WO1997024303A1 - Method for purifying crystalline substance - Google Patents

Method for purifying crystalline substance Download PDF

Info

Publication number
WO1997024303A1
WO1997024303A1 PCT/JP1996/003669 JP9603669W WO9724303A1 WO 1997024303 A1 WO1997024303 A1 WO 1997024303A1 JP 9603669 W JP9603669 W JP 9603669W WO 9724303 A1 WO9724303 A1 WO 9724303A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
raw material
dmn
specific substance
substance
Prior art date
Application number
PCT/JP1996/003669
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Nagaoka
Koji Yamamoto
Keiko Moriya
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Publication of WO1997024303A1 publication Critical patent/WO1997024303A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives

Definitions

  • the present invention relates to a purification method capable of obtaining a specific substance at a high yield and a high purity from a mixture containing a specific substance having a crystallinity. From a mixture of dimethylnaphthalene isomers obtained as a petroleum fraction or obtained by addition of a methyl group to naphthalene or cyclization of hydrocarbon, etc., a method for obtaining 2,6-dimethylnaphthalene of high purity It can be used effectively.
  • 2,6-DMN can be obtained from coal or petroleum fractions by distillation or the like, or by addition of methyl groups to naphthalene or by cyclization of hydrocarbons.
  • a mixture containing the DMN isomers of DMN has 10 types of isomers, and the boiling points of these isomers are close to each other, so that there is a natural limit to the reduction by fractional distillation, and the concentration as 2,6-DMN is 10 ⁇ It can only be increased to about 40%.
  • JP-A-63-2755278 a pressure crystallization method
  • DMN and 2,3-DMN have been mixed into the crystallized crystal at a higher ratio than the other DMN isomers.
  • DMN and 2.3-DMN are more likely to form a solid solution with 2.6-DMN than other DMN isomers, and it is considered that crystallization removal as an impurity becomes difficult.
  • 2-methylnaphthalene has been confirmed to be highly likely to form a solid solution with 2.6-DMN.
  • a pressure crystallization method is effective as a method for obtaining a specific substance with high purity from a mixture containing impurities that form a solid solution (Japanese Patent Publication No. 6-161842). ).
  • the raw material mixture is pressurized to a high pressure to crystallize a specific substance.
  • the impurities that crystallized and adhered to the surface of step (1) or the mother liquor that adhered to the surface were washed away, and the obtained crystal was once depressurized and melted in step (3).
  • a high-purity target substance is obtained as a crystal.
  • Table 2 shows that a mixture of DMN isomers whose specific substance is 2,6-DMN is treated with adiabatic treatment of a mixture with different concentrations (for each concentration, the ratio of solids in the raw material mixture at atmospheric pressure is 10%). % Temperature from 1.% to 1.500 kg / cm 2 ). Table 2
  • the purification efficiency by sweating is not sufficiently improved. This tendency is the same when the raw material mixture contains an impurity component having a solubility / sensitivity temperature close to that of the target substance.
  • the present invention has been made in view of the problems of the prior art as described above, and its object is to form a solid solution with the target substance at a relatively low content, or It is intended to provide a method that can efficiently purify a high-purity target substance with a simple operation, even from a raw material mixture that contains impurities whose solubility and melting temperature are close to the target substance.
  • the method of purifying a crystalline substance according to the present invention is a method of purifying the intended substance by subjecting it to a crystallization operation under a high pressure from a raw material mixture containing a specific substance. The point is that the steps (3) to (3) are performed sequentially.
  • the above-mentioned purification method of the present invention is particularly applicable to the purification of a specific substance from a mixture containing, as an impurity, a substance forming a solid solution with a specific substance to be purified, for example, from a mixture of DMN isomers. 6—It can be effectively used as a method for separating and purifying DMN.
  • the mother liquor discharged to the outside of the pressure vessel in the step (3) contains an equivalent amount of a specific substance, the mother liquor is mixed into the raw material mixture, and is again used in the above (1) to (3). It is preferable to repeat the above step because the yield of the specific substance can be further increased.
  • FIG. 1 is a schematic process explanatory view illustrating a purification method according to the present invention
  • FIG. 2 is a flowchart showing a conventional concentration / purification method
  • FIG. 3 is a purification procedure employed in Examples.
  • FIG. BEST MODE FOR CARRYING OUT THE INVENTION As described above, the purification method employed in the present invention is basically a pressure crystallization method.
  • This method is common to the conventional purification method in that it adopts a method of purifying a specific substance efficiently from a raw material mixture that has a low concentration of a specific substance and contains a considerable amount of impurities that form a solid solution.
  • pressure operation during pressure crystallization is divided into two stages, a high concentration phase of a specific substance is formed in a pressure vessel, and crystallization is performed by pressurizing the specific substance in the high concentration phase.
  • FIG. 1 is a schematic explanatory diagram of a process when a purification method according to the present invention is performed.
  • a raw material mixture A is charged into a pressure vessel 1 as shown in (a).
  • the raw material mixture A at this time may be in the form of a solution in which the target substance is completely dissolved, or may be in the form of a slurry in which a part of the specific substance is crystallized by cooling to an appropriate temperature.
  • the pressure in the pressure vessel 1 is increased as shown in (b)
  • the dissolved specific substance crystallizes out in the entire area of the vessel 1.
  • the crystal that has crystallized in the pressure vessel 1 as shown in (c) settles below the vessel 1 by its own gravity, and the crystal C that has settled out Contains a considerable amount of impurities that form a solid solution with the specific substance to be purified, but most of the impurities are contained in the supernatant S in a liquid state.
  • the mother liquor discharged in this step contains a considerable amount of a specific substance to be purified, if necessary, the mother liquor may be returned to the first step and mixed with the raw material mixture to perform the above treatment. This is preferable because the yield of the specific substance as a whole can be further increased.
  • the operating pressure when performing the crystallization operation 500 ⁇ 3, 000 kg / cm, more preferably 1, 000 ⁇ 2, 000 kg / cm 2 range is desirable, 5 0 0 kg / cm 2 less than the pressure of the In this case, the crystallization of the specified substance does not proceed sufficiently and the yield is difficult to increase.On the other hand, if the pressure is excessively high, exceeding 3,000 kg / cm 2 , the temperature increases significantly due to the pressure and the crystallization occurs.
  • the crystallization equipment must be equipped with a cooling mechanism, which imposes a heavy burden on equipment.
  • the purity of the obtained crystal can be further improved by performing the sweating treatment by slightly lowering the operating pressure if necessary. Further, ⁇ crystal C s when the lowered to the operating pressure to atmospheric pressure after emitting perspiration process because 3 ⁇ 4 solution, it is possible to perform discharge of the container 1 out easier and smoothly.
  • discharging the final mother liquor it is desirable that the liquid phase S having a high impurity concentration be extracted from above the pressure vessel 1.
  • the liquid phase S having a high impurity concentration has to pass between the crystals C s having a high purity.
  • the liquid Cs is contaminated by the liquid phase S having a high impurity concentration.
  • the liquid phase S is extracted from the upper side as described above, such contamination does not occur, and the specific substance is not contained. times of high purity ⁇ C s which crystallized out from the high liquidus S c density remains high purity Because it can be collected.
  • the crystal is once settled by gravity and then melted to form a liquid phase having an increased specific substance concentration.
  • This method has a remarkable effect when crystallizing and refining a specific substance from a mixture system that forms a solid solution or a mixture system with similar crystallization temperatures and pressures. I do.
  • the degree to which the purity can be increased by one crystallization operation largely depends on the specific substance concentration of the original raw material mixture.
  • High-purity crystals cannot be obtained unless solid crystals and solid-liquid separation are performed after crystallization of the crude crystals, and the crystallization and solid-liquid separation are repeated one or more times.
  • a high-concentration region of a specific substance is formed in the pressure vessel 1 by the first pressure crystallization, gravity sedimentation, and pressure-down melting without the need for solid-liquid separation during crystallization as described above. Since the specific substance can be crystallized from the high concentration region by the subsequent pressure increase, the purification operation is greatly simplified, and the loss of the specific substance by at least two solid-liquid separations is suppressed, and the recovery rate is reduced. Is also enhanced.
  • the crystal finally deposited in the container 1 is a specific substance. Crystallized from the concentrated system with increased concentration, and the impurity concentration of the mother liquor attached around Since the degree is sufficiently low, crystals of sufficiently high purity can be obtained without intentionally performing perspiration.
  • the main feature of the present invention is described as “purification from a low-concentration raw material mixture to a high-purity substance”.
  • the present invention is applied to a raw material mixture originally having a high concentration of a specific substance, it can be further improved. It is clear that a high-purity target substance can be obtained, and in this case also, compared with the conventional method, it is possible to obtain a higher-purity target substance with a simpler operation and a high recovery rate. Examples
  • the present invention will be described in more detail with reference to examples.However, the present invention is not limited to the following examples, and may be appropriately changed within a range that can conform to the spirits described above and below. It is also possible to implement the present invention, and all of them are included in the technical scope of the present invention. In the following, “%” means “% by weight”.
  • the pressure is once released to melt the crystals, and then the pressure crystallization is performed again, and then the mother liquor is separated in the direction of the vessel 1b.
  • Adopt the method was.
  • the mother liquor was immediately separated in the direction of the container 1b by a pressure difference without leaving and releasing the pressure.
  • Table 3 also shows the results when pressure crystallization was performed only once under the conditions of 60 ° C x 1,000 kg / cra 2 and the mother liquor was separated using the same raw material mixture as above. did.
  • Ratio to raw material 1445 0.762 0.709 0.283 0.267 0.231 0.509 is degree 81.64 7.39 2.68 1.81 3.36 0.26 0.46
  • the crude crystals were once subjected to pressure crystallization at 60 ° C X 1,000 kg / cm 2 in accordance with the method of the present invention. After allowing the crystals to crystallize and standing for 10 minutes to settle the crystals by gravity, the internal pressure was lowered to 20 kg / m 2 to melt most of the crystals (a sample with this concentration was 60.C. Then, the solution was completely melted at 15 Okg / cm 2 ), the pressure was increased again to 1.000 kg / cm 2 , pressure crystallization was performed, and the mother liquor was separated in the direction of the vessel 1 b by the differential pressure (within 250). Table 4 shows the purity of the obtained crystals, the amount of impurities mixed therein, and the ratio of the target substance and impurities contained in the crystals to the raw materials.
  • the purity of 2,6-DMN of the obtained crystal is 82.5% in the comparative example, while the purity of the obtained crystal is 85.9% in the method of the present invention. It is rising. Also, when comparing the ratio of each impurity content to the raw material, there is no significant difference in the numerical values of components other than 2.7-DMN and 2,3-DMN, but a solid solution is formed with 2.6-DMN. When comparing 2.7-DMN and 2.3-DMN, it can be seen that the example is significantly lower than the comparative example, and the content of solid solution-forming impurities is significantly reduced.
  • the present invention is configured as described above, and forms a liquid phase having a high concentration of a specific substance by gravity-sedimenting a crude crystal generated by pressure crystallization and then reducing the pressure to melt the crystal. And then perform pressure crystallization again, which can effectively increase the purity of the target substance in a single solid-liquid separation, and in particular, a raw material mixture containing impurities that form a solid solution with the specific substance to be purified Therefore, the impurities can be effectively removed, and high purification efficiency can be obtained by a simple operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A method for efficiently purifying a particular substance contained in a raw material mixture, comprising the steps of: (1) subjecting the raw material mixture in a liquid form or a slurry form wherein part of the particular substance has crystallized to crystallization under high pressure to precipitate crystals and settle them in a pressure vessel; (2) lowering the pressure in the pressure vessel to entirely or mostly dissolve the settled crystals, thereby forming a liquid phase or a slurry having a high concentration of the particular substance in the lower part of the pressure vessel; and then (3) enhancing the pressure in the pressure vessel to crystallize the particular substance in the lower part, followed by discharge of the mother liquor out of the pressure vessel.

Description

明 細 書  Specification
結晶性物質の精製方法 技術分野 本発明は、 桔晶性の特定物質を含む混合物から該特定物質を高収 率且つ高純度で得ることのできる精製方法に関し、 この方法は、 た とえば石炭や石油留分として得られ、 あるいはナフタレンへのメチ ル基の付加もしくは炭化水素の環化反応等によって得られるジメチ ルナフタレン異性体の混合物から、 髙純度の 2 , 6 —ジメチルナフ タレンを得る方法などとして有効に活用することができる。 背景技術 特定物質を含む混合物から該特定物質を分離して精製する方法と しては、 従来より沸点差を利用した蒸留法、 温度による溶剤への溶 解度差を利用した冷却晶析法等が汎用されており、 また最近では、 圧力差を利用した圧力晶析法等も提案されている。 しかしながら何 れの方法にしても、 特定物質濃度の低い原料混合物から特定物質を —段の処理で高純度かつ高収率に精製することは困難であり、 通常 は、 比较的低滴度の原料混合物を複数段の処理に付して逐次特定物 質濃度を高めていく方法を採用しているが、 特に特定物質と固溶体 を形成したり或は物性 (沸点や溶剤に対する溶解度など) の近似し た他の物質が含まれている場合は、 特定物質の港縮乃至精製に様々 の問題が生じてくる。  TECHNICAL FIELD The present invention relates to a purification method capable of obtaining a specific substance at a high yield and a high purity from a mixture containing a specific substance having a crystallinity. From a mixture of dimethylnaphthalene isomers obtained as a petroleum fraction or obtained by addition of a methyl group to naphthalene or cyclization of hydrocarbon, etc., a method for obtaining 2,6-dimethylnaphthalene of high purity It can be used effectively. BACKGROUND ART Conventional methods for separating and purifying a specific substance from a mixture containing the specific substance include a distillation method using a difference in boiling point and a cooling crystallization method using a difference in solubility in a solvent depending on temperature. Is widely used, and recently, a pressure crystallization method utilizing a pressure difference has been proposed. However, in any method, it is difficult to purify a specific substance from a raw material mixture having a low concentration of the specific substance to a high purity and a high yield in a single-stage treatment. A method is used in which the mixture is subjected to multiple stages of treatment to successively increase the concentration of the specified substance. In particular, a solid solution is formed with the specified substance, or the physical properties (such as the boiling point and solubility in solvents) are approximated. If other substances are included, various problems will arise in narrowing down or refining specific substances.
例えば 2 . 6 —ジメチルナフタレン (以下、 ジメチルナフタレン を D M Nと略記する') を精製する場合を例にとって説明すると、 2, 6— DMNは、 石炭留分ゃ石油留分から蒸留等によって澳縮す るか、 或はナフタレンへのメチル基の付加反応、 炭化水素の環化反 応等によって得られるが、 いずれも複数の DMN異性体を含む混合 物として得られる。 DMNは 10種の異性体を有しており、 それら 異性体の沸点は互いに近接しているので、 分別蒸留による澳縮には おのずと限界があり、 2, 6— DMNとしての濃度で 1 0〜40% 程度にまでしか高めることができない。 For example, the case of purifying 2.6-dimethylnaphthalene (hereinafter, dimethylnaphthalene is abbreviated as DMN) will be described as an example. 2,6-DMN can be obtained from coal or petroleum fractions by distillation or the like, or by addition of methyl groups to naphthalene or by cyclization of hydrocarbons. As a mixture containing the DMN isomers of DMN has 10 types of isomers, and the boiling points of these isomers are close to each other, so that there is a natural limit to the reduction by fractional distillation, and the concentration as 2,6-DMN is 10 ~ It can only be increased to about 40%.
また本出願人は 2, 6 - DMNの効率的な稍製法として先に圧力 晶析法 (特開昭 63 - 275528号) を提案したが、 この方法を 効率よく実施するには、 原料混合物としての 2, 6 -DMN濃度が 50%程度以上でなければならず、 2. 6 - DMN濃度が 1 0〜 40%である通常の原料混合物を該圧力晶析にかけても、 高純度の 2. 6— DMNを得ることは難しい。  In addition, the applicant has previously proposed a pressure crystallization method (JP-A-63-275528) as an efficient method for producing 2,6-DMN, but in order to carry out this method efficiently, a raw material mixture must be used. The 2,6-DMN concentration must be about 50% or more, and 2.6-DMN concentration is 10-40%. — Getting a DMN is difficult.
また本発明者等が確認したところでは、 上記混合物からの 2, 6 一 DMNの精製が困難である他の理由として、 他の DMN異性体 の一部が 2. 6—DMNと固溶体を形成して晶出し、 それにより 2, 6— DMN晶出物から抜け難くなることが確認された。 即ち、 2. 6— DMNが他の DMN異性体と全く固溶体を作らず、 しかも 2, 6— DMNが晶析処理により純物質として析出するとするなら ば、 2. 6— DMN晶出物の表面に母液と共に付着している DMN 異性体を含めて不純物は全て母液中に存在するはずであり、 原料混 合物中の不純物 (DMN異性体) の含有比率と、 2. 6 -DMN曰  In addition, the present inventors have confirmed that it is difficult to purify 2,6-DMN from the above mixture. Another reason is that some of the other DMN isomers form a solid solution with 2.6-DMN. It was confirmed that it was difficult to remove from the 2,6-DMN crystallized product. That is, if 2.6-DMN does not form a solid solution at all with other DMN isomers, and if 2,6-DMN precipitates as a pure substance by crystallization, the surface of the 2.6-DMN crystallized product All impurities, including the DMN isomer attached to the mother liquor together with the mother liquor, should be present in the mother liquor, and the content ratio of the impurities (DMN isomer) in the raw material mixture and 2.6-DMN
BB  BB
出物の表面に母液と共に付着し混入してくる不純物 (DMN異性) の含有比率とは、 全ての DMN異性体について同一であるはずであ る。 ところが、 冷却晶析によって得られた桔果は下記表 1の通りと なる。 表 1 The content of impurities (DMN isomers) attached to and mixed with the mother liquor on the surface of the product should be the same for all DMN isomers. However, the results obtained by cooling crystallization are as shown in Table 1 below. table 1
Figure imgf000005_0001
即ち、 DMN異性体のうち 2. 7— DMNと 2, 3—DMNは、 他の DMN異性体よりも高い比率で晶出桔晶中に混入してきてお り、 この結果より、 2. 7— DMNや 2. 3— DMNは他の DMN 異性体よりも 2. 6 -DMNと固溶体を形成する可能性が高く、 不 純物としての晶出除去が困難になるものと考えられる。 こうした傾 向を有する他の不純物として、 2—メチルナフタレンも 2. 6— DMNと固溶体を形成する可能性が高いことが確認されている。 上記の様に、 固溶体を形成する不純物を含む混合物から特定物質 を高純度で得る方法として、 本出願人は圧力晶析法が有効であるこ とを提案した (特公昭 6 1 - 6 1 842号) 。 この方法は、 例えば 図 2のフロー図に示す如く、 まず①の工程で原料混合物を高圧に加 圧して特定物質を晶出させ、 ②の工程で固液分離した後発汗処理を 行ない、 特定物質の表面に晶出して付着した不純物あるいはその表 面に付着した母液を洗い流し、 得られた桔晶を③の工程で一旦減圧 して融解させた後、 ④の工程で再度加圧し再結晶させて高純度化 し、 液相を分離除去することによって高純度の目的物質を桔晶とし て得るものである。
Figure imgf000005_0001
That is, among the DMN isomers, 2.7-DMN and 2,3-DMN have been mixed into the crystallized crystal at a higher ratio than the other DMN isomers. DMN and 2.3-DMN are more likely to form a solid solution with 2.6-DMN than other DMN isomers, and it is considered that crystallization removal as an impurity becomes difficult. As another impurity having such a tendency, 2-methylnaphthalene has been confirmed to be highly likely to form a solid solution with 2.6-DMN. As described above, the present applicant has proposed that a pressure crystallization method is effective as a method for obtaining a specific substance with high purity from a mixture containing impurities that form a solid solution (Japanese Patent Publication No. 6-161842). ). In this method, as shown in the flow chart of Fig. 2, for example, in step (1), the raw material mixture is pressurized to a high pressure to crystallize a specific substance. The impurities that crystallized and adhered to the surface of step (1) or the mother liquor that adhered to the surface were washed away, and the obtained crystal was once depressurized and melted in step (3). By purifying and separating and removing the liquid phase, a high-purity target substance is obtained as a crystal.
即ち圧力晶析では、 加圧して桔晶化させた後、 分離工程で減圧 . 発汗 (この工程では、'減圧時に目的物質の結晶が一部融解し、 不饨 物を洗い流して目的物質の純度が高められる) を行なう際に、 固溶 体を形成した不純物濃度の高い結晶から優先的に融解するので、 そ の融液を除去することによって目的物質の純度が高められ、 またそ の後に系を一旦減圧して結晶を融解させてから再加圧してやれば、 新たに析出する結晶は一層不純物澳度の低いものとなり、 目的物質 を髙純度の結晶として得ることができるのである。 That is, in pressure crystallization, after pressure is applied to crystallize, pressure is reduced in the separation step. Sweating (In this step, the crystals of the target substance partially melt when depressurized, and (In order to increase the purity of the target substance by washing away the substance), the crystals with a high impurity concentration that have formed a solid solution are preferentially melted, and the purity of the target substance is reduced by removing the melt. If the system is then depressurized once to melt the crystals and then repressurized, the newly precipitated crystals will have even lower impurities and the target substance will be obtained as high purity crystals. You can do it.
しかしながらこの方法は、 処理対象となる原料混合物中の特定物 質含有率が高い、 即ち比較的高濃度であるときは、 加圧による温度 上昇が大きいため分離時の融解 ·発汗作用もより効果的に行なわれ るため高い精製効率が得られるが、 原料混合物中の特定物質含有率 が低く、 即ち低濃度であるときは加圧による温度上昇が小さいの で、 発汗による純度アップは期待されるほどに進まない。  However, in this method, when the content of a specific substance in the raw material mixture to be treated is high, that is, when the concentration is relatively high, the temperature rise due to pressurization is large, so that the melting and perspiration during separation is more effective However, when the concentration of a specific substance in the raw material mixture is low, that is, when the concentration is low, the temperature rise due to pressurization is small, and the purity increase due to perspiration is expected. Do not go to.
たとえば下記表 2は、 特定物質が 2 , 6 - D M Nである D M N 異性体混合物を対象とし、 濃度の異なる混合物を断熱処理 (各濃度 とも、 大気圧下で原料混合物中の固体の比率が 1 0 %の温度から 1. 500 kg/cm2 に加圧) したときの温度変化を示したものである。 表 2 For example, Table 2 below shows that a mixture of DMN isomers whose specific substance is 2,6-DMN is treated with adiabatic treatment of a mixture with different concentrations (for each concentration, the ratio of solids in the raw material mixture at atmospheric pressure is 10%). % Temperature from 1.% to 1.500 kg / cm 2 ). Table 2
Figure imgf000006_0001
即ち濃度 7 0 %の原料混合物であれば、 加圧によって 4 0での温 度上昇があり、 その後の降圧により結晶の約 2 0 %が融解するた め、 発汗による精製効果は十分に高められる。 ところが原料混合物 の濃度が 3 0 %であ'るときの加圧による温度上昇は約 2 CTCに過ぎ ず、 この温度差では結晶の約 2 %しか融解せず、 発汗効果は濃度 7 0 %のものの約 1 1 0であるから、 固溶体を生成する不純物等 を発汗によって十分に除去することはできない。
Figure imgf000006_0001
That is, in the case of a raw material mixture with a concentration of 70%, the temperature rises at 40 by pressurization, and about 20% of the crystals are melted by the subsequent pressure reduction, so that the purification effect by perspiration is sufficiently enhanced. . However, when the concentration of the raw material mixture is 30%, the temperature rise due to pressurization is only about 2 CTC. However, at this temperature difference, only about 2% of the crystals are melted, and the effect of sweating is about 110% of that at a concentration of 70%, so that impurities and the like that form a solid solution cannot be sufficiently removed by sweating.
この様に、 たとえ圧力晶析法を採用したとしても、 原料混合物中 の特定物質濃度が低く且つ固溶体を生成する不純物成分が多く含ま れているものでは、 発汗による精製効率が十分に上がらない。 こう した傾向は、 原料混合物中に目的物質に対して溶解度ゃ敏解温度の 近接した不純物成分が含まれている場合も同じである。 本発明は上記の様な従来技術の問題点に着目してなされたもので あって、 その目的は、 目的物質の含有率が比較的低く、 しかも該目 的物質と固溶体を形成し、 あるいは該目的物質と溶解度や融解温度 の近接した不铋物が含まれている原料混合物からでも、 高純度の目 的物質を簡単な操作で効率よく精製することのできる方法を提供し ようとするものである。 発明の開示 本発明にかかる結晶性物質の精製方法は、 特定物質を含む原料混 合物から該待定物質を高圧力下の晶析操作に付して精製する方法で あって、 下記 (1 ) 〜 (3 ) の工程を順次実施するところに要旨が あ O  As described above, even if the pressure crystallization method is adopted, if the concentration of the specific substance in the raw material mixture is low and contains a large amount of impurity components that form a solid solution, the purification efficiency by sweating is not sufficiently improved. This tendency is the same when the raw material mixture contains an impurity component having a solubility / sensitivity temperature close to that of the target substance. The present invention has been made in view of the problems of the prior art as described above, and its object is to form a solid solution with the target substance at a relatively low content, or It is intended to provide a method that can efficiently purify a high-purity target substance with a simple operation, even from a raw material mixture that contains impurities whose solubility and melting temperature are close to the target substance. is there. DISCLOSURE OF THE INVENTION The method of purifying a crystalline substance according to the present invention is a method of purifying the intended substance by subjecting it to a crystallization operation under a high pressure from a raw material mixture containing a specific substance. The point is that the steps (3) to (3) are performed sequentially.
( 1 ) 液状もしくは該特定物質が一部晶出したスラリ一状の上記 原料混合物を高圧力下の晶析操作に付し、 高圧力下で桔晶 を折出させると共に、 生成した結晶を圧力容器内で沈降さ せる工程、  (1) The above raw material mixture in the form of a liquid or a slurry in which the specified substance is partially crystallized is subjected to a crystallization operation under a high pressure to crystallize the crystals under a high pressure, and the generated crystals are subjected to pressure. The process of settling in the vessel,
( 2 ) 圧力容器内の圧力を低下させ、 沈降した前記結晶の全部も しくは大部分を融解させることによって、 圧力容器の下方 部に特定物質濃度の高い液相またはスラリ一を形成するェ 程、 (2) The pressure in the pressure vessel is reduced, and all of the settled crystals Or forming a liquid phase or slurry enriched with a specific substance at the lower part of the pressure vessel by melting
( 3 ) 圧力容器内の圧力を高め、 上記下方部で該特定物質を晶出 させてから、 母液を圧力容器外へ排出させる工程。 上記本発明の精製法は、 特に原料混合物中に、 精製目的となる特 定物質と固溶体を形成する物質が不純物として含まれている混合物 からの特定物質の精製、 例えば D M N異性体混合物から 2 . 6— D M Nを分離 ·精製する方法として有効に活用することができる。 また、 前記 (3 ) の工程で圧力容器外へ排出される母液中には相 当量の特定物質が含まれているので、 これを前記原料混合物に混入 し、 再度前記 (1 ) 〜 (3 ) の工程を繰り返す様にすれば、 特定物 質の収率を更に高めることができるので好ましい。  (3) A step of increasing the pressure in the pressure vessel, crystallizing the specific substance in the lower part, and then discharging the mother liquor out of the pressure vessel. The above-mentioned purification method of the present invention is particularly applicable to the purification of a specific substance from a mixture containing, as an impurity, a substance forming a solid solution with a specific substance to be purified, for example, from a mixture of DMN isomers. 6—It can be effectively used as a method for separating and purifying DMN. In addition, since the mother liquor discharged to the outside of the pressure vessel in the step (3) contains an equivalent amount of a specific substance, the mother liquor is mixed into the raw material mixture, and is again used in the above (1) to (3). It is preferable to repeat the above step because the yield of the specific substance can be further increased.
そして、 前記高圧下の晶析操作は、 加圧による昇温を極力抑えつ つ圧力晶析を効率よく遂行する意味から、 5 0 0〜3, 000 kg/cm2, より好ましくは 1, 000〜2. 000 kg/cm2の範囲の圧力で行なうことが 望ましい。 図面の簡単な説明 図 1は、 本発明に係る精製法を例示する概略工程説明図、 図 2 は、 従来の濃縮 ·精製法を示すフロー図、 図 3は、 実施例で採用し た精製手順を示す概略説明図である。 発明を実施するための最良の形態 上記の様に本発明で採用される精製方法は、 基本的に圧力晶析法 を採用する点で従来の精製法と共通しているが、 特に特定物質濃度 が低く且つ固溶体を生成する不純物を相当量含んでいる様な原料混 合物から、 特定物質を効率よく精製するための手段として、 圧力晶 析時の圧力操作を 2段階に分け、 圧力容器内で特定物質の高濃度相 を形成してから該高濃度相で特定物質の加圧による結晶化を行な い、 それにより高純度の特定物質を効率よく得ることに成功したも のである。 The crystallization operation under high pressure is carried out at 500 to 3,000 kg / cm 2 , more preferably 1,000, from the viewpoint of efficiently performing pressure crystallization while minimizing temperature rise due to pressurization. to 2. it is preferably performed at a pressure in the range of 000 kg / cm 2. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic process explanatory view illustrating a purification method according to the present invention, FIG. 2 is a flowchart showing a conventional concentration / purification method, and FIG. 3 is a purification procedure employed in Examples. FIG. BEST MODE FOR CARRYING OUT THE INVENTION As described above, the purification method employed in the present invention is basically a pressure crystallization method. This method is common to the conventional purification method in that it adopts a method of purifying a specific substance efficiently from a raw material mixture that has a low concentration of a specific substance and contains a considerable amount of impurities that form a solid solution. As a means of pressure, pressure operation during pressure crystallization is divided into two stages, a high concentration phase of a specific substance is formed in a pressure vessel, and crystallization is performed by pressurizing the specific substance in the high concentration phase. As a result, we succeeded in efficiently obtaining high-purity specific substances.
図 1は、 本発明に係る精製法を実施する際の概略工程説明図であ り、 まず最初に (a ) に示す如く圧力容器 1内へ原料混合物 Aを装 入する。 このときの原料混合物 Aは、 目的物質が全て溶解した溶液 状であってもよく、 あるいは適当な温度まで冷却して特定物質の一 部を晶出させたスラリー状であっても構わない。 次いで (b ) に示 す如く圧力容器 1内を昇圧すると、 溶解していた特定物質が容器 1 内の全域で晶出する。  FIG. 1 is a schematic explanatory diagram of a process when a purification method according to the present invention is performed. First, a raw material mixture A is charged into a pressure vessel 1 as shown in (a). The raw material mixture A at this time may be in the form of a solution in which the target substance is completely dissolved, or may be in the form of a slurry in which a part of the specific substance is crystallized by cooling to an appropriate temperature. Next, when the pressure in the pressure vessel 1 is increased as shown in (b), the dissolved specific substance crystallizes out in the entire area of the vessel 1.
そしてこの時の圧力を維持した状態で放置すると、 (c ) に示す 如く圧力容器 1内に晶出した桔晶はそれ自身の重力によって該容器 1の下方に沈降し、 沈降した該結晶 Cには、 精製目的である特定物 質と固溶体を形成する不純物が相当量含まれているが、 不純物の殆 どは液状のまま上澄部 Sに含まれている。  If the pressure is maintained while maintaining the pressure at this time, the crystal that has crystallized in the pressure vessel 1 as shown in (c) settles below the vessel 1 by its own gravity, and the crystal C that has settled out Contains a considerable amount of impurities that form a solid solution with the specific substance to be purified, but most of the impurities are contained in the supernatant S in a liquid state.
その後 (d ) に示す如く圧力容器 1内を降圧すると、 下方に沈降 した結晶 Cが融解し、 下方部には特定物質濃度の高い液相 S c が形 成され、 不純物濃度の高い上方の上澄部 Sとの間で特定物質濃度の 異なる 2相状態が形成される。 その後再び圧力容器 1内を昇圧する と、 今度は (e ) に示す如く特定物質港度の高い液相 S c 内で特定 物質が晶出するが、 該晶出系は前述の如く原料混合物に比べて特定 物質濃度が大幅に高められ、 不純物の濃度が低下しているので、 晶 出する結晶 C s は前記 (c ) の工程で晶出した結晶 Cに比べて特定 物質純度の非常に高いものとなる。 従ってこの状態から液相を圧力 容器 1外へ排出すると共に、 圧搾して結晶周辺に付着している母液 を十分に除去すると、 高純度の目的物質を結晶ケーキとして取得す ることができる。 Thereafter, when stepping down the pressure vessel 1 as shown (d), the precipitated crystals C to melt down, the high liquidus S c of a particular substance concentration made form the lower part, on the high impurity concentration above A two-phase state having a specific substance concentration different from that of the clear portion S is formed. Then, when the pressure in the pressure vessel 1 is increased again, the specific substance is crystallized in the liquid phase S c having a high specific substance port as shown in (e), and the crystallization system is converted into the raw material mixture as described above. compared specific substance concentration is increased significantly, since the concentration of impurities is decreased, the crystal C s to out crystallization in comparison to crystallization C which crystallized in step (c) above certain Very high material purity. Therefore, when the liquid phase is discharged out of the pressure vessel 1 from this state and pressed to sufficiently remove the mother liquor adhering around the crystal, a high-purity target substance can be obtained as a crystal cake.
尚、 この工程で排出される母液中には、 精製目的となる特定物質 が相当量含まれているので、 必要によっては該母液を最初の工程に 戻し原料混合物に混合して前記処理を行なえば、 全体としての特定 物質の収率を更に高めることができるので好ましい。  Since the mother liquor discharged in this step contains a considerable amount of a specific substance to be purified, if necessary, the mother liquor may be returned to the first step and mixed with the raw material mixture to perform the above treatment. This is preferable because the yield of the specific substance as a whole can be further increased.
また上記晶析操作を行なう時の操作圧力は、 500〜3, 000 kg/c m より好ましくは 1 , 000〜2, 000 kg/cm2の範囲が望ましく、 5 0 0 kg/cm2未満の圧力では特定物質の晶析が十分に進み難くなつ て収率が上がりにく くなり、 一方 3, 000 kg/cm2を超えて過度に高圧 になると、 加圧による温度上昇が著しくなつて晶析の障害となるこ とがあり、 晶析設備に冷却機構を設けなければならなくなるなど設 備上の負担も增大してくる。 The operating pressure when performing the crystallization operation, 500~3, 000 kg / cm, more preferably 1, 000~2, 000 kg / cm 2 range is desirable, 5 0 0 kg / cm 2 less than the pressure of the In this case, the crystallization of the specified substance does not proceed sufficiently and the yield is difficult to increase.On the other hand, if the pressure is excessively high, exceeding 3,000 kg / cm 2 , the temperature increases significantly due to the pressure and the crystallization occurs. The crystallization equipment must be equipped with a cooling mechanism, which imposes a heavy burden on equipment.
上記母液排出工程では、 必要により操作圧力を少し低下させて発 汗処理を行なえば、 得られる結晶の純度を一段と向上させることが できる。 また、 該発汗処理の後で操作圧力を常圧にまで降下させる と該桔晶 C s は ¾解するので、 容器 1外への排出をより簡単且つス ムーズに行なうことができる。 尚最終の母液排出に当たり、 不純物 濃度の高い液相 Sは圧力容器 1の上方から抜き出すことが望まし い。 しかして、 該不純物濃度の高い液相 Sを圧力容器 1の下方から 抜き出そうとすると、 該不純物濃度の高い液相 Sが純度の高められ た結晶 C s の間を通過せざるを得ず、 その結果、 該桔品 C s が不純 物濃度の高い液相 Sにより汚染されるが、 上記の様に液相 Sを上方 側から抜き出す様にすればその様な汚染が起こらず、 特定物質濃度 の高い液相 S c から晶出した高純度の桔晶 C s を高純度のままで回 収することができるからである。 In the mother liquor draining step, the purity of the obtained crystal can be further improved by performing the sweating treatment by slightly lowering the operating pressure if necessary. Further,該桔crystal C s when the lowered to the operating pressure to atmospheric pressure after emitting perspiration process because ¾ solution, it is possible to perform discharge of the container 1 out easier and smoothly. In discharging the final mother liquor, it is desirable that the liquid phase S having a high impurity concentration be extracted from above the pressure vessel 1. Thus, when trying to extract the liquid phase S having a high impurity concentration from below the pressure vessel 1, the liquid phase S having a high impurity concentration has to pass between the crystals C s having a high purity. As a result, the liquid Cs is contaminated by the liquid phase S having a high impurity concentration. However, if the liquid phase S is extracted from the upper side as described above, such contamination does not occur, and the specific substance is not contained. times of high purity桔晶C s which crystallized out from the high liquidus S c density remains high purity Because it can be collected.
上記の様に本発明では、 加圧晶析の後一旦桔晶を重力沈降させて から融解させることによって特定物質濃度の高められた液相を形成 し、 該高濃度域から再度の加圧晶析によって特定物質を晶出させる ものであり、 こうした手法は、 固溶体を形成する混合物系あるいは 結晶化温度 ·圧力の近接した混合物系から特定物質を晶出 ·精製す る際に顕著な効果を発揮する。  As described above, in the present invention, after the pressure crystallization, the crystal is once settled by gravity and then melted to form a liquid phase having an increased specific substance concentration. This method has a remarkable effect when crystallizing and refining a specific substance from a mixture system that forms a solid solution or a mixture system with similar crystallization temperatures and pressures. I do.
即ち、 固溶体を作らず、 結晶化温度 ·圧力の離れた混合物系から 特定物質を晶出させる場合は、 原料混合物の濃度の如何にかかわら ず加圧 ·冷却により特定物質をほぼ純粋な結晶として得ることがで きるが、 前述の如く固溶体を形成する不純物などが含まれている混 合系では、 原料中の特定物質濃度が低くなるほど折出する結晶中の 不純物含量は多くなる。 即ち、 一回の晶析操作でどこまで純度が高 められるかは、 元の原料混合物の特定物質濃度に大きく依存し、 低 濃度の原料混合物から高純度の結晶を得るには、 一旦純度の低い粗 結晶を晶出させて固液分離を行なった後、 更に一回以上の晶析と固 液分離を操り返し行なわなければ、 高純度の結晶は得られない。  In other words, when a specific substance is crystallized from a mixture system with different crystallization temperature and pressure without forming a solid solution, the specific substance is obtained as almost pure crystals by pressing and cooling regardless of the concentration of the raw material mixture. However, as described above, in a mixed system containing impurities forming a solid solution as described above, the lower the concentration of the specific substance in the raw material, the higher the impurity content in the precipitated crystal. In other words, the degree to which the purity can be increased by one crystallization operation largely depends on the specific substance concentration of the original raw material mixture.To obtain high-purity crystals from a low-concentration raw material mixture, once the purity is low, High-purity crystals cannot be obtained unless solid crystals and solid-liquid separation are performed after crystallization of the crude crystals, and the crystallization and solid-liquid separation are repeated one or more times.
ところが本発明では、 前述の如く晶析途中での固液分離を要する ことなく、 第 1回目の圧力晶析と重力沈降および降圧融解によって 圧力容器 1内に特定物質の高濃度域を形成し、 その後の昇圧により 該高濃度域から特定物質の晶析を行なうことができるので、 精製操 作が著しく簡素化されると共に、 少なくとも 2回の固液分離による 特定物質のロスも抑えられて回収率も高められる。  However, in the present invention, a high-concentration region of a specific substance is formed in the pressure vessel 1 by the first pressure crystallization, gravity sedimentation, and pressure-down melting without the need for solid-liquid separation during crystallization as described above. Since the specific substance can be crystallized from the high concentration region by the subsequent pressure increase, the purification operation is greatly simplified, and the loss of the specific substance by at least two solid-liquid separations is suppressed, and the recovery rate is reduced. Is also enhanced.
また本発明を実施する際には、 最終的に高純度結晶を得る際に発 汗処理を行なうことが好ましいことは前述した通りであるが、 最終 的に容器 1内に析出する結晶は特定物質濃度の高められた濃縮系か ら晶出したものであって、 桔晶回りに付着している母液の不純物濃 度は十分に低いので、 敢えて発汗処理を行なわなくとも十分に高純 度の結晶を得ることができる。 In practicing the present invention, as described above, it is preferable to perform a sweating treatment when finally obtaining a high-purity crystal, but the crystal finally deposited in the container 1 is a specific substance. Crystallized from the concentrated system with increased concentration, and the impurity concentration of the mother liquor attached around Since the degree is sufficiently low, crystals of sufficiently high purity can be obtained without intentionally performing perspiration.
尚上記では、 本発明の特徴が最も有効に発揮される 「低濃度原料 混合物から高純度物への精製」 を主体にして説明したが、 元々特定 物質濃度の高い原料混合物に適用すれば、 一層高純度の目的物質が 得られることは明白であり、 この場合も従来法に比較すると、 より 簡単な操作でより髙純度の目的物を高い回収率で得ることが可能と なる。 実施例 以下、 実施例を挙げて本発明をより具体的に説明するが、 本発明 はもとより下記実施例によって制限を受けるものではなく、 前 ·後 記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可 能であり、 それらはいずれも本発明の技術的範囲に含まれる。 尚、 下記において 「%」 とあるのは 「重量%」 を意味する。  In the above description, the main feature of the present invention is described as “purification from a low-concentration raw material mixture to a high-purity substance”. However, if the present invention is applied to a raw material mixture originally having a high concentration of a specific substance, it can be further improved. It is clear that a high-purity target substance can be obtained, and in this case also, compared with the conventional method, it is possible to obtain a higher-purity target substance with a simpler operation and a high recovery rate. Examples Hereinafter, the present invention will be described in more detail with reference to examples.However, the present invention is not limited to the following examples, and may be appropriately changed within a range that can conform to the spirits described above and below. It is also possible to implement the present invention, and all of them are included in the technical scope of the present invention. In the following, “%” means “% by weight”.
2 , 6 — D MN含有率が 3 0 %前後で不純物として他の D MN異 性体およびモノメチルナフタレン (MM N) 含む混合物を原料とし て使用し、 図 3に示す方法で圧力晶析を行なった。 即ち、 内容量 2 O m lの圧力晶析装置を使用し、 圧力容器 1 a内に原料混合物 ( 試料) を装入し恒温槽 2で等温状態に維持しつつ加圧晶析を行なつ た後、 排液容器 1 bとの間に適当な圧力差を設けフィルター Fを通 して母液を容器 1 b側へ分離することとし、 本発明実施例では、 加 圧晶析の後 1 0分間放置して晶出した結晶を容器 1 aの底部に重力 沈降させた後、 一旦放圧して桔晶を融解させてから再度圧力晶析を 行ない、 その後容器- 1 b方向への母液の分離を行なう方法を採用し た。 また比較例では、 圧力晶析の後、 放置および放圧を行なうこと なく直ちに圧力差によって母液を容器 1 b方向へ分離した。 2, 6 — Pressure crystallization was performed using the mixture containing other DMN isomers and monomethylnaphthalene (MMN) as impurities as a raw material with a DMN content of around 30%, as shown in Fig. 3. Was. That is, after using a pressure crystallization apparatus with an internal capacity of 2 O ml, the raw material mixture (sample) is charged into the pressure vessel 1a, and the pressure crystallization is performed while maintaining the isothermal state in the thermostatic chamber 2. An appropriate pressure difference is provided between the drainage vessel 1b and the mother liquor to be separated to the vessel 1b side through the filter F. In the embodiment of the present invention, the mother liquor is left for 10 minutes after pressurized crystallization. After the crystallized crystals are sedimented by gravity at the bottom of the vessel 1a, the pressure is once released to melt the crystals, and then the pressure crystallization is performed again, and then the mother liquor is separated in the direction of the vessel 1b. Adopt the method Was. In the comparative example, after the pressure crystallization, the mother liquor was immediately separated in the direction of the container 1b by a pressure difference without leaving and releasing the pressure.
実施例し 比較例 I  Example and Comparative Example I
2, 6— DMN港度 29. 9 %の原料混合物を使用し、 本発明法 に従って一旦 60°C 1,000 kg/cm2の条件で圧力晶析を行なうこと により粗桔晶を晶出させ、 1 0分間放置して結晶を重力沈降させた 後、 内圧を 200 kg/cm2 にまで下げて殆どの結晶を融解させた後 (この濃度の試料は、 60°Cでは 150 kg/cm2で完全に融解する) 、 再度 1,000 kg/cm 'に昇圧して圧力晶析を行ない、 差圧 ( 250kg/cm2 内) により母液を容器 1 b方向へ分離した。 得られた結晶の純度お よび不純物混入量、 ならびに結晶に含まれる目的物質と不純物の対 原料当たりの含有比率を表 3に示す。 2, 6—DMN using a raw material mixture of 29.9% port strength, and subject to pressure crystallization at 1,000 ° C / cm 2 at 60 ° C according to the present invention to crystallize crude crystals. after allowed to stand crystals 0 min to gravity settling, then melted most of the crystals by lowering the pressure to a 200 kg / cm 2 (sample of this concentration is completely at 60 ° C in 0.99 kg / cm 2 Then, the pressure was increased again to 1,000 kg / cm 'to perform pressure crystallization, and the mother liquor was separated in the direction of the container 1b by a differential pressure (within 250 kg / cm 2 ). Table 3 shows the purity of the obtained crystals, the amount of impurities mixed therein, and the content ratio of the target substance and impurities contained in the crystals to the raw materials.
また比較のため、 上記と同じ原料混合物を使用し、 6 0 °Cx 1,000 kg/cra2の条件で 1回だけの圧力晶析を行なってから母液を分 離した場合の結果を表 3に併記した。 For comparison, Table 3 also shows the results when pressure crystallization was performed only once under the conditions of 60 ° C x 1,000 kg / cra 2 and the mother liquor was separated using the same raw material mixture as above. did.
表 3 各異性体濃度 (%) および対 2, 6— DMN含有比 (一) Table 3 Concentration of each isomer (%) and 2,6-DMN content ratio (1)
2, 6-DMN 2, 7-画 2, 3-DMN 1, 6-麵 1, 3-DMN 1-MMN 2-画 原料 濃度 29.94 11.04 4.91 11.53 22.88 1.73 1.16 濃度 73.20 8.41 3.48 3.26 6.12 0. 0 0.59 to 2, 6-DMN 2, 7-paint 2, 3-DMN 1, 6- 麵 1, 3-DMN 1-MMN 2-paint Raw material concentration 29.94 11.04 4.91 11.53 22.88 1.73 1.16 Concentration 73.20 8.41 3.48 3.26 6.12 0.0 0.59 to
比校例  Comparative example
対原料比 1445 0.762 0.709 0.283 0.267 0.231 0.509 is度 81.64 7.39 2.68 1.81 3.36 0.26 0.46 本発明  Ratio to raw material 1445 0.762 0.709 0.283 0.267 0.231 0.509 is degree 81.64 7.39 2.68 1.81 3.36 0.26 0.46 The present invention
対原料比 2.73 0.67 0.55 0.16 0.15 0.15 0.40 2.73 0.67 0.55 0.16 0.15 0.15 0.40
表 3からも明らかである様に、 比較例では、 得られる結晶の 2. 6 - DMN純度は 73. 2 %であるのに対し、 本発明法ではそ の純度が 8 1. 6%にまで上昇していることが分かる。 As is clear from Table 3, in the comparative example, the purity of the obtained crystal was 2.6%, whereas the purity of the obtained crystal was 81.6% in the method of the present invention. You can see that it is rising.
実施例 2. 比較例 2  Example 2. Comparative Example 2
2, 6 -01^1^濃度32. 5%の原料混合物を使用し、 本発明法 に従つて一旦 60 °C X 1, 000 kg/cm2の条件で圧力晶析を行なうこと によって粗結晶を晶出させ、 1 0分間放置して結晶を重力沈降させ た後、 内圧を 2 0 Okgん m2にまで下げて殆どの桔晶を融解させた 後 (この濃度の試料は、 6 0。Cでは 1 5 Okg/cm2で完全に融解す る) 、 再度 1.000 kg/cm2に昇圧して圧力晶析を行ない、 差圧 ( 250 内) により母液を容器 1 b方向に分離した。 得られた 結晶の純度および不純物混入量、 ならびに結晶に含まれる目的物質 と不純物の対原料当たりの含有比率を表 4に示す。 Using a raw material mixture having a concentration of 2, 6 -01 ^ 1 ^ 32.5%, the crude crystals were once subjected to pressure crystallization at 60 ° C X 1,000 kg / cm 2 in accordance with the method of the present invention. After allowing the crystals to crystallize and standing for 10 minutes to settle the crystals by gravity, the internal pressure was lowered to 20 kg / m 2 to melt most of the crystals (a sample with this concentration was 60.C. Then, the solution was completely melted at 15 Okg / cm 2 ), the pressure was increased again to 1.000 kg / cm 2 , pressure crystallization was performed, and the mother liquor was separated in the direction of the vessel 1 b by the differential pressure (within 250). Table 4 shows the purity of the obtained crystals, the amount of impurities mixed therein, and the ratio of the target substance and impurities contained in the crystals to the raw materials.
また比較のため、 上記と同じ原料混合物を使用し、 6 0°Cx 1, 000 kg/cm2の条件で 1回だけの圧力晶析を行なつてから母液を分 離した場合の結果を表 4に併記した。 Table The results of the case also for comparison, using the same raw material mixture as above, to release the 6 0 ° Cx 1, only once in a 000 kg / cm 2 Conditions mother liquor pressure crystallization from a row of connexion minute Also described in 4.
表 4 各異性体濃度 (%) および対 2. 6 -DMN含有比 (一) Table 4 Concentration of each isomer (%) and ratio of 2.6-DMN (1)
2.6-DMN 2, 7-DMN 2, 3-DM 1.6-画 1.3-DMN ト匪 2-蘭 原料 濃度 32.5 16.8 9.3 9.5 18.6 0.71 0.55 澳度 79.4 10.9 6.0 0.9 1.5 0.06 0.15 比較例 2.6-DMN 2, 7-DMN 2, 3-DM 1.6-Paint 1.3-DMN Marauder 2-Orchid Raw material concentration 32.5 16.8 9.3 9.5 18.6 0.71 0.55 Macau 79.4 10.9 6.0 0.9 1.5 0.06 0.15 Comparative example
対原料比 2.44 0.65 0.65 0.09 0.08 0.08 0.27 濃度 83.8 7.7 4.5 0.9 1.7 0.06 0.13 本発明  Ratio to raw material 2.44 0.65 0.65 0.09 0.08 0.08 0.27 Concentration 83.8 7.7 4.5 0.9 1.7 0.06 0.13 Invention
対原料比 2.58 0.46 0.48 0.10 0.09 0.08 0.24 2.58 0.46 0.48 0.10 0.09 0.08 0.24
表 4からも明らかである様に、 比較例では、 得られる結晶の 2, 6 -01^11^純度は79. 4%であるのに対し、 本発明法ではそ の純度が 83. 8%にまで上昇している。 また、 各不純物含有量の 対原料比を比較すると、 2, 7— DMN、 2. 3— DMN以外の成 分の数値に大きな差異は認められないが、 2. 6 -DMNと固溶体 を形成する 2, 7 - DMNと 2, 3 -DMNについては、 夫々比較 例では 0. 65であるものが実施例では 0. 47に低減しており、 得られる結晶中の固溶体形成性不純物の含有量が大幅に減少してい ることが分かる。 As is clear from Table 4, in the comparative example, the purity of the obtained crystal was 69.4%, whereas in the method of the present invention, the purity was 83.8%. Has risen to. When comparing the impurity content to the raw material ratio, there is no significant difference in the numerical values of components other than 2,7-DMN and 2.3-DMN, but a solid solution is formed with 2.6-DMN. For 2,7-DMN and 2,3-DMN, the value of 0.65 in the comparative example was reduced to 0.47 in the example, and the content of the solid solution-forming impurities in the obtained crystals was reduced. It can be seen that it has decreased significantly.
実施例 3, 比校例 3  Example 3, Comparative example 3
2. 6 -0\11^漢度32. 5 ¾の原料混合物を使用し、 本発明法 に従って一旦 60°C 1,000 kg/era2の条件で圧力晶析を行なうこと によって粗結晶を晶出させ、 1 0分間放 gして桔晶を重力沈降させ た後、 内圧を 200kg/cm2にまで下げて殆どの結晶を融解させた後 (この濃度の試料は、 6 0。Cでは 1 5 0 kg/cm2で完全に融解す る) 、 再度 1,000 kg/cm2に昇圧して圧力晶析を行ない、 容器 1 bと の差圧を 500 kg/cm2に高めて母液を容器 1 b方向へ抜き出し、 更 に圧力容器 1 a内を 80 Okg/cm\ 分離容器 1 b内を大気圧に夫々 設定してその差圧で結晶隙間の母液を絞り出した。 得られた結晶の 純度および不純物混入量、 ならびに結晶に含まれる目的物質と不純 物の対原料当たりの含有比率を表 5に示す。 2. 6 -0 \ 11 ^ Using a raw material mixture of 32.5¾, a crude crystal is crystallized by pressure crystallization once under the conditions of 1,000 kg / era 2 at 60 ° C according to the present invention. After allowing the crystals to settle by gravity for 10 minutes, the internal pressure was reduced to 200 kg / cm 2 to melt most of the crystals (the sample with this concentration was 60. 0 kg / cm 2 to completely melt), pressurized again to 1,000 kg / cm 2 , perform pressure crystallization, increase the pressure difference from container 1 b to 500 kg / cm 2 , and transfer mother liquor to container 1 b Then, the pressure in the pressure vessel 1a was set to 80 Okg / cm and the pressure in the separation vessel 1b was set to the atmospheric pressure, and the mother liquor in the crystal gap was squeezed out by the differential pressure. Table 5 shows the purity of the crystals obtained, the amount of impurities mixed therein, and the ratio of the target substance and impurities contained in the crystals to the raw materials.
また比较のため、 上記と同じ原料混合物を使用し、 6 0。C x 1.000 kg/on2の条件で 1回だけの圧力晶析を行ない、 上記と同じ条 件で母液の分離と絞り出しを行なった場合の結果を表 5に併記した 表 5 各異性体濃度 (%) および対 2, 6 -DMN含有比 (―) In addition, the same raw material mixture as above was used for comparison. Table 5 also shows the results when pressure crystallization was performed only once under the condition of C x 1.000 kg / on 2 and the mother liquor was separated and squeezed out under the same conditions as above. Table 5 Concentrations of each isomer (%) and 2,6-DMN content ratio (-)
2, 6-DMN 2, 7-DMN 2.3-讓 1, 6-DMN 1, 3-DMN 1- MN 2-腳 原料 濃度 32.5 16.8 9.3 9.5 18.6 0.71 0.55 濃度 82.5 9.0 6.0 0.55 0.83 0.03 0.15 比較例 2, 6-DMN 2, 7-DMN 2.3-substitute 1, 6-DMN 1, 3-DMN 1- MN 2- 腳 Raw material concentration 32.5 16.8 9.3 9.5 18.6 0.71 0.55 Concentration 82.5 9.0 6.0 0.55 0.83 0.03 0.15 Comparative example
対原料比 2.54 0.54 0.65 0.06 0.04 0.04 0.27 濃度 85.9 7.3 4.4 0.58 0.89 0.03 0.13 本発明  2.54 0.54 0.65 0.06 0.04 0.04 0.27 Concentration 85.9 7.3 4.4 0.58 0.89 0.03 0.13
対原料比 2.64 0.43 0.47 0.06 0.05 0.04 0.24 Ratio to raw material 2.64 0.43 0.47 0.06 0.05 0.04 0.24
表 5からも明らかである様に、 比蛟例では、 得られる結晶の 2, 6—DMN純度が 82. 5 %であるのに対し、 本発明法ではそ の純度が 85. 9%にまで上昇している。 また、 各不純物含有量の 対原料比を比校すると、 2. 7— DMN、 2, 3— DMN以外の成 分の数値に大きな差異は認められないが、 2. 6-DMNと固溶体 を形成する 2. 7— DMNと 2. 3-DMNを比較すると、 実施例 は比較例に比べて大幅に低减しており、 固溶体形成性不純物の含有 量が大幅に減少していることが分かる。 発明の効果 本発明は以上の様に構成されており、 圧力晶析により生成した粗 結晶を重力沈降させ、 次いで降圧し該結晶を融解させることによつ て特定物質濃度の高い液相を形成してから再度の圧力晶析を行なう ことにより、 一回の固液分離で目的物質純度を効果的に高めること ができ、 特に精製目的となる特定物質と固溶体を形成する不純物等 を含む原料混合物からでも、 該不純物を効果的に除去することがで き、 簡単な操作で高い精製効率を得ることができる。 As is evident from Table 5, the purity of 2,6-DMN of the obtained crystal is 82.5% in the comparative example, while the purity of the obtained crystal is 85.9% in the method of the present invention. It is rising. Also, when comparing the ratio of each impurity content to the raw material, there is no significant difference in the numerical values of components other than 2.7-DMN and 2,3-DMN, but a solid solution is formed with 2.6-DMN. When comparing 2.7-DMN and 2.3-DMN, it can be seen that the example is significantly lower than the comparative example, and the content of solid solution-forming impurities is significantly reduced. Effects of the Invention The present invention is configured as described above, and forms a liquid phase having a high concentration of a specific substance by gravity-sedimenting a crude crystal generated by pressure crystallization and then reducing the pressure to melt the crystal. And then perform pressure crystallization again, which can effectively increase the purity of the target substance in a single solid-liquid separation, and in particular, a raw material mixture containing impurities that form a solid solution with the specific substance to be purified Therefore, the impurities can be effectively removed, and high purification efficiency can be obtained by a simple operation.

Claims

請求の範囲 The scope of the claims
1. 特定物質を含む原料混合物から該特定物質を高圧力下の晶析操 作に付して精製する方法であって、 下記 (1 ) 〜 (3) の工程 からなることを特徴とする結晶性物質の精製方法。 1. A method for purifying a specific substance from a raw material mixture containing the specific substance by subjecting the specific substance to a crystallization operation under high pressure, comprising the following steps (1) to (3): Method for the purification of toxic substances.
( 1 ) 液状もしくは該特定物質が一部晶出したスラリ一状の上記 原料混合物を高圧力下の晶析操作に付し、 高圧力下で桔晶 を析出させると共に、 生成した結晶を圧力容器内で沈降さ せる工程  (1) The above-mentioned raw material mixture in the form of a liquid or a slurry in which the specific substance is partially crystallized is subjected to a crystallization operation under high pressure to precipitate crystals under high pressure, and the generated crystals are placed in a pressure vessel. Settling process within
(2) 圧力容器内の圧力を低下させ、 沈降した結晶の全部もしく は大部分を溶解させることによって、 圧力容器の下方部に 特定物質攮度の高い液相またはスラリ一を形成する工程、 (2) a step of lowering the pressure in the pressure vessel and dissolving all or most of the settled crystals to form a liquid phase or slurry having a high concentration of the specified substance in the lower part of the pressure vessel;
(3) 圧力容器内の圧力を高め、 上妃下方部で該特定物質を晶出 させてから、 母液を圧力容器外へ排出させる工程、(3) increasing the pressure in the pressure vessel, crystallizing the specific substance in the lower part of the upper queen, and then discharging the mother liquor out of the pressure vessel;
2. 原料混合物中に含まれる不純物が、 特定物質と固溶体を形成す る物質である請求項 1に記載の精製方法。 2. The purification method according to claim 1, wherein the impurities contained in the raw material mixture are substances that form a solid solution with the specified substance.
3. 前記請求項 1における (3) の工程で圧力容器外へ排出される 母液を、 前記請求項 1の (1) 〜 (3) の工程に付すことを特 徴とする結晶性物質の精製方法。  3. Purification of a crystalline substance characterized in that the mother liquor discharged to the outside of the pressure vessel in the step (3) in claim 1 is subjected to the steps (1) to (3) in claim 1. Method.
4. 特定物質が 2. 6—ジメチルナフタレンであり、 混合物がジメ チルナフタレン異性体を含有するものである請求項 1に記載の 精製方法。  4. The purification method according to claim 1, wherein the specific substance is 2.6-dimethylnaphthalene, and the mixture contains a dimethyl naphthalene isomer.
5. 前記高圧下の晶析操作を 500〜3.000 kg/cm2の圧力で行なう 請求項 1記載の精製方法。 5. The purification method according to claim 1, wherein the crystallization operation under high pressure is performed at a pressure of 500 to 3.000 kg / cm 2 .
PCT/JP1996/003669 1995-12-26 1996-12-17 Method for purifying crystalline substance WO1997024303A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP33934295A JPH09176055A (en) 1995-12-26 1995-12-26 Purification of crystalline substance
JP7/339342 1995-12-26

Publications (1)

Publication Number Publication Date
WO1997024303A1 true WO1997024303A1 (en) 1997-07-10

Family

ID=18326549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003669 WO1997024303A1 (en) 1995-12-26 1996-12-17 Method for purifying crystalline substance

Country Status (2)

Country Link
JP (1) JPH09176055A (en)
WO (1) WO1997024303A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100316139B1 (en) * 1999-01-15 2001-12-20 박호군 Process for separating highly purified 2,6-dimethylnaphthalene
KR100754744B1 (en) * 2006-05-01 2007-09-03 주식회사 효성 Separation and purification method of 2,6-dimethylnaphthalene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157304A (en) * 1984-12-28 1986-07-17 Kobe Steel Ltd Method for mutually separating specific substance of solid solution system
JPH01250329A (en) * 1988-03-07 1989-10-05 Showa Shell Sekiyu Kk Method for separating methyl derivative of naphthalene by pressure crystallization process
JPH02214503A (en) * 1989-02-13 1990-08-27 Kobe Steel Ltd Separation by cooled crystallization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157304A (en) * 1984-12-28 1986-07-17 Kobe Steel Ltd Method for mutually separating specific substance of solid solution system
JPH01250329A (en) * 1988-03-07 1989-10-05 Showa Shell Sekiyu Kk Method for separating methyl derivative of naphthalene by pressure crystallization process
JPH02214503A (en) * 1989-02-13 1990-08-27 Kobe Steel Ltd Separation by cooled crystallization

Also Published As

Publication number Publication date
JPH09176055A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
JPH08176045A (en) Method of refining bisphenol a
US3370082A (en) Purification of adipodinitrile
US4025573A (en) Separation process
WO1997024303A1 (en) Method for purifying crystalline substance
KR100473001B1 (en) Method for manufacturing 2,6-dimethylnaphthalene
JPH02199192A (en) Separation and purification of anthracene derived from coal tar
JPH075543B2 (en) Method for producing high-purity caprolactam
JPH09176054A (en) Purification of crystalline substance
JPH06200287A (en) Method for purifying natural crude wax
JPH04120027A (en) Separation of 2, 7-dimethylnaphthalene
JP2748833B2 (en) Recovery method of crude anthracene
JP2742335B2 (en) Method for separating 4-bromotoluene
KR20020024334A (en) Method for producing 2,6-dimethylnaphthalene
JPH02202592A (en) Separation and recovery of 2-methylnaphthalene
JPH05331079A (en) Separation and purification of 2,6-diisoproylnaphthalene
EP0757047B1 (en) Process for crystallizing chroman-I from an impure mixture
JP4566302B2 (en) Method for producing benzothiophene
JPH01311062A (en) Separation and purification of indole
JPS63122637A (en) Purification method for 2-methylnaphthalene
JPS61218534A (en) Method of purifying crude 2,3-dimethylnaphthalene
CN118715197A (en) Method for purifying crude methyl methacrylate
BE732838A (en)
JPH09157187A (en) Production of fluorene
JPH09157188A (en) Production of fluorene
JPS63222137A (en) Purification of dimethylphenol

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase