WO1997028476A1 - Waveguide type optical switch - Google Patents

Waveguide type optical switch Download PDF

Info

Publication number
WO1997028476A1
WO1997028476A1 PCT/JP1996/000184 JP9600184W WO9728476A1 WO 1997028476 A1 WO1997028476 A1 WO 1997028476A1 JP 9600184 W JP9600184 W JP 9600184W WO 9728476 A1 WO9728476 A1 WO 9728476A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
waveguide
cantilever
optical switch
switch
Prior art date
Application number
PCT/JP1996/000184
Other languages
French (fr)
Japanese (ja)
Inventor
Masaya Horino
Kazutaka Sato
Takeshi Harada
Satomitsu Imai
Teruhisa Akashi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP52747397A priority Critical patent/JP3527744B2/en
Priority to PCT/JP1996/000184 priority patent/WO1997028476A1/en
Publication of WO1997028476A1 publication Critical patent/WO1997028476A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3502Optical coupling means having switching means involving direct waveguide displacement, e.g. cantilever type waveguide displacement involving waveguide bending, or displacing an interposed waveguide between stationary waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/3546NxM switch, i.e. a regular array of switches elements of matrix type constellation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3566Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details involving bending a beam, e.g. with cantilever
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3568Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
    • G02B6/3572Magnetic force
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3596With planar waveguide arrangement, i.e. in a substrate, regardless if actuating mechanism is outside the substrate

Definitions

  • the present invention relates to a waveguide-type optical switch used in the field of optical communication, and more particularly to a small-sized waveguide-type optical switch suitable for remote FB operation.
  • optical circuit components such as optical branching / coupling circuits, optical multiplexing / demultiplexing circuits, optical switches, etc. Development is essential.
  • optical switches are expected to play an important role in the near future in order to switch single-turn optical fibers according to demand and to secure detours in case of line failure.
  • the form of the optical switch (1) a bulk type, (2) an optical fiber one-excitation type, and (3) an optical waveguide type have been conventionally proposed.
  • the bulk type is assembled using a movable prism lens as a component, and has the advantage of being relatively independent of wavelength and having relatively low loss.
  • the movable optical fiber type employs a system in which the optical fiber itself is moved by a small actuator to select an optical fiber of an output destination, and has an advantage of relatively low loss.
  • these types of optical switches have not been widely used because of the problems that the assembly and adjustment process is complicated, unsuitable for mass production, and expensive.
  • the optical waveguide type is based on an optical waveguide on a flat substrate and uses photolithography and microfabrication technology to produce a so-called integrated optical switch as a large-scale S. Expected.
  • An optical switch disclosed in Japanese Patent Publication No. 6-148536 is an example of this type of optical waveguide switch. This switch cuts the optical path by moving the optical waveguide formed on the cantilever using electrostatic force. IX It is a 2 light switch.
  • the conventional optical switch described above has the following problems.
  • Aji Since the power is high, the driving voltage is as high as several tens of volts or more, and it has a single cantilever structure.
  • the waveguide rotates at the same time as the translation, so that the light emitting surface and the incident surface of the waveguide are not parallel to each other, and the insertion loss increases.
  • An object of the present invention is to solve such a problem, and an object of the present invention is to provide a low-cost optical waveguide switch which can be driven at a low voltage of 10 volts or less and has a small insertion loss.
  • an optical waveguide switch of the present invention includes a plurality of cantilever beams parallel to each other and fastened by a connecting member on a silicon substrate, and at least one cantilever beam.
  • the formed first optical waveguide and the plurality of cantilever beams facing the first optical waveguide deform on the cantilever beam in a first direction or a second direction opposite to the first direction.
  • the optical switch of the present invention comprises a plurality of cantilever beams parallel to each other and connected by a linking member on a silicon substrate, and a first optical waveguide formed on at least one cantilever beam. Opposing the first optical waveguide, the plurality of cantilevers being deformed in a first direction or a second direction opposite to the first optical waveguide, and A plurality of second optical waveguides formed on the substrate that are optically coupled to each other; a switch driving means for deforming the cantilever; and an optical path cutting on the connecting member of the cantilever.
  • the material of the layer protruding from the substrate in the shape of an eave is glass, preferably quartz glass.
  • the optical switch of the present invention has a thickness of the slaughter that protrudes from the substrate in an eaves-like shape from 10 micrometer to 100 micrometer, preferably from 20 micrometer to 80 micrometer, more preferably It should be 30 micrometer or more and 60 micrometer or less.
  • the members between the second optical waveguides facing the interface at which the optical path of the substrate is cut off are recessed in the direction of light transmission.
  • the optical switch of the present invention is formed by forming an electromagnetic actuator composed of a permanent magnet, a coil, and a magnetic material on a cantilever connecting member and a substrate. Further, in the optical switch of the present invention, the connecting member, the permanent magnet, the coil, and the magnetic body of the cantilever are formed on the base side of the beam with respect to the longitudinal center of the cantilever.
  • the cantilever connecting member, the permanent magnet, the coil, and the magnetic body are formed closer to the base of the beam than the longitudinal center of the cantilever.
  • the bell member is formed on the tip end side of the cantilever rather than the center in the longitudinal direction of the cantilever.
  • the optical switch of the present invention is precisely positioned at a position opposite to the side surface of the cantilever of the M between the interface where the optical path cutting of the substrate is performed and the linking member of the cantilever. This is to tt the member.
  • the right of the cantilever is set to be 15 to 60 ⁇ m, preferably 25 to 40 ⁇ m.
  • the optical switch of the present invention provides an optical switch on The waveguide array pitch is made larger than the optical waveguide array pitch at the interface where the optical path cutting is performed.
  • a plurality of cantilever beams that are parallel to each other and that are connected by the connecting member move the leading end of the connected beams in parallel with the optical path switching operation.
  • Has functions. Therefore, the optical waveguide formed on the cantilever also moves in parallel with the optical path switching operation. By this parallel movement of the optical waveguide, it becomes possible to select and switch the optical waveguide on the output side.
  • the eaves-shaped protruding board is used for the optical path switching operation.
  • the optical waveguides on the exit side and the incident side come into contact with each other and can be accurately fitted.
  • the thickness of the layers protruding from the substrate in an eaves shape is set to 10 ⁇ m or more and 100 ⁇ m or less, so that the layers are damaged when they come into contact with each other along with the operation of cutting the optical path. No processing is easy. More desirably, when the thickness is in the range of 20 to 80 micrometer, the reliability at the time of repeated corrosion is improved, and the processing accuracy is also improved. Is improved. More preferably, by setting the length to 30 micrometers or more and 60 micrometers or less, it is possible to sufficiently withstand the external load, and to improve the processing accuracy and shorten the processing time. .
  • an optical waveguide facing an interface on which optical path cutting is performed on a substrate. Since the members of M are recessed in the direction of light transmission, a machining allowance can be provided at the tip of the movable-side optical waveguide, and precision machining of the movable-side optical waveguide can be easily performed.
  • the gap between the fixed-side and movable-side optical waveguides W at the optical path switching interface to a negative value, the optical waveguides are brought into physical contact with each other, and the optical path cut due to reflection, scattering, etc. Light loss can be minimized.
  • the cantilever since a magnetic force is generated between the permanent magnet formed on the linking member of the cantilever and the substrate and the coil and the magnetic body, the cantilever is deformed by utilizing the magnetic force.
  • the optical waveguide formed on the cantilever can be switched.
  • the width of the cantilever is 15 micrometer or more and 60 micrometer or less, preferably 25 micrometer or more and 40 micrometer or less. Since the cantilever can be bent with a ton of force, the optical path can be cut by using an electromagnetic actuator manufactured by a thin process.
  • the linking member, the permanent magnet, the coil and the magnetic body of the cantilever are formed at a position S closer to the base side than the longitudinal center of the cantilever where the input-side optical waveguide is formed.
  • the tip of the cantilever can bend in the longitudinal direction of the beam, and when the switch is not in operation and the beam is not deformed, the optical waveguide ends on the fixed side and the active side 3 ⁇ 4 W clearance W When the value of is negative, the leading ports of the optical waveguide can be brought into contact with each other.
  • the cantilever connecting member, the permanent magnet, the coil, and the magnetic body are formed closer to the base of the beam than the longitudinal center of the cantilever, and the cantilever connecting member is further cantilevered. Since the tip of the cantilever is bent in the longitudinal direction of the beam because it is formed on the S side of the beam rather than the center of the beam in the longitudinal direction, the optical path is cut off. Negative gap between optical waveguides In this case, not only can the tip SS of the optical waveguide be brought into contact with each other, but also the tip port of the optical waveguide can move while maintaining the parallel state. Can be prevented from increasing insertion loss due to the fact that they do not become parallel to each other.
  • the member precisely positioned on the substrate at the position S opposing the side surface of the movable optical waveguide between the interface where the optical path cutting is performed and the connecting member of the cantilever beam is a continuous member. Since the displacement of the beam preceding the bending member is restricted, even if the cantilever is bent, the optical waveguides can be aligned with high accuracy, and the pitch of the optical waveguide E at the contact surface between the optical switch and the outside can be reduced. Since the pitch is larger than the pitch of the optical waveguides E at the interface where the optical path is switched, connection of an optical transmission medium such as an optical fiber for extracting light from the optical switch becomes easy.
  • FIG. 1 is a perspective view of one embodiment of a waveguide type two-circuit 1 ⁇ 2 optical switch according to the present invention.
  • FIG. 2 is a top view of one embodiment of a waveguide type two-circuit 1 ⁇ 2 optical switch according to the present invention.
  • FIG. 3 is a top view showing the structure of a thin film electromagnet of a waveguide type two-circuit 1 ⁇ 2 optical switch according to the present invention.
  • FIG. 4 is a cross-sectional view of a thin film magnet of a waveguide type two-circuit 1 ⁇ 2 optical switch according to the present invention.
  • FIG. 5 is a top view of another embodiment according to the present invention.
  • FIG. 6 is a perspective view of another embodiment of the waveguide type two-circuit 1 ⁇ 2 optical switch according to the present invention.
  • FIG. 7 is a cross-sectional view of the waveguide type two-circuit 1 ⁇ 2 optical switch shown in FIG. C
  • FIG. 8 is a top view of another embodiment according to the present invention.
  • FIG. 9 is an explanatory diagram showing the operation of the switch shown in FIG.
  • FIG. 10 is a top view of an embodiment of an optical switch array comprising eight circuits 1 ⁇ 2 optical switches according to the present invention.
  • FIG. 11 is a top view of an embodiment of an optical switch comprising three two-circuit 1 ⁇ 2 optical switches according to the present invention.
  • FIG. 12 is an explanatory diagram showing the operation of the optical switch tree shown in FIG. 11.
  • FIG. 13 is a structural diagram of an optical communication device using a two-circuit 1 ⁇ 2 optical switch according to the present invention.
  • FIG. 14 is a cross-sectional view of a packaged two-circuit 1 ⁇ 2 optical switch according to the present invention.
  • FIG. 15 is a diagram of a bypass switch using a two-circuit 1 ⁇ 2 optical switch according to the present invention.
  • FIG. 16 is a block diagram of a switch for connecting an inspection device in an optical communication network using a bypass switch having two circuits 1 ⁇ 2 optical switches according to the present invention.
  • FIG. 17 is a block diagram of an interconnect between devices using an optical switch according to the present invention.
  • FIG. 18 is a * construction of an optical communication connection path disconnection device tt using an optical switch according to the present invention.
  • FIG. 19 is an explanatory view showing a manufacturing process of a two-circuit 1 ⁇ 2 optical switch according to the present invention.
  • FIG. 20 is a schematic diagram for explaining the deformation when a force is applied to the tip of the cantilever and the parallel plate panel.
  • FIG. 1 is a perspective view of one embodiment of a waveguide type two-circuit 1 ⁇ 2 optical switch according to the present invention.
  • 1 is an optical fiber
  • 2 is a movable optical waveguide
  • 3 is a silicon substrate
  • 4 is a magnetic film
  • 5 is a coil electrode
  • 7 is a thin film electromagnet
  • 8 is an optical fiber
  • 9 is a fixed optical waveguide
  • 1 1 Is a connecting member
  • 12 is a cantilever.
  • Light input from the optical fiber 11 is transmitted to the movable optical waveguide 2 formed on the cantilever 12.
  • the cantilever beam 12 is connected at its tip by a connecting member 11, and can be displaced in the plane of the silicon substrate 3 while keeping parallel to each other.
  • a magnetic material extension 4 is formed on the link member 11.
  • a magnetic film, a permanent magnet, and a thin film ⁇ magnet 7 composed of a thin film ⁇ magnet are formed on the silicon substrate 3 of rain K of the magnetic film 4.
  • Electric power is supplied to the thin electromagnet 7 from a power source (not shown) via the coil electrode 5.
  • ⁇ Pressure can be set in the range of 3 volts to 10 volts.
  • the optical switch is driven by an actuator composed of a combination of a permanent magnet, a coil and a magnetic material.
  • the actuator is a combination of a magnetic material on the cantilever and a movable permanent magnet placed outside the optical switch, an actuator using the swift power, and an actuator using the piezo effect.
  • FIG. 2 is a top view of one embodiment of a waveguide type two-circuit 1 ⁇ 2 optical switch according to the present invention. The figure shows a state before passing through the optical switch.
  • 2a and 2b are movable-side optical waveguides
  • 5a and 7a are movable-side optical waveguides 2a-side coil implants and thin-film electromagnets
  • 5b and 7b are movable-side optical waveguides 2b-side coil electrodes, respectively.
  • 9a, 9b, 9c and 9d are fixed-side optical waveguides
  • 10 is a depression.
  • a recess 10 is provided at the tip of the movable optical waveguides 2 a and 2 b as a processing allowance, and the movable optical waveguides 2 a and 2 b and the cantilever beam 1 2 can be precisely machined. .
  • the movable beam 12 is displaced as shown in the fracture 1 2 1, and the movable optical waveguide 2 a is connected to the fixed optical waveguide 9 a and the movable optical waveguide 2 b is connected to the fixed optical waveguide 9 c. .
  • the magnitude relationship of the electromagnetic force generated between the thin film electromagnets 7a and 7b and the magnetic film 4 becomes
  • the cantilever 1 2 is displaced as shown by the fracture 1 2 2, and the movable optical waveguide 2 a becomes the fixed optical waveguide 9 b, and the movable optical waveguide 2 b becomes the fixed optical waveguide 9 d Is squeezed.
  • FIG. 20 (a) is a diagram for explaining the state of deformation when a force is applied to the tip of the cantilever.
  • 1 110 is a cantilever.
  • the cantilever 1 1 0 bends in the direction of the force F, and the point B moves to the point B '.
  • the angle S between the tangent CD passing through the point B 'and the line GH indicating the position S of the fixed part of the cantilever 1 110 is 90. Smaller than That is, the tip of the cantilever 110 rotates by bending.
  • FIG. 20 (b) is a diagram for explaining a deformation state when a force is applied to the tip of the parallel leaf spring.
  • 1 1 1 is a parallel leaf spring.
  • the ends of the parallel leaf springs 1 1 1 are connected by connecting members 1 2.
  • the parallel leaf spring 1 11 bends in the direction of the force F, and the points B 1 and B 2 move to the points B 1 ′ and B 2 ′.
  • the angle between the tangent C 1 D 1 passing through the point SS B 1 ′ and the line GH is 90. Is kept. Therefore, it can be seen that the tip of the parallel leaf spring 1 1 1 does not rotate even if bending occurs.
  • the tip of the optical waveguide formed on the parallel panel of the optical switch shown in FIG. 2 moves in parallel. Also, after cutting off the current flowing through the ft electromagnets 7a and 7b, the permanent magnets in the thin film electromagnets 7a or 7b attract the magnetic material 4 and the cantilever 12 is in the initial position ft. Since there is no return, the attenuation of light depending on the inclination of the optical axis at the interface when the optical path is cut can be reduced. This makes it possible to realize a self-holding optical switch with small light attenuation.
  • FIG. 3 is a view showing a structure of a thin film electromagnet used for a waveguide type two-circuit 1 ⁇ 2 optical switch according to the present invention.
  • 20 is a sales thin film coil
  • 21 is a magnetic material made of Fe—Ni
  • 22 is a magnetic film made of e—Ni
  • 23 is a magnetic film made of Fe—Ni
  • 24 is a fixed-side optical waveguide
  • 25 is a movable-side optical waveguide
  • 26 is a magnetic material made of Fe—Ni
  • 27 is a Ne—Fe—B permanent magnet
  • 28 is a movable-side light guide. It is a member of the wave path o
  • the magnetic flux formed by the thin-film coil 20 and the magnetic material IR 21 causes a permanent magnet in the magnetic material K 22.
  • the magnetic film 23 formed on the linking member 28 is strongly attracted by the magnetic flux of 27, and the connecting member 28 moves in the direction of the arrow C to the magnetic films 22 and 23. Adsorbed.
  • the magnetic flux formed by the thin-film coil 20 and the magnetic material ⁇ 21 becomes the same as the magnetic flux of the permanent magnet 27 in the magnetic film 22.
  • the force of attracting the magnetic film 23 formed on the connecting member 28 is weakened by the cancellation, and the connecting member 28 is separated from the magnetic films 22 and 23 by the elasticity of the movable side beam 25.
  • a thin film electromagnet is formed on the side surface of the connecting member to provide an effective attraction to the magnetic film 23 on the connecting member 28.
  • the magnetic flux of the permanent magnet 27 is Since the magnetic film 23 passes through the closed magnetic circuit formed by the magnetic materials 22, 23, and 26, the magnetic film 23 continues to exert a strong attraction force. As a result, even if the current flowing through the thin film coil 20 is set to 0, the speed adjusting member is attracted to the magnetic materials 22 and 23 to be squeezed, and the light cutting state is maintained.
  • the width of the cantilever of the waveguide type two-circuit 1 ⁇ 2 optical switch according to the present invention is 15 ⁇ m or more and 60 ⁇ m or less, preferably 25 ⁇ m or more and 40 ⁇ m or less. Since the cantilever can be bent with a force of 50 micronewtons to 1 milliton, the voltage supplied to the electromagnetic actuator manufactured by the thin film process is in the range of 3 to 10 volts. It can be driven with the set value of, and can cut the optical path.
  • FIG. 4 is a view showing a cross-sectional structure of a thin-film coil portion in a thin-film electromagnet used for a waveguide type two-circuit 1 ⁇ 2 optical switch according to the present invention.
  • 20 a is the lower side of the thin-film coil made of ⁇
  • 20 b is the upper layer of the thin-film coil
  • 1, 71, 73 and 75 are insulating layers made of polyimide
  • 21 is Fe—N i
  • a lower layer 20a of a copper thin-film coil is formed, on which an insulating layer 73 made of polyimide is formed, and a through hole 76 is formed, followed by firing.
  • a magnetic film 72 made of Fe—Ni is formed by vapor deposition or sputtering.
  • a polyimide insulating layer 73 is formed thereon, and a through hole 77 is formed, followed by firing.
  • a line 20b on the upper side of the thin film coil made of copper is formed thereon, and an insulating layer 75 made of polyimide is further formed and fired.
  • the lower wire 20 a of the thin film coil and the upper wire 20 b of the thin copper coil are connected through through holes 76 and 77, and a magnetic material made of Fe—Ni is used.
  • a coil having 2 as a core is formed.
  • any conductive material such as aluminum, nickel, or gold can be used.
  • FIG. 5 is a top view of another embodiment according to the present invention.
  • Reference numeral 15 denotes a fixed-side optical waveguide.
  • the arrangement pitch of the fixed-side optical waveguides 15 at the connection surface between the optical switch and the outside is made larger than the arrangement pitch of the fixed-side optical waveguides 15 at the interface where optical path switching is performed. Intimate contact becomes easier.
  • FIG. 6 is a perspective view of another embodiment of the waveguide type two-circuit 1 ⁇ 2 optical switch according to the present invention.
  • Reference numeral 18 denotes a quartz glass layer. It has a structure in which a quartz glass layer 18 having a thickness of 40 micrometer is provided on a silicon substrate 3. The quartz glass layer 18 formed on the link member 14 is thin when cutting the optical path. By contacting the quartz glass layer 18 formed below the electromagnet 7, the movable optical waveguide 2 and the fixed optical waveguide 9 can be precisely aligned.
  • FIG. 7 is a cross-sectional view of the waveguide type two-circuit 1 ⁇ 2 optical switch shown in FIG.
  • the quartz glass layers 18 are in contact with each other, the movable optical waveguide 2 is aligned with high precision, and highly efficient optical connection can be realized.
  • FIG. 8 is a top view of another embodiment according to the present invention. 12a and 12b are movable optical waveguides, 13a, 13b and 13c are precisely positioned members, and 14 is a connecting member. The members 13a, 13b, and 13c are integrally formed with the silicon substrate 3.
  • FIG. 9 is an explanatory diagram showing the operation of the switch shown in FIG.
  • Reference numeral 17 denotes the M clearance RI between the movable optical waveguide and the fixed optical waveguide at the light switching interface.
  • the initial state shown in FIG. 9 (a) shows a state in which no current is applied to the optical switch shown in FIG.
  • the communication shown in Fig. 9 (b)! ! The state shows a state where a current is applied to the optical switch shown in FIG.
  • the power-off state shown in FIG. 9 (c) shows a state where the current applied to the optical switch shown in FIG. 8 is cut off.
  • the movable optical waveguides 12a and 12b are curved as shown in the figure by the action of magnetic force.
  • the tip of the movable-side optical waveguides 12a and 12b since the displacement of the tip of the movable-side optical waveguides 12a and 12b is restricted by the members 13a and 13b, the tip of the movable-side optical waveguide does not deviate from the connection with the fixed-side optical waveguide. Absent. Further, since the movable optical waveguides 12a and 12b are curved, a larger gap 17 occurs between the movable optical waveguide and the fixed optical waveguide than when there is no curvature. The movable-side optical waveguide is made longer by the width of the gap 17 in advance.
  • the current flowing through the thin electromagnet 7 is cut.If the flow is cut, the degree of curvature of the movable optical waveguide is reduced, the WH of Ml 7 is reduced, and the movable optical waveguide 12a and 1 2 b and fixed-side optical waveguides 9 a and 9 c The contact surfaces can be physically contacted. Since the thin-film electromagnet 7 and the magnetic film 4 are attracted even after cutting the current flowing through the thin-film electromagnet 7, the cantilever beams 12a and 12b do not return to the initial position.
  • FIG. 10 is a top view of an embodiment of an optical switch array composed of eight circuits 1 ⁇ 2 optical switches according to the present invention.
  • 12a, 12b, 12c, 12d, 12e, 12 ⁇ , 12g and 12h are cantilever
  • 2a, 2b, 2c, 2d, 2e , 2 i, 2 g and 2 h are movable optical waveguides
  • 10 a, 10 b, 10 c, 10 d, 10 e, 10 ⁇ , 10 g and 10 h are hollow
  • 1 6a, 16b, 16c, 16d, 16e, 16i, 16g, 16h, 16i, 16j, 16k, 161, 16m , 16 n, 16 o and 16 p are fixed-side optical waveguides.
  • Cantilever beams 1 2a, 1 2b, 1 2c, 1 2d, 1 2e, 1 2f, 1 2 g and 1 2h are fast-coupled by connecting member 11 and kept parallel to each other Each time it can be displaced in the plane of the substrate.
  • the movable side optical waveguides 2a, 2b, 2c, 2d, 2e, 2f, 2g and 2h are recessed into the SB as machining allowances 10a, 10b, 10c, 10 Since d, 10e, 10f, 10g, and 10h are provided, the movable optical waveguide and cantilever tip can be precisely machined.
  • a film-shaped magnetic film 4 is formed on the link member 11.
  • a thin JR electromagnet 7 is formed on the silicon substrate 3 on both sides of the magnetic lining 4. Power is supplied to the thin magnet 7 from a power source (not shown) via the coil magnet 5. To change the direction of the current flowing through the thin electromagnet 7 Thus, the magnitude relationship of the electromagnetic force generated between the thin film electromagnets 7a and 7b and the magnetic film 4 is reversed, and the movable optical waveguides 2a, 2b, 2c, 2d, 2e, 2 f, 2 g and 2 h are connected to the fixed-side optical waveguide 16 a, 16 b, 16 c, 16 d, 16 e, 16 f, 16 g, 16 h, 16 i, 16 j, 16 k, 16 1, 16 m, 16 n, 16 o and 16 p can be cut and sized.
  • the permanent magnets in the thin-film electromagnets 7a and 7b attract the magnetic film 4 by the action of the permanent magnets, and the cantilever 12a, 12b, 1 2c, 12d, 12e, 12f, 12g and 12h do not return to their initial positions.
  • FIG. 11 is a top view of an embodiment of an optical switch array comprising eight 1 ⁇ 2 optical switches according to the present invention.
  • 30 is an input of two systems A and B «I waveguide
  • 31 is a first optical switch
  • 32 is an optical waveguide connecting between optical switches
  • 33 is a second optical switch
  • 35 is the output optical waveguide of the second optical switch consisting of four systems of AO
  • AI AI
  • 36 is four systems of B0, B1, B2 and B3 This is the output side optical waveguide of the third optical switch composed of.
  • the output optical waveguide of the first optical switch is connected to the input optical waveguides of the second optical switch and the third optical switch.
  • An optical switch can be realized.
  • the 12th time is an explanatory view showing the operation of the optical switch shown in FIG.
  • the state is 0 when the switch is connected to the left side in the light propagation direction, and the state is when the switch is narrowed to the right side in the light propagation direction. I think it is 1.
  • the state of the second optical switch and the state of the third optical switch are the same, the state of the first optical switch is the same as that of the first optical switch.
  • FIG. 13 is a block diagram of an optical signal transmission device S using a two-circuit 1 ⁇ 2 optical switch according to the present invention.
  • the optical fiber is duplicated with system 0 and system 1 to ensure the reliability of the communication network.
  • the audio signal can be electrically switched between system 0 and system 1.
  • system 0 and system 1 can be switched by an optical switch. In this way, when a failure occurs in one optical fiber, communication can be narrowed down using the other optical fiber.
  • 40 is an optical switch
  • 41 is a voice electric signal
  • 42 is an optical / optical signal converter
  • 43 is an optical information transmission section
  • 44 is a 0-system optical fiber
  • 45 is a 1-system optical fiber.
  • 46 is an output connector
  • 47 is an optical switch controller
  • 48 is a video signal input connector
  • 49 is an audio signal input connector
  • 50 is a video signal input
  • 51 Is an audio electric signal input.
  • the audio electrical signal input 50 and the video optical signal input 51 are input to the optical information transmitting section 43, and the video optical signal input is routed by the optical switch of the present invention, and the electrical / optical signal converter 4 2
  • the converted optical signal is output to the 0 and 1 system optical fibers.
  • the optical switch 40 is arranged on at least one of the input and the WJ of the electric / optical signal converter 42 or between the output divider 46 and the / the optical / optical signal converter 42.
  • a data transmission unit for optical communication that can be produced at low cost and can be driven at low voltage can be realized.
  • This data transmission unit has a small transmission loss and can be driven with a low voltage, so it can be used as an optical communication device for personal computers and portable information terminals.
  • FIG. 14 is a sectional view of a packaged optical switch.
  • 5 5 is a cover
  • 5 6 is a thin R electromagnet
  • 5 7 is quartz glass
  • 5 8 is a magnetic film
  • 5 9 Is a power supply for a thin film electromagnet
  • 60 is an electrode pin
  • 61 is a silicon substrate
  • 62 is a movable side optical waveguide formed on a beam
  • 63 is a connecting member
  • 64 is a substrate
  • 65 is a thin film.
  • Power line for electromagnet Since the optical switch is hermetically sealed using the cover 55 and the substrate 6, it is possible to prevent entry of foreign matter and moisture in the air that cause malfunction and corrosion and deterioration that cause malfunction. , A highly reliable optical switch can be configured.
  • FIG. 15 shows an embodiment in which the optical switch according to the present invention is applied to a bypass switch.
  • Reference numeral 83 denotes a fiber optic cable for passing light
  • reference numeral 87 denotes an optical fiber cable for return light.
  • FIG. 16 shows an embodiment in which the optical switch according to the present invention is applied to an optical communication network.
  • 80 is an optical communication line
  • 81 is an optical connector
  • 82 is an optical switch unit using the optical switch of the present invention
  • 83 is a fiber cable for passing light
  • 84 is an inspection device
  • 85 and 86 is an optical fiber cable for return light.
  • the optical signal can return to the optical communication circuit 80 by the transmission path 85 passing through the quick-connect optical fiber.
  • the contact B of the optical switch is closed. Since the optical signal is transmitted from the connector B to the inspection device through the propagation path 86 via an optical fiber cable, various analyzes, so-called *, can be performed.
  • FIG. 17 shows an embodiment in which the optical switch according to the present invention is applied to an interconnect of the device WI.
  • 100 is an optical bus inside the device
  • 81 is an optical connector
  • 82a and 82b are optical switch units
  • 101 is an optical fiber cable for external equipment
  • 102 is external equipment.
  • Reference numerals 85 and 86 denote optical signal propagation paths
  • 87 denotes an optical fiber cable for return light.
  • Equipment at 100 ft is an information communication device, a computer, a telephone, an information terminal, a circuit or device for transmitting information using light, or an integrated circuit or device of the circuit or device and a combination thereof.
  • the contact A of the optical switch is closed, the optical signal can return to the optical path 100 inside the computer by the propagation path 85 through the connecting optical fiber.
  • the optical switch When connecting an external device, close the contact B of the optical switch.
  • the optical signal can reach the external device 102 from the connector 1B via the optical fiber cable 101 for connecting the external device.
  • it is possible to realize an interconnect of a device for transmitting information using inexpensive and highly reliable light. It is possible to realize an inexpensive and highly reliable interconnect that can be driven by a low voltage and can be used for information communication devices and computers, especially small-sized information terminals, telephones, and portable information communication terminals.
  • FIG. 18 shows an embodiment of a connection path switching device for optical communication according to the present invention.
  • Reference numeral 120 denotes an optical switch or an optical switch array of the present invention
  • 121 denotes an optical switch tree of the present invention or an optical switch tree formed by the optical switch array 122, 122, and 124 are optical communication networks.
  • Optical fiber-to-cable The optical signal input from the cable of 122 can switch the connection path to the optical fibers 123, 124 to be screwed by the optical switch or the optical switch tree by the optical switch.
  • the connection path is arranged so that it can be selected by the combination of the optical switch and the optical switch array 120. In this way, a part 1 2 3 of the optical fiber at the reciprocal destination is connected to another path disconnecting device «, and a part 1 24 of another optical fiber is connected to the further * optical path disconnecting device.
  • the drawing path is distributed so as to spread to the photoelectric conversion device ⁇ .
  • An optical switch, an optical switch array or an optical switch array having a small input loss according to the present invention is connected in series or in parallel.
  • FIG. 19 is a diagram schematically showing a manufacturing process of the optical switch according to the present invention.
  • 18a is the lower quartz glass layer with a thickness of 25 micrometer
  • 18b is the upper quartz glass layer with a thickness of 25 micrometer
  • 90 is the core of the optical waveguide
  • 91 is the citric
  • 9 2 is the The groove
  • 93 is a hole.
  • a lower quartz glass layer 18a having a thickness of 25 micrometers is formed on a silicon substrate 3.
  • an optical waveguide core 90 and an upper quartz glass layer 18b having a thickness of 25 micrometers are formed.
  • grooves 91 are formed in the quartz glass layers 18a and 18b by selective dry etching.
  • a groove 92 is formed in the silicon substrate 3 by S-selective dry etching using the quartz glass layers ⁇ 8 & and 18 b as a mask.
  • through-hole etching is performed from the silicon substrate side by wet etching to obtain a through hole.
  • the side surfaces of the grooves 92 formed in the silicon substrate 3 by selective dry etching do not protrude beyond the quartz glass layers 18a and 18b due to the side etching. Therefore, accurate alignment can be achieved without obstructing the sleeves of the quartz glass layers 18a and 18b used for alignment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

An object of the present invention is to provide a waveguide type optical switch that can be driven with a low voltage which is less than ten volts and which has a small insertion loss, the waveguide type optical switch comprising a plurality of cantilevers formed on a substrate which are parallel to each other and connected together via a connecting member, an optical waveguide formed on at least one of the cantilevers and a plurality of optical waveguides fixed such that they confront the optical waveguide on the cantilever. The switch further comprises a film-like permanent magnet formed on either the cantilever connecting member or the substrate, and a film-like electromagnet formed on the other of the two.

Description

明 細 鲁  明
導波路型光スィツチ  Waveguide type optical switch
技術分野 Technical field
本発明は光通信分野で用いる導波路型光スイ ッチに関し、 特に小型で 遠 FB操作に適した導波路型光スィツチに関するものである。  The present invention relates to a waveguide-type optical switch used in the field of optical communication, and more particularly to a small-sized waveguide-type optical switch suitable for remote FB operation.
背景技術 Background art
光通信の一層の普及のためには、 光フアイパーと発光 ·受光素子の高 性能化や低価格化に加えて、 光分岐結合回路、 光合分波回路光スィ ッチ などの各種光回路部品の開発が不可欠である。 特に、 光スィ ッチは光 ファイバ一回捩を需要に応じて切り替えたり、 回線故障の際の迂回路の 確保のために、 近い将来重要な役目を担う と考えられている。 光スイツ チの形態としては、 従来から、 ( 1 ) バルク型、 ( 2 ) 光ファイバ一可 励型 ( 3 ) 光導波路型が提案されている。 バルク型は可動プリズムゃレ ンズなどを構成要素として組み立てられたものであり、 波長依存性がな く比較的低損失であるという利点がある。 また光ファイバ一可動型は光 ファイバー自体を小型のァクチユエ一ターによ り動かして出力先の光 ファィバーを還択する方式をとっており、 比較的低損失であるという利 点がある。 しかしこれらの方式の光スィツチは組み立て賙整工程が煩雑 で量産に適さず、 高価になるという問題点があるため、 広く普及するに 至っていない。  In order to spread optical communications more widely, in addition to improving the performance and cost of optical fibers and light emitting and receiving elements, various optical circuit components such as optical branching / coupling circuits, optical multiplexing / demultiplexing circuits, optical switches, etc. Development is essential. In particular, optical switches are expected to play an important role in the near future in order to switch single-turn optical fibers according to demand and to secure detours in case of line failure. As the form of the optical switch, (1) a bulk type, (2) an optical fiber one-excitation type, and (3) an optical waveguide type have been conventionally proposed. The bulk type is assembled using a movable prism lens as a component, and has the advantage of being relatively independent of wavelength and having relatively low loss. In addition, the movable optical fiber type employs a system in which the optical fiber itself is moved by a small actuator to select an optical fiber of an output destination, and has an advantage of relatively low loss. However, these types of optical switches have not been widely used because of the problems that the assembly and adjustment process is complicated, unsuitable for mass production, and expensive.
光導波路型は平面基板上の光導波路を基本として、 フォ ト リソグラ フィ一や微細加工技術を利用していわゆる集積型の光スィツチを一括大 S生産しょうとするもので、 将来型の光スィツチとして期待されている。 この種の光導波路型スィツチとしては、 特鬨平 6 - 148536号公報に開示 された光スィ ッチがある。 このスィ ッチは片持ち梁上に形成した光導波 路を静電気力を利用して動かすことにより、 光路の切り眷ぇを行う I X 2の光スィッチである。 The optical waveguide type is based on an optical waveguide on a flat substrate and uses photolithography and microfabrication technology to produce a so-called integrated optical switch as a large-scale S. Expected. An optical switch disclosed in Japanese Patent Publication No. 6-148536 is an example of this type of optical waveguide switch. This switch cuts the optical path by moving the optical waveguide formed on the cantilever using electrostatic force. IX It is a 2 light switch.
上述した従来の光スィッチにあっては、 次のような問題があった。 す なわち、 鰺 «気力を用いているために、 駆動電圧が数十ボルト以上と高 く、 また一本の片持ち梁構造であるので、 光切り眷ぇ動作に伴って導波 路先端が並進と同時に回転し、 導波路の光射出面と入射面とが互いに平 行とならず、 挿入損失が増大するという問題があった。  The conventional optical switch described above has the following problems. In other words, Aji: Since the power is high, the driving voltage is as high as several tens of volts or more, and it has a single cantilever structure. There is a problem that the waveguide rotates at the same time as the translation, so that the light emitting surface and the incident surface of the waveguide are not parallel to each other, and the insertion loss increases.
本発明はこのような問題点を解決するものであって、 十ボルト以下の 低い電圧で駆動でき、 挿入損失の小さい低コストの光導波路型スィ ツチ を提供することを目的とするものである。  An object of the present invention is to solve such a problem, and an object of the present invention is to provide a low-cost optical waveguide switch which can be driven at a low voltage of 10 volts or less and has a small insertion loss.
発明の開示 Disclosure of the invention
上述の目的を達成するために、 本発明の光導波路スィッチは、 シリコ ン基板上に複数の互いに平行でかつ連結部材により速桔された片持ち梁 と、 少なく とも一つの片持ち梁の上に形成された第 1の光導波路と、 該 第 1 の光導波路に対向して、 前記複数の片持ち梁が第 1の方向またはそ の反対方向の第 2の方向に変形して片持ち梁上の前記第 1の光導波路と 光学的に桔合する、 基板上に形成された複数の第 2の光導波路と、 片持 ち梁を変形させるスイ ツチ艇動手段とを有し、 前記片持ち梁を変形させ て光路の切り眷ぇを行なう ものである。  In order to achieve the above object, an optical waveguide switch of the present invention includes a plurality of cantilever beams parallel to each other and fastened by a connecting member on a silicon substrate, and at least one cantilever beam. The formed first optical waveguide and the plurality of cantilever beams facing the first optical waveguide deform on the cantilever beam in a first direction or a second direction opposite to the first direction. A plurality of second optical waveguides formed on a substrate, which optically mate with the first optical waveguide, and switch boat moving means for deforming the cantilever beam; The beam is deformed to cut the optical path.
また本発明の光スィツチは、 シリコン基板上に複数の互いに平行でか つ連桔部材によ り連結された片持ち梁と、 少なく とも一つの片持ち梁の 上に形成された第 1の光導波路と、 該第 1の光導波路に対向して、 前記 複数の片持ち梁が第 1 の方向またはその反対方向の第 2の方向に変形し て片持ち梁上の前記第 1の光導波路と光学的に桔合する、 基板上に形成 された複数の第 2の光導波路と、 片持ち梁を変形させるスィツチ駆動手 段と、 前記片持ち梁の連結部材上と光路切り眷えが行われる際に前 K速 桔部材が接触する位 *の前記基板上との雨方に前記基板から庇状に突出 した層とを有したものである。 Further, the optical switch of the present invention comprises a plurality of cantilever beams parallel to each other and connected by a linking member on a silicon substrate, and a first optical waveguide formed on at least one cantilever beam. Opposing the first optical waveguide, the plurality of cantilevers being deformed in a first direction or a second direction opposite to the first optical waveguide, and A plurality of second optical waveguides formed on the substrate that are optically coupled to each other; a switch driving means for deforming the cantilever; and an optical path cutting on the connecting member of the cantilever. At the point where the front K speed contact member comes in contact * And a layer which has been formed.
さらに本発明の光スィ ツチは、 基板から庇状に突出した層の材質をガ ラス、 望ましくは石英ガラスとするものである。  Further, in the optical switch of the present invention, the material of the layer protruding from the substrate in the shape of an eave is glass, preferably quartz glass.
さらに本発明の光スィ ツチは、 基板から庇状に突出した屠の厚さを 1 0マイク ロメー トル以上 1 0 0マイクロメートル以下、 望ましくは 2 0 マイクロメートル以上 8 0マイクロメートル以下、 さらに望ましく は 3 0マイクロメー トル以上 6 0マイクロメー トル以下とするものである。 また本発明の光スィツチは、 基板の光路切り眷えが行われる界面に面 する前記第 2の光導波路の間の部材を光の伝ば方向に互いにく ぼませた ものである。  Further, the optical switch of the present invention has a thickness of the slaughter that protrudes from the substrate in an eaves-like shape from 10 micrometer to 100 micrometer, preferably from 20 micrometer to 80 micrometer, more preferably It should be 30 micrometer or more and 60 micrometer or less. In the optical switch of the present invention, the members between the second optical waveguides facing the interface at which the optical path of the substrate is cut off are recessed in the direction of light transmission.
本発明の光スィツチは、 片持ち梁の連結部材上及び基板上に永久磁石、 コィル及び磁性体からなる電磁ァクチユエ一夕一を形成したものである。 また本発明の光スィッチは、 前記片持ち梁の連結部材、 永久磁石、 コ ィル及び磁性体を、 片持ち梁の長手方向中央都よ り も梁の基部側に形成 したものである。  The optical switch of the present invention is formed by forming an electromagnetic actuator composed of a permanent magnet, a coil, and a magnetic material on a cantilever connecting member and a substrate. Further, in the optical switch of the present invention, the connecting member, the permanent magnet, the coil, and the magnetic body of the cantilever are formed on the base side of the beam with respect to the longitudinal center of the cantilever.
また本発明の光スィッチは、 前記片持ち梁の連結部材、 永久磁石、 コ ィル及び磁性体を、 片持ち梁の長手方向中央部より も梁の基部側に形成 し、 さらに光導波路の連桔部材を片持ち梁の長手方向中央部より も梁の 先端側に形成したものである。  Further, in the optical switch of the present invention, the cantilever connecting member, the permanent magnet, the coil, and the magnetic body are formed closer to the base of the beam than the longitudinal center of the cantilever. The bell member is formed on the tip end side of the cantilever rather than the center in the longitudinal direction of the cantilever.
また本発明の光スィッチは、 前記基板の光路切り眷えが行われる界面 と前記片持ち梁の連桔部材との Mの片持ち梁側面に対向する位 «の部位 に精密に位 tt決めされた部材を ttするものである。  Further, the optical switch of the present invention is precisely positioned at a position opposite to the side surface of the cantilever of the M between the interface where the optical path cutting of the substrate is performed and the linking member of the cantilever. This is to tt the member.
本発明の光スィツチは、 前記片持ち梁の權を 1 5マイクロメートル以 上 6 0マイクロメートル以下、 望ましくは 2 5マイクロメートル以上 4 0マイクロメートル以下としたものである。  In the optical switch according to the present invention, the right of the cantilever is set to be 15 to 60 μm, preferably 25 to 40 μm.
また本発明の光スイッチは、 光スイ ツチと外部との接絞面における光 導波路配列ピッチを、 光路切り眷えが行われる界面における光導波路配 列ピッチより も大き く したものである。 Also, the optical switch of the present invention provides an optical switch on The waveguide array pitch is made larger than the optical waveguide array pitch at the interface where the optical path cutting is performed.
本発明の光スィ ッチは、 锼数の互いに平行で、 かつ連結部材によ り連 桔された片持ち梁は連結された梁の先 «部分を、 光路切り替え動作に 伴って平行に移動させる機能を有する。 従って、 この片持ち梁上に形成 された光導波路も光路切り替え動作に伴い、 平行移動する。 この光導波 路の平行移動によって出力側の光導波路を還択し切り眷えることが可能 となる。  In the optical switch according to the present invention, a plurality of cantilever beams that are parallel to each other and that are connected by the connecting member move the leading end of the connected beams in parallel with the optical path switching operation. Has functions. Therefore, the optical waveguide formed on the cantilever also moves in parallel with the optical path switching operation. By this parallel movement of the optical waveguide, it becomes possible to select and switch the optical waveguide on the output side.
また本発明では、 光導波路の連結部材上と光路切り瞽えが行われる際 に連結部材が接触する位惺の基板上の両方に設けられた基板から庇状に 突出した屠は、 光路切り替え動作に伴って相互に接触し射出側及び入射 側の光導波路を精度よ く位 fit拿わせすることができる。  Further, according to the present invention, when the optical path cutting is performed on the connecting member of the optical waveguide and on the substrate at the position where the connecting member comes into contact with the connecting member when the optical path cutting is performed, the eaves-shaped protruding board is used for the optical path switching operation. As a result, the optical waveguides on the exit side and the incident side come into contact with each other and can be accurately fitted.
基板から庇状に突出した層の材質をガラスとすることによ り、 光路切 り替え動作に伴って互いに接触した際の割れや欠けを防止できる。 さら に石英ガラスとすることにより、 シリ コン基板との線膨張係数の差を小 さくすることができ、 加工も容易に行うことができる。  By using glass as the material of the layers that protrude from the substrate in an eaves-like manner, cracking and chipping can be prevented when they come into contact with each other due to the optical path switching operation. Furthermore, by using quartz glass, the difference in linear expansion coefficient from the silicon substrate can be reduced, and processing can be performed easily.
さらに本発明では、 基板から庇状に突出した層の厚さを 1 0マイクロ メー トル以上 1 0 0マイクロメートル以下にすることにより、 光路切り 眷ぇ動作に伴って互いに接触した際に被壞することがなく、 また加工も 容易である。 さらに望ましく は 2 0マイクロメー トル以上 8 0マイクロ メー トル以下とすることによ り、 搡り返し接蝕時の侰頼性が向上し、 加 ェ精度も向上するので光導波路の位 *合わせ精度が向上する。 さらに望 ましくは 3 0マイクロメートル以上 6 0マイクロメー トル以下とするこ とにより、 外部からの衢 *荷重にも十分に耐えることができ、 かつ加工 精度の向上と加工時間の短綰が図れる。  Further, in the present invention, the thickness of the layers protruding from the substrate in an eaves shape is set to 10 μm or more and 100 μm or less, so that the layers are damaged when they come into contact with each other along with the operation of cutting the optical path. No processing is easy. More desirably, when the thickness is in the range of 20 to 80 micrometer, the reliability at the time of repeated corrosion is improved, and the processing accuracy is also improved. Is improved. More preferably, by setting the length to 30 micrometers or more and 60 micrometers or less, it is possible to sufficiently withstand the external load, and to improve the processing accuracy and shorten the processing time. .
本発明では、 基板上の光路切り眷えが行われる界面に面する光導波路 の Mの部材を光の伝ば方向に互いにくぼませているので、 可動側光導波 路先端に加工代を設けることができ、 可動側光導波路先锥の精密加工が 容易となる。 また光路切り替え界面における固定側と可動側の光導波路 Wのすき間を負の値に設定することにより、 光導波路同士を物理的に接 触させ、 反射や散乱などに起因する光路切り瞽ぇ界面での光の損失を最 小にすることができる。 According to the present invention, there is provided an optical waveguide facing an interface on which optical path cutting is performed on a substrate. Since the members of M are recessed in the direction of light transmission, a machining allowance can be provided at the tip of the movable-side optical waveguide, and precision machining of the movable-side optical waveguide can be easily performed. In addition, by setting the gap between the fixed-side and movable-side optical waveguides W at the optical path switching interface to a negative value, the optical waveguides are brought into physical contact with each other, and the optical path cut due to reflection, scattering, etc. Light loss can be minimized.
本発明では、 片持ち梁の連桔部材上及び基板上に形成された永久磁石 とコィル及び磁性体との で磁力が発生するので、 この磁力を利用して 片持ち梁上を変形させて片持ち梁上に形成された光導波路を切り替える ことができる。  In the present invention, since a magnetic force is generated between the permanent magnet formed on the linking member of the cantilever and the substrate and the coil and the magnetic body, the cantilever is deformed by utilizing the magnetic force. The optical waveguide formed on the cantilever can be switched.
さらに本発明では、 片持ち梁の幅を 1 5マイクロメー トル以上 6 0マ イク口メートル以下、 望ましくは 2 5マイクロメートル以上 4 0マイク 口メートル以下とするので、 5 0マイクロニュートンから 1ミ リニュー トンの力で片持ち梁をたわませることができるので、 薄胰プロセスにて 製作した電磁ァクチユエータを用いて光路を切り巷えることができる。 本発明では、 片持ち梁の連桔部材、 永久磁石、 コイル及び磁性体を、 入力側光導波路が形成されている片持ち梁の長手方向中央部より も基部 側の位 Sに形成しているので、 片持ち梁の先端部分が梁の長手方向にた わむことができ、 スィツチが非稼働状態で梁が変形していない時の固定 側側と稼働側の光導波路先 ¾ Wのすき Wが負の値の場合でも、 光導波路 の先港同士を接触させることができる。  Further, in the present invention, the width of the cantilever is 15 micrometer or more and 60 micrometer or less, preferably 25 micrometer or more and 40 micrometer or less. Since the cantilever can be bent with a ton of force, the optical path can be cut by using an electromagnetic actuator manufactured by a thin process. In the present invention, the linking member, the permanent magnet, the coil and the magnetic body of the cantilever are formed at a position S closer to the base side than the longitudinal center of the cantilever where the input-side optical waveguide is formed. Therefore, the tip of the cantilever can bend in the longitudinal direction of the beam, and when the switch is not in operation and the beam is not deformed, the optical waveguide ends on the fixed side and the active side ¾ W clearance W When the value of is negative, the leading ports of the optical waveguide can be brought into contact with each other.
また本発明では、 片持ち梁の連結部材、 永久磁石、 コイル及び磁性体 を、 片持ち梁の長手方向中央部より も梁の基部側に形成し、 さらに片持 ち梁の連結部材を片持ち梁の長手方向中央都よ り も梁の先 S側に形成す るので、 片持ち梁の先端部分が梁の長手方向にたわむことができ、 光路 切り瞽ぇ界面における基板側と片持ち梁側との光導波路間のすき間が負 の値の場合でも、 光導波路の先 SS同士を接触させることができるのみな らず、 光導波路の先港が平行を保ったまま移動することが可能となり、 導波路の光射出面と入射面とが互いに平行にならないことが原因となる 挿入損失の增大を防止することができる。 In the present invention, the cantilever connecting member, the permanent magnet, the coil, and the magnetic body are formed closer to the base of the beam than the longitudinal center of the cantilever, and the cantilever connecting member is further cantilevered. Since the tip of the cantilever is bent in the longitudinal direction of the beam because it is formed on the S side of the beam rather than the center of the beam in the longitudinal direction, the optical path is cut off. Negative gap between optical waveguides In this case, not only can the tip SS of the optical waveguide be brought into contact with each other, but also the tip port of the optical waveguide can move while maintaining the parallel state. Can be prevented from increasing insertion loss due to the fact that they do not become parallel to each other.
さらに本発明では、 光路切り瞽えが行われる界面と片持ち梁の連結部 材との間の可動側光導波路側面に対抗する位 Sの基板上に精密に位置決 めされた部材は、 連桔部材から先の梁の変位を拘束するので、 片持ち梁 がたわんだ場合でも光導波路相互を高精度に位置合わせすることができ 光スィッチと外部との接緣面における光導波路 E列ピッチを光路切り 替えが行われる界面における光導波路 E列ピッチより も大き く している ので、 光スィツチから光を取り出す光ファイバ一などの光伝達媒体の接 続が容易となる。  Furthermore, in the present invention, the member precisely positioned on the substrate at the position S opposing the side surface of the movable optical waveguide between the interface where the optical path cutting is performed and the connecting member of the cantilever beam is a continuous member. Since the displacement of the beam preceding the bending member is restricted, even if the cantilever is bent, the optical waveguides can be aligned with high accuracy, and the pitch of the optical waveguide E at the contact surface between the optical switch and the outside can be reduced. Since the pitch is larger than the pitch of the optical waveguides E at the interface where the optical path is switched, connection of an optical transmission medium such as an optical fiber for extracting light from the optical switch becomes easy.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明による導波路型 2回路 1 X 2光スィ ツチの一実施例の 斜視図である。  FIG. 1 is a perspective view of one embodiment of a waveguide type two-circuit 1 × 2 optical switch according to the present invention.
第 2図は発明による導波路型 2回路 1 X 2光スィツチの一実施例の上 面である。  FIG. 2 is a top view of one embodiment of a waveguide type two-circuit 1 × 2 optical switch according to the present invention.
第 3図は本発明による導波路型 2回路 1 X 2光スィツチの薄膜電磁石 の構造を示す上面図である。  FIG. 3 is a top view showing the structure of a thin film electromagnet of a waveguide type two-circuit 1 × 2 optical switch according to the present invention.
第 4図は本発明による導波路型 2回路 1 X 2光スィツチの薄胰«磁石 の断面図である。  FIG. 4 is a cross-sectional view of a thin film magnet of a waveguide type two-circuit 1 × 2 optical switch according to the present invention.
第 5図は本発明による他の実施例の上面図である。  FIG. 5 is a top view of another embodiment according to the present invention.
第 6図は本発明による導波路型 2回路 1 X 2光スィツチの他の実施例 の斜視図である。  FIG. 6 is a perspective view of another embodiment of the waveguide type two-circuit 1 × 2 optical switch according to the present invention.
第 7図は第 6図に示す導波路型 2回路 1 X 2光スィツチの断面図であ る c FIG. 7 is a cross-sectional view of the waveguide type two-circuit 1 × 2 optical switch shown in FIG. C
第 8図は本発明による他の実施例の上面図である。  FIG. 8 is a top view of another embodiment according to the present invention.
第 9図は第 8図に示すスィ ツチの動作を示す説明図である。  FIG. 9 is an explanatory diagram showing the operation of the switch shown in FIG.
第 1 0図は本発明による 8回路 1 X 2光スィツチからなる光スイ ッチ アレイの実施例の上面図である。  FIG. 10 is a top view of an embodiment of an optical switch array comprising eight circuits 1 × 2 optical switches according to the present invention.
第 1 1図は本発明による 3つの 2回路 1 X 2光スィ ツチからなる光ス イ ッチッリ一の実施例の上面図である。  FIG. 11 is a top view of an embodiment of an optical switch comprising three two-circuit 1 × 2 optical switches according to the present invention.
第 1 2図は第 1 1図に示す光スィッチツリーの動作を示す説明図であ 第 1 3図は本発明による 2回路 1 X 2光スィツチを用いた光通信機器 の構造図である。  FIG. 12 is an explanatory diagram showing the operation of the optical switch tree shown in FIG. 11. FIG. 13 is a structural diagram of an optical communication device using a two-circuit 1 × 2 optical switch according to the present invention.
第 1 4図はパッケージングされた本発明による 2回路 1 X 2光スィッ チの断面図である。  FIG. 14 is a cross-sectional view of a packaged two-circuit 1 × 2 optical switch according to the present invention.
第 1 5図は本発明による 2回路 1 X 2光スィッチを用いたバイパスス ィ ッチの桷造図である。  FIG. 15 is a diagram of a bypass switch using a two-circuit 1 × 2 optical switch according to the present invention.
第 1 6図は本発明による 2回路 1 X 2光スィ ッチによるバイバスス ィ ツチを用いた光通信網の検査器接統用スィツチのブロック図である。 第 1 7図は本発明による光スィッチを用いた装置間のイ ンターコネク トのブロック図である。  FIG. 16 is a block diagram of a switch for connecting an inspection device in an optical communication network using a bypass switch having two circuits 1 × 2 optical switches according to the present invention. FIG. 17 is a block diagram of an interconnect between devices using an optical switch according to the present invention.
第 1 8図は本発明による光スィ ツチを用いた光通信接絞経路切眷装 tt の *造図である。  FIG. 18 is a * construction of an optical communication connection path disconnection device tt using an optical switch according to the present invention.
第 1 9図は本発明による 2回路 1 X 2光スィツチの製造プロセスを示 す説明図である。  FIG. 19 is an explanatory view showing a manufacturing process of a two-circuit 1 × 2 optical switch according to the present invention.
第 2 0図は片持ち梁及び並行板パネの先 ¾に力を加えた場合の変形を 説明する模式図である。  FIG. 20 is a schematic diagram for explaining the deformation when a force is applied to the tip of the cantilever and the parallel plate panel.
発明を実施するための最良の形態 以下本発明の実施例を図面に基づいて詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
第 1図は本発明による導波路型 2回路 1 X 2光スィ ツチの一実施例の 斜視図である。 1は光ファイバ一、 2は可動側光導波路、 3はシリ コン 基板、 4は磁性体膜、 5はコイル電極、 7は薄膜電磁石、 8は光フアイ バー、 9は固定側光導波路、 1 1は連結部材、 1 2は片持ち梁である。 光ファイバ一 1から入力された光は片持ち梁 1 2上に形成された可動 側光導波路 2に伝えられる。 片持ち梁 1 2はその先 «を連結部材 1 1 に より連結されており、 互いに平行を保ちつつシリ コン基板 3の面内で変 位することができる。 連桔部材 1 1の上には磁性体展 4が形成されてい る。 また磁性体膜 4の雨 Kのシリ コン基板 3上には、 磁性体膜、 永久磁 石及び薄膜《磁石からなる薄腠《磁石 7が形成されている。 薄腠電磁石 7にはコイル電 ¾ 5を介して図示しない電源から電力が供耠される。 《 圧は 3ボルトから 1 0ボルトの範囲で設定できる。 薄胰電磁石 7 a及び 7 bに流す電流の方向を変化させることにより、 薄 K«磁石 7 a及び 7 b と磁性体膜 4 とに働く力の大小两係が反転し、 速桔钵材 1 1の移動位 置が切り替わり連結された梁 1 2の変形方向が変わることによ り、 可動 側光導波路 2が接絞する固定側光導波路 9を切り眷えることができる。 尚、 本明細誉での実施例では、 永久磁石、 コイル及ぴ磁性体の組み合 わせによるァクチユエ一ターにより光スィッチを駆動しているが、 光ス イッチの K動に邃したその他のァクチユエ一ターとしては、 片持ち梁上 の磁性体と光スィ ツチ外部に配置した可動式永久磁石との組み合わせに よるァクチユエ一ター、 錚電力を利用したァクチユエ一ター、 ピエゾ効 杲を利用したァクチユエ一ター、 あるいは温度変化による形状記億合金 やバイメタルの変形を利用したァクチユエ一ターなどがあり、 光スィ ッ チを切り替えるのに必要な力を発生できるものであれば、 使用すること ができる。 第 2図は本発明による導波路型 2回路 1 X 2光スィツチの一実施例の 上面図である。 同図は本光スィツチに通 «する前の状態を示している。 FIG. 1 is a perspective view of one embodiment of a waveguide type two-circuit 1 × 2 optical switch according to the present invention. 1 is an optical fiber, 2 is a movable optical waveguide, 3 is a silicon substrate, 4 is a magnetic film, 5 is a coil electrode, 7 is a thin film electromagnet, 8 is an optical fiber, 9 is a fixed optical waveguide, 1 1 Is a connecting member, and 12 is a cantilever. Light input from the optical fiber 11 is transmitted to the movable optical waveguide 2 formed on the cantilever 12. The cantilever beam 12 is connected at its tip by a connecting member 11, and can be displaced in the plane of the silicon substrate 3 while keeping parallel to each other. A magnetic material extension 4 is formed on the link member 11. Further, on the silicon substrate 3 of rain K of the magnetic film 4, a magnetic film, a permanent magnet, and a thin film << magnet 7 composed of a thin film << magnet are formed. Electric power is supplied to the thin electromagnet 7 from a power source (not shown) via the coil electrode 5. 《Pressure can be set in the range of 3 volts to 10 volts. By changing the direction of the current flowing through the thin electromagnets 7a and 7b, the magnitude of the force acting on the thin magnets 7a and 7b and the magnetic film 4 is reversed, and the speed change material 1 By changing the moving direction of 1 and changing the deformation direction of the connected beam 12, it is possible to switch the fixed-side optical waveguide 9 to which the movable-side optical waveguide 2 narrows. In the embodiment in honor of the present specification, the optical switch is driven by an actuator composed of a combination of a permanent magnet, a coil and a magnetic material. The actuator is a combination of a magnetic material on the cantilever and a movable permanent magnet placed outside the optical switch, an actuator using the swift power, and an actuator using the piezo effect. Alternatively, there is an actuator that utilizes deformation of a shape memory alloy or bimetal due to a temperature change, and can be used as long as it can generate a force necessary for switching an optical switch. FIG. 2 is a top view of one embodiment of a waveguide type two-circuit 1 × 2 optical switch according to the present invention. The figure shows a state before passing through the optical switch.
2 a及び 2 bは可動側光導波路、 5 a及び 7 aはそれぞれ可動側光導 波路 2 a側のコィル電植及び薄膜電磁石、 5 b及び 7 bはそれぞれ可動 側光導波路 2 b側のコイル電極及び薄膜電磁石、 9 a、 9 b、 9 c及び 9 dは固定側光導波路、 1 0はくぼみである。 可動側光導波路 2 a及び 2 bの先端には加工代としてくぼみ 1 0が設けられており、 可動側光導 波路 2 a及び 2 b及び片持ち梁 1 2先港を精密に加工することができる。 薄腠鼋磁石 7 aには磁性体膜 4を強く引きつける方向に電流を流し、 薄膜電磁石 7 bには磁性体膜 4を弱く引き付ける方向 (以下 A方向とす る) に電流を流すと、 片持ち梁 1 2は破鑲 1 2 1に示すごとく変位し、 可動側光導波路 2 aは固定側光導波路 9 aに、 可動側光導波路 2 bは固 定側光導波路 9 cに接铰される。  2a and 2b are movable-side optical waveguides, 5a and 7a are movable-side optical waveguides 2a-side coil implants and thin-film electromagnets, and 5b and 7b are movable-side optical waveguides 2b-side coil electrodes, respectively. 9a, 9b, 9c and 9d are fixed-side optical waveguides, and 10 is a depression. A recess 10 is provided at the tip of the movable optical waveguides 2 a and 2 b as a processing allowance, and the movable optical waveguides 2 a and 2 b and the cantilever beam 1 2 can be precisely machined. . When an electric current is applied to the thin magnet 7a in a direction to strongly attract the magnetic film 4, and an electric current is applied to the thin-film electromagnet 7b in the direction to attract the magnetic film 4 weakly (hereinafter referred to as A direction). The movable beam 12 is displaced as shown in the fracture 1 2 1, and the movable optical waveguide 2 a is connected to the fixed optical waveguide 9 a and the movable optical waveguide 2 b is connected to the fixed optical waveguide 9 c. .
ここで薄膜電磁石 7 a及び 7 bに流す電流の方向を反転 (以下 B方向 とする) させると、 薄膜電磁石 7 a及び 7 bと磁性体膜 4 との間で発生 する電磁力の大小関係が反転し、 片持ち梁 1 2は破鎵 1 2 2に示すごと く変位し、 可動側光導波路 2 aは固定側光導波路 9 bに、 可動側光導波 路 2 bは固定側光導波路 9 dに接絞される。  Here, when the direction of the current flowing through the thin film electromagnets 7a and 7b is reversed (hereinafter referred to as the B direction), the magnitude relationship of the electromagnetic force generated between the thin film electromagnets 7a and 7b and the magnetic film 4 becomes The cantilever 1 2 is displaced as shown by the fracture 1 2 2, and the movable optical waveguide 2 a becomes the fixed optical waveguide 9 b, and the movable optical waveguide 2 b becomes the fixed optical waveguide 9 d Is squeezed.
これにより光路の切り巷えを実現できる。 片持ち梁 1 2、 可動側光導 波路 2 a及び 2 bはその先 ¾を連結部材 1 1 にて速桔されているので、 連桔部材 1 1から先の可動側光導波路 2 a及び 2 bは平行板ばねの原理 により、 光路の切り替え動作に伴い平行移動する。  As a result, it is possible to realize an optical path. Since the ends of the cantilever 12 and the movable optical waveguides 2a and 2b are fastened by the connecting member 11, the movable optical waveguides 2a and 2b ahead of the connecting member 11 are provided. Moves in parallel with the switching operation of the optical path due to the principle of a parallel leaf spring.
ここで第 2 0図において、 並行板パネの変形の動作を説明する。 第 2 0図(a )は片持ち梁の先 «に力を加えた場合の変形状況を説明する図で ある。 1 1 0は片持ち梁である。 片持ち梁 1 1 0の先 « Βに力 Fを加え ると、 片持ち梁 1 1 0は力 Fの方向へたわみ、 点 Bは点 B ' まで移動す る。 また点 B ' を通る接線 C Dと片持ち梁 1 1 0の固定部の位 Sを示す 線 G Hとがなす角 Sは 9 0。 より も小さく なる。 すなわち、 片持ち梁 1 1 0の先端はたわむことにより回転する。 Here, the deformation operation of the parallel panel will be described with reference to FIG. FIG. 20 (a) is a diagram for explaining the state of deformation when a force is applied to the tip of the cantilever. 1 110 is a cantilever. When a force F is applied to the tip of the cantilever 1 1 0, the cantilever 1 1 0 bends in the direction of the force F, and the point B moves to the point B '. You. The angle S between the tangent CD passing through the point B 'and the line GH indicating the position S of the fixed part of the cantilever 1 110 is 90. Smaller than That is, the tip of the cantilever 110 rotates by bending.
第 2 0図(b )は平行板ばねの先端に力を加えた場合の変形状況を説明 する図である。 1 1 1 は平行板ばねである。 平行板ばね 1 1 1の先 «は 連結部材 1 1 2によって連結されている。 連桔部材 1 1 2に力 Fを加え ると、 平行板ばね 1 1 1は力 Fの方向へたわみ、 点 B 1及び B 2は点 B 1 ' 及び B 2 ' まで移動する。 この時、 先 SS B 1 ' を通る接線 C 1 D 1 と線 G Hとがなす角は 9 0。 を保っている。 したがって平行板ばね 1 1 1の先端はたわみが発生しても回転しないことがわかる。  FIG. 20 (b) is a diagram for explaining a deformation state when a force is applied to the tip of the parallel leaf spring. 1 1 1 is a parallel leaf spring. The ends of the parallel leaf springs 1 1 1 are connected by connecting members 1 2. When a force F is applied to the link member 1 1 2, the parallel leaf spring 1 11 bends in the direction of the force F, and the points B 1 and B 2 move to the points B 1 ′ and B 2 ′. At this time, the angle between the tangent C 1 D 1 passing through the point SS B 1 ′ and the line GH is 90. Is kept. Therefore, it can be seen that the tip of the parallel leaf spring 1 1 1 does not rotate even if bending occurs.
したがって、 第 2図の光スイツチの並行板パネの上に形成された光導 波路の先难が並行に移動する。 また薄] ft電磁石 7 a及び 7 bに流す電流 を切断した後も薄膜電磁石 7 aあるいは 7 bの中の永久磁石が磁性体展 4 と引き付け合い、 片持ち梁 1 2が初期の位 ftに復帰することはないの で、 光路切り眷ぇ界面における光軸の傾きに依存する光の減衰を小さく することができる。 これによつて光の減衰が小さい自己保持型の光ス ィッチを実現することができる。  Therefore, the tip of the optical waveguide formed on the parallel panel of the optical switch shown in FIG. 2 moves in parallel. Also, after cutting off the current flowing through the ft electromagnets 7a and 7b, the permanent magnets in the thin film electromagnets 7a or 7b attract the magnetic material 4 and the cantilever 12 is in the initial position ft. Since there is no return, the attenuation of light depending on the inclination of the optical axis at the interface when the optical path is cut can be reduced. This makes it possible to realize a self-holding optical switch with small light attenuation.
第 3図は本発明による導波路型 2回路 1 X 2光スィッチに用いられる 薄膜電磁石の構造を示す図である。  FIG. 3 is a view showing a structure of a thin film electromagnet used for a waveguide type two-circuit 1 × 2 optical switch according to the present invention.
2 0は銷製の薄膜コイル、 2 1は F e— N i製の磁性体換、 2 2は e— N i製の磁性体膜、 2 3は F e— N i製の磁性体膜、 2 4は固定側 光導波路、 2 5は可動側光導波路、 2 6は F e— N i製の磁性体腴、 2 7は N e— F e— B製永久磁石、 2 8は可動側光導波路の速桔部材であ る o  20 is a sales thin film coil, 21 is a magnetic material made of Fe—Ni, 22 is a magnetic film made of e—Ni, 23 is a magnetic film made of Fe—Ni, 24 is a fixed-side optical waveguide, 25 is a movable-side optical waveguide, 26 is a magnetic material made of Fe—Ni, 27 is a Ne—Fe—B permanent magnet, and 28 is a movable-side light guide. It is a member of the wave path o
薄膜コイル 2 0に Aを +、 Bを一として電流を流すと、 薄胰コイル 2 0及び磁性体 IR 2 1 とで形成される磁束が磁性体 K 2 2の中で永久磁石 2 7の磁束と強めあい、 連桔部材 2 8上に形成された磁性体膜 2 3 を強 く引き付け、 連結部材 2 8は矢印 Cの方向に移動し、 磁性体膜 2 2及び 2 3に吸着される。 When a current is applied to the thin-film coil 20 with A + and B 1, the magnetic flux formed by the thin-film coil 20 and the magnetic material IR 21 causes a permanent magnet in the magnetic material K 22. The magnetic film 23 formed on the linking member 28 is strongly attracted by the magnetic flux of 27, and the connecting member 28 moves in the direction of the arrow C to the magnetic films 22 and 23. Adsorbed.
薄膜コイル 2 0に Aを一、 Bを +として電流を流すと、 薄膜コイル 2 0及び磁性体腠 2 1 とで形成される磁束が磁性体膜 2 2の中で永久磁石 2 7の磁束と打ち消しあい、 連桔部材 2 8上に形成された磁性体膜 2 3 を引き付ける力が弱まり、 連結部材 2 8は可動側梁 2 5の弾性によって 磁性体膜 2 2及び 2 3から引き離される。  When a current is applied to the thin-film coil 20 with A being 1 and B being +, the magnetic flux formed by the thin-film coil 20 and the magnetic material 腠 21 becomes the same as the magnetic flux of the permanent magnet 27 in the magnetic film 22. The force of attracting the magnetic film 23 formed on the connecting member 28 is weakened by the cancellation, and the connecting member 28 is separated from the magnetic films 22 and 23 by the elasticity of the movable side beam 25.
本発明では第 2図に示すごと く、 薄膜電磁石を連結部材の两側面に E Sし、 連桔部材 2 8上の磁性体膜 2 3に効果的に吸着力を及はす構造と している。  In the present invention, as shown in FIG. 2, a thin film electromagnet is formed on the side surface of the connecting member to provide an effective attraction to the magnetic film 23 on the connecting member 28. .
さらに第 3図に示す薄膜電磁石では、 連結部材 2 8が磁性体膜 2 2及 び 2 3に吸着された後に薄膜コィル 2 0に流す電流を 0をとしても、 永 久磁石 2 7の磁束が磁性体腠 2 2、 2 3及び 2 6 とで形成された閉じた 磁気回路の中を通るので、 磁性体膜 2 3には強い吸着力が働きつづける。 その結果薄膜コィル 2 0に流す電流を 0をとしても、 速桔部材は磁性体 摸 2 2及び 2 3に吸着され絞け、 光の切り瞽ぇ状態が保持される。  Further, in the thin film electromagnet shown in FIG. 3, even if the current flowing through the thin film coil 20 after the connecting member 28 is attracted to the magnetic films 22 and 23 is set to 0, the magnetic flux of the permanent magnet 27 is Since the magnetic film 23 passes through the closed magnetic circuit formed by the magnetic materials 22, 23, and 26, the magnetic film 23 continues to exert a strong attraction force. As a result, even if the current flowing through the thin film coil 20 is set to 0, the speed adjusting member is attracted to the magnetic materials 22 and 23 to be squeezed, and the light cutting state is maintained.
さらに、 本発明による導波路型 2回路 1 X 2光スィ ツチの片持ち梁の 幅を 1 5マイクロメートル以上 6 0マイクロメートル以下、 望ましくは 2 5マイクロメートル以上 4 0マイクロメートル以下とすることで、 5 0マイクロニュー トンから 1 ミリ二ユート ンの力で片持ち梁をたわませ ることができるので、 薄膜プロセスにて製作した電磁ァクチユエータに 供耠する電圧を 3ないし 1 0ボル卜の範囲での設定値で駆動することが でき、 光路を切り眷えることができる。  Further, the width of the cantilever of the waveguide type two-circuit 1 × 2 optical switch according to the present invention is 15 μm or more and 60 μm or less, preferably 25 μm or more and 40 μm or less. Since the cantilever can be bent with a force of 50 micronewtons to 1 milliton, the voltage supplied to the electromagnetic actuator manufactured by the thin film process is in the range of 3 to 10 volts. It can be driven with the set value of, and can cut the optical path.
第 4図は本発明による導波路型 2回路 1 X 2光スィ ッチに用いられる 薄膜電磁石の中の薄膜コイル部分の断面構造を示す図である。 2 0 aは钢製薄膜コイルの下側の婊、 2 0 bは薄膜コイルの上側の «1、 7 1、 7 3及び 7 5はポリイミ ド製の絶縁層、 2 1は F e— N i製の磁 性体膜、 7 6はポリイ ミ ド製の絶緣層 7 3に形成されたスルーホール、 7 7はボリイミ ド製の艳縁層 7 1に形成されたスルーホ一ル、 3はシリ コン基板である。 FIG. 4 is a view showing a cross-sectional structure of a thin-film coil portion in a thin-film electromagnet used for a waveguide type two-circuit 1 × 2 optical switch according to the present invention. 20 a is the lower side of the thin-film coil made of 钢, 20 b is the upper layer of the thin-film coil, 1, 71, 73 and 75 are insulating layers made of polyimide, and 21 is Fe—N i , A through-hole formed in the insulating layer made of polyimide 73, a through-hole formed in the insulating layer 71 made of polyimide, and 3 a silicon It is a substrate.
シリコン基板 3上に銅製薄膜コィルの下側の婊 2 0 aを形成し、 その 上にポリイミ ド製の艳縁層 7 3を形成し、 スルーホール 7 6を形成して から焼成する。 次に F e— N i製の磁性体膜 7 2を蒸着あるいはスパッ タリ ングによ り形成する。 さらにその上にポリイミ ド製の絶縁層 7 3 を 形成し、 スルーホール 7 7を形成してから焼成する。 铜製薄膜コイ ルの 上側の線 2 0 bをその上に形成し、 さらにポリイミ ド製の絶緣層 7 5を 形成して焼成する。 薄膜コィルの下側の線 2 0 a と銅製薄 Kコイ ルの上 側の锒 2 0 b とはスルーホール 7 6及び 7 7を介して接続され、 F e— N i製の磁性体腠 7 2をコアとしたコイルが形成される。  On the silicon substrate 3, a lower layer 20a of a copper thin-film coil is formed, on which an insulating layer 73 made of polyimide is formed, and a through hole 76 is formed, followed by firing. Next, a magnetic film 72 made of Fe—Ni is formed by vapor deposition or sputtering. Further, a polyimide insulating layer 73 is formed thereon, and a through hole 77 is formed, followed by firing. A line 20b on the upper side of the thin film coil made of copper is formed thereon, and an insulating layer 75 made of polyimide is further formed and fired. The lower wire 20 a of the thin film coil and the upper wire 20 b of the thin copper coil are connected through through holes 76 and 77, and a magnetic material made of Fe—Ni is used. A coil having 2 as a core is formed.
薄膜コイルの鑲の材料としては、 本実施例では銅を用いたが、 アルミ 二ゥム、 ニッケル、 金など導電性を有するものであれば使用することが できる。  Although copper is used in this embodiment as a material for the thin film coil, any conductive material such as aluminum, nickel, or gold can be used.
第 5図は本発明による他の実施例の上面図である。 1 5は固定側光導 波路である。 光スィッチと外部との接続面における固定側光導波路 1 5 の配列ピッチを光路切り替えが行われる界面における固定側光導波路 1 5の配列ピッチよ り も大き く しているので、 光ファイバ一 8の接親が容 易となる。  FIG. 5 is a top view of another embodiment according to the present invention. Reference numeral 15 denotes a fixed-side optical waveguide. The arrangement pitch of the fixed-side optical waveguides 15 at the connection surface between the optical switch and the outside is made larger than the arrangement pitch of the fixed-side optical waveguides 15 at the interface where optical path switching is performed. Intimate contact becomes easier.
第 6図は本発明による導波路型 2回路 1 X 2光スィツチの他の実施例 の斜視図である。 1 8は石英ガラス層である。 シリコン基板 3の上に厚 さ 4 0マイ ク ロメ ー トルの石英ガラス層 1 8を設けた構造となっている。 連桔部材 1 4上に形成された石英ガラス層 1 8が光路切り眷ぇ時に薄胰 電磁石 7の下に形成されている石英ガラス層 1 8と接触することにより、 可動側光導波路 2 と固定側光導波路 9 とを精密に位置合わせすることが できる。 FIG. 6 is a perspective view of another embodiment of the waveguide type two-circuit 1 × 2 optical switch according to the present invention. Reference numeral 18 denotes a quartz glass layer. It has a structure in which a quartz glass layer 18 having a thickness of 40 micrometer is provided on a silicon substrate 3. The quartz glass layer 18 formed on the link member 14 is thin when cutting the optical path. By contacting the quartz glass layer 18 formed below the electromagnet 7, the movable optical waveguide 2 and the fixed optical waveguide 9 can be precisely aligned.
第 7図は第 6図に示す導波路型 2回路 1 X 2光スィツチの断面図であ る。 石英ガラス層 1 8同士が接触することにより、 可動側光導波路 2が 高精度に位 S合わせされ、 効率の高い光接耪を実現することができる。 第 8図は本発明による他の実施例の上面図である。 1 2 a及び 1 2 b は可動側光導波路、 1 3 a、 1 3 b及び 1 3 cは精密に位 fll決めされた 部材、 1 4は連桔部材である。 部材 1 3 a、 1 3 b及び 1 3 cはシリコ ン基板 3 と一体加工されている。  FIG. 7 is a cross-sectional view of the waveguide type two-circuit 1 × 2 optical switch shown in FIG. When the quartz glass layers 18 are in contact with each other, the movable optical waveguide 2 is aligned with high precision, and highly efficient optical connection can be realized. FIG. 8 is a top view of another embodiment according to the present invention. 12a and 12b are movable optical waveguides, 13a, 13b and 13c are precisely positioned members, and 14 is a connecting member. The members 13a, 13b, and 13c are integrally formed with the silicon substrate 3.
第 9図は第 8図に示すスィツチの動作を示す説明図である。 1 7は光 切り替え界面における可動側光導波路と固定側光導波路との Mのすき RI である。 第 9図(a )に示す初期状態は、 第 8図に示す光スィッチに電流 を加えない状想を示す。 第 9図(b )に示す通!!状態は、 第 8図に示す光 スィッチに電流を加えている状態を示す。 第 9図(c )に示す電源切断状 態は、 第 8図に示す光スィツチに加えていた電流を切断した状態を示す。 通電状態では可動側光導波路 1 2 a及び 1 2 bは磁力の作用で図に示 すごとく湾曲する。 この場合でも可動側光導波路 1 2 a及び 1 2 bの先 «は部材 1 3 a及び 1 3 bによりその変位を拘束されるので、 固定側光 導波路との接統位 «からずれることはない。 さらに可動側光導波路 1 2 a及び 1 2 bが湾曲することによ り、 可動側光導波路と固定側光導波路 との には湾曲がない場合よ り も大きなすき聞 1 7が生じる。 予めこの すき間 1 7の幅だけ可動側光導波路を長く しておく。  FIG. 9 is an explanatory diagram showing the operation of the switch shown in FIG. Reference numeral 17 denotes the M clearance RI between the movable optical waveguide and the fixed optical waveguide at the light switching interface. The initial state shown in FIG. 9 (a) shows a state in which no current is applied to the optical switch shown in FIG. The communication shown in Fig. 9 (b)! ! The state shows a state where a current is applied to the optical switch shown in FIG. The power-off state shown in FIG. 9 (c) shows a state where the current applied to the optical switch shown in FIG. 8 is cut off. In the energized state, the movable optical waveguides 12a and 12b are curved as shown in the figure by the action of magnetic force. Even in this case, since the displacement of the tip of the movable-side optical waveguides 12a and 12b is restricted by the members 13a and 13b, the tip of the movable-side optical waveguide does not deviate from the connection with the fixed-side optical waveguide. Absent. Further, since the movable optical waveguides 12a and 12b are curved, a larger gap 17 occurs between the movable optical waveguide and the fixed optical waveguide than when there is no curvature. The movable-side optical waveguide is made longer by the width of the gap 17 in advance.
光路切り替え動作を行った後に薄胰電磁石 7に流す《流を切断すると 可動側光導波路の湾曲の程度が少なくなるのですき M l 7の W Hが狭ま り、 可動側光導波路 1 2 a及び 1 2 b と固定側光導波路 9 a及び 9 c と の接较面を物理的に接触させることができる。 薄膜電磁石 7に流す ¾流 を切断した後も薄膜電磁石 7 と磁性体膜 4 とが引き付け合うので、 片持 ち梁 1 2 a及び 1 2 bが初期の位惺に復帰することはない。 After the optical path switching operation is performed, the current flowing through the thin electromagnet 7 is cut.If the flow is cut, the degree of curvature of the movable optical waveguide is reduced, the WH of Ml 7 is reduced, and the movable optical waveguide 12a and 1 2 b and fixed-side optical waveguides 9 a and 9 c The contact surfaces can be physically contacted. Since the thin-film electromagnet 7 and the magnetic film 4 are attracted even after cutting the current flowing through the thin-film electromagnet 7, the cantilever beams 12a and 12b do not return to the initial position.
この結果、 導波路同士の接触によ り接絞界面での反射ゃ教乱の少ない 良好な光接絞を行うことができる。 電流を逆方向に流せば、 同様にして 可動側光導波路 1 2 a及び 1 2 b と固定側光導波路 9 b及び 9 dとが物 理的に接触し、 接続界面での反紂ゃ敢乱の少ない良好な光接嫁が可能と なり、 挿入損失の少ない自己保持型の光切り巷えを実現できる。  As a result, it is possible to perform good optical aperture stop with less reflection and disturbance at the aperture stop interface due to the contact between the waveguides. If the current flows in the opposite direction, the movable optical waveguides 12a and 12b and the fixed optical waveguides 9b and 9d physically come into contact with each other in the same manner. It is possible to achieve a good optical connection with a small insertion loss, and to realize a self-holding optical cutoff with a small insertion loss.
第 1 0図は本発明による 8回路 1 X 2光スイッチからなる光スィ ッチ アレイの実施例の上面図である。 1 2 a、 1 2 b、 1 2 c、 1 2 d、 1 2 e、 1 2 ί、 1 2 g及び 1 2 hは片持ち梁、 2 a、 2 b、 2 c、 2 d、 2 e、 2 i、 2 g及び 2 hは可動側光導波路、 1 0 a、 1 0 b、 1 0 c、 1 0 d、 1 0 e、 1 0 ί、 1 0 g及び 1 0 hはくぼみ、 1 6 a、 1 6 b、 1 6 c、 1 6 d、 1 6 e、 1 6 i、 1 6 g、 1 6 h、 1 6 i、 1 6 j、 1 6 k、 1 6 1、 1 6 m、 1 6 n、 1 6 o及び 1 6 pは固定側光導波路 である。  FIG. 10 is a top view of an embodiment of an optical switch array composed of eight circuits 1 × 2 optical switches according to the present invention. 12a, 12b, 12c, 12d, 12e, 12ί, 12g and 12h are cantilever, 2a, 2b, 2c, 2d, 2e , 2 i, 2 g and 2 h are movable optical waveguides, 10 a, 10 b, 10 c, 10 d, 10 e, 10 ί, 10 g and 10 h are hollow, 1 6a, 16b, 16c, 16d, 16e, 16i, 16g, 16h, 16i, 16j, 16k, 161, 16m , 16 n, 16 o and 16 p are fixed-side optical waveguides.
片持ち梁 1 2 a、 1 2 b、 1 2 c、 1 2 d、 1 2 e、 1 2 f 、 1 2 g 及び 1 2 hは連結部材 1 1により速結されており、 互いに平行を保ちつ つ基板平面内で変位することができる。 可動側光導波路 2 a、 2 b、 2 c、 2 d、 2 e、 2 f 、 2 g及び 2 hの先 SBには加工代としてくぼみ 1 0 a、 1 0 b、 1 0 c、 1 0 d、 1 0 e、 1 0 f 、 l O g及び l O hが 設けられており、 可動僳光導波路及び片持ち梁先埵を精密に加工するこ とができる。 連桔部材 1 1の上には膜状の磁性体膜 4が形成されている。 また磁性体裹 4の両脇のシリコン基板 3上には、 薄 JR電磁石 7が形成さ れている。 薄腴電磁石 7にはコイル電槿 5を介して図示しない電源から 電力が供給される。 薄胰電磁石 7に流す電流の方向を変化させることに よ り、 薄膜電磁石 7 a及び 7 b と磁性体膜 4 との間で発生する電磁力の 大小関係が反転し、 可動側光導波路 2 a、 2 b、 2 c、 2 d、 2 e、 2 f 、 2 g及び 2 hが接続する固定側光導波路 1 6 a、 1 6 b、 1 6 c , 1 6 d、 1 6 e、 1 6 f 、 1 6 g、 1 6 h、 1 6 i、 1 6 j、 1 6 k , 1 6 1、 1 6 m、 1 6 n、 1 6 o及び 1 6 pを切り瞽えることができる。 薄膜電磁石 7 a及び 7 bに流す電流を切断した後も薄膜電磁石 7 a及び 7 bの中の永久磁石の作用で磁性体膜 4 と引き付け合い、 片持ち梁 1 2 a、 1 2 b、 1 2 c、 1 2 d、 1 2 e、 1 2 f 、 1 2 g及び 1 2 hが初 期の位置に復帰することはない。 このように同一基板の中に並列に光ス イッチを形成することにより、 小型で自己保持型の光スィッチアレイを 実現できる。 Cantilever beams 1 2a, 1 2b, 1 2c, 1 2d, 1 2e, 1 2f, 1 2 g and 1 2h are fast-coupled by connecting member 11 and kept parallel to each other Each time it can be displaced in the plane of the substrate. The movable side optical waveguides 2a, 2b, 2c, 2d, 2e, 2f, 2g and 2h are recessed into the SB as machining allowances 10a, 10b, 10c, 10 Since d, 10e, 10f, 10g, and 10h are provided, the movable optical waveguide and cantilever tip can be precisely machined. A film-shaped magnetic film 4 is formed on the link member 11. A thin JR electromagnet 7 is formed on the silicon substrate 3 on both sides of the magnetic lining 4. Power is supplied to the thin magnet 7 from a power source (not shown) via the coil magnet 5. To change the direction of the current flowing through the thin electromagnet 7 Thus, the magnitude relationship of the electromagnetic force generated between the thin film electromagnets 7a and 7b and the magnetic film 4 is reversed, and the movable optical waveguides 2a, 2b, 2c, 2d, 2e, 2 f, 2 g and 2 h are connected to the fixed-side optical waveguide 16 a, 16 b, 16 c, 16 d, 16 e, 16 f, 16 g, 16 h, 16 i, 16 j, 16 k, 16 1, 16 m, 16 n, 16 o and 16 p can be cut and sized. Even after the current flowing through the thin-film electromagnets 7a and 7b is cut off, the permanent magnets in the thin-film electromagnets 7a and 7b attract the magnetic film 4 by the action of the permanent magnets, and the cantilever 12a, 12b, 1 2c, 12d, 12e, 12f, 12g and 12h do not return to their initial positions. By forming the optical switches in parallel on the same substrate in this way, a small, self-holding optical switch array can be realized.
第 1 1図は本発明による 8回路 1 X 2光スィツチからなる光スイッチ ッリ一の実施例の上面図である。 3 0は A及び Bの 2系統の入力 «I導波 路、 3 1は第 1光スィッチ、 3 2は光スィ ッチ間を接綾する光導波路、 3 3は第 2光スィッチ、 3 4は第 3光スィッチ、 3 5は A O、 A I、 A 2及び A 3の 4系統からなる第 2光スィツチの出力側光導波路、 3 6は B 0、 B l、 B 2及び B 3の 4系統からなる第 3光スィッチの出力側光 導波路である。  FIG. 11 is a top view of an embodiment of an optical switch array comprising eight 1 × 2 optical switches according to the present invention. 30 is an input of two systems A and B «I waveguide, 31 is a first optical switch, 32 is an optical waveguide connecting between optical switches, 33 is a second optical switch, 3 4 Is the third optical switch, 35 is the output optical waveguide of the second optical switch consisting of four systems of AO, AI, A2 and A3, and 36 is four systems of B0, B1, B2 and B3 This is the output side optical waveguide of the third optical switch composed of.
同図に示すごと く、 第 1光スィツチの出力側光導波路を第 2光スィッ チ及び第 3光スィ ツチの入力側光導波路に 11 [接接接することによ り 2回 路の 1 X 4光スィツチを実現できる。  As shown in the figure, the output optical waveguide of the first optical switch is connected to the input optical waveguides of the second optical switch and the third optical switch. An optical switch can be realized.
第 1 2回は第 1 1図に示す光スィッチッリーの動作を示す説明図であ る。 同図では光の伝播していく方向に向かって左側にスィツチが接続さ れている場合に状態 0、 光の伝播していく方向に向かって右側にスィッ チが接絞されている場合に状想 1 としている。 同図に示すごと く、 第 2 光スィッチ及び第 3光スィツチの状態が同じであれば第 1光スィッチと の状想の組み合わせにより入力 Aと Bとで同一の位 ¾に出力することが でき、 2回路 1 X 4光スィ ッチが実現できる。 The 12th time is an explanatory view showing the operation of the optical switch shown in FIG. In the figure, the state is 0 when the switch is connected to the left side in the light propagation direction, and the state is when the switch is narrowed to the right side in the light propagation direction. I think it is 1. As shown in the figure, if the state of the second optical switch and the state of the third optical switch are the same, the state of the first optical switch is the same as that of the first optical switch. With the combination of the above concepts, the inputs A and B can be output at the same position, and a two-circuit 1 × 4 optical switch can be realized.
第 1 3図は本発明による 2回路 1 X 2光スイツチを用いた光信号伝送 装 Sのブロック図である。 光通信網では通信網の信頼性確保のために光 ファイバーを 0系、 1系と 2重化している。 音声電気倌号は電気的に 0 系、 1系を切り眷えられるが、 映像信号は光僂号として入力されるので、 光スィッチにより 0系、 1系を切り眷える。 このようにして、 一方の光 フアイバーに障害が発生した場合には、 もう一方の光ファイバ一を用い て通信を絞けることができる。  FIG. 13 is a block diagram of an optical signal transmission device S using a two-circuit 1 × 2 optical switch according to the present invention. In the optical communication network, the optical fiber is duplicated with system 0 and system 1 to ensure the reliability of the communication network. The audio signal can be electrically switched between system 0 and system 1. However, since the video signal is input as an optical signal, system 0 and system 1 can be switched by an optical switch. In this way, when a failure occurs in one optical fiber, communication can be narrowed down using the other optical fiber.
4 0は光スィッチ、 4 1は音声電気倌号、 4 2は «気 ·光信号変換器、 4 3は光情報伝送部、 4 4は 0系光ファイバ一、 4 5は 1系光フアイ バー、 4 6は出力コネクター、 4 7は光スィ ッチコン トローラー、 4 8 は映像光侰号の入力側コネクター、 4 9は音声電気侰号の入力側コネク ター、 5 0は映像光信号入力、 5 1は音声電気信号入力である。  40 is an optical switch, 41 is a voice electric signal, 42 is an optical / optical signal converter, 43 is an optical information transmission section, 44 is a 0-system optical fiber, and 45 is a 1-system optical fiber. , 46 is an output connector, 47 is an optical switch controller, 48 is a video signal input connector, 49 is an audio signal input connector, 50 is a video signal input, 51 Is an audio electric signal input.
光情報伝送部 4 3 に音声電気信号入力 5 0と映像光倌号入力 5 1が入 力され、 映像光信号入力は本発明の光スィツチにより経路を選択されて 電気 ·光信号変換器 4 2へ入力され、 変换された光信号が 0、 1系の光 ファイバに出力される。 光スイッチ 4 0は入力 «と電気 ·光倌号変換器 4 2の WJあるいは出力孃4 6 と «気 · 光侰号変換器 4 2の間の少なく と も一方に配 «される。  The audio electrical signal input 50 and the video optical signal input 51 are input to the optical information transmitting section 43, and the video optical signal input is routed by the optical switch of the present invention, and the electrical / optical signal converter 4 2 The converted optical signal is output to the 0 and 1 system optical fibers. The optical switch 40 is arranged on at least one of the input and the WJ of the electric / optical signal converter 42 or between the output divider 46 and the / the optical / optical signal converter 42.
本発明の光スィ ッチを用いることにより、 低コス トで生産でき、 低 « 圧駆動可能な光通信用データ伝送ュニッ トを実現できる。 このデータ伝 送ュニッ トは伝送損失が小さ く、 低い電圧でも駆動できるので個人用コ ンピュータ、 携带情報 末用の光通侰機器として利用できる。  By using the optical switch of the present invention, a data transmission unit for optical communication that can be produced at low cost and can be driven at low voltage can be realized. This data transmission unit has a small transmission loss and can be driven with a low voltage, so it can be used as an optical communication device for personal computers and portable information terminals.
第 1 4図はパッケージングされた光スィ ッチの断面図である。 5 5は カバー、 5 6は薄 R電磁石、 5 7は石英ガラス、 5 8は磁性体膜、 5 9 は薄膜電磁石用の電源緣、 6 0は電萑ピン、 6 1 はシリコン基板、 6 2 は梁上に形成された可動側光導波路、 6 3は連結部材、 6 4は基板及び 6 5は薄膜電磁石用の電源線である。 光スィッチはカバー 5 5及び基板 6 を用いて気密封止されているので動作不良の原因となる異物や腐蝕 変質の原因となる空気中の黢素ゃ水分の進入を防止することができるの で,信頼性の高い光スイッチを構成できる。 FIG. 14 is a sectional view of a packaged optical switch. 5 5 is a cover, 5 6 is a thin R electromagnet, 5 7 is quartz glass, 5 8 is a magnetic film, 5 9 Is a power supply for a thin film electromagnet, 60 is an electrode pin, 61 is a silicon substrate, 62 is a movable side optical waveguide formed on a beam, 63 is a connecting member, 64 is a substrate, and 65 is a thin film. Power line for electromagnet. Since the optical switch is hermetically sealed using the cover 55 and the substrate 6, it is possible to prevent entry of foreign matter and moisture in the air that cause malfunction and corrosion and deterioration that cause malfunction. , A highly reliable optical switch can be configured.
第 1 5図は本発明による光スィツチをバイパススィツチに応用した実 施例である。 8 3は通過光用ファイバーケーブル、 8 7は戻り光用光 ファイバーケーブルである。 光信号の接嫁先を変えることによ り光信号 を通過させるか、 戻り光用光ファイバ一ケーブル 8 7を通して光信号を 戻すかの切り替えを行うことができる。  FIG. 15 shows an embodiment in which the optical switch according to the present invention is applied to a bypass switch. Reference numeral 83 denotes a fiber optic cable for passing light, and reference numeral 87 denotes an optical fiber cable for return light. By changing the bonding destination of the optical signal, it is possible to switch between passing the optical signal and returning the optical signal through the optical fiber cable for return light 87.
第 1 6図は本発明による光スィ ッチを光通信網に応用した実施例であ る。 8 0は光通信回線、 8 1は光コネクター、 8 2は本発明の光スイツ チを用いた光スィッチユニッ ト、 8 3は通過光用フアイバーケーブル、 8 4は検査器、 8 5及び 8 6は光信号の伝播経路、 8 7は戻り光用光 ファイバーケーブルである。  FIG. 16 shows an embodiment in which the optical switch according to the present invention is applied to an optical communication network. 80 is an optical communication line, 81 is an optical connector, 82 is an optical switch unit using the optical switch of the present invention, 83 is a fiber cable for passing light, 84 is an inspection device, 85 and 86. Is a propagation path of an optical signal, and 87 is an optical fiber cable for return light.
光スィ ッチの接点 Aが閉じている場合は、 光侰号は速結用光ファィ バーを通る伝接経路 8 5によ り光通侰回練 8 0に戻ることができる。 光 通信網の定期点検時には光スィツチの接点 Bを閉じる。 光信号はコネク ター Bから光ファイバ一ケーブルによつて伝播経路 8 6を通り検査器に 伝えられるので、 種々の解析、 謂 *をおこなうことができる。  When the contact A of the optical switch is closed, the optical signal can return to the optical communication circuit 80 by the transmission path 85 passing through the quick-connect optical fiber. At the time of periodic inspection of the optical communication network, the contact B of the optical switch is closed. Since the optical signal is transmitted from the connector B to the inspection device through the propagation path 86 via an optical fiber cable, various analyzes, so-called *, can be performed.
第 1 7図は本発明による光スィッチを装置 WIのインターコネク トに応 用した実施例である。 1 0 0は装 ¾内部の光バス, 8 1は光コネクター, 8 2 a及び 8 2 bは光スィ ッチユニッ ト, 1 0 1 は外部機器接貌用光 ファイバーケーブル, 1 0 2は外部機器, 8 5及び 8 6は光侰号の伝播 経路, 8 7は戻り光用光ファイバ一ケーブルである。 1 0 0における装 ftは、 情報通信機器、 コ ンピュータ、 電話、 情報端末あるいは、 光を用 いた情報伝送を行う回路あるいはデバイス、 または該回路あるいはデバ ィスの集積化された回路あるいはデバイス及びそれらの組合せである。 光スィ ッチの接点 Aが閉じている場合は、 光信号は連結用光ファィ バーを通る伝播経路 8 5によ りコンピュータ内部の光パス 1 0 0に戻る ことができる。 外部機器接耪時には光スィ ッチの接点 Bを閉じる。 光信 号はコネクタ一 Bから外部機器接親用光フアイバーケーブル 1 0 1 を通 じて外部機器 1 0 2に到達することができる。 本発明によれば、 安価で 信頼性の高い光を用いて情報を伝送する装 ¾ のィンターコネク トを実 現できる。 情報通侰機器、 コンピュータ特に、 小型惰報靖末、 電話、 携 带情報通信端末等に用いることのできる、 低い電圧で駆動可能で安価な、 かつ高い信頼性を有するィンターコネク トを実現できる。 FIG. 17 shows an embodiment in which the optical switch according to the present invention is applied to an interconnect of the device WI. 100 is an optical bus inside the device, 81 is an optical connector, 82a and 82b are optical switch units, 101 is an optical fiber cable for external equipment, and 102 is external equipment. Reference numerals 85 and 86 denote optical signal propagation paths, and 87 denotes an optical fiber cable for return light. Equipment at 100 ft is an information communication device, a computer, a telephone, an information terminal, a circuit or device for transmitting information using light, or an integrated circuit or device of the circuit or device and a combination thereof. When the contact A of the optical switch is closed, the optical signal can return to the optical path 100 inside the computer by the propagation path 85 through the connecting optical fiber. When connecting an external device, close the contact B of the optical switch. The optical signal can reach the external device 102 from the connector 1B via the optical fiber cable 101 for connecting the external device. According to the present invention, it is possible to realize an interconnect of a device for transmitting information using inexpensive and highly reliable light. It is possible to realize an inexpensive and highly reliable interconnect that can be driven by a low voltage and can be used for information communication devices and computers, especially small-sized information terminals, telephones, and portable information communication terminals.
第 1 8図は本発明による光通信の接耪柽路切眷装置の実施例である。  FIG. 18 shows an embodiment of a connection path switching device for optical communication according to the present invention.
1 2 0は本発明の光スィ ツチあるいは光スィッチアレイ、 1 2 1は本発 明の光スィッチあるいは光スィッチアレイによる光スィッチツリー 1 2 2、 1 2 3、 1 2 4は光通侰網の光ファイバ一ケーブルである。 1 2 2 のケーブルよ り入力される光信号は光スィッチあるいは光スィ ツチァレ ィによる光スイッチツリーにより、 接捩される光ファイバ 1 2 3、 1 2 4への接続経路を切り替えられる。 その接統轾路は光スィッチ、 光ス イッチアレイ 1 2 0同士の組合せによって邁択できるよう配胶する。 こ のようにして接揆先の光フアイパーの一部 1 2 3は別の経路切眷装 «に 繋がり、 別の光ファイバ一の一部 1 2 4はより末 *側の経路切眷装置あ るいは光一電気変换装 βに繁がるように接絞経路が分配される。 また、 通侰綱の一部に故障等による経路の切断が発生した場合にも、 別の鞋路 に接続できるように還択される。 本発明による揷入損失の小さい光ス ィツチ、 光スィ ツチアレイあるいは該光スィツチを直列又は並列に接絞 して構成される光スィ ツチツリーを用いることにより、 小型集積化され た信頼性の高い光通信用の主配琅魅やクロスコネク ト等の通信経路切眷 装惺を実現できる。 さらに、 切替作業が自動化され、 锢々の駆動電圧が 低いので低い維持费での運用が可能な通信捩接较切瞽装僮を実現できる。 よって、 通信網全体の信頼性を向上させることができる。 Reference numeral 120 denotes an optical switch or an optical switch array of the present invention, and 121 denotes an optical switch tree of the present invention or an optical switch tree formed by the optical switch array 122, 122, and 124 are optical communication networks. Optical fiber-to-cable. The optical signal input from the cable of 122 can switch the connection path to the optical fibers 123, 124 to be screwed by the optical switch or the optical switch tree by the optical switch. The connection path is arranged so that it can be selected by the combination of the optical switch and the optical switch array 120. In this way, a part 1 2 3 of the optical fiber at the reciprocal destination is connected to another path disconnecting device «, and a part 1 24 of another optical fiber is connected to the further * optical path disconnecting device. Alternatively, the drawing path is distributed so as to spread to the photoelectric conversion device β. In addition, if a part of the toll line is disconnected due to a failure or the like, it will be returned so that it can be connected to another shoe path. An optical switch, an optical switch array or an optical switch array having a small input loss according to the present invention is connected in series or in parallel. By using the optical switch tree configured as described above, it is possible to realize a communication path switching device such as a main integrated controller or a cross-connect for highly integrated and highly reliable optical communication. Furthermore, since the switching operation is automated and the various driving voltages are low, it is possible to realize a communication screw connection device which can be operated with low maintenance. Therefore, the reliability of the entire communication network can be improved.
第 1 9図は本発明による光スィ ツチの製造プロセスを模式的に示した 図である。 1 8 aは厚さ 2 5マイクロメートルの下側石英ガラス屠、 1 8 b は厚さ 2 5マイクロメ一トルの上側石英ガラス層、 9 0は光導波路 のコア、 9 1は櫞、 9 2は溝、 9 3は穴である。  FIG. 19 is a diagram schematically showing a manufacturing process of the optical switch according to the present invention. 18a is the lower quartz glass layer with a thickness of 25 micrometer, 18b is the upper quartz glass layer with a thickness of 25 micrometer, 90 is the core of the optical waveguide, 91 is the citric, and 9 2 is the The groove, 93 is a hole.
シリ コン基板 3の上にまず厚さ 2 5マイクロメートルの下側石英ガラ ス層 1 8 aを形成する。 次に光導波路コァ 9 0及び厚さ 2 5マイクロ メ一 トルの上側石英ガラス層 1 8 bを形成する。 次に石英ガラス層 1 8 a及び 1 8 bに選択性ドライエッチングにて溝 9 1を形成する。 次にこ の石英ガラス層丄 8 &及び1 8 bをマスクとしてシリ コン基板 3に S択 性ドライエッチングにて溝 9 2 を形成する。 次にシリ コン基板側から ゥエツ トエッチングにて穴 9 3を加工することにより、 貫通楙造が得ら れる。 シリコン基板 3 に還択性ドライエッチングにて形成された溝 9 2 はサイ ドエッチングによ り側面が石英ガラス層 1 8 a及び 1 8 bよ り も 突出することがない。 したがって位镢合わせに用いる石英ガラス層 1 8 a及び 1 8 bの接袖を妨害することがなく、 正確な位 11合わせが可能と なる。  First, a lower quartz glass layer 18a having a thickness of 25 micrometers is formed on a silicon substrate 3. Next, an optical waveguide core 90 and an upper quartz glass layer 18b having a thickness of 25 micrometers are formed. Next, grooves 91 are formed in the quartz glass layers 18a and 18b by selective dry etching. Next, a groove 92 is formed in the silicon substrate 3 by S-selective dry etching using the quartz glass layers 丄 8 & and 18 b as a mask. Next, through-hole etching is performed from the silicon substrate side by wet etching to obtain a through hole. The side surfaces of the grooves 92 formed in the silicon substrate 3 by selective dry etching do not protrude beyond the quartz glass layers 18a and 18b due to the side etching. Therefore, accurate alignment can be achieved without obstructing the sleeves of the quartz glass layers 18a and 18b used for alignment.
本実施例によれば、 光路切り替え界面における光軸の傾きに依存する 光の減衰が小さい自己保持型の光スィツチを実現することができるとい つ効果がある。  According to the present embodiment, there is an effect that a self-holding type optical switch with small attenuation of light depending on the inclination of the optical axis at the optical path switching interface can be realized.

Claims

請求の範囲 The scope of the claims
1 . 片持ち梁状の可動部材を有し該可動部材上に光導波路を形成し、 該 可動部材を変形させて入力光信号の光路を切り替える光スイッチにおい て、  1. An optical switch that has a cantilever-shaped movable member, forms an optical waveguide on the movable member, and deforms the movable member to switch an optical path of an input optical signal.
シリコン基板上に複数の互いに平行でかつ連桔部材によ り連結された 片持ち梁と、  A plurality of cantilevers parallel to each other and connected by a link member on the silicon substrate;
少なく とも一つの片持ち梁の上に形成された第 1の光導波路と、 該第 1の光導波路に対向して、 前記複数の片持ち梁が第 1の方向また はその反対方向の第 2の方向に変形して片持ち梁上の前記第 1の光導波 路と光学的に結合する、 基板上に形成された複数の第 2の光導波路と、 片持ち梁を変形させるスィツチ駆動手段とを備え、  A first optical waveguide formed on at least one cantilever, and the plurality of cantilevers facing the first optical waveguide, wherein the plurality of cantilevers have a second direction in a first direction or a direction opposite thereto. A plurality of second optical waveguides formed on the substrate, which are deformed in the direction of and optically coupled to the first optical waveguide on the cantilever; and a switch driving means for deforming the cantilever. With
前記片持ち梁を変形させて光路の切り眷ぇを行なうことを特截とする 導波路型光スィツチ。  A waveguide type optical switch characterized in that the cantilever is deformed to cut off an optical path.
2 . 片持ち梁状の可動部材上に光導波路を形成し、 該可動部材を変形さ せて入力光信号の光路を切り替える光スィ ッチにおいて、  2. An optical switch is formed on a cantilever-shaped movable member, and the movable member is deformed to switch an optical path of an input optical signal.
シリコン基板上に複数の互いに平行でかつ連桔部材によ り連結された 片持ち梁と、  A plurality of cantilevers parallel to each other and connected by a link member on the silicon substrate;
少なく とも一つの片持ち梁の上に形成された第 1の光導波路と、 該第 1の光導波路に対向して、 前記複数の片持ち梁が第 1の方向また はその反対方向の第 2の方向に変形して片持ち梁上の前記第 1の光導波 路と光学的に結合する、 基板上に形成された複数の第 2の光導波路と、 片持ち梁を変形させるスィツチ駆動手段と、  A first optical waveguide formed on at least one cantilever, and the plurality of cantilevers facing the first optical waveguide, wherein the plurality of cantilevers have a second direction in a first direction or a direction opposite thereto. A plurality of second optical waveguides formed on the substrate, which are deformed in the direction of and optically coupled to the first optical waveguide on the cantilever; and a switch driving means for deforming the cantilever. ,
前記片持ち梁の連桔部材上と光路切り瞽えが行われる際に前記連結部 材が接触する位置の前記基板上との两方に前記基板から庇状に突出した Bとを有し、  B that protrudes in an eaves-like manner from the substrate on a side of the connection member of the cantilever and the substrate at a position where the connecting member contacts when the optical path cutting is performed.
前記スィツチ K動手段によ り片持ち梁を変形させて光路の切り替えを 行なうことを特徴とする導波路型光スィツチ。 The optical path is switched by deforming the cantilever by the switch K moving means. A waveguide type optical switch characterized by performing the following.
3 . 基板から庇状に突出した層の厚さを 1 0マイクロメートル以上 1 0 0マイクロメートル以下とすることを特徴とする請求の範囲第 2項に記 載の導波路型光スィッチ。 3. The waveguide-type optical switch according to claim 2, wherein a thickness of a layer protruding from the substrate in an eaves-like shape is set to 10 μm or more and 100 μm or less.
4 . 基板から庇状に突出した層の材質をガラスとすることを特徴とする 請求の範囲第 2項若しくは第 3項に記載の導波路型光スィツチ。 4. The waveguide type optical switch according to claim 2, wherein the material of the layer protruding from the substrate in an eaves shape is glass.
5 . 前記基板の光路切り替えが行われる界面に面する前記第 2の光導波 路の間の部材を光の伝ば方向に互いにくぼませたことを特徴とする請求 の範囲第 1項から第 5項のいずれかに記載の導波路型光スイッチ。 5. The member between the second optical waveguides facing the interface where the optical path switching of the substrate is performed is recessed from each other in the direction in which light is transmitted. Item 15. A waveguide type optical switch according to any one of the items [1] to [10].
6 . 前記スィツチ駆動手段は、 6. The switch driving means includes:
前記片持ち梁の連拮部材上及び前記基板上のどちらか一方に永久磁石 を、 他方にコイル及び磁性体を形成し、  A permanent magnet is formed on one of the connecting member of the cantilever and the substrate, and a coil and a magnetic body are formed on the other,
永久磁石とコイルおよび磁性体との閟に発生する磁力を利用して、 片 持ち梁上を変形させるスイツチ駆動手段であることを特«とする請求の 範囲第 1項から第 5項のいずれかに記載の導波路型光スィツチ。  6. The switch driving means for deforming a cantilever beam by utilizing a magnetic force generated between a permanent magnet, a coil, and a magnetic body, according to any one of claims 1 to 5, 2. The waveguide type optical switch according to item 1.
7 . 前記片持ち梁の連桔部材上及び前記基板上のどちらか一方に永久磁 石を、 他方にコイル及び磁性体を形成し、 7. A permanent magnet is formed on one of the linking member of the cantilever and the substrate, and a coil and a magnetic body are formed on the other,
これらを片持ち梁の長手方向中央部より も梁の基部側に形成したこと を特徴とする請求の範囲第 6項記載の導波路型光スィツチ。  7. The waveguide type optical switch according to claim 6, wherein these are formed closer to the base of the beam than to the center in the longitudinal direction of the cantilever.
8 . 前記片持ち梁の連結部材、 永久磁石、 コイル及び磁性体を、 その片 持ち梁の長手方向中央部よ り も梁の基部側に形成し、 さらに片持ち梁の別の連桔部材をその片持ち梁の長手方向中央部よ り も梁の先端側に形成したことを特徴とする請求の範囲第 6項記載の導波 路型光スィ ツチ。 8. The cantilever connecting member, permanent magnet, coil and magnetic body The cantilever is formed closer to the base of the beam than the center in the longitudinal direction, and another connecting member of the cantilever is formed closer to the tip of the beam than the center of the cantilever in the longitudinal direction. 7. The waveguide type optical switch according to claim 6, wherein:
9 . 前記第 1の光導波路の光路切り替えが行われる界面と前記片持ち梁 の連結部材との の片持ち梁側面に対向する位 Sの前記基板上に精密に 位 S決めされた部材を配僮することを特徴とする請求の範囲第 1項から 第 8項のいずれかに記載の導波路型光スイ ッチ。 9. A precisely positioned member is disposed on the substrate at a position S opposite to the side surface of the cantilever between the interface where the optical path of the first optical waveguide is switched and the connecting member of the cantilever. 9. The waveguide type optical switch according to claim 1, wherein the optical switch is configured to be a child.
1 0 . 前記片持ち梁の幅を 1 5マイクロメートル以上 6 0マイクロメ一 トル以下とすることを特徴とする誚求の範囲第 1項から第 9項のいずれ かに記載の導波路型光スィツチ。 10. The waveguide type optical switch according to any one of items 1 to 9, wherein the width of the cantilever is not less than 15 micrometers and not more than 60 micrometers. .
1 1 . 光スイ ツチと外部との接絞面における光導波路配列ピツチを光路 切り替えが行われる界面における光導波路配列ピッチより も大き く した ことを特欲とする請求の範囲第 1項から第 1 0項のいずれかに記載の導 波路型光スイッチ。 11. The claim 1 to claim 1, wherein the pitch of the optical waveguide array at the contact surface between the optical switch and the outside is made larger than the pitch of the optical waveguide array at the interface where optical path switching is performed. The waveguide type optical switch according to any one of items 0.
1 2 . 請求の範囲第 1項から第 1 1項のいずれかに記載された導波路型 光スィツチを基板上で複数倔並列あるいは直列あるいは並列と直列を組 み合わせた接嫁とした導波路型光スィツチ。 12. A waveguide in which the waveguide type optical switch described in any one of claims 1 to 11 is joined to a plurality of parallel or series or a combination of parallel and series on a substrate. Type light switch.
1 3 . 請求の範囲第 1項から第 1 2項のいずれかに記載された導波路型 光スィツチを《槿を有する気密容器内に収納したことを特徴とする導波 路型光スィツチ。 13. A waveguide-type optical switch characterized in that the waveguide-type optical switch according to any one of claims 1 to 12 is housed in an airtight container having a Genes.
1 . 請求の範囲第 1項から第 1 3項のいずれかに記載された導波路型 光スィ ッチと、 1. A waveguide type optical switch according to any one of claims 1 to 13;
前記導波路型光スィツチの動作を制御する制御装欐と、  A control device for controlling the operation of the waveguide type optical switch;
導波路光スィツチの前記第 1の光導波路に接絞された光信号コネクタ と、  An optical signal connector focused on the first optical waveguide of the waveguide optical switch;
導波路光スィツチの前記第 2の光導波路に接親された複数の光信号コネ クタとを備えたことを特徴とする光通信機器。 1 5 . 請求の範囲第 1項から第 1 3項に記載されたいずれかの導波路型 光スィ ツチにおいて、 前記片持ち梁がいずれか一方の変形方向に変形し た場合に前記第 1の光導波路と光学的に桔合する前記第 2の光導波路同 士が接親され接絞されたことを特徴とする光スィッチ。 1 6 . 請求の範囲第 1項から第 1 3項のいずれかに記載された導波路型 光スィ ッチの、 前記第 1の光導波路が光通信回線に接铰され、 An optical communication device comprising: a plurality of optical signal connectors connected to the second optical waveguide of the waveguide optical switch. 15. The waveguide-type optical switch according to any one of claims 1 to 13, wherein the first cantilever beam is deformed in one of the deformation directions. An optical switch, wherein the second optical waveguides optically coupled to the optical waveguides are connected and narrowed. 16. The waveguide-type optical switch according to any one of claims 1 to 13, wherein the first optical waveguide is connected to an optical communication line,
前記片持ち梁がいずれか一方の変形方向に変形した場合に光学的に結 合する前記第 2の光導波路同士が接絞され、  When the cantilever is deformed in one of the deformation directions, the second optical waveguides optically coupled to each other are narrowed down,
他方の変形方向に変形した場合に光学的に接続する前記第 2の光導波 路が所定の検査器に接絞されることを特徴とする光通信網検査用光ス イッチ。  An optical switch for optical communication network inspection, wherein the second optical waveguide, which is optically connected when deformed in the other deformation direction, is brought into contact with a predetermined inspection device.
1 7 . 請求の範囲第 1項から第 1 3項のいずれかに記載された 波路型 光スィツチの前記第 1の光導波路が光情報を伝送する装 11に接続され、 前記片持ち梁がいずれか一方の変形方向に変形した場合に光学的に結 合する前記第 2の光導波路同士が接絞され、 他方の変形方向に変形した場合に光学的に接続する前記第 2の光導波 路が前記装 Sと異なる装惺に接絞されるコネクタに接続されることを特 徴とする光通信用ィンターコネク ト。 17. The first optical waveguide of the waveguide optical switch according to any one of claims 1 to 13, wherein the first optical waveguide is connected to a device 11 for transmitting optical information; The second optical waveguides that are optically coupled when deformed in one of the deformation directions are brought into contact with each other, An optical communication interconnect characterized in that the second optical waveguide optically connected when deformed in the other deformation direction is connected to a connector that is connected to a device different from the device S. .
1 8 . 請求範囲第 1 2項に記載された導波路型光スィ ツチにおいて、 他 の光導波路に接较されていない前記第 1、 第 2の光導波路が、 複数の光 通信用光ファイバ—ケーブルに接銃され、 前 IB導波路型光スィ ツチの切 り替え動作及び切り替え動作の組合せによ り、 光通信回線の接続経路の 切り替えを行なう光通信網接絞経路切替装置。 18. The waveguide type optical switch according to claim 12, wherein the first and second optical waveguides that are not connected to other optical waveguides include a plurality of optical communication optical fibers. An optical communication network connection path switching device which is connected to a cable and switches the connection path of an optical communication line by a combination of a switching operation and a switching operation of the front IB waveguide type optical switch.
1 9 . エツチング加工した石英ガラス層をマスクとしてシリコンの基板 を選択性ドライエッチングし、 その後反対側からシリコン基板をゥェッ トエッチングによ り加工して貫通構造を得る光スィツチの製造プロセス。 19. The process of manufacturing an optical switch in which a silicon substrate is selectively dry-etched using the etched quartz glass layer as a mask, and then the silicon substrate is processed by jet etching from the opposite side to obtain a through structure.
PCT/JP1996/000184 1996-01-31 1996-01-31 Waveguide type optical switch WO1997028476A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP52747397A JP3527744B2 (en) 1996-01-31 1996-01-31 Waveguide type optical switch
PCT/JP1996/000184 WO1997028476A1 (en) 1996-01-31 1996-01-31 Waveguide type optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/000184 WO1997028476A1 (en) 1996-01-31 1996-01-31 Waveguide type optical switch

Publications (1)

Publication Number Publication Date
WO1997028476A1 true WO1997028476A1 (en) 1997-08-07

Family

ID=14152869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000184 WO1997028476A1 (en) 1996-01-31 1996-01-31 Waveguide type optical switch

Country Status (2)

Country Link
JP (1) JP3527744B2 (en)
WO (1) WO1997028476A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0859260A2 (en) * 1997-02-17 1998-08-19 Hitachi, Ltd. Optical switch, method of manufacturing same, and optical communication equipment using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535725U (en) * 1978-08-31 1980-03-07
JPS55156903A (en) * 1979-05-28 1980-12-06 Nippon Telegr & Teleph Corp <Ntt> Self-holding type photo switch
JPS5924804A (en) * 1982-08-02 1984-02-08 Ngk Spark Plug Co Ltd Switching system of optical waveguide
JPS5938402U (en) * 1982-08-31 1984-03-10 第一電工株式会社 light switch
JPH01502782A (en) * 1987-04-02 1989-09-21 ブリテツシユ・テレコミユニケイシヨンズ・パブリツク・リミテツド・カンパニー radiation deflection assembly
JPH0792340A (en) * 1993-09-20 1995-04-07 Sumitomo Electric Ind Ltd Production of optical waveguide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535725U (en) * 1978-08-31 1980-03-07
JPS55156903A (en) * 1979-05-28 1980-12-06 Nippon Telegr & Teleph Corp <Ntt> Self-holding type photo switch
JPS5924804A (en) * 1982-08-02 1984-02-08 Ngk Spark Plug Co Ltd Switching system of optical waveguide
JPS5938402U (en) * 1982-08-31 1984-03-10 第一電工株式会社 light switch
JPH01502782A (en) * 1987-04-02 1989-09-21 ブリテツシユ・テレコミユニケイシヨンズ・パブリツク・リミテツド・カンパニー radiation deflection assembly
JPH0792340A (en) * 1993-09-20 1995-04-07 Sumitomo Electric Ind Ltd Production of optical waveguide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0859260A2 (en) * 1997-02-17 1998-08-19 Hitachi, Ltd. Optical switch, method of manufacturing same, and optical communication equipment using same
EP0859260A3 (en) * 1997-02-17 2000-12-20 Hitachi, Ltd. Optical switch, method of manufacturing same, and optical communication equipment using same
US6219472B1 (en) 1997-02-17 2001-04-17 Hitachi, Ltd. Optical switch, method of manufacturing same, and optical communication equipment using the same
US6487330B2 (en) 1997-02-17 2002-11-26 Hitachi, Ltd. Optical switch, method of manufacturing same, and optical communication equipment using same

Also Published As

Publication number Publication date
JP3527744B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
US6487330B2 (en) Optical switch, method of manufacturing same, and optical communication equipment using same
US6498870B1 (en) Micromachined optomechanical switches
US6360033B1 (en) Optical switch incorporating therein shallow arch leaf springs
US6388789B1 (en) Multi-axis magnetically actuated device
US6205267B1 (en) Optical switch
US7027682B2 (en) Optical MEMS switching array with embedded beam-confining channels and method of operating same
US5367584A (en) Integrated microelectromechanical polymeric photonic switching arrays
US20020113281A1 (en) MEMS device having an actuator with curved electrodes
US7505646B2 (en) Optical switch and optical switch array
US20050094931A1 (en) Optical switch and production method therefor, information transmission device using it
TW457381B (en) Fiber optic switching apparatus and method
US6738538B2 (en) Method to construct optical infrastructure on a wafer
KR100447183B1 (en) Optical switch and method for fabricating the same
US20060002652A1 (en) Optical shuttle system and method used in an optical switch
WO1997028476A1 (en) Waveguide type optical switch
JPH06148536A (en) Optical switch and manufacture thereof
US20100074577A1 (en) Hybrid optical switch apparatus
JP2002365566A (en) Non-blocking mechanical fiberoptic matrix switch
WO2001055770A2 (en) Mechanically latching optical switch
US11630266B2 (en) Adiabatic optical switch using a waveguide on a MEMS cantilever
KR100331805B1 (en) optical switch and method for fabricating the same
CA2422384A1 (en) Electrostatically operated device
JP2001296484A (en) Optical switch and method for switching optical switch
KR100565598B1 (en) Optical switch
Nagaoka Design of a latching type single‐mode fiber switch

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase