuvre d'une telle lingotière.
Les essais expérimentaux réalisés par les inventeurs ont donnés des résultats particulièrement satisfaisants sur le plan métallurgique pour le produit coulé, puisqu'il a pu être observé une réduction du flux thermique extrait dans la zone de début de solidification de plus de 50% et on a pu obtenir un produit ne présentant plus de défauts de surface de type dépressions et criques, en particulier sur des nuances d'aciers à 0,1% de carbone, particulièrement sensibles à de tels défauts .
L'invention n'est pas limitée aux différentes variantes qui ont été décrites ci-dessus uniquement à titre d'exemple. En particulier, on pourra utiliser un métal de revêtement peu conducteur autre que le nickel. Bien qu'il soit préférable, pour réduire les coûts de maintenance, de réaliser la réduction de flux thermique extrait au niveau d'une pièce supérieure indépendante des parties inférieures constituant les parois de la lingotière, les différents modes de réalisation décrits ci-dessus pourraient également être mis en oeuvre directement sur les dites parois métalliques uniquement sur une hauteur limitée à partir de leurs bords supérieurs .
De même, si le gaz de balayage à la base de la rehausse et un moyen "curâtif" à l'encontre des effets, sur le processus de solidification du produit coulé, des solidifications parasites locales sur la paroi réfractaire de la rehausse, ce moyen peut être complété par un moyen "préventif" consistant à chauffer la rehausse. Ainsi, selon l'invention, on pourra avoir avantage à incorporer à la rehausse 7, comme cela est schématiquement représenté figures 8 et 9, une résistance électrique chauffante, par exemple sous la forme d'un ruban de graphite 71 (type PAPYER (marque déposée) ou SIGRAFLER (marque déposée)) , que l'on peut plier, sans risque de le casser, afin de l'enrouler autour du passage du métal coulé 2 (voir figure 9) . Ce ruban chauffant 71 peut être moulé dans le réfractaire de la rehausse ou de préférence placé dans une gorge annulaire 72 creusée à cet effet dans la rehausse, qui est alors réalisée par exemple en deux parties 73, 74 superposées. Dès lors, si l'on prend soin de choisir comme gaz de balayage un gaz inerte, comme de l'argon, aucun problème d'oxydation de la résistance chauffante en graphite n'est rencontré.

Claims

REVENDICATIONS
1. Procédé de coulée continue des métaux en fusion, notamment de l'acier, dans une lingotière comportant des parois métalliques (1) energiquement refroidies s ' étendant sensiblement verticalement et définissant un passage pour le métal coulé, et assurant sur toute leur hauteur une extraction de flux thermique du métal coulé provoquant un refroidissement et une solidification progressive du dit métal (2) , procédé selon lequel on réduit l'intensité du flux thermique extrait au voisinage du niveau où le dit métal commence à se solidifier au contact des dites parois, caractérisé en ce que l'on place au dessus des dites parois métalliques refroidies une rehausse (7) thermiquement isolante et, lors de la coulée, on maintient le niveau de la surface libre du métal coulé (2) à l'intérieur de la dite rehausse, et en ce qu'au niveau de la dite rehausse (7) et au moins au niveau de son bord inférieur, on injecte un gaz débouchant dans la lingotière en jets répartis sur toute la périphérie du dit passage.
2. Procédé selon la revendication 1, caractérisé en ce que on réduit l'intensité du flux thermique extrait sur une zone de hauteur prédéterminée s ' étendant à partir du bord inférieur de la dite rehausse.
3. Procédé selon la revendication 2, caractérisé en ce que la dite zone présente une capacité d'extraction de flux thermique sensiblement constante sur toute sa hauteur.
4. Procédé selon la revendication 2, caractérisé en ce que la dite zone présente une capacité d'extraction de flux thermique croissante du haut vers le bas .
5. Lingotière de coulée continue comportant des parois métalliques (1,3) s'étendant sensiblement verticalement et définissant un passage pour le métal coulé (2) et des moyens de refroidissement interne des dites parois disposés de manière à assurer un refroidissement énergique des dites parois sur sensiblement toute leur hauteur, les dites parois étant pourvues dans leur partie supérieure de moyens (6,15,31) pour réduire l'intensité du flux thermique provoqué par les dits moyens de refroidissement et passant à travers la surface interne des parois, lingotière caractérisée en ce qu'elle comporte une rehausse (7) en matériau thermiquement isolant placée au dessus des dites parois métalliques et les prolongeant vers le haut, et des moyens d'injection (10) pour injecter au niveau de la dite rehausse et au moins au niveau de son bord inférieur, un gaz sous pression débouchant dans la lingotière en jets répartis sur toute la périphérie du dit passage.
6. Lingotière selon la revendication 5, caractérisée en ce que les dits moyens de réduction de l'intensité du flux thermique sont constitués par une couche (6,15) d'un métal ayant une conductibilité thermique inférieure à celle du métal constitutif des parois (1,3) .
7. Lingotière selon la revendication 6, caractérisée en ce que la dite couche (6) est située au dessus des parois (3) .
8. Lingotière selon la revendication 6 ou 7, caractérisée en ce que la dite couche (15) s'étend sur la face interne (16) des dites parois (3) .
9. Lingotière selon la revendication 8, caractérisée en ce que l'épaisseur de la dite couche (15) diminue du haut vers le bas.
10. Lingotière selon la revendication 5, caractérisée en ce que les dits moyens de réduction de l'intensité du flux thermique sont constitués par des rainures (31) s ' étendant sensiblement verticalement réalisées à la surface interne (32) des dites parois (3) .
11. Lingotière selon la revendication 10, caractérisée en ce que les dites rainures (31) sont comblées au moins partiellement par un matériau (33) ayant une conductibilité thermique inférieure à celle du métal constitutif des parois.
12. Lingotière selon la revendication 5, caractérisée en ce que des moyens de chauffage par résistance électrique (71) sont incorporés à la rehausse (7) .
PCT/FR1997/000595 1996-04-05 1997-04-03 Procede de coulee continue des metaux et lingotiere pour sa mise en oeuvre WO1997037794A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP97919470A EP0891237B1 (fr) 1996-04-05 1997-04-03 Procede de coulee continue des metaux et lingotiere pour sa mise en oeuvre
CA002250786A CA2250786C (fr) 1996-04-05 1997-04-03 Procede de coulee continue des metaux et lingotiere pour sa mise en oeuvre
JP53590397A JP4058561B2 (ja) 1996-04-05 1997-04-03 金属の連続鋳造方法と、それを実施するためのインゴット鋳型
BR9708509A BR9708509A (pt) 1996-04-05 1997-04-03 Processo do contínuo de fundição de metal e molde de lingote para sua implementação
DK97919470T DK0891237T3 (da) 1996-04-05 1997-04-03 Fremgangsmåde til kontinuerlig støbning af metal og støbeform til udøvelse heraf
AT97919470T ATE198285T1 (de) 1996-04-05 1997-04-03 Stranggussverfahren von metallen und kokille zur durchführung dieses verfahrens
AU23929/97A AU2392997A (en) 1996-04-05 1997-04-03 Continuous casting method for metals and ingot mould for implementing same
DE69703793T DE69703793T2 (de) 1996-04-05 1997-04-03 Stranggussverfahren von metallen und kokille zur durchführung dieses verfahrens
GR20010400441T GR3035596T3 (en) 1996-04-05 2001-03-16 Continuous casting method for metals and ingot mould for implementing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9604302A FR2747059B1 (fr) 1996-04-05 1996-04-05 Procede de coulee continue des metaux et lingotiere pour sa mise en oeuvre
FR96/04302 1996-04-05

Publications (1)

Publication Number Publication Date
WO1997037794A1 true WO1997037794A1 (fr) 1997-10-16

Family

ID=9490956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/000595 WO1997037794A1 (fr) 1996-04-05 1997-04-03 Procede de coulee continue des metaux et lingotiere pour sa mise en oeuvre

Country Status (14)

Country Link
EP (1) EP0891237B1 (fr)
JP (1) JP4058561B2 (fr)
KR (1) KR100447466B1 (fr)
AT (1) ATE198285T1 (fr)
AU (1) AU2392997A (fr)
BR (1) BR9708509A (fr)
CA (1) CA2250786C (fr)
DE (1) DE69703793T2 (fr)
DK (1) DK0891237T3 (fr)
ES (1) ES2154900T3 (fr)
FR (1) FR2747059B1 (fr)
GR (1) GR3035596T3 (fr)
PT (1) PT891237E (fr)
WO (1) WO1997037794A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1012626A3 (fr) * 1999-04-23 2001-01-09 Ct De Rech S Metallurg Asbl Ve Dispositif pour fabriquer des produits plats par la coulee continue en charge verticale d'un metal en fusion.
US7000676B2 (en) * 2004-06-29 2006-02-21 Alcoa Inc. Controlled fluid flow mold and molten metal casting method for improved surface
CN106735000B (zh) * 2016-11-14 2018-10-23 东北大学 一种三层包覆铸锭的半连铸装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2067289A1 (fr) * 1969-11-14 1971-08-20 Kabel Metallwerke Ghh
JPS56136257A (en) * 1980-03-26 1981-10-24 Sumitomo Light Metal Ind Ltd Hot top casting device
JPS6192756A (ja) * 1984-10-12 1986-05-10 Sumitomo Metal Ind Ltd 鋳片表面割れ防止連続鋳造法および鋳型
EP0212248A2 (fr) * 1985-08-09 1987-03-04 Sms Schloemann-Siemag Aktiengesellschaft Installation de coulée continue verticale ou courbe pour la coulée de l'acier
JPH01289542A (ja) * 1987-12-29 1989-11-21 Nkk Corp 鋼の連続鋳造用鋳型
EP0620062A1 (fr) * 1993-03-30 1994-10-19 Sollac S.A. Procédé de coulée continue en charge des métaux et lingotière pour sa mise en oeuvre
FR2704786A3 (fr) * 1993-03-30 1994-11-10 Lorraine Laminage Procédé de coulée continue en charge des métaux, notamment de l'acier, et lingotière pour sa mise en Óoeuvre.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2067289A1 (fr) * 1969-11-14 1971-08-20 Kabel Metallwerke Ghh
JPS56136257A (en) * 1980-03-26 1981-10-24 Sumitomo Light Metal Ind Ltd Hot top casting device
JPS6192756A (ja) * 1984-10-12 1986-05-10 Sumitomo Metal Ind Ltd 鋳片表面割れ防止連続鋳造法および鋳型
EP0212248A2 (fr) * 1985-08-09 1987-03-04 Sms Schloemann-Siemag Aktiengesellschaft Installation de coulée continue verticale ou courbe pour la coulée de l'acier
JPH01289542A (ja) * 1987-12-29 1989-11-21 Nkk Corp 鋼の連続鋳造用鋳型
EP0620062A1 (fr) * 1993-03-30 1994-10-19 Sollac S.A. Procédé de coulée continue en charge des métaux et lingotière pour sa mise en oeuvre
FR2704786A3 (fr) * 1993-03-30 1994-11-10 Lorraine Laminage Procédé de coulée continue en charge des métaux, notamment de l'acier, et lingotière pour sa mise en Óoeuvre.

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 006, no. 017 (M - 109) 30 January 1982 (1982-01-30) *
PATENT ABSTRACTS OF JAPAN vol. 010, no. 267 (M - 516) 11 September 1986 (1986-09-11) *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 069 (M - 0932) 8 February 1990 (1990-02-08) *

Also Published As

Publication number Publication date
BR9708509A (pt) 1999-08-03
GR3035596T3 (en) 2001-06-29
PT891237E (pt) 2001-06-29
AU2392997A (en) 1997-10-29
EP0891237A1 (fr) 1999-01-20
JP4058561B2 (ja) 2008-03-12
ES2154900T3 (es) 2001-04-16
JP2000508243A (ja) 2000-07-04
DK0891237T3 (da) 2001-05-07
CA2250786C (fr) 2004-06-22
FR2747059A1 (fr) 1997-10-10
DE69703793T2 (de) 2001-07-12
FR2747059B1 (fr) 1998-06-12
DE69703793D1 (de) 2001-02-01
ATE198285T1 (de) 2001-01-15
CA2250786A1 (fr) 1997-10-16
EP0891237B1 (fr) 2000-12-27
KR20000005257A (ko) 2000-01-25
KR100447466B1 (ko) 2004-10-15

Similar Documents

Publication Publication Date Title
FR2703609A3 (fr) Procédé de coulée continue en charge des métaux et lingotière pour sa mise en Óoeuvre.
EP0891237B1 (fr) Procede de coulee continue des metaux et lingotiere pour sa mise en oeuvre
EP0743114B1 (fr) Procédé de lubrification des parois d'une lingotière de coulée continue des métaux et lingotière pour sa mise en oeuvre
EP0989918B1 (fr) Tete de lingotiere pour la coulee continue verticale en charge de produits metalliques a format allonge
EP1521650B1 (fr) Face laterale pour installation de coulee continue de bandes metalliques entre deux cylindres
EP0907439B1 (fr) Lingotiere de coulee continue pour la coulee continue en charge verticale des metaux
FR2704786A3 (fr) Procédé de coulée continue en charge des métaux, notamment de l'acier, et lingotière pour sa mise en Óoeuvre.
EP0241445B1 (fr) Dispositif et procédé pour le refroidissement d'un produit métallique coulé en continu
EP0097561B2 (fr) Procédé et installation de brassage électromagnétique de brames métalliques, notamment d'acier, coulées en continu
EP0370934B1 (fr) Procédé et ensemble d'alimentation en métal fondu de la lingotière d'une installation de coulée continue d'ébauches minces
EP0242347A2 (fr) Dispositif pour la coulée d'un métal en phase pâteuse
EP0622138A1 (fr) Procédé et dispositif d'élaboration d'au moins une bande métallique de faible largeur et bande métallique obtenue par ce procédé
CA2251007C (fr) Procede de coulee continue des metaux et installation de coulee pour sa mise oeuvre
EP0160635A2 (fr) Procédé et dispositif pour la lubrification d'une lingotière de coulée continue
BE1012473A6 (fr) Dispositif pour la coulee continue en charge verticale d'un metal en fusion.
EP0452294B1 (fr) Procédé et installation pour la coulée continue d'un métal
FR2776216A1 (fr) Installation de coulee continue, en particulier pour l'acier
BE1014604A3 (fr) Dispositif ameliore pour fabriquer des produits plats par coulee continue en charge verticale d'un metal en fusion.
EP0206869B1 (fr) Installation de coulée continue de métal en bande mince
FR2757430A1 (fr) Lingotiere a largeur variable pour la coulee continue de produits metalliques
EP1056559A1 (fr) Lingotiere pluriangulaire de coulee continue en charge d'un produit metallurgique
EP0911096A1 (fr) Busette de coulée pour installation de coulée continue des métaux, notamment de coulée entre cylindres
FR2618704A3 (fr) Procede et dispositif d'alimentation d'une lingotiere de coulee continue de produits minces
BE874171A (fr) Procede perfectionne de fabrication d'une barre d'acier par coulee continue

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR BY CA CN CZ HU JP KR MX NO PL RO RU SK TR UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997919470

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2250786

Country of ref document: CA

Ref country code: CA

Ref document number: 2250786

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1019980707948

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1997919470

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980707948

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997919470

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019980707948

Country of ref document: KR