WO1997023874A1 - Reproducing circuit - Google Patents

Reproducing circuit Download PDF

Info

Publication number
WO1997023874A1
WO1997023874A1 PCT/JP1996/002743 JP9602743W WO9723874A1 WO 1997023874 A1 WO1997023874 A1 WO 1997023874A1 JP 9602743 W JP9602743 W JP 9602743W WO 9723874 A1 WO9723874 A1 WO 9723874A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
data
circuit
time constant
reproduction signal
Prior art date
Application number
PCT/JP1996/002743
Other languages
French (fr)
Japanese (ja)
Inventor
Junichi Horigome
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US08/836,829 priority Critical patent/US5864531A/en
Priority to JP51646397A priority patent/JP4150074B2/en
Publication of WO1997023874A1 publication Critical patent/WO1997023874A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10595Control of operating function
    • G11B11/10597Adaptations for transducing various formats on the same or different carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/28Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording
    • G11B27/30Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording
    • G11B27/3027Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording used signal is digitally coded
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10502Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing characterised by the transducing operation to be executed
    • G11B11/10515Reproducing

Definitions

  • the present invention relates to a reproducing circuit, and more particularly to a reproducing circuit for reproducing a signal read from a disk-shaped recording medium (such as a read-only optical disk, a write-once optical disk, and a rewritable optical disk). It is suitable.
  • a disk-shaped recording medium such as a read-only optical disk, a write-once optical disk, and a rewritable optical disk.
  • the digital data (original information) we usually handle are “0” and “1”.
  • the original information is converted (modulated) into a signal suitable for the recording medium described above and recorded, and the signal reproduced from the recording medium is restored (demodulated) to the original information.
  • various recording codes have been proposed as a digital data recording method.
  • the characteristics required for modulation and demodulation for optical discs include:
  • the density can be increased.
  • NRZ method There are NRZ method, NRZI method, FM method, EFM method, (2,7) -RLL method, etc., as the method ii familiar to data recording on optical discs.
  • the number of consecutive identical bits in a data sequence is called a run (Run).
  • the NRZ (Non Return to Zero) method is a method that is often used in magnetic recording such as hard disks, in which the signal levels of digital data logical values “0” and “1” are low and high, respectively. It is completely compatible with levels and is the easiest to understand as a conversion of electrical signals to digital data.
  • the NRZI (Non Return to Zero Inverse) method is a method in which the signal level is inverted only when the key value of the digital data is “1”.
  • the RLL system and the EFM modulation system are employed.
  • RLL (Run Length Limited) refers to an encoding method in which the maximum inversion width T ma>: is limited.In particular, the minimum run is d, the maximum run is k, and the data m bit is Encoding that transforms into n-bit modulation bits is called (d, k, m, n)-RLL encoding. Depending on how each parameter is taken, there are several possible RLL codes, but these can be determined by performance evaluation parameters that indicate characteristics.
  • T min The minimum inversion width T min, one of the evaluation parameters, is much smaller. If it is too short, the reproduced waveform will be damaged due to the optical transfer OTF (0ptical Transfer Function) or the limit of folding, so a larger T min is advantageous.
  • the maximum inversion width T max is related to the self-synchronous noise, and a smaller value is advantageous. That is, even if there is a time axis fluctuation (jitter) in the reproduced signal, the signal must be frequent in order to allow the extracted synchronization signal to follow the fluctuation. Also, if the inversion interval is long, there is a problem that the DC component fluctuates.
  • the detection window width Tw indicates the allowable value of the time axis fluctuation (jitter) of the reproduced signal.
  • Reproduction jitter in an optical disc is a force that can be considered by various factors. It is not preferable that data shift and the like occur due to the time axis fluctuation. Therefore, it is desirable that the detection window width Tw be large.
  • Table 1 below shows the evaluation parameters of the main coding methods.
  • EFM Eight to Fourteen Modulation
  • 2 14 2 1 4
  • 2 5 6 2 8
  • the three bits “0 0 0” and “0 1 One of 0 j, “100”, and “001” is selected and inserted from the viewpoint of reducing the DC component or low-frequency component of the final waveform sequence.
  • (2,7) -RLL modulation is a method generally used for data recording on optical discs at present.
  • This modulation method is characterized in that the maximum inversion width T max is smaller than the minimum inversion width T min.
  • T max is smaller than the minimum inversion width T min.
  • Tw indicates an interval of one data bit.
  • the word length is variable, it is necessary to determine word boundaries, which has the disadvantage that error propagation tends to occur.
  • a synchronization signal (RESYNC) signal is inserted into the data every certain data section to prevent the propagation of errors. You have to be creative.
  • (1,7) -RLL modulation is a coding scheme that has recently attracted attention, and has the advantage of being able to record at high density and at a high data rate.
  • the minimum inversion width T min is 1.33 T, which is slightly worse than the above (2,7)-13 ⁇ 4 1.5 modulation, but 2 bits of data Since it is converted into three modulation bits, the detection window width Tw becomes 2 ⁇ 3, which also has the advantage that there is relatively room for demodulation.
  • a process for reducing the DC component such as the EFM modulation described above has not been performed, a problem remains in this respect.
  • the data bit The sequence is converted to such a PLL modulation bit, and then a recording waveform is obtained using NRZ or NRZI. That is, the input data sequence, which is the original information, is RLL-modulated, changed to T min and T max and converted to a PLL modulation bit sequence so as to be more suitable for an optical disc, and the NRZ or NRZI
  • the recorded waveform sequence is obtained by
  • inter-mark recording a method of performing recording using NRZ is called inter-mark recording or bit position recording.
  • bit position recording one of the recording marks corresponds to the modulation bit "1", and at the time of reproduction, the position of the mark is detected to correspond to the bit "1". is there.
  • the method of recording using NRZI is called mark length recording or mark edge recording.
  • the position where the signal level changes, that is, ⁇ before and after the mark corresponds to the change bit.
  • both ends of the mark on the disc are detected and correspond to bit “1”.
  • Mark length recording has the feature that the recording density can be increased.
  • some recording media have different shapes at the front end and the rear end of the mark, and cannot be used with such a recording medium.
  • S ⁇ n generally includes, intermittently, an address component S a and a data component S d, as shown in FIG. 7A, for example.
  • S dc For example, in a magneto-optical disk, there is a change in the DC level S dc due to an increase in the amount of light for erasing or writing data.
  • the causes of such fluctuations in the DC level are mainly the fluctuations in the DC level due to the difference in the reflectivity between the CD section and the M0 section, and the fluctuations in the DC level at the time of erasing.
  • the respective fluctuations of the DC level will be specifically described with reference to FIGS. 8 and 9, taking a rewritable optical disc as an example.
  • an ID (or CD) detection system that detects bit information can be used as a magneto-optical signal detector, as shown in Fig. 8, and recording / erasing is possible.
  • MO detection system There is a MO detection system.
  • the former ID detection system only the light quantity changes depending on the presence or absence of a bit, and the sum A + B of the light receiving element A and the light receiving element B is obtained and used as the D detection signal (see FIG. 9A).
  • the polarization plane of the beam changes slightly depending on whether the direction of magnetization is S or N, and when it is caught through PBS (polarization beam splitter), the polarization plane is changed.
  • a difference in DC level may occur between the two detection signals due to a difference in reflectivity between the MO detection system and the ID detection system, an optical imbalance, etc. See figure C ).
  • the combination of the ID detection signal and MO detection signal is intermittently included in each sector, and DC levels differ between sectors. If there is such a difference in DC level, it will not be possible to correctly and reliably perform binarization when subsequently performing binarization.
  • the ID detection signal that detects the bit by reflected light is used. Has a relatively large DC level, resulting in DC fluctuations in the reproduced signal (see Fig. 9D).
  • AC coupling AC coupling
  • a modulation method for data recording for example, a modulation method in which the proportions of “0” and “1” are equal, such as the above-mentioned EFM modulation, has been adopted. Since it was not included, there was no problem that it was difficult to select the time constant of AC coupling.
  • the modulation method for data recording is different from RLL modulation.
  • a DC component is included in a raw signal, there is a problem that a correct reproduction signal cannot be read by simply performing the AC coupling method.
  • the reproduced signal Sin is a discontinuous part of the data, that is, the head part of each of the address component Sa and the data component Sd.
  • the period of the transient state associated with the AC coupling in the above disappears, the rise of each component becomes steep, but the DC component to be included in the reproduction signal Sin is lost, so that correct reproduction becomes difficult, and the reproduction characteristic becomes poor. There is a problem that leads to deterioration.
  • the reproduction signal is AC-coupled with a certain time constant in this way, if the time constant is small, the period of the transient state is shortened, and the DC component inherent in the reproduction signal is lost, so that it is difficult to reproduce correctly. become. On the other hand, if the time constant is too large, the period of the transient state becomes longer, and the DC component of the reproduced signal is not lost, but it becomes difficult to reproduce the respective leading portions of the address component Sa and the data component Sd.
  • RLL modulation is a modulation method that does not consider the suppression of DC components.
  • (1,7) RLL modulation.
  • reading may not be possible simply by suppressing the DC component by AC coupling. .
  • a relatively short time constant so that the synchronized data existing at the beginning of each sector could be quickly reproduced
  • a relatively long run continued in the data part that was subsequently reproduced.
  • the original DC component of this part is lost, and it cannot be properly binarized in the subsequent stage.
  • AC coupling is performed with a relatively large time constant that can be played back properly, the synchronization data at the beginning of the sector can be reproduced for a long period of time, and during that time, the synchronized data can be played back correctly. Can not.
  • the present invention has been made in view of the above problems, and has as its object to prevent the loss of the DC component included in the reproduced signal with a simple configuration, and to further reduce the data. It is an object of the present invention to provide a reproducing circuit capable of shortening the period of the transient state at the discontinuous portion of the circuit. Disclosure of the invention
  • a reproducing circuit is a reproducing apparatus for reproducing a recording medium in which information data and synchronous data used for synchronization when reproducing the information data are sequentially recorded on a track.
  • Reading means for reading out the information data and the synchronous data to generate a reproduction signal; a first time constant; and a second time constant larger than the first time constant.
  • AC coupling means for generating a corrected reproduction signal by selecting one of the time constants and performing AC coupling on the reproduction signal, and detection indicating the timing at which the firing means reads the synchronization data.
  • Detecting means for outputting a signal, and selecting the first time constant from a first timing determined based on the detection signal to a second timing after a predetermined time,
  • a control means for controlling the AC coupling means so as to select the second time constant at a second timing, and a binary means for binarizing the modified reproduction signal to generate a binarized modified reproduction signal
  • Decoding means and demodulation means for demodulating the information signal from the binarized modified reproduction signal.
  • the input signal consisting of information data and synchronization data suppresses the fluctuation of the DC level included in the input signal in the AC coupling circuit, but it is necessary to select the time constant of the AC coupling circuit. Therefore, the DC level may disappear.
  • the DC level may be used as a part of the effective signal component for reproducing (demodulating) the input signal.
  • the time constant of the AC coupling circuit is switched at a predetermined timing by the control means for controlling the AC coupling means, the predetermined timing is appropriately adjusted.
  • the time constant of the AC coupling circuit can be switched to, for example, a direction in which the DC level is increased. Loss can be prevented, and the input signal can be properly reproduced.
  • the reproduction circuit according to the present invention is the reproduction apparatus described above,
  • the recording medium has a sector mark indicating the beginning of a sector, a sector having the synchronization data and the information data, sequentially recorded along the track, and the detection means reads the data by the reading means.
  • the detection signal is output when the output reproduction signal is a reproduction signal from the sector mark.
  • the time constant of the AC coupling circuit is set in a smaller direction, and a switching signal is output from the control means for controlling the AC coupling means based on the detection of the sector mark by the detection means. If the time constant of the AC coupling circuit is switched to be increased based on the output of the switching signal, the loss of the DC level contained in the information data can be prevented. In particular, when the leading part of the synchronous data is read, the time period of the transient state is short and the signal level rises sharply because the time constant of the AC coupling circuit is relatively small, so that Synchronous data can be detected by the detecting means.
  • the AC coupling means may include a capacitor having one end connected to the output side of the reading means, and one end connected to the other end of the capacitor. And a connection means for selectively grounding the other ends of the plurality of resistors by the control means.
  • the time constant of the AC coupling circuit is appropriately switched only by the operation of selectively grounding the other ends of the plurality of resistors by the control means, and the configuration for switching the time constant of the AC coupling circuit is extremely reduced. It can be easily done.
  • FIG. 1 is a diagram showing a configuration of a main part of a magneto-optical disc system according to the present embodiment.
  • FIG. 2 shows the recording medium of the magneto-optical disk system of Fig. 1.
  • FIG. 2 is a diagram illustrating a sector format used in a magneto-optical disc.
  • FIG. 3 is a diagram showing a signal waveform of the magneto-optical disk system of FIG.
  • FIGS. 4A to 4D are diagrams for explaining a sector mark detection operation in the sector mark detection circuit of the magneto-optical disk system of FIG.
  • FIG. 5 is a circuit diagram showing another example of the configuration of the time constant switching circuit of the AC coupling plane of the magneto-optical disc system of FIG.
  • FIG. 6 is a diagram for explaining bit position recording and markage recording.
  • FIG. 7A to 7C are diagrams illustrating the waveform of a reproduced signal depending on the time constant of the AC coupling circuit in the signal processing of the related art.
  • FIG. 8 is a diagram illustrating a main part of a magneto-optical detection system of the magneto-optical disk system.
  • 9A to 9E are diagrams illustrating the states of the ID detection signal and the MO detection signal of the magneto-optical detection system of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the feature of the present invention lies in that the time constant of the AC coupling is changed in accordance with the properties of each element of the recorded data.
  • the recording data AC coupling with a relatively small time constant is applied to the head of each sector of the recording data, and the transient state is converged in a short time to make it a steady state. Detection is assured.
  • the data part that originally has a DC component can be switched to a relatively large time constant to perform AC coupling, and the DC component of the data part can be reproduced correctly.
  • the magneto-optical disc system generally includes a reproducing system and a recording system as shown in FIG.
  • a light head 1a for emitting a laser beam for recording and a laser beam for reproduction to a magneto-optical disc (not shown) and a magnetic head 1b for applying a magnetic field during recording are provided.
  • a magneto-optical disc not shown
  • a magnetic head 1b for applying a magnetic field during recording Have been.
  • the data format of the magneto-optical disc will be described with reference to FIG.
  • the user data area is 30 to 60 mm, and the possible track numbers are 0 to 18750.
  • Each track is pre-formatted so that it can be divided into 17 (1024 bytes) or 31 (512 bytes) sectors.
  • Fig. 2 shows an example of a 5.25-inch magneto-optical section, which is a 512-byte / sector published as ISO / IECJTC1 / SC23.14.517. It shows a sector format of 5.25 inch magneto-optical, which is a format of 102 and 24 bytes / sector. The difference between these two sector formats is the data format. It is only the length of the field followed by the buffer. These sector formats will be briefly described and then described in relation to the present invention.
  • the sector format shown in Fig. 2B is broadly divided into an ID section (address section), a flag section, a MO section (data section), and a buffer section.
  • the address section is an area indicating a physical address (physical block address) on the disk, and is pre-formatted on the substrate in advance.
  • the flag section is an area for writing a flag indicating the state of data in the sector.
  • the data section is an area for recording data originally used by the user.
  • the buffer area is an area for disk rotation fluctuation margin, and is provided so that data and addresses do not overlap even if a deviation occurs due to rotation jitter or the like during recording. ing.
  • the address section (pre-format header) shown in Fig. 2A starts with the first pattern called the Sector Mark (SM) and actually rotates.
  • VF 0 Very Frequency Oisci 11 a tor
  • AM Address Mar
  • An address information pattern composed of a combination with an ID (Idetifier) containing a sector stamper is repeated several strokes (twice in the figure) and ends with a PA (Postamble). Note that 0 frequently repeats ⁇ 1 ”and“ 0 ”in the shortest time, so that it is guaranteed that no DC component is included. The time constant of AC coupling is changed during the period.
  • Each ID has a track number and a sector number identification code, as well as a CRC (Cyclic Redunction) to detect the error.
  • CRC Cyclic Redunction
  • the flag (ALPC / gap) shown in Fig. 2C contains FLAG indicating that writing has been performed, as well as tracking and offset detection in the bush bull method. mark test unit for level adjustment (ODF Offset De tection Flag) and laser power (ALP were: Auto laser power Con toro 1) Tochikaraku certain ⁇
  • the data section contains VF 0 (Variable Frequency Oscillator), which is a continuous data pattern for the PLL lock, and an area for writing SYNC, which is a data synchronization signal.
  • VF 0 Very Frequency Oscillator
  • SYNC which is a data synchronization signal.
  • the alternate sector performs various processing, so-called control byte for performing defect processing, and error correction.
  • Redundant word ECC (Error Correction Code), CRC (Cyclic Redundancy Check) code for error detection, and Resync, a special code pattern for synchronization, are written.
  • a magneto-optical disc (not shown) recorded according to such a sector format
  • a light head for emitting a laser beam for recording and a laser beam for reproduction
  • a magnetic head 1b for applying a magnetic field during recording.
  • a detection signal from a photodetector (not shown) that converts the return light of the laser light from the magneto-optical disk into an air signal is input to the subsequent stage of the optical head 1a. It has first and second RF amplifiers 2a and 2b.
  • an AC coupling circuit 3 After the first RF amplifier 2a, an AC coupling circuit 3, a sector mark detection circuit 6, a binarization circuit 4, a clock generation circuit 13, an address decoder 7, and an interpolation circuit 8 are provided after the first RF amplifier 2a. , Switching control circuit 9 and The decoder 10 is connected. Further, a servo control circuit 11 is connected after the second RF amplifier 2.
  • an encoder 15 that encodes the recording data
  • a laser drive circuit 16 that drives the laser of the optical head 1a is connected to the encoder, and a magnetic drive that drives the magnetic head 1b
  • a head drive circuit 17 and a reference frequency generation circuit 14 for generating a light clock W CLK are provided.
  • a magneto-optical disk system is provided with a system controller 12 for controlling these various circuits.
  • a system controller 12 for controlling these various circuits.
  • FIG. 1 if the control lines derived from the system controller 12 to the respective circuit elements are described one by one, they are omitted because the contents of the drawing become complicated. Next, each circuit block of the magneto-optical disk system will be briefly described.
  • the first RF amplifier 2a is a circuit for amplifying a data signal including a subcode in the reproduced signal from the optical head 1a
  • the second RF amplifier 2b is an optical head 2b. 1 During playback signal from a, tracking error
  • the servo control circuit 11 internally includes a focus servo circuit, a tracking servo circuit, a spindle servo circuit, and a motor that is a driving source of various moving mechanisms.
  • a servo circuit for the motor that performs servo control is built in, and these various servo circuits are used to control servo control from the system controller 12 (such as servo gain) and drive, respectively.
  • the spindle servo circuit described above rotates the spindle motor (rotating drive source of the magneto-optical disk) (not shown).
  • This is a circuit that drives the magneto-optical disc by CLV (constant linear velocity) method or CAV (constant angular velocity).
  • the above-mentioned focus servo circuit is a focus error signal from the second RF amplifier 2b, specifically, a laser beam to a mirror surface formed on a magneto-optical disk. Based on a signal obtained by performing a predetermined operation in the second RF amplifier 2b on a detection signal corresponding to the amount of light reflected from the mirror surface due to light irradiation, the two-dimensional actuating device of the optical head 1 is used. This circuit adjusts the focus by driving and controlling an overnight lens (not shown) to move an objective lens (not shown) in the direction of contact and separation of the magneto-optical disk.
  • the above-mentioned tracking 'servo circuit is a circuit for tracking error signals from the second RF amplifier 2b, specifically, a servo error signal in a servo area formed on the magneto-optical disk.
  • a servo error signal in a servo area formed on the magneto-optical disk.
  • the AC coupling circuit 3 includes a coupling capacitor C connected to the reproduction signal line derived from the first RF amplifier 2a, and a post-connection capacitor C connected between the reproduction signal line and the ground. Two resistors (first resistor R 1 and second resistor R 2) connected in parallel with each other, and one of these resistors R 1 and R 2 (second resistor in the illustrated example) And a switching circuit SW connected between the resistor R 2) and the ground. It is configured.
  • the switching circuit SW is controlled by a window pulse Pw from a switching control circuit 9 which will be described later, and the window pulse Pw is, for example, a high level. When it is on, it is turned off when it is at a low level.
  • the binarization surface 4 is a circuit that converts the data signal input through the AC coupling circuit 3 into binary digital data by sampling and holding.
  • the clock generation circuit 13 is a circuit that detects a clock bit component from digital data output from the binarization circuit 4 and generates a clock pulse Pc based on the detected clock bit component.
  • the clock generating path 13 is a clock bit formed together with the servo bit in the servo area. Detect The clock bit detection signal is multiplied by, for example, a PLL circuit or the like, and generates a clock timing Pc which is a reference timing of the system.
  • the address decoder 7 decodes the subcode included in the digital data from the binarization circuit 4 based on the input of the clock pulse Pc from the clock generation circuit 13. This is the circuit for obtaining the address.
  • the decoder 10 is a circuit that decodes an encoding process such as an error correction added to the digital data output from the binarization circuit 4 and outputs the decoded data D.
  • the reproduction data D from the decoder 10 is output to the outside through the output terminal 0ut. (Sector mark detection circuit)
  • the sector mark detection circuit 6 is a circuit that detects a sector mark included in the reproduction signal from the AC coupling circuit 3.
  • this sector mark detection method differs from the normal binarization detection method in that a read signal from a recorded sector mark (see Fig. 4A) is read. Differentiate (see Fig. 4B), hold the signal exceeding a certain level of soil E (see Fig. 4C), and, for example, pass through a flip-flop circuit (a bistable multivibrator) to select a sector mark. (Fig. 4D). Therefore, during the sector mark detection period, the AC coupling circuit 3 in the preceding stage performs AC coupling with a relatively small time constant, so that the transient state of the reproduced signal is short and the signal level rises steeply. It will be easier.
  • the address detected by the address decoder 7 and the sector mark detected by the sector mark detection circuit 6 are respectively obtained by the system controller 12 and the interpolation circuit in the subsequent stage. Each supplied to circuit 8,
  • the address and the sector mark supplied to the system controller 12 are used, for example, for controlling the scanning position of the optical head 1 during a seek operation.
  • the interpolator 8 detects the address and sector mark when the address decoder to be detected by the address decoder 7 is missing the sector mark to be detected by the address decoder 7. Is a circuit that interpolates Specifically, the missing address is determined by the clock pulse Pc supplied from the clock generation circuit 13 and / or the address detected by the address decoder 7. It captures sector marks. Then, from the interpolation circuit 8, the sector mark is detected based on the detection timing of the sector mark in the sector mark detection circuit 6 or the appearance timing of the sector mark when the missing sector mark is compensated. The detection pulse P sm is output.
  • the reproduced signal Sin is first a signal indicating the sector mark.
  • the waveform SSM and then the signal waveform S VF0 indicating the VFO appear in a continuous fashion.
  • the interpolation circuit 8 is switched to the switching control circuit 9 Outputs the sector mark detection pulse PSM to.
  • the operation of the switching control circuit 9 will be described with reference to FIG.
  • the switching control circuit 9 generates a window pulse Pw for controlling the switching circuit SW in the AC coupling circuit 3 based on the input of the sector mark detection pulse SSM from the interpolation circuit 8. Output.
  • the switching control circuit 9 has a gate circuit and two counters (not shown) inside.
  • This gate circuit is set to output a high-level signal as a window pulse PW in the initial stage.
  • the first and second counters start counting based on the input of the sector mark detection pulse PSM from the interpolation circuit 8, and the first counter performs the first predetermined operation.
  • an S1 trigger pulse is issued, and the output window pulse PW of the gate circuit is set to a low level signal, and is set to a high level signal after the lapse of the second predetermined time (B).
  • B second predetermined time
  • It is configured to In the first counter an initial value A is stored based on the input of the sector mark detection pulse PSM from the interpolation circuit 8.
  • This initial value A is a count value corresponding to the first predetermined period A during which the transient state of VF01 converges from the time of detection of the sector mark, for example, 8 bytes (96 Clock).
  • the interpolation circuit 8 detects the sector mark from the playback signal S i ⁇ in the sector mark detection circuit 6. Outputs a sector mark detection pulse PSM, which causes the first power counter to start counting, and then internally based on the input of the write clock W CLK from the reference frequency generation circuit 14.
  • the initial value of is updated one by one.
  • An S1 trigger pulse is generated by the first counter after a first predetermined time has elapsed (for example, after 96 clocks of 8 bytes have elapsed) and output from the gate circuit.
  • the window pulse P w is set to a low level, and at the same time, the initial value A is reset in the first counter.
  • the second counter stores an initial value B based on the input of the sector mark detection pulse PSM from the interpolation circuit 8.
  • This initial value B is a count value corresponding to a second predetermined period B from the time of detection of the sector mark to the end of the data field.
  • the interpolation circuit 8 When a high-level signal is output as the window pulse Pw from the gate circuit, the interpolation circuit 8 is activated when the sector mark detection circuit 6 detects a sector mark from the playback signal Sin. Then, a sector mark detection pulse PSM is output, whereby the second power counter starts counting, and thereafter, the light clock WCLK from the reference frequency generation circuit 14 is output. Update the internal initial value sequentially by -1 based on the input. After the second predetermined time elapses by the second counter, S 2 A trigger pulse is issued, the window pulse Pw output from the gate circuit is set to the high level, and at the same time, the initial value B is reset in the second counter.
  • the signal output from the gate circuit of the switching control circuit 9 is kept at a low level from the output time of the first trigger pulse S1 to the output time of the second trigger pulse S2.
  • the window pulse Pw is set to a high level during periods other than the above.
  • the switching circuit SW in the AC coupling circuit 3 turns on when the window pulse P w output from the switching control circuit 9 is at a high level, and turns off when the window pulse P w is at a low level.
  • the time constant ⁇ H in the AC coupling circuit 3 is determined by the value of the capacitor C and the combined resistance (the first resistance R 1 and the second resistance R 2).
  • C ′ (R 1 ⁇ R 2 / (R 1 + R 2)), and the time constant ⁇ L during the low level period is the product C of the capacitor C and the first resistor R 1.
  • the time constant ⁇ ⁇ ⁇ ⁇ ⁇ in the high-level period is smaller than the time constant r L in the low-level period.
  • the time constant switching means for switching the time constant of the AC coupling circuit in the switching circuit SW of the AC coupling circuit 3, the sector mark detection circuit 6, the interpolation circuit 8, the switching control circuit 9, and the reference frequency generation circuit 14 Will be constituted.
  • the information recorded in the sector format shown in FIG. 3 on the magneto-optical disc (not shown) is recorded on the optical head 1a and the first RF address.
  • Read through the amplifier 2a and this playback signal is The DC component is suppressed by the C coupling circuit 3.
  • the information mainly in the address section specified in the sector format is processed by the reproducing system sector mark detection circuit 6, clock generation circuit 13 and address decoder 7 in FIG. That is, the sector mark is detected by the sector mark detection circuit 6, and a sector mark detection signal is sent to the interpolation circuit 8. Further, the VF 0 digitized via the binarization circuit 4 is synchronized by the clock generation circuit 13 and the clock pulse P c is supplied to the addressless recorder 7 and the servo control circuit.
  • the AM is sent to the interpolator 8 and the system controller 12 after the address is detected by the address recorder 7.
  • information in the data part is sent to the decoder 10 via the binarization circuit 4.
  • the write information is encoded by the encoder 15 and sent to the optical head 1 a via the laser drive circuit 16.
  • the system controller 12 drives the magnetic head 1 b via the magnetic head driving circuit 17.
  • a sector mark detection pulse P sm is sent to the switching control circuit 9 and the switching control circuit is switched.
  • 9 counts the light clock WCLK from the reference frequency generation circuit 14 from the input of the sector mark detection pulse Psm, and switches the switch SW of the AC circuit at a predetermined time. Generates the window pulse P w to be controlled.
  • the time constant of the AC coupling circuit 3 is r H ( ⁇ L is the time constant), and thus, the reproduced signal waveform S s of the sector mark during these periods.
  • the response characteristics of this device are such that the period of the transient state is short and rises sharply.
  • the method of detecting a sector mark is different from the usual method of detecting by binarization. Differentiating the reproduction signal, holding the signal exceeding a certain level S, and then, for example, through a flip-flop circuit Sectoroma -Detected by playing back the mark.
  • the transient state of the reproduction signal is short, the signal level rises sharply, and the sector mark can be easily detected.
  • the probability of missing sector marks is extremely reduced, and the degree of detection of sector marks can be improved.
  • the information recorded on the magneto-optical disk has a predetermined format as described in connection with FIG. 2, and the sector mark, Addresses are recorded in a specified order and byte length.
  • the appearance of each element of the reproduced signal picked up by the optical head 1a is ideally represented by the clock signal from the clock generating circuit 13, the lus PC and the address decoder 7.
  • the interpolation (interpolation) that is, the prediction, can be made in the interpolation circuit 8 by the address from. Therefore, even if no sector mark is detected, the switching control circuit 9 outputs the interpolated sector mark detection signal PSM from the interpolation circuit 8 and the light from the reference frequency generation circuit 14.
  • On / off timing of the window pulse Pw for controlling the switching circuit SW of the AC coupling circuit 3 can be determined based on the clock WCLK.
  • a sector mark is used as a mark for the appearance of each element of the reproduction signal, and after the sector mark is detected by the sector mark detection circuit 6 or interpolated by the interpolation circuit 8, the sector mark is used.
  • Light clock W from reference frequency generation circuit 14 with reference to detection point Judging from the CLK count value it can be said that there is almost no error that occurs even if it is determined which element (location) in the sector format is currently picked up.
  • the reproducing circuit can operate even if the sector mark is not detected or interpolated in all the sectors.
  • the DC component included in the data is also effective. It will be used to reproduce (demodulate) digital signals as part of the signal components. At this time, if the DC level itself is eliminated in order to suppress the fluctuation of the DC level in an AC coupling circuit having only a constant time constant, it is possible to effectively reproduce the digital signal having the above signal. Can not
  • the reproducing circuit according to the above embodiment since the time constant of the AC coupling circuit 3 can be switched to r L (> ⁇ réelle), the DC component and the data included in the address of the address section are not included. It is possible to prevent the loss of the DC component contained in the data of the section, and to properly reproduce the address and data contained in the reproduction signal S in by the address decoder 7 and the decoder 10, respectively. Becomes possible.
  • the AC coupling circuit 3 is composed of a capacitor, two resistors R 1 and R 2, and a switching circuit SW. Of these, the switching circuit SW was inserted and connected between one resistor (the second resistor R 2) and the ground.
  • the above two resistors R 1 and R 2 Are connected to the first and second demarcated contacts 21a and 21b, and the switching circuit SW is connected to the movable contact 21c on the ground side.
  • the configuration may be such that the first resistance and the second resistance R 1 and R 2 are selectively switched according to the level of the current.
  • the window pulse Pw when the window pulse Pw is at a high level, the first fixed contact 21a and the movable contact 21c of the first resistor R1 having a low resistance value are electrically connected, When the window pulse Pw is at a low level, the second fixed contact 21b of the second resistor R2 having a high resistance value and the movable contact 21c are electrically connected.
  • the AC coupling circuit 3 may be configured such that the time constant is small at least during the output period of the sector mark and is large during the address output period and the data output period.
  • various configurations can be adopted.For example, three or more resistors may be selectively switched according to the level of the window pulse Pw, or a reproduction signal may be used.
  • a plurality of capacitors may be connected to the line in parallel, and these capacitors may be selectively switched according to the level of the window pulse Pw.
  • the AC coupling circuit is equivalent to a high-pass filter (HPF). That is, an AC coupling circuit with a small time constant is equivalent to a high-pass filter with a relatively high cut-off frequency, and an AC coupling circuit with a large time constant is equivalent to a high-pass filter with a relatively low cut-off frequency. I do. Therefore, even if the AC coupling circuit according to the present embodiment is replaced by any arbitrary high frequency filter capable of changing the cut-off frequency, the change falls within the technical scope of the present invention.
  • HPF high-pass filter
  • the AC coupling circuit that suppresses the fluctuation of the DC level included in the input digital signal and the time constant of the AC coupling circuit are switched at a predetermined timing.
  • the time constant switching circuit is provided, so that the DC component to be included in the reproduced signal can be prevented from disappearing with a simple configuration, and the period of the transient state in the discontinuous portion of the data is shortened. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

A reproduction apparatus for reproducing a recording medium on which information data and sync data are serially recorded along a track in each sector. This reproduction apparatus comprises read means for reading the information data and the sync data and generating reproduction signals, AC coupling means for generating corrected reproduction signals by selecting a first time constant and one of second time constants greater than the first time constant and effecting AC coupling for this reproduction signal, detection means for outputting a detection signal representing the timing at which the read means reads out the sync data, control means for controlling the AC coupling means so as to select the first time constant up to a second timing a predetermined time after the first timing decided on the basis of this detection signal, and to select the second time constant at the second timing, binarization means for generating a binary corrected reproduction signal by binarizing the corrected reproduction signal, and demodulation means for demodulating an information signal from the binary corrected reproduction signal. Sync data can be correctly reproduced by such a simple construction by shortening the period of a transient state at a sync data portion while disappearance of DC components to be contained in the information data of the reproduction signal is prevented.

Description

明細書  Specification
発明の名称 再生回路 技術分野  Title of the invention Regeneration circuit Technical field
本発明は、 再生回路に関し、 特に円盤状記録媒体 (再生専用型 光ディ スク, 追記型光ディ スク, 書換可能型光ディ スク等) から 読み出された信号を再生処理する再生系に用いて好適なものであ る。 背景技術  The present invention relates to a reproducing circuit, and more particularly to a reproducing circuit for reproducing a signal read from a disk-shaped recording medium (such as a read-only optical disk, a write-once optical disk, and a rewritable optical disk). It is suitable. Background art
[各種データ変調方式の評価]  [Evaluation of various data modulation methods]
通常我々が扱うディ ジタルデータ (原情報) は、 「 0 」 と 「 1 The digital data (original information) we usually handle are “0” and “1”.
」 が夫々任意の順序で整列された信号形態を有しているが、 記録 - 再生系の特性を考慮する とこれをそのまま記録信号に用いるこ とは効率的でない。 そこで、 原情報を上述の記録媒体に適した信 号に変換操作 (変調) して記録し、 また記録媒体から再生された 信号を原情報に戻す操作 (復調) をしている。 近時、 デジタルデ —夕の記録方式として、 種々の記録符号が提案されており、 例え ば、 光ディ スク用の変復調に要求される特性と しては、 Has a signal form arranged in an arbitrary order, but it is not efficient to use this as it is for the recording signal in consideration of the characteristics of the recording-reproducing system. Therefore, the original information is converted (modulated) into a signal suitable for the recording medium described above and recorded, and the signal reproduced from the recording medium is restored (demodulated) to the original information. Recently, various recording codes have been proposed as a digital data recording method. For example, the characteristics required for modulation and demodulation for optical discs include:
① ファ イ ルの容量を大き く するために、 高密度化が可能である こ と、 (1) In order to increase the capacity of the file, the density can be increased.
② 再生信号の中から情報信号を取り出すための自己同期が取り 易いこ と、  ② Easy self-synchronization for extracting information signals from playback signals
③ 再生時に 2値化 (ディ ジタル化) する場合基準レベルのふら つきによる銃み出しエラ一を起こさないため、 或いは記録 ' 再生 時におけるサーボエラー信号に変動を起こ さないために、 変調さ れた信号の周波数スぺク トルが D Cフ リ ーである (直流成分を舍 まない) こと、 ④ 或るビッ トの誤りが次々に来るビッ ト情報の再生に影響を与 え るよう なエ ラー伝播が起こ り難いこ と、 ③ In case of binarization (digitalization) during reproduction, modulation is performed so as not to cause a pop-out error due to fluctuation of the reference level, or to cause fluctuation in a servo error signal during recording / reproduction. The frequency spectrum of the received signal is DC free (does not impose a DC component); 伝 播 It is difficult for error propagation in which an error of a certain bit affects the reproduction of bit information that follows one after another to occur.
などが挙げられる。 And the like.
光ディ スクに対するデータ記録において馴染みの深い変 ii 方式 と しては、 N R Z方式, N R Z I方式, F M方式, E F M方式, ( 2 , 7 ) — R L L方式などがある。 なお、 データ系列における 同一ビ ッ トの連铙個数をラ ン ( R u n ) と呼ぶ。  There are NRZ method, NRZI method, FM method, EFM method, (2,7) -RLL method, etc., as the method ii familiar to data recording on optical discs. The number of consecutive identical bits in a data sequence is called a run (Run).
N R Z (Non Return to Zero) 方式は、 ハー ドデ ィ ス ク などの 磁気記録でよ く 用いられる方式である力 デジタルデータの論理 値 「 0 」 及び 「 1 」 に対する信号レベルがそれぞれ低レベル及び 高レベルに完全対応する ものであり、 デジタ ルデータ に対する電 気信号の変換と して最も理解しやすい方式である。  The NRZ (Non Return to Zero) method is a method that is often used in magnetic recording such as hard disks, in which the signal levels of digital data logical values “0” and “1” are low and high, respectively. It is completely compatible with levels and is the easiest to understand as a conversion of electrical signals to digital data.
N R Z I (Non Return to Zero Inverse) 方式は、 デジタ レデ 一タの鑰理値が 「 1 」 のときのみ信号レベルを反転させる方式で ある。  The NRZI (Non Return to Zero Inverse) method is a method in which the signal level is inverted only when the key value of the digital data is “1”.
これら N R Z方式や N R Z I 方式においては、 データ列の最大 反転幅 T m a x は、 T m a x =無限大であり、 自己同期が取り難 い変調方式である こ とがわかる。 また、 D Cフ リ ーにならないた め、 現在の光ディ スクに対するデータ記録には採用されていない 。 現在では、 R L L方式や E F M変調方式が採用されている。  In these NRZ and NRZI systems, the maximum inversion width T max of the data string is T max = infinity, which indicates that the modulation system is difficult to achieve self-synchronization. Also, since it does not become a DC free, it is not used for data recording on current optical discs. At present, the RLL system and the EFM modulation system are employed.
R L L (Run Length Limited ) とは、 最大反転幅 T m a >:が有 限であるような符号化方式をいい、 特に最小ラ ンが d、 最大ラ ン が kであり、 データ mビ ッ トを nビ ッ 卜の変調ビ ッ トに写像変換 するよう な符号化を ( d , k , m, n ) — R L L符号化と称して いる。 各パラメ ータの取り方により、 R L L符号には幾つかの方 式が考えられるが、 これらは特性を示す性能評価パラ メ 一タによ り判断できる。  RLL (Run Length Limited) refers to an encoding method in which the maximum inversion width T ma>: is limited.In particular, the minimum run is d, the maximum run is k, and the data m bit is Encoding that transforms into n-bit modulation bits is called (d, k, m, n)-RLL encoding. Depending on how each parameter is taken, there are several possible RLL codes, but these can be determined by performance evaluation parameters that indicate characteristics.
評価バラメ ータの一つである最小反転幅 T m i nは、 あま り小 さすぎる と光ビッ クア ップの O T F (0ptical Transfer Function ) 又は面折限界によって再生波形干涉を起こすので、 T m i n は 大きい方が有利である。 The minimum inversion width T min, one of the evaluation parameters, is much smaller. If it is too short, the reproduced waveform will be damaged due to the optical transfer OTF (0ptical Transfer Function) or the limit of folding, so a larger T min is advantageous.
逆に、 最大反転幅 T m a X は、 自己同期のしゃすさに関係して おり、 小さい方が有利である。 即ち、 再生信号に時間軸変動 (ジ ッタ) があっても、 抽出される同期信号がその変動に追従できる ようにするために、 信号の反耘が頻繁になければならない。 また 、 反転間隔が長いと直流成分が変動する問韪も生じる。  Conversely, the maximum inversion width T max is related to the self-synchronous noise, and a smaller value is advantageous. That is, even if there is a time axis fluctuation (jitter) in the reproduced signal, the signal must be frequent in order to allow the extracted synchronization signal to follow the fluctuation. Also, if the inversion interval is long, there is a problem that the DC component fluctuates.
また、 検出窓幅 T wは、 再生信号の時間軸変動 (ジ ッタ) の許 容値を示している。 光ディ スクにおける再生ジ ッタは、 種々の要 因が考えられる力 この時間軸変動により、 データずれ等が生じ る こ とは好ま し く ない。 従って、 検出窓幅 T wは大きい方が望ま しい。  In addition, the detection window width Tw indicates the allowable value of the time axis fluctuation (jitter) of the reproduced signal. Reproduction jitter in an optical disc is a force that can be considered by various factors. It is not preferable that data shift and the like occur due to the time axis fluctuation. Therefore, it is desirable that the detection window width Tw be large.
以下の表 1 は、 主たる符号化方式の評価パラメ ータを示したも のである。  Table 1 below shows the evaluation parameters of the main coding methods.
表 1 変調符号の評価バラメ ータ Table 1 Evaluation parameters for modulation code
記錄符号 J _一 k m n Tmin Tmax Tw Notation code J _ 1 km n Tmin Tmax Tw
NRZI (0) ( ) (1) (1) 1 1 NRZI (0) () (1) (1) 1 1
EFM 2 10 8 17 1.44 5.1 0.47EFM 2 10 8 17 1.44 5.1 0.47
(2,7)RLL 2 7 1 2 1.5 4 0.5(2,7) RLL 2 7 1 2 1.5 4 0.5
(1,7)RLL 1 7 2 3 1.33 5.33 0.67 (1,7) RLL 1 7 2 3 1.33 5.33 0.67
E F M (Eight to Fourteen Modu 1 a t i on)変調は、 8データ ビッ トを 1 4変調ビ ッ トに変換する方式である。 2 1 4個 ( = 2 1 4 ) のバターンの中から d = 2 , k = 1 0 となる 2 5 6個 ( = 2 8 ) のパターンを選んでいる。 このとき各変換パターン間でも d = 2 の条件を満たすよう に、 結合用の 3 ビッ ト 「 0 0 0 」 , 「 0 1 0 j , 「 1 0 0 」 , 「 0 0 1 」 のう ち一つを、 最終的な波形列の 直流成分又は低周波成分を少な く する観点から選択して挿入して いる。 EFM (Eight to Fourteen Modulation) is a method of converting 8 data bits into 14 modulation bits. Of the 2 14 (= 2 1 4) patterns, 2 5 6 (= 2 8) patterns with d = 2 and k = 10 are selected. At this time, the three bits “0 0 0” and “0 1 One of 0 j, “100”, and “001” is selected and inserted from the viewpoint of reducing the DC component or low-frequency component of the final waveform sequence.
その結果、 直流成分又は低周波成分が少ないという特徴を持つ ている。 しかし、 接続用の 3 ビッ トを挿入する こ とより必然的に 記録密度は低下し、 またこの 3 ビッ トを决定するアルゴリ ズムは かなり複雑であり、 変調器も複雑な構成になる。  As a result, it has the feature that the DC component or the low frequency component is small. However, inserting three bits for connection inevitably lowers the recording density, and the algorithm for determining these three bits is quite complicated, and the modulator also has a complicated structure.
これに対して、 ( 2 , 7 ) — R L L変調は、 現在、 光ディ スク に対するデータ記録に一般的に用いられている方式である。 この 変調方式は、 最小反転幅 T m i nが大きい割に最大反転幅 T m a xが小さ く なつているのが特徴である。 しかし、 データ 1 ビッ ト に対し 2変調ビッ ト となるために、 検出窓幅 T wが 0 . 5 Tと余 り大き く とれない欠点を有している。 こ こで、 Tは 1 データ ビッ 卜の間隔を示す。 また、 可変語長であるため語境界を判断する必 要があり、 誤り伝搬が生じ易い欠点をも有する。 これを解決する ために、 光ディ スクに対してデジタルデータを記録する場合、 デ —タ中に或るデータ区間毎に同期信号 ( R E S Y N C ) 信号を挿 人して、 誤りの伝搬を防ぐような工夫を施さなければならない。  On the other hand, (2,7) -RLL modulation is a method generally used for data recording on optical discs at present. This modulation method is characterized in that the maximum inversion width T max is smaller than the minimum inversion width T min. However, since there are two modulation bits for one data bit, there is a disadvantage that the detection window width Tw is as small as 0.5 T and cannot be taken as large. Here, T indicates an interval of one data bit. In addition, since the word length is variable, it is necessary to determine word boundaries, which has the disadvantage that error propagation tends to occur. In order to solve this problem, when digital data is recorded on an optical disc, a synchronization signal (RESYNC) signal is inserted into the data every certain data section to prevent the propagation of errors. You have to be creative.
これに対して、 ( 1 , 7 ) — R L L変調は、 最近注目されてい る符号化方式であり、 高密度で、 かつ高データ レー トで記録でき る という長所を有する。 この方式は、 最小反転幅 T m i nが 1 . 3 3 Tであり、 上記 ( 2 , 7 ) - 1¾ し し変調の 1 . 5 Τより も若 干悪 く なつているが、 データ 2 ビッ トが 3変調ビ 'ン トに変換され るため検出窓幅 T wが 2 Ζ 3 となり、 比較的復調に余裕がある長 所をも有している。 しかし、 上述した E F M変調のような直流成 分を少な く する処理は施されていないため、 この点で問題が残つ ている。  On the other hand, (1,7) -RLL modulation is a coding scheme that has recently attracted attention, and has the advantage of being able to record at high density and at a high data rate. In this method, the minimum inversion width T min is 1.33 T, which is slightly worse than the above (2,7)-1¾ 1.5 modulation, but 2 bits of data Since it is converted into three modulation bits, the detection window width Tw becomes 2Ζ3, which also has the advantage that there is relatively room for demodulation. However, since a process for reducing the DC component such as the EFM modulation described above has not been performed, a problem remains in this respect.
上記光ディ スクに対するデータ記録においては、 データビッ ト 列をこ のよ う な P L L変調ビ ッ ト に変換し、 その後 N R Zや N R Z I を用いて記録波形を得るような手順を踏んでいる。 即ち、 原 情報である入力データ系列を R L L変調して T m i n と T m a x とを変えて一層光ディ スクに適合するように P L L変調ビッ ト系 列に変換し、 このビッ ト系列から N R Z又は N R Z I によって記 録波形列を得ている。 In data recording on the optical disc, the data bit The sequence is converted to such a PLL modulation bit, and then a recording waveform is obtained using NRZ or NRZI. That is, the input data sequence, which is the original information, is RLL-modulated, changed to T min and T max and converted to a PLL modulation bit sequence so as to be more suitable for an optical disc, and the NRZ or NRZI The recorded waveform sequence is obtained by
このとき、 第 6図に示すように、 N R Zを用いて記録を行なう 方式をマーク間記録若し く はビ ッ トポジシ ョ ン記録と呼んでいる 。 このビ ッ トボジ シ ョ ン記録においては、 記録マーク の一つが変 調ビ ッ ト 「 1 」 に対応しており、 再生時には、 マーク の位置を検 出してビッ ト Γ 1 」 に対応させるものである。  At this time, as shown in FIG. 6, a method of performing recording using NRZ is called inter-mark recording or bit position recording. In this bit position recording, one of the recording marks corresponds to the modulation bit "1", and at the time of reproduction, the position of the mark is detected to correspond to the bit "1". is there.
一方、 N R Z I を用いて記録を行なう方式は、 マーク長記録若 し く はマークエ ッ ジ記録と呼ばれる。 この場合、 信号レベルが変 化する位置、 即ちマーク の前後の緣が変綢ビ ッ トに対応している 。 再生時には、 ディ スク上のマークの両端を検出してビッ ト 「 1 」 に対応させるものである。  On the other hand, the method of recording using NRZI is called mark length recording or mark edge recording. In this case, the position where the signal level changes, that is, 緣 before and after the mark corresponds to the change bit. During playback, both ends of the mark on the disc are detected and correspond to bit “1”.
ビッ トポジシ ョ ン記録ではマークの有無のみを検出するために 、 マーク形状の乱れの影饗 ( ジ ッ タ等) を受け難いが、 一つのマ —ク に 2変調ビ ッ トを記録するマークエ ッ ジ記録方式と比較して 記錄密度が低く なるという欠点がある。 従って、 ビ ッ トポジ ショ ン記録方式を採用する場合は、 検出窓幅 T wが多少狭く ても、 最 小反転幅 T m i nが小さい変調符号が記録密度向上の点から適し ている と考えられる。  In the bit position recording, since only the presence or absence of a mark is detected, it is difficult to receive the influence (jitter or the like) of the disorder of the mark shape. However, a mark edge for recording two modulation bits in one mark. There is a disadvantage that the recording density is lower than that of the recording method. Therefore, when the bit position recording method is adopted, even if the detection window width Tw is somewhat narrow, a modulation code having a small minimum inversion width T min is considered to be suitable from the viewpoint of improving the recording density.
マーク長記録は記録密度を高く できる特徴を有している。 しか し、 記録媒体によってはマークの前端と後端の形状の異なるもの があり、 こ のよ う な記録媒体では使用できない。  Mark length recording has the feature that the recording density can be increased. However, some recording media have different shapes at the front end and the rear end of the mark, and cannot be used with such a recording medium.
[ D C レベルの変動発生原因]  [Cause of DC level fluctuation]
そ して、 上記光磁気デ ィ スクを再生して得られる信号 (再生信 号) S ί nは、 例えば第 7 A図に示すよう に、 一般に、 ア ド レス 成分 S a とデータ成分 S d とが間欠的に含まれており、 更に、 記 録が可能なタィ ブ (例えば光磁気デイ スク ) では、 データの消去 やデータの書込みのための光量の増大に伴う D C レベル S d c の 変動がある。 Then, a signal (reproduced signal) obtained by reproducing the magneto-optical disc is reproduced. No.) S ί n generally includes, intermittently, an address component S a and a data component S d, as shown in FIG. 7A, for example. For example, in a magneto-optical disk, there is a change in the DC level S dc due to an increase in the amount of light for erasing or writing data.
( D C レベルの変動)  (D C level fluctuation)
このような D C レベルの変動の原因は、 主として、 C D部と M 0部間の反射率の相違による D C レベルの変動と、 消去時におけ る D C レベルの変動とがある。 夫々 の D C レベルの変動に付いて 、 第 8図及び第 9図を参照しながら、 書換可能型光ディ スクを例 に採って具体的に説明する。  The causes of such fluctuations in the DC level are mainly the fluctuations in the DC level due to the difference in the reflectivity between the CD section and the M0 section, and the fluctuations in the DC level at the time of erasing. The respective fluctuations of the DC level will be specifically described with reference to FIGS. 8 and 9, taking a rewritable optical disc as an example.
( 1 ) C D部と M 0部間の D C レベル変動 (1) DC level fluctuation between CD section and M0 section
光磁気デ ィ ス クを例に採る と、 第 8図に示すように、 光磁気信 号検出部と して、 ビッ ト情報を検出する I D (又は C D ) 検出系 と、 記録 · 消去が可能な M O検出系とがある。 前者の I D検出系 においては、 ビッ トの有無で光量が変化するだけであり、 受光素 子 Aと受光素子 B の和 A + Bを求め 〖 D検出信号とする (第 9 A 図参照) 。 後者の M O検出系においては、 磁化の方向が Sか Nか によってビームの偏光面が僅かに面転するので、 それを P B S ( 偏光ビームスプリ ッタ ) 通してキャ ッチする と、 偏光面が正方向 なら受光素子 Aの入力が墦加し、 逆方向ならば受光素子 B の入力 が增加する。 この差分 A— Bを求め M 0検出信号と している (第 9 B図参照) 。 I D検出信号と M O検出信号は時間的に交代的に 発生し、 これら検出信号を交互にスィ ツチングして合成し、 再生 信号と している (第 9 C図参照) 。  Taking a magneto-optical disk as an example, an ID (or CD) detection system that detects bit information can be used as a magneto-optical signal detector, as shown in Fig. 8, and recording / erasing is possible. There is a MO detection system. In the former ID detection system, only the light quantity changes depending on the presence or absence of a bit, and the sum A + B of the light receiving element A and the light receiving element B is obtained and used as the D detection signal (see FIG. 9A). In the latter MO detection system, the polarization plane of the beam changes slightly depending on whether the direction of magnetization is S or N, and when it is caught through PBS (polarization beam splitter), the polarization plane is changed. In the forward direction, the input of photodetector A increases, and in the reverse direction, the input of photodetector B increases. The difference A—B is obtained and used as the M0 detection signal (see FIG. 9B). The ID detection signal and the MO detection signal occur alternately in time, and these detection signals are alternately switched and combined to form a reproduced signal (see FIG. 9C).
このような光磁気検出都においては、 M O検出系と I D検出系 における反射率の相違, 光学的なア ンバラ ンス等によって、 両検 出信号間に D C レベルの相違が生じることがある (第 9 C図参照 ) 。 また I D検出信号と M O検出信号の組み合わせがセクタ毎に 間欠的に含まれており、 セクタ間でも D C レベルの相違が発生す る。 このような D C レベルの相違が存在する と、 その後に 2値化 する際に正し く確実に 2値化することが出来な く なる。 In such a magneto-optical detection system, a difference in DC level may occur between the two detection signals due to a difference in reflectivity between the MO detection system and the ID detection system, an optical imbalance, etc. See figure C ). Also, the combination of the ID detection signal and MO detection signal is intermittently included in each sector, and DC levels differ between sectors. If there is such a difference in DC level, it will not be possible to correctly and reliably perform binarization when subsequently performing binarization.
(2) 消去時の D C レベル変動 (2) DC level fluctuation during erase
更に、 消まの際又はオーバライ ト時の前の情報の自動的な消去 の際には、 レーザ光量が増大するため、 消去の期間は反射光によ つてビッ トを検出している I D検出信号は D C レベルが相対的に 大き く なり、 その結果再生信号において D C変動が発生する (第 9 D図参照) 。  In addition, when the information is erased or automatically erased before overwriting, the amount of laser light increases, so during the erasing period, the ID detection signal that detects the bit by reflected light is used. Has a relatively large DC level, resulting in DC fluctuations in the reproduced signal (see Fig. 9D).
この時、 M O検出信号は差分をとつているため、 本来、 検出信 号は在しない。 しかし、 現実には検出系の各構成要素のばらつき (例えば光学的なア ンバラ ンス) 等に起因する同相除去の残りが 存在し D C レベルの変動の原因となる (第 9 E図参照) 。 この消 去時においても、 I D検出信号と M O検出信号を組み合わせた再 生信号からは、 消去箇所を特定するために 〖 D検出信号 (例えば 、 セク タマーク, ア ド レス部分等) は再生する必要があるため、 D C レベルの相違を抑制する必要がある β At this time, since the MO detection signal takes a difference, there is no detection signal originally. However, in reality, there is a residual common-mode rejection due to variations in the components of the detection system (eg, optical imbalance), which causes DC level fluctuations (see Fig. 9E). Even during this erasure, the D detection signal (eg, sector mark, address part, etc.) must be reproduced from the playback signal that combines the ID detection signal and MO detection signal in order to identify the erasure point. Therefore, it is necessary to suppress the difference in DC level β
そこで、 このような D C レベルの変動という問題を解決するた め、 A C結合 (交流結合) を行なって D C成分を抑制している。  Therefore, in order to solve the problem of such DC level fluctuation, AC coupling (AC coupling) is performed to suppress the DC component.
[ A C結合の時定数の選択の困難性】 [Difficulty in selecting the time constant of AC coupling]
従来は、 データ記録の変調方式として、 例えば上述した E F M 変調のよう な 「 0 」 と 「 1 」 の含まれる割合が均等している変調 方式を採用していたため、 再生信号自体に D C成分が殆ど含まれ な く 、 A C結合の時定数の選択が困難となるよう な問題は生じて いなかった。  Conventionally, as a modulation method for data recording, for example, a modulation method in which the proportions of “0” and “1” are equal, such as the above-mentioned EFM modulation, has been adopted. Since it was not included, there was no problem that it was difficult to select the time constant of AC coupling.
しかしながら、 データ記録の変調方式が R L L変調のように再 生信号に D C成分が舍まれる場合、 単に A C結合を行う方法では 正しい再生信号を読み取る こ とが出来ないという問題が生じてい る。 However, the modulation method for data recording is different from RLL modulation. When a DC component is included in a raw signal, there is a problem that a correct reproduction signal cannot be read by simply performing the AC coupling method.
即ち、 A C結合の時定数を小さ く すると、 第 7 B図に示すよう に、 上記再生信号 S i nは、 データの不連統部分、 即ちァ ドレス 成分 S aやデータ成分 S dの各先頭部分における上記 A C結合に 伴う過渡状態の期間が滅り、 各成分の立ち上がり は急峻となるが 、 再生信号 S i nに含まれるべき D C成分が失われるため、 正し い再生が困難となり、 再生特性の劣化につながる という問題があ る。  That is, when the time constant of the AC coupling is reduced, as shown in FIG. 7B, the reproduced signal Sin is a discontinuous part of the data, that is, the head part of each of the address component Sa and the data component Sd. Although the period of the transient state associated with the AC coupling in the above disappears, the rise of each component becomes steep, but the DC component to be included in the reproduction signal Sin is lost, so that correct reproduction becomes difficult, and the reproduction characteristic becomes poor. There is a problem that leads to deterioration.
逆に、 A C結合の時定数を大き く すると、 第 7 C図に示すよう に、 再生信号 S i nに含まれるべき D C成分の消失は防止される が、 その分、 ア ド レス成分 S aやデータ成分 S dの各先頭部分の 上記過渡状態の期間が長く なり、 再生信号 S i nの先頭部分 (円 a で示す信号成分など) の再生が困難になる という問題が生じる 。 このような現象は、 特に図 6で示すマーク エ ッ ジ記録において 顕著になる。  Conversely, if the time constant of the AC coupling is increased, as shown in FIG. 7C, the loss of the DC component included in the reproduced signal Sin is prevented, but the address component S a and the The transition period of the leading portion of the data component Sd becomes longer, which causes a problem that it is difficult to reproduce the leading portion (the signal component indicated by the circle a) of the reproduced signal Sin. Such a phenomenon is particularly prominent in mark edge recording shown in FIG.
このよう に再生信号を或る一定の時定数で A C結合した場合、 その時定数が小さいと過渡状態の期間が短く なり、 再生信号が本 来有している D C成分が失われ、 正しい再生は困難になる。 反対 に、 時定数が大きすぎると過渡状態の期間が長く なり、 再生信号 の D C成分は失われないが、 ア ドレス成分 S aやデータ成分 S d の各先頭部分の再生が困難になる。  When the reproduction signal is AC-coupled with a certain time constant in this way, if the time constant is small, the period of the transient state is shortened, and the DC component inherent in the reproduction signal is lost, so that it is difficult to reproduce correctly. become. On the other hand, if the time constant is too large, the period of the transient state becomes longer, and the DC component of the reproduced signal is not lost, but it becomes difficult to reproduce the respective leading portions of the address component Sa and the data component Sd.
データの高密度化及び高いビッ ト レー トを実現するため、 現在 では ( 1 , 7 ) — R L Lのよ うな変調方式を採用するこ とが好ま し く なつている。 ( 1 , 7 ) — R L L変調は、 E F M変調と異な り、 D C成分を抑制する考慮は払われていない変調方式である。 こ こで、 上述の問韪を ( 1 , 7 ) — R L L変調の場合にあてはめ てみる と、 ( 1 , 7 ) — R L Lのよう な本来的に D C成分を有す る変調方式を採用する限り、 単に A C結合により D C成分を抑制 するだけでは、 読み取りが出来ないこ とがある。 To achieve higher data densities and higher bit rates, it is now becoming more preferable to adopt a modulation scheme such as (1,7) -RLL. (1,7) — Unlike EFM modulation, RLL modulation is a modulation method that does not consider the suppression of DC components. Here, apply the above question to the case of (1,7) — RLL modulation. As a result, as long as a modulation method that inherently has a DC component such as (1, 7) — RLL is adopted, reading may not be possible simply by suppressing the DC component by AC coupling. .
即ち、 ( 1 , 7 ) — R L L変調は、 最小ラ ンが d = 1 、 最大ラ ンが k = 7 、 従って少な く とも 「 1 」 と 「 1 」 の間に 「 0 」 が挿 入され、 「 0 」 の最大ラ ンは 7個となっている。 こ こで、 各セク タの先頭部分に存在する同期データを迅速に再生できるように比 較的短い時定数で A C結合を行う と、 引き続き再生されるデータ 部で比較的長いラ ンが連続した場合、 この部分の本来持っている D C成分が失われ、 その後段で適切に 2値化する こ とが出来ない 反対に、 比較的長いラ ンが連続する部分が本来持っている D C 成分を正し く 再生できるような比較的大きい時定数で A C結合を 行う と、 セクタの先頭部分の同期データの再生において、 過渡状 態が長時間繞き、 その間、 正し く 同期データを再生することが出 来ない。  That is, (1, 7) — RLL modulation has a minimum run of d = 1 and a maximum run of k = 7, so at least a “0” is inserted between “1” and “1”, The maximum run of “0” is seven. Here, when AC coupling was performed with a relatively short time constant so that the synchronized data existing at the beginning of each sector could be quickly reproduced, a relatively long run continued in the data part that was subsequently reproduced. In this case, the original DC component of this part is lost, and it cannot be properly binarized in the subsequent stage. If AC coupling is performed with a relatively large time constant that can be played back properly, the synchronization data at the beginning of the sector can be reproduced for a long period of time, and during that time, the synchronized data can be played back correctly. Can not.
本発明は、 上記の課韪に鑑みてなされたもので、 その目的とす るところは、 簡単な構成で、 再生信号に含まれるべき D C成分の 消失を防止するこ とができ、 しかも、 データの不連続部分での過 渡状態の期間を短く する こ とができる再生回路を提供するこ とに ある。 発明の開示  The present invention has been made in view of the above problems, and has as its object to prevent the loss of the DC component included in the reproduced signal with a simple configuration, and to further reduce the data. It is an object of the present invention to provide a reproducing circuit capable of shortening the period of the transient state at the discontinuous portion of the circuit. Disclosure of the invention
本発明に係る再生回路は、 情報データ と該情報データを再生す る際に同期をとるために使用される同期データ とが ト ラ ッ クに ¾ つて順次記録された記録媒体を再生する再生装置であって、 上記 情報データ及び上記同期データを読み出して再生信号を生成する 読出手段と、 第 1 の時定数と該第 1 の時定数より も大きい第 2 の 時定数の内 1 つを選択して上記再生信号に A C結合を行う こ とで 修正再生信号を生成する A C結合手段と、 上記銃出手段が上記同 期データを読み出すタ イ ミ ングを示す検出信号を出力する検出手 段と、 上記検出信号に基づいて決定される第 1 のタ イ ミ ングから 所定時間後の第 2 のタ イ ミ ングまでは上記第 1 の時定数を選択し 、 上記第 2 のタイ ミ ングで上記第 2 の時定数を選択するよう に上 記 A C結合手段を制御する制御手段と、 上記修正再生信号を 2値 化して 2値化修正再生信号を生成する二値化手段と、 上記 2値化 修正再生信号から上記情報信号を復調する復調手段とを備えてい る。 A reproducing circuit according to the present invention is a reproducing apparatus for reproducing a recording medium in which information data and synchronous data used for synchronization when reproducing the information data are sequentially recorded on a track. Reading means for reading out the information data and the synchronous data to generate a reproduction signal; a first time constant; and a second time constant larger than the first time constant. AC coupling means for generating a corrected reproduction signal by selecting one of the time constants and performing AC coupling on the reproduction signal, and detection indicating the timing at which the firing means reads the synchronization data. Detecting means for outputting a signal, and selecting the first time constant from a first timing determined based on the detection signal to a second timing after a predetermined time, A control means for controlling the AC coupling means so as to select the second time constant at a second timing, and a binary means for binarizing the modified reproduction signal to generate a binarized modified reproduction signal Decoding means, and demodulation means for demodulating the information signal from the binarized modified reproduction signal.
これにより、 まず、 情報データ と同期データからなる入力信号 は、 A C結合回路において、 該入力信号に舍まれる D C レベルの 変動が抑えられるこ とになるが、 A C結合回路の時定数の選定に よっては、 その D C レベルが消失する場合がある。 入力信号の信 号形態においては、 上記 D C レベルも有効な信号成分の一部と し て入力信号の再生 (復調) に使用する場合がある。  As a result, first, the input signal consisting of information data and synchronization data suppresses the fluctuation of the DC level included in the input signal in the AC coupling circuit, but it is necessary to select the time constant of the AC coupling circuit. Therefore, the DC level may disappear. In the signal form of the input signal, the DC level may be used as a part of the effective signal component for reproducing (demodulating) the input signal.
従って、 単に A C結合回路において、 D C レベルの変動を抑え るために D C レベル自体を消失させた場合、 上記のよ う な信号形 態をもつ入力信号を有効に再生させるこ とができない。  Therefore, if the DC level itself is eliminated in the AC coupling circuit to suppress the fluctuation of the DC level, the input signal having the above-described signal form cannot be effectively reproduced.
しかし、 この発明に係る再生回路においては、 A C結合手段を 制御する制御手段により A C結合回路の時定数が所定タイ ミ ング で切り換わることから、 所定タ イ ミ ングを適宜調整することによ り、 上記 D C レベルを信号成分と して有効に扱わなければな らな い期間において、 A C結合回路の時定数を例えば大き く する方向 に切り換える こ とが可能となり、 入力信号からの D C レベルの消 失を防止するこ とができ、 入力信号を適正に再生処理するこ とが 可能となる。  However, in the reproducing circuit according to the present invention, since the time constant of the AC coupling circuit is switched at a predetermined timing by the control means for controlling the AC coupling means, the predetermined timing is appropriately adjusted. During the period in which the DC level must be effectively treated as a signal component, the time constant of the AC coupling circuit can be switched to, for example, a direction in which the DC level is increased. Loss can be prevented, and the input signal can be properly reproduced.
更に、 本発明に係る再生回路は、 上述の再生装置において、 上 記記録媒体は、 セクタの先頭を示すセク タマーク, 上記同期デー タ及び上記情報データを有するセクタが上記 ト ラ ッ ク に沿って順 次記録されており、 上記検出手段は、 上記読出手段によって読み 出された再生信号が上記セク タマークからの再生信号である際に 上記検出信号を出力する。 Furthermore, the reproduction circuit according to the present invention is the reproduction apparatus described above, The recording medium has a sector mark indicating the beginning of a sector, a sector having the synchronization data and the information data, sequentially recorded along the track, and the detection means reads the data by the reading means. The detection signal is output when the output reproduction signal is a reproduction signal from the sector mark.
即ち、 A C結合回路の時定数を小さい方向に設定しておき、 上 記検出手段がセクタマークを検出するこ とに基づいて、 上記 A C 結合手段を制御する制御手段から切換え信号が出力され、 この切 換え信号の出力に基づいて A C結合回路の時定数を大き く する方 向に切り換えるようにすれば、 情報データに舍まれる D C レベル の消失を防止する こ とができる。 特に、 同期データの先頭部分が 読み出される際には、 A C結合回路の時定数が比較的小さ く され ているため、 過渡状態の期間が短く 、 信号レベルが急峻に立ち上 がる こ とから、 検出手段での同期データの検出が出来る。  That is, the time constant of the AC coupling circuit is set in a smaller direction, and a switching signal is output from the control means for controlling the AC coupling means based on the detection of the sector mark by the detection means. If the time constant of the AC coupling circuit is switched to be increased based on the output of the switching signal, the loss of the DC level contained in the information data can be prevented. In particular, when the leading part of the synchronous data is read, the time period of the transient state is short and the signal level rises sharply because the time constant of the AC coupling circuit is relatively small, so that Synchronous data can be detected by the detecting means.
更に、 本発明に係る再生回路は、 上述の再生装置において、 上 記 A C結合手段が、 上記読出手段の出力側に一端が接統されたコ ンデンサと、 上記コ ンデンサの他端に一端が接統された複数個の 抵抗と、 上記複数個の抵抗の他端を上記制御手段によ つて選択的 に接地する接続手段とを備えている。  Further, in the reproducing circuit according to the present invention, in the reproducing apparatus described above, the AC coupling means may include a capacitor having one end connected to the output side of the reading means, and one end connected to the other end of the capacitor. And a connection means for selectively grounding the other ends of the plurality of resistors by the control means.
従って、 複数個の抵抗の他端を上記制御手段によって選択的に 接地する動作のみで A C結合回路の時定数が適宜切り換わる こ と になり、 A C結合回路の時定数を切換えるための構成を非常に簡 単にする こ とができる。 図面の簡単な説明  Therefore, the time constant of the AC coupling circuit is appropriately switched only by the operation of selectively grounding the other ends of the plurality of resistors by the control means, and the configuration for switching the time constant of the AC coupling circuit is extremely reduced. It can be easily done. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本実施例に係る光磁気ディ スク · システムの要部の 構成を示す図である。  FIG. 1 is a diagram showing a configuration of a main part of a magneto-optical disc system according to the present embodiment.
第 2図は、 図 1 の光磁気ディ スク · システムの記録媒体である 光磁気ディ スクで使用されるセ ク タ · フ ォ ーマ ツ トを說明する図 である。 Fig. 2 shows the recording medium of the magneto-optical disk system of Fig. 1. FIG. 2 is a diagram illustrating a sector format used in a magneto-optical disc.
第 3図は、 図 1 の光磁気デ ィ ス ク · システムの信号波形を示す 図である。  FIG. 3 is a diagram showing a signal waveform of the magneto-optical disk system of FIG.
第 4 A図〜第 4 D図は、 図 1 の光磁気ディ ス ク · システムのセ クタマーク検出回路におけるセク タマーク検出動作を説明する図 である。  FIGS. 4A to 4D are diagrams for explaining a sector mark detection operation in the sector mark detection circuit of the magneto-optical disk system of FIG.
第 5図は、 図 1 の光磁気デ ィ スク ♦ システムの A C結合面路の 時定数切換え回路の他の構成例を示す回路図である。  FIG. 5 is a circuit diagram showing another example of the configuration of the time constant switching circuit of the AC coupling plane of the magneto-optical disc system of FIG.
第 6図は、 ビッ ト ボジ シ ョ ン記録及びマーク ェ ッ ジ記録を説明 する図である。  FIG. 6 is a diagram for explaining bit position recording and markage recording.
第 7 A図〜第 7 C図は、 従来技術の信号処理における A C結合 回路の時定数の大小による再生信号の波形を説明する図である。 第 8図は、 光磁気デ イ ス ク · システムの光磁気検出系の要部を 説明する図である。  7A to 7C are diagrams illustrating the waveform of a reproduced signal depending on the time constant of the AC coupling circuit in the signal processing of the related art. FIG. 8 is a diagram illustrating a main part of a magneto-optical detection system of the magneto-optical disk system.
第 9 A図〜第 9 E図は、 図 8 の光磁気検出系の I D検出信号及 び M O検出信号の様子を説明する図である。 発明を実施するための最良の形態  9A to 9E are diagrams illustrating the states of the ID detection signal and the MO detection signal of the magneto-optical detection system of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の特徴を端的に述べると、 記録されたデータの各要素の 性質に対応して、 A C結合の時定数を変化させる こ とにある。 即 ち、 記録データの内、 記録データの各セク タの先頭部分に対して は時定数の比較的小さい A C結合を行い、 短時間で過渡状態を収 束して定常状態に し、 この先頭部分の検出を確実なものと してい る。 一方、 記録データの内、 本来 D C成分を持っているデ一タ部 等に対しては比較的大きい時定数に切り替えて A C結合を行い、 そのデータ部等の持つ D C成分を正し く再生出来るようにしてい る。 In short, the feature of the present invention lies in that the time constant of the AC coupling is changed in accordance with the properties of each element of the recorded data. In other words, of the recording data, AC coupling with a relatively small time constant is applied to the head of each sector of the recording data, and the transient state is converged in a short time to make it a steady state. Detection is assured. On the other hand, of the recorded data, the data part that originally has a DC component can be switched to a relatively large time constant to perform AC coupling, and the DC component of the data part can be reproduced correctly. Like You.
以下、 本発明に係るデジタル信号再生回路を光磁気ディ スクに 記録されたデータを再生するための再生系に適用した実施例を第 Hereinafter, an embodiment in which the digital signal reproducing circuit according to the present invention is applied to a reproducing system for reproducing data recorded on a magneto-optical disc will be described.
1 図〜第 5図を参照しながら説明する。 1 will be described with reference to FIGS.
[再生回路]  [Regeneration circuit]
この実施例に係る光磁気ディ スク · システムは、 第 1 図に示す よう に概して再生系と記録系を備えている。 光磁気ディ スク (図 示せず。 ) に対して記録用のレーザ光及び再生用のレーザ光を出 射する光へッ ド 1 a及び記録時の磁界を印加する磁気へッ ド 1 b が設けられている。 こ こで、 先ず、 光磁気ディ スク · システムの 理解を容易にするため、 第 2図を参照しながら光磁気ディ スクの データ フ ォーマ ツ 卜 に付いて説明する。  The magneto-optical disc system according to this embodiment generally includes a reproducing system and a recording system as shown in FIG. A light head 1a for emitting a laser beam for recording and a laser beam for reproduction to a magneto-optical disc (not shown) and a magnetic head 1b for applying a magnetic field during recording are provided. Have been. Here, first, in order to facilitate understanding of the magneto-optical disc system, the data format of the magneto-optical disc will be described with reference to FIG.
(記録媒体のデータフ ォ一マ ツ ト )  (Data format of recording medium)
情報通信分野の標準化作業は、 I S 0 (International Organiz a tion for Standardization) ¾. ? I E C (International Electro technical Commission) の統合委員会 T C 1 (Joint Technical C o rami ttee)により進められている。 こ こで、 光ディ スクは S C 2 3 (Subcommittee)で取り扱われている。  Standardization work in the field of information and communication is being carried out by the TC (International Electrotechnical Commission), which is the integrated committee of the International Electrotechnical Commission (ISC). Here, optical discs are handled by SC 23 (Subcommittee).
こ こで決められた現行 5 . 2 5 ィ ンチ光磁気において、 ユーザ データエ リ アは 3 0 〜 6 0 m mとなっており、 取り得る ト ラ ッ ク ナンバーは 0〜 1 8 7 5 0 となっており、 夫々 の ト ラ ックには 1 7 ( 1 0 2 4 バイ ト ) 若し く は 3 1 ( 5 1 2 バイ ト ) のセクタに 分けられるようプリ フ ォーマ ツ ト されている。  In the current 5.25-inch magneto-optics determined here, the user data area is 30 to 60 mm, and the possible track numbers are 0 to 18750. Each track is pre-formatted so that it can be divided into 17 (1024 bytes) or 31 (512 bytes) sectors.
第 2 図に、 一例と して、 I S O/ I E C J T C 1 / S C 2 3 . 1 4 5 1 7 と して公表されている 5 1 2 バイ ト /セクタである 5. 2 5イ ンチ光磁気のセク タフ ォーマ ツ ト及び 1 0 2 4 バイ ト /セク タである 5. 2 5 イ ンチ光磁気のセクタ フ ォーマ ッ トを示 している。 これら両セクタ フォーマ ン トで異なる点は、 データフ ィ ール ドと、 それに続く ノ ッファ の長さのみである。 これらセク タ フオー マ ン トについて簡単に説明し、 その後、 本発明との関連 に付いて説明する。 Fig. 2 shows an example of a 5.25-inch magneto-optical section, which is a 512-byte / sector published as ISO / IECJTC1 / SC23.14.517. It shows a sector format of 5.25 inch magneto-optical, which is a format of 102 and 24 bytes / sector. The difference between these two sector formats is the data format. It is only the length of the field followed by the buffer. These sector formats will be briefly described and then described in relation to the present invention.
第 2図 Bに示すセク タ フ ォーマ ツ ト は、 大き く I D部 (ァ ド レ ス部) . フラグ部, M O部 (データ部) 及びバッ ファ部に大別さ れる。 この内、 ア ドレス部は、 ディ スク上の物理的な番地 ( phy s ical block address) を示す領域であり、 予め基板上にプリ フ ォ 一マ ツ 卜 されている。 フラグ部は、 セク タ内のデータの状態を示 すフラグを書き込む領域である。 データ部は、 本来ユーザが使用 するデータを記録する領域である。 バ ッ フ ァ部は、 デ ィ スク回転 変動マージ ン用の領域であり、 記録時に回転ジ ッタ等によるズレ が生じてもデータ とァ ドレスが重なって しま う こ とがないよう に 設けられている。  The sector format shown in Fig. 2B is broadly divided into an ID section (address section), a flag section, a MO section (data section), and a buffer section. The address section is an area indicating a physical address (physical block address) on the disk, and is pre-formatted on the substrate in advance. The flag section is an area for writing a flag indicating the state of data in the sector. The data section is an area for recording data originally used by the user. The buffer area is an area for disk rotation fluctuation margin, and is provided so that data and addresses do not overlap even if a deviation occurs due to rotation jitter or the like during recording. ing.
各領域について更に説明を加えると、 第 2図 Aに示すァ ド レス 部 (プリ フ ォ ーマ ツ ト ' ヘッダ) は、 セク タマーク S M (Sector Mark) と呼ばれる先頭パターンから始ま り、 実際に回転している デ ィ ス ク の回転位相を与える V F 0 (Variable Frequency Oisci 11 a tor) と、 ア ドレスデータの開始位置を与える A M (Address Mar と、 識別信号と しての ト ラ ッ ク ナンバとセク タナ ンパの入った I D (Idetif ier) との組み合わせより成るア ド レス情報パターン が数画 (図中は 2回) 操り返され、 P A (Postamble) で終わって いる。 本実施例では、 V F 0が一番短期間に Γ 1 」 と 「 0 」 を頻 繁に繰り返し、 そのため D C成分が含まれていないこ とが保証さ れている こ とに注目 して、 後述するよう にこの V F 0期間中に A C結合の時定数を変更している。  To further explain each area, the address section (pre-format header) shown in Fig. 2A starts with the first pattern called the Sector Mark (SM) and actually rotates. VF 0 (Variable Frequency Oisci 11 a tor) that gives the rotational phase of the disk being used, AM (Address Mar) that gives the start position of the address data, and the track number as the identification signal An address information pattern composed of a combination with an ID (Idetifier) containing a sector stamper is repeated several strokes (twice in the figure) and ends with a PA (Postamble). Note that 0 frequently repeats Γ1 ”and“ 0 ”in the shortest time, so that it is guaranteed that no DC component is included. The time constant of AC coupling is changed during the period.
こ こで、 2個の I Dには、 夫々同一の識別記号が操り返し書か れている。 各 I Dには、 ト ラ ッ クナンバ及びセク タナ ンパの識別 記号のほかに、 その誤りを検出するための C R C (Cyclic Redunc y Check)コー ドも書かれている。 Here, the same identification symbol is repeatedly written on each of the two IDs. Each ID has a track number and a sector number identification code, as well as a CRC (Cyclic Redunction) to detect the error. y Check) code is also written.
第 2図 Cに示すフラグ部 ( A L P C · ギャ ッ プ) には、 書き込 みをが行われたことを示す F L A Gのほかに、 ブッ シュブル法に おける ト ラ ッキ ング ' オフセ ッ ト検出用のマーク (ODF Offset De tection Flag) やレーザパワーのレベル調整のためのテス ト部(A L Pし: Auto Laser Power Con toro 1 )等力くある β The flag (ALPC / gap) shown in Fig. 2C contains FLAG indicating that writing has been performed, as well as tracking and offset detection in the bush bull method. mark test unit for level adjustment (ODF Offset De tection Flag) and laser power (ALP were: Auto laser power Con toro 1) Tochikaraku certain β
データ部には、 P L L ロ ッ ク用の連続データパターンである V F 0 (Variable Frequency Oscillator) ¾:書き込む領域と、 デ一 タの同期信号である S Y N Cを書き込むための領域のほかに、 ュ 一ザデータなどを書き込むための領域と してのデータフ ィ ール ド がある。 データフ ィ ール ドには、 ユーザデータのほかに、 本来書 きたいセク タが欠陥である とき交代セク タに各処理、 所謂欠陥処 理をするためのコ ン ト ロールバイ ト, 誤り訂正用の冗長語である E C C (Error Correction Code) , 誤り検出をするための C R C (Cy cl ic Redundancy Check)コー ド、 同期用の特殊コー ドバター ンである R e s y n c が書き込まれる。  The data section contains VF 0 (Variable Frequency Oscillator), which is a continuous data pattern for the PLL lock, and an area for writing SYNC, which is a data synchronization signal. There is a data field as an area for writing data. In the data field, in addition to the user data, when the sector to be written is defective, the alternate sector performs various processing, so-called control byte for performing defect processing, and error correction. Redundant word ECC (Error Correction Code), CRC (Cyclic Redundancy Check) code for error detection, and Resync, a special code pattern for synchronization, are written.
(再生回路の構成)  (Configuration of playback circuit)
再び、 第 1 図を参照願いたい。 このよ う なセ ク タ ' フ ォーマ ツ 卜 にしたがって記録された光磁気ディ スク (図示せず。 ) に対し て記錄用のレーザ光及び再生用のレーザ光を出射する光へッ ド 1 a及び記録時の磁界を印加する磁気ヘ ン ド 1 bが設けられている 。 再生系と して、 光へッ ド 1 a の後段に、 レーザ光の光磁気ディ スクからの戻り光を鼋気信号に変換する光検出器 (図示せず。 ) からの検出信号が入力される第 1及び第 2 の R Fア ンプ 2 a及び 2 bを有する。  Please refer to Fig. 1 again. For a magneto-optical disc (not shown) recorded according to such a sector format, a light head for emitting a laser beam for recording and a laser beam for reproduction is used. And a magnetic head 1b for applying a magnetic field during recording. As a reproducing system, a detection signal from a photodetector (not shown) that converts the return light of the laser light from the magneto-optical disk into an air signal is input to the subsequent stage of the optical head 1a. It has first and second RF amplifiers 2a and 2b.
そして、 第 1 の R Fア ンプ 2 a の後段に、 A C結合回路 3、 セ ク タマーク検出回路 6、 二値化回路 4 、 ク ロ ッ ク発生回路 1 3、 ア ド レスデコーダ 7 、 補間回路 8、 ス イ ッ チ ング制御回路 9及び デコーダ 1 0が接耪されている。 また、 第 2 の R Fアンプ 2 の 後段に、 サーボ制御回路 1 1 が接続されている。 After the first RF amplifier 2a, an AC coupling circuit 3, a sector mark detection circuit 6, a binarization circuit 4, a clock generation circuit 13, an address decoder 7, and an interpolation circuit 8 are provided after the first RF amplifier 2a. , Switching control circuit 9 and The decoder 10 is connected. Further, a servo control circuit 11 is connected after the second RF amplifier 2.
記録系と して、 記録データを符号化するエ ンコーダ 1 5、 その 後段に光へッ ド 1 a の レーザを駆動する レーザ駆動回路 1 6 が接 続され、 磁気ヘッ ド 1 bを駆動する磁気へ ッ ド駆動回路 1 7及び ラ イ ト ク ロ ッ ク W CLK を発生する基準周波数発生回路 1 4 が設け られている。  As a recording system, an encoder 15 that encodes the recording data, and a laser drive circuit 16 that drives the laser of the optical head 1a is connected to the encoder, and a magnetic drive that drives the magnetic head 1b A head drive circuit 17 and a reference frequency generation circuit 14 for generating a light clock W CLK are provided.
更にこれら各種回路を制御する システム コ ン ト ローラ 1 2を有 して、 本実施例に係る光磁気ディ スク · システムが構成されてい る。 なお、 図 1 においては、 システムコ ン ト ローラ 1 2から各回 路要素に導出される制御線を一つひとつ記載すると、 図面の内容 が複雑になるため省略して示している。 次に、 この光磁気ディ ス ク · システムの各回路ブロ ン ク について簡単に説明する。  Further, a magneto-optical disk system according to the present embodiment is provided with a system controller 12 for controlling these various circuits. In FIG. 1, if the control lines derived from the system controller 12 to the respective circuit elements are described one by one, they are omitted because the contents of the drawing become complicated. Next, each circuit block of the magneto-optical disk system will be briefly described.
( R F ア ンプ)  (RF amplifier)
第 1 の R F ア ンプ 2 a は、 光ヘッ ド 1 a からの再生信号中、 サ ブコ ー ドを含むデータ信号を増幅する回路であり、 第 2 の R Fァ ンプ 2 b は、 光へッ ド 1 a からの再生信号中、 ト ラ ッキ ングエラ The first RF amplifier 2a is a circuit for amplifying a data signal including a subcode in the reproduced signal from the optical head 1a, and the second RF amplifier 2b is an optical head 2b. 1 During playback signal from a, tracking error
—信号及びフ ォーカ スェラー信号を増幅する回路である。 この第 2 の R F ア ンプ 2 からの ト ラ ッ キ ングエ ラー信号 &びフ ォー力 スエラー信号は、 サ一ボ制御回路 1 1 に供給される。 —A circuit that amplifies signals and focus-seller signals. The tracking error signal and the force error signal from the second RF amplifier 2 are supplied to the servo control circuit 11.
(サ一ボ制御回路)  (Sensor control circuit)
サーボ制御回路 1 1 は、 その内部に、 フ ォ ーカ ス · サーボ回路 、 ト ラ ッ キ ング . サーボ回路、 ス ピン ドル · サーボ回路及び各種 移動機構の駆動源であるモータに対してサ一ボ制御を行うモータ 用サーボ回路等が組み込まれており、 これら各種サーボ回路は、 それぞれシステムコ ン ト ロ一ラ 1 2 からのサ一ボ制御に関するデ 一夕 (サ一ボゲイ ン等) や駆動信号などのサーボ駆動制御信号や 第 2 の R Fア ンプ 2 bからの各種エラー信号が入力されるよう に なっている。 The servo control circuit 11 internally includes a focus servo circuit, a tracking servo circuit, a spindle servo circuit, and a motor that is a driving source of various moving mechanisms. A servo circuit for the motor that performs servo control is built in, and these various servo circuits are used to control servo control from the system controller 12 (such as servo gain) and drive, respectively. Signal and other error signals from the second RF amplifier 2b. Has become.
上記ス ピン ドル . サーボ回路は、 ク ロ ッ ク発生回路 1 3 からの ク ロ ン クバルス P c の入力に基づいて、 光磁気デ ィ ス ク の回転駆 動源であるス ピン ドルモータ (図示せず) を躯動して、 光磁気デ イ スク を C L V (線速度一定) 方式又は C A V (角速度一定) で 回転躯動させる回路である。  Based on the input of the clock pulse P c from the clock generation circuit 13, the spindle servo circuit described above rotates the spindle motor (rotating drive source of the magneto-optical disk) (not shown). This is a circuit that drives the magneto-optical disc by CLV (constant linear velocity) method or CAV (constant angular velocity).
上記フ ォーカス · サ一ボ回路は、 第 2 の R Fア ンプ 2 bからの フ ォ ーカ スエ ラ一信号、 具体的には、 光磁気デ ィ ス ク に形成され た ミ ラー面へのレーザ光照射に伴う該ミ ラー面からの反射光量に 応じた検出信号を第 2 の R F ア ンプ 2 bにて所定の演算を行なつ て得た信号に基づいて、 光ヘッ ド 1 の二次元ァクチユエ一夕 (図 示せず) を駆動 · 制御する こ とにより、 図示しない対物レ ンズを 光磁気デイ スクの接離方向に移動させてその焦点調整を行う回路 である。  The above-mentioned focus servo circuit is a focus error signal from the second RF amplifier 2b, specifically, a laser beam to a mirror surface formed on a magneto-optical disk. Based on a signal obtained by performing a predetermined operation in the second RF amplifier 2b on a detection signal corresponding to the amount of light reflected from the mirror surface due to light irradiation, the two-dimensional actuating device of the optical head 1 is used. This circuit adjusts the focus by driving and controlling an overnight lens (not shown) to move an objective lens (not shown) in the direction of contact and separation of the magneto-optical disk.
上記 ト ラ ッキ ング ' サーボ回路は、 第 2 の R Fア ンプ 2 bから の ト ラ ッ キ ングエ ラー信号、 具体的には、 光磁気デ ィ スク に形成 されているサーボ領域内のサ一ボビッ トの検出に伴う検出信号を 第 2 の R F ア ンプ 2 bにて所定の演算を行なって得た信号に基づ いて、 光ヘッ ド 1 の上記二次元ァクチユエータを駆動 · 制御する こ とにより、 上記対物レンズを光磁気デイ スク Dの径方向に移動 させてその ト ラ ツキ ング網整を行う回路である。  The above-mentioned tracking 'servo circuit is a circuit for tracking error signals from the second RF amplifier 2b, specifically, a servo error signal in a servo area formed on the magneto-optical disk. By driving and controlling the two-dimensional actuator of the optical head 1 based on a signal obtained by performing a predetermined operation in the second RF amplifier 2b on a detection signal accompanying the detection of the bobbit. This is a circuit that moves the objective lens in the radial direction of the magneto-optical disc D and adjusts its tracking network.
( A C結合回路)  (AC coupling circuit)
A C結合回路 3 は、 第 1 の R Fア ンプ 2 a から導出される再生 信号ラ イ ンに接続された結合コ ンデンサ C と、 該結合コ ンデンサ Cの後段において、 再生信号ライ ンと接地間に互いに並列に接続 された 2 つの抵抗 (第 1 の抵抗 R 1及び第 2 の抵抗 R 2 ) と、 こ れら抵抗 R 1 及び R 2 のう ち、 一方の抵抗 (図示の例では第 2 の 抵抗 R 2 ) と接地間に接続されたスイ ッチング回路 S Wとを有し て構成されている。 このス ィ ツ チ ング回路 S Wは、 後述する スィ ッチング制御回路 9からのウ イ ン ドウパルス P wによつて制御さ れるよ うになっており、 このウ イ ン ドウパルス P wが例えば高レ ベルの ときオ ン勛作、 低レベルのと きオ フ動作をするよ う にな つ ている。 The AC coupling circuit 3 includes a coupling capacitor C connected to the reproduction signal line derived from the first RF amplifier 2a, and a post-connection capacitor C connected between the reproduction signal line and the ground. Two resistors (first resistor R 1 and second resistor R 2) connected in parallel with each other, and one of these resistors R 1 and R 2 (second resistor in the illustrated example) And a switching circuit SW connected between the resistor R 2) and the ground. It is configured. The switching circuit SW is controlled by a window pulse Pw from a switching control circuit 9 which will be described later, and the window pulse Pw is, for example, a high level. When it is on, it is turned off when it is at a low level.
(二値化回路)  (Binarization circuit)
二値化面路 4 は、 A C結合回路 3 を経て入力されるデータ信号 をサンプリ ング · ホール ドして 2値化のデジタルデータに変換す る回路である。  The binarization surface 4 is a circuit that converts the data signal input through the AC coupling circuit 3 into binary digital data by sampling and holding.
(ク ロ ッ ク発生回路)  (Clock generation circuit)
ク ロ ッ ク発生回路 1 3 は、 二値化回路 4 から出力されるデジタ ルデータからク ロ ッ ク ビ ン ト成分を検出し、 これに基づきク ロ ッ クバルス P c を発生する回路である。 即ち、 ク ロ ッ ク発生 路 1 3 は、 光磁気デイ スクが例えばサンブルサ一ボ方式のデイ スクで あれば、 サ一ボ領域にサ一ボピ ッ ト と共に形成されたク ロ ッ ク ビ ッ トを検出する。 こ のク ロ ッ ク ビ ッ ト検出信号は、 例えば P L L 回路等によ って通倍され、 この システムの基準タ イ ミ ングである ク ロ 'ン クバルス P c を発生する。  The clock generation circuit 13 is a circuit that detects a clock bit component from digital data output from the binarization circuit 4 and generates a clock pulse Pc based on the detected clock bit component. In other words, if the magneto-optical disk is, for example, a disk of the Samburu servo type, the clock generating path 13 is a clock bit formed together with the servo bit in the servo area. Detect The clock bit detection signal is multiplied by, for example, a PLL circuit or the like, and generates a clock timing Pc which is a reference timing of the system.
(ァ ド レスデコーダ)  (Address decoder)
ア ド レスデコーダ 7 は、 二値化回路 4 からのデジタルデ一タに 含まれるサブコー ドをク ロ ッ ク発生回路 1 3 からのク ロ ッ クバル ス P c の入力に基づいてデコ一ド してァ ド レスを得るための回路 である。  The address decoder 7 decodes the subcode included in the digital data from the binarization circuit 4 based on the input of the clock pulse Pc from the clock generation circuit 13. This is the circuit for obtaining the address.
(デコーダ)  (Decoder)
デコーダ 1 0 は、 二値化回路 4 から出力されるデジタルデータ に付加されているェラー訂正等の符号化処理を復号化処理して再 生データ Dとして出力する回路である。 このデコーダ 1 0からの 再生データ Dは、 出力端子 0 u t を通じて外部に出力される。 (セ ク タマーク検出回路) The decoder 10 is a circuit that decodes an encoding process such as an error correction added to the digital data output from the binarization circuit 4 and outputs the decoded data D. The reproduction data D from the decoder 10 is output to the outside through the output terminal 0ut. (Sector mark detection circuit)
セクタマーク検出回路 6 は、 A C結合回路 3からの再生信号に 舍まれるセク タマークを検出する回路である。 例えば第 4図に示 すよう に、 このセクタマークの検出方法は、 通常の 2値化して検 出する方法とは異なり、 記録されたセクタマーク (第 4 A図参照 ) を読み出した再生信号を微分して (第 4 B図参照) 、 或る所定 レベル土 Eを越える信号をホール ド し (第 4 C図参照) 、 例えば フ リ ッ プフ ロ ッ プ回路 (双安定マルチバイ ブレータ ) を通してセ クタマークを再生して検出している (第 4 D図参照) 。 従って、 セク タマーク検出期間では、 前段の A C結合回路 3 により比較的 小さい時定数で A C結合を行う ことにより、 再生信号の過渡状態 が短く 信号レベルが急峻に立ち上がる こ とから、 セク タマーク の 検出は容易となる。  The sector mark detection circuit 6 is a circuit that detects a sector mark included in the reproduction signal from the AC coupling circuit 3. For example, as shown in Fig. 4, this sector mark detection method differs from the normal binarization detection method in that a read signal from a recorded sector mark (see Fig. 4A) is read. Differentiate (see Fig. 4B), hold the signal exceeding a certain level of soil E (see Fig. 4C), and, for example, pass through a flip-flop circuit (a bistable multivibrator) to select a sector mark. (Fig. 4D). Therefore, during the sector mark detection period, the AC coupling circuit 3 in the preceding stage performs AC coupling with a relatively small time constant, so that the transient state of the reproduced signal is short and the signal level rises steeply. It will be easier.
再び第 1図を参照すると、 ア ド レスデコーダ 7 にて検出された ァ ド レス及びセ ク タマーク検出回路 6 にて検出されたセク タマー ク は、 それぞれ後段のシステムコ ン ト ローラ 1 2及び補間回路 8 にそれぞれ供給される,  Referring again to FIG. 1, the address detected by the address decoder 7 and the sector mark detected by the sector mark detection circuit 6 are respectively obtained by the system controller 12 and the interpolation circuit in the subsequent stage. Each supplied to circuit 8,
システム コ ン ト ロ一ラ 1 2 に供給されたァ ド レス及びセ ク タ マ ークは、 例えばシーク動作時の光へッ ド 1 の走査位置の制御等に 使用される。  The address and the sector mark supplied to the system controller 12 are used, for example, for controlling the scanning position of the optical head 1 during a seek operation.
(補間回路)  (Interpolator)
補間回路 8 は、 ア ド レスデコーダ 7 において検出すべきァ ド レ スゃセ ク タ マーク検出回路 6 にて検出すべきセ ク タ マークが欠落 している場合に、 これらア ド レス及びセクタマークを補間する回 路である。 具体的には、 ク ロ ッ ク発生回路 1 3から供給されるク 口 ッ クパルス P c及びァ ド レスデコーダ 7 で検出されたァ ド レス の両方又は何れか一方によって、 欠落したァ ド レス とセク タマー クを捕間する ものである。 そ して、 この補間回路 8 からは、 セ ク タマーク検出回路 6 での セクタマークの検出タイ ミ ング或いは欠落したセク タマークを補 間した場合のセクタマークの出現タイ ミ ングに基づいてセクタマ ーク検出パルス P s mが出力される。 The interpolator 8 detects the address and sector mark when the address decoder to be detected by the address decoder 7 is missing the sector mark to be detected by the address decoder 7. Is a circuit that interpolates Specifically, the missing address is determined by the clock pulse Pc supplied from the clock generation circuit 13 and / or the address detected by the address decoder 7. It captures sector marks. Then, from the interpolation circuit 8, the sector mark is detected based on the detection timing of the sector mark in the sector mark detection circuit 6 or the appearance timing of the sector mark when the missing sector mark is compensated. The detection pulse P sm is output.
こ こで、 第 1 の R Fア ンプ 2 a から出力される再生信号 S i n の信号をみると、 この再生信号 S i nは、 第 3図 Cに示すように 、 最初にセ ク タマークを示す信号波形 SSM、 次いで V F Oを示す 信号波形 S VF0 がそれぞれ連続したかたちで現出する。 セクタマ ーク検出回路 6 によってセク タマークを示す信号 SSMが検出され た時、 又は補間回路 8 により セクタマークを示す信号 S SMが補間 された時、 補間回路 8 はス ィ 'ン チ ング制御回路 9 に対しセクタマ ーク検出パルス PSMを出力する。  Here, looking at the signal of the reproduced signal Sin output from the first RF amplifier 2a, as shown in FIG. 3C, the reproduced signal Sin is first a signal indicating the sector mark. The waveform SSM and then the signal waveform S VF0 indicating the VFO appear in a continuous fashion. When the signal SSM indicating the sector mark is detected by the sector mark detection circuit 6 or the signal SSM indicating the sector mark is interpolated by the interpolation circuit 8, the interpolation circuit 8 is switched to the switching control circuit 9 Outputs the sector mark detection pulse PSM to.
(スイ ッチング回路)  (Switching circuit)
図 3 を参照しながら、 ス イ ッ チ ング制御回路 9 の動作に付いて 説明する。 ス ィ ッ チ ング制御回路 9 は、 補間回路 8からのセク タ マーク検出パルス SSMの入力に基づいて A C結合回路 3 における スィ ツ チング回路 S Wを制御するためのウ イ ン ドウパルス P wを 生成し出力する。  The operation of the switching control circuit 9 will be described with reference to FIG. The switching control circuit 9 generates a window pulse Pw for controlling the switching circuit SW in the AC coupling circuit 3 based on the input of the sector mark detection pulse SSM from the interpolation circuit 8. Output.
具体的には、 このスイ ッ チング制御回路 9 は、 内部に図示しな いゲー ト回路と 2つのカウ ンタを有する。 このゲー ト回路は、 初 期段階ではウ ィ ン ドウパルス PW として高レベルの信号を出力す るよう に設定されている。 そして、 このゲー ト回路は、 補間回路 8からのセクタマーク検出パルス P SMの入力に基づいて第 1 及び 第 2 のカ ウ ンタが計数を開始し、 第 1 のカウ ンタにより第 1 の所 定時間 ( A ) 経過後に S 1 ト リ ガパルスが発せられ、 ゲー ト回路 の出力ウ ィ ン ドウパルス P W は低レベルの信号とされ、 第 2 の所 定時間 ( B ) 経過後に高レベルの信号とされるよ う に構成されて いる。 第 1 のカ ウ ンタ は、 補間回路 8 からのセ ク タ マーク検出パルス P S Mの入力に基づいて、 初期値 Aが格納されるよ う になっている 。 こ の初期値 Aは、 セ ク タ マーク検出時点から V F 0 1 の過渡状 態が収束する第 1 の所定期間 Aに対応するカ ウ ン ト値であり、 例 えば 8 バイ ト分 ( 9 6 ク ロ ッ ク) の計数値である。 More specifically, the switching control circuit 9 has a gate circuit and two counters (not shown) inside. This gate circuit is set to output a high-level signal as a window pulse PW in the initial stage. Then, in this gate circuit, the first and second counters start counting based on the input of the sector mark detection pulse PSM from the interpolation circuit 8, and the first counter performs the first predetermined operation. After the lapse of time (A), an S1 trigger pulse is issued, and the output window pulse PW of the gate circuit is set to a low level signal, and is set to a high level signal after the lapse of the second predetermined time (B). It is configured to In the first counter, an initial value A is stored based on the input of the sector mark detection pulse PSM from the interpolation circuit 8. This initial value A is a count value corresponding to the first predetermined period A during which the transient state of VF01 converges from the time of detection of the sector mark, for example, 8 bytes (96 Clock).
上記ゲー ト回路からゥ ィ ン ドウパルス P w と して高レベルの信 号が出力されている段階で、 セク タマーク検出回路 6 において再 生信号 S i ηからセクタマークを検出した時点で補間回路 8から セク タマーク検出パルス P SMが出力され、 これにより、 第 1 の力 ゥ ンタが計数を開始し、 その後、 基準周波数発生回路 1 4からの ライ ト ク ロ ッ ク W CLK の入力に基づいて内部の初期値を順次一 1 更新する。 第 1 のカ ウ ンタ によ り第 1 の所定時間経過後 (例えば 、 8 バイ ト分の 9 6 ク ロ ッ ク経過後) に S 1 ト リ ガパルスが発せ られ、 ゲー ト回路から出力されるウ イ ン ドウパルス P wが低レべ ルとされ、 それと同時に、 第 1 のカ ウ ンタに上記初期値 Aが再設 定される。  When a high-level signal is output as the window pulse Pw from the gate circuit, the interpolation circuit 8 detects the sector mark from the playback signal S i η in the sector mark detection circuit 6. Outputs a sector mark detection pulse PSM, which causes the first power counter to start counting, and then internally based on the input of the write clock W CLK from the reference frequency generation circuit 14. The initial value of is updated one by one. An S1 trigger pulse is generated by the first counter after a first predetermined time has elapsed (for example, after 96 clocks of 8 bytes have elapsed) and output from the gate circuit. The window pulse P w is set to a low level, and at the same time, the initial value A is reset in the first counter.
同様に、 第 2 のカ ウ ンタ は、 補間回路 8からのセクタマーク検 出パルス P SMの入力に基づいて、 初期値 Bが格納されるようにな つている。 こ の初期値 B は、 セ ク タ マーク検出時点からデータ フ ィ ール ドが終了する迄の第 2 の所定期間 Bに対応するカ ウ ン ト値 である。  Similarly, the second counter stores an initial value B based on the input of the sector mark detection pulse PSM from the interpolation circuit 8. This initial value B is a count value corresponding to a second predetermined period B from the time of detection of the sector mark to the end of the data field.
上記ゲー ト回路からゥ ィ ン ドウパルス P wと して高レベルの信 号が出力されている段階で、 セクタマーク検出回路 6 において再 生信号 S i nからセク タマークを検出した時点で補間回路 8 か らセ ク タマーク検出パルス P SMが出力され、 これによ り、 第 2 の 力 ゥ ンタが計数を開始し、 その後、 基準周波数発生回路 1 4から のラ イ ト ク ロ ッ ク W CL K の入力に基づいて内部の初期値を順次 - 1 更新する。 第 2 のカ ウ ンタによ り第 2 の所定時間経過後に S 2 ト リ ガパルスが発せられ、 ゲ一 ト回路から出力される ウ イ ン ドウ パルス P wが高レベルとされ、 それと同時に、 第 2 のカウ ンタに 上記初期値 Bが再設定される。 When a high-level signal is output as the window pulse Pw from the gate circuit, the interpolation circuit 8 is activated when the sector mark detection circuit 6 detects a sector mark from the playback signal Sin. Then, a sector mark detection pulse PSM is output, whereby the second power counter starts counting, and thereafter, the light clock WCLK from the reference frequency generation circuit 14 is output. Update the internal initial value sequentially by -1 based on the input. After the second predetermined time elapses by the second counter, S 2 A trigger pulse is issued, the window pulse Pw output from the gate circuit is set to the high level, and at the same time, the initial value B is reset in the second counter.
従って、 このスイ ッチング制御回路 9 の上記ゲー ト回路から出 力される信号は、 第 1 の ト リ ガパルス S 1 の出力時点から第 2 の ト リガパルス S 2の出力時点まで低レベルとされ、 それ以外の期 間において高レベルとされたゥ ィ ン ドウパルス P wとなる。  Therefore, the signal output from the gate circuit of the switching control circuit 9 is kept at a low level from the output time of the first trigger pulse S1 to the output time of the second trigger pulse S2. The window pulse Pw is set to a high level during periods other than the above.
( A C結合回路の動作)  (Operation of AC coupling circuit)
—方、 A C結合回路 3 におけるスイ ッチ ング回路 S Wは、 スィ ッチング制御回路 9から出力されるウ ィ ン ドウパルス P wが高レ ベルのときオ ン動作し、 低レベルのときオフ動作する こ とから、 ウ ィ ン ドウパルス P wが高レベル期間においては、 A C結合回路 3 での時定数 τ H は、 コ ンデンサ C と合成抵抗 (第 1 の抵抗 R 1 と第 2 の抵抗 R 2 との合成抵抗) との積 C ' ( R 1 · R 2 / ( R 1 + R 2 ) ) となり、 低レベルの期間における時定数 τ L は、 コ ンデンサ C と第 1 の抵抗 R 1 との積 C · R 1 となる。 On the other hand, the switching circuit SW in the AC coupling circuit 3 turns on when the window pulse P w output from the switching control circuit 9 is at a high level, and turns off when the window pulse P w is at a low level. From the above, when the window pulse P w is at the high level, the time constant τ H in the AC coupling circuit 3 is determined by the value of the capacitor C and the combined resistance (the first resistance R 1 and the second resistance R 2). C ′ (R 1 · R 2 / (R 1 + R 2)), and the time constant τ L during the low level period is the product C of the capacitor C and the first resistor R 1. · R 1
即ち、 高レベル期間における時定数 τ Η は、 低レベル期間にお ける時定数 r L より も小さい値となる。 That is, the time constant τ け る in the high-level period is smaller than the time constant r L in the low-level period.
従って、 A C結合回路 3のスイ ッチング回路 S W , セクタマ一 ク検出回路 6 , 補間回路 8 , スイ ッチング制御回路 9 および基準 周波数発生回路 1 4にて A C結合回路の時定数を切り換える時定 数切換え手段を構成することになる。  Therefore, the time constant switching means for switching the time constant of the AC coupling circuit in the switching circuit SW of the AC coupling circuit 3, the sector mark detection circuit 6, the interpolation circuit 8, the switching control circuit 9, and the reference frequency generation circuit 14 Will be constituted.
(再生回路の動作)  (Operation of playback circuit)
次に、 上記実施例に係る再生回路の動作を第 1 の R Fア ンプ 2 aからの再生信号を主体にして説明する。  Next, the operation of the reproducing circuit according to the above embodiment will be described mainly on the reproduced signal from the first RF amplifier 2a.
再生系では、 光磁気ディ スク (図示せず。 ) に、 図 3に示した セクタ · フ ォ ーマ ツ トで記録されている情報が、 光へッ ド 1 a及 び第 1 の R Fア ンプ 2 aを介して読み込まれ、 この再生信号は A C結合回路 3 によ り D C成分が抑制される。 セ ク タ · フォーマツ トに規定される主としてァ ド レス部の情報は図 1 の再生系のセク タマーク検出回路 6 , ク ロ ッ ク発生回路 1 3 , ア ド レスデコーダ 7等で処理される。 即ち、 セクタマークはセク タマーク検出回路 6 で検出され、 セクタマーク検出信号が補間回路 8 に送らる。 更 に、 二値化回路 4 を介してディ ジタル化された V F 0はク ロ ッ ク 発生回路 1 3 で同期をと られク ロ ッ クパルス P c がァ ド レス レコ ーダ 7 , サーボ制御回路 1 1 等に送られ、 また、 A Mはア ド レス レコーダ 7 でア ド レスが検出されて補間回路 8及びシステム · コ ン ト ローラ 1 2 に送られる。 一方、 データ部の情報は二値化回路 4 を介してデコーダ 1 0 に送られる。 記録系では、 書き込み情報 がエ ンコーダ 1 5 により符号化され、 レーザ駆動回路 1 6 を介し て、 光へッ ド 1 a に送られる。 同時に、 システム · コ ン ト ローラ 1 2 は磁気へッ ド躯動回路 1 7 を介して磁気へッ ド 1 bを駆動す る。 In the reproducing system, the information recorded in the sector format shown in FIG. 3 on the magneto-optical disc (not shown) is recorded on the optical head 1a and the first RF address. Read through the amplifier 2a and this playback signal is The DC component is suppressed by the C coupling circuit 3. The information mainly in the address section specified in the sector format is processed by the reproducing system sector mark detection circuit 6, clock generation circuit 13 and address decoder 7 in FIG. That is, the sector mark is detected by the sector mark detection circuit 6, and a sector mark detection signal is sent to the interpolation circuit 8. Further, the VF 0 digitized via the binarization circuit 4 is synchronized by the clock generation circuit 13 and the clock pulse P c is supplied to the addressless recorder 7 and the servo control circuit. The AM is sent to the interpolator 8 and the system controller 12 after the address is detected by the address recorder 7. On the other hand, information in the data part is sent to the decoder 10 via the binarization circuit 4. In the recording system, the write information is encoded by the encoder 15 and sent to the optical head 1 a via the laser drive circuit 16. At the same time, the system controller 12 drives the magnetic head 1 b via the magnetic head driving circuit 17.
セ ク タマーク検出回路 6 でセ ク タマークが検出され、 又は補間 回路 8 で補間された時、 セ ク タマーク検出パルス P s mがスィ ッ チ ング制御回路 9 に送られ、 ス イ ッ チ ング制御回路 9 はセ ク タ マ ーク検出パルス P s m入力時点から基準周波数発生回路 1 4から のラ イ ト ク ロ ッ ク W CL K を計数して、 所定の時点で A C回路のス ィ ツチ S Wを制御するウ イ ン ドウパルス P wを発生する。  When a sector mark is detected by the sector mark detection circuit 6 or is interpolated by the interpolation circuit 8, a sector mark detection pulse P sm is sent to the switching control circuit 9 and the switching control circuit is switched. 9 counts the light clock WCLK from the reference frequency generation circuit 14 from the input of the sector mark detection pulse Psm, and switches the switch SW of the AC circuit at a predetermined time. Generates the window pulse P w to be controlled.
このウ イ ン ドウパルス P wがオンの時、 A C結合回路 3 での時 定数が r H ( <時定数て L ) とな っているため、 これらの期間で のセクタマークの再生信号波形 S s の応答特性は、 過渡状態の期 間が短く 、 急峻に立ち上がるような特性を有する こ とになる。 When the window pulse P w is on, the time constant of the AC coupling circuit 3 is r H (<L is the time constant), and thus, the reproduced signal waveform S s of the sector mark during these periods. The response characteristics of this device are such that the period of the transient state is short and rises sharply.
セクタマークの検出方法は、 通常の 2値化して検出する方法と は異なり、 再生信号を微分して、 或る所定レベル土 Eを越える信 号をホール ドし、 例えばフ リ ッブフロ ン ブ回路を通してセクタマ —クを再生するこ とにより検出している。 セクタマーク検出期間 では比較的小さい時定数で A C結合を行う こ とにより、 再生信号 の過渡状態が短く信号レベルが急峻に立ち上がり、 容易にセク タ マーク は検出するこ とができ る。 これにより、 セクタマークの欠 落確率が非常に少な く なり、 セクタマークの検出椿度を向上させ る こ とができ る。 The method of detecting a sector mark is different from the usual method of detecting by binarization. Differentiating the reproduction signal, holding the signal exceeding a certain level S, and then, for example, through a flip-flop circuit Sectoroma -Detected by playing back the mark. By performing AC coupling with a relatively small time constant during the sector mark detection period, the transient state of the reproduction signal is short, the signal level rises sharply, and the sector mark can be easily detected. As a result, the probability of missing sector marks is extremely reduced, and the degree of detection of sector marks can be improved.
一方、 ウ ィ ン ドウパルス P wがオフの時、 A C結合回路 3 での 時定数が Γ :_ ( >時定数 τ Η ) となっているため、 再生信号 S i nに舍まれる D C成分の消失はほとんどないものとなる。 On the other hand, when the window fin Douparusu P w is off, the time constant of the AC coupling circuit 3 is Γ: _ (> time constant τ Η) because it has become, the loss of the DC component舍Ma is in the reproduction signal S in Will be almost nonexistent.
尚、 こ こで特につけ加えたいこ とは、 光磁気ディ スクに記録さ れた情報は、 第 2図に閱連して説明したよう に予めフ ォーマ ツ ト が定ま っており、 セク タマーク, ア ド レス等が所定の順序びバイ ト長で記録されている。 光ヘッ ド 1 a で銃み取られた再生信号の 各要素の出現は、 理想的には、 ク ロ ッ ク発生回路 1 3 からのク ロ ッ クノ、'ルス P c及びア ド レスデコーダ 7 からのア ド レスによって 、 補間回路 8 において補間 (内挿) 、 即ち予想できる。 従って、 たとえセク タマークの検出が無かったと しても、 スイ ン チング制 御回路 9 は、 補間回路 8 からの補間されたセク タマーク検出信号 P SMと、 基準周波数発生回路 1 4 からのラ イ ト ク ロ ッ ク W C L K と に基づき、 A C結合回路 3 のスイ ッチング回路 S Wを制御するゥ ィ ン ドウパルス P wのオ ン/オフのタ イ ミ ングを决定する こ とが 出来る。  It should be noted that the information recorded on the magneto-optical disk has a predetermined format as described in connection with FIG. 2, and the sector mark, Addresses are recorded in a specified order and byte length. The appearance of each element of the reproduced signal picked up by the optical head 1a is ideally represented by the clock signal from the clock generating circuit 13, the lus PC and the address decoder 7. The interpolation (interpolation), that is, the prediction, can be made in the interpolation circuit 8 by the address from. Therefore, even if no sector mark is detected, the switching control circuit 9 outputs the interpolated sector mark detection signal PSM from the interpolation circuit 8 and the light from the reference frequency generation circuit 14. On / off timing of the window pulse Pw for controlling the switching circuit SW of the AC coupling circuit 3 can be determined based on the clock WCLK.
しかしながら、 現実には光磁気デ ィ ス ク の回転むら等により、 このような理想状態が長く 継統するわけではない。 本実施例では 、 再生信号の各要素の出現に対する目印と してセクタマークを利 用し、 セクタマークがセ ク タマーク検出回路 6 によって検出され 、 又は補間回路 8 によって補間された後は、 セク タマーク検出時 点を基準にして基準周波数発生回路 1 4 からのラ イ ト ク ロ ッ ク W CLK のカウ ン ト値から、 現在銃み取っている情報はセクタ · フ ォ —マ ツ トのどの要素 (箇所) にあるかを判断しても、 発生する誤 差はほとんど無いと言える。 However, in reality, such an ideal state does not continue for a long time due to uneven rotation of the magneto-optical disk. In this embodiment, a sector mark is used as a mark for the appearance of each element of the reproduction signal, and after the sector mark is detected by the sector mark detection circuit 6 or interpolated by the interpolation circuit 8, the sector mark is used. Light clock W from reference frequency generation circuit 14 with reference to detection point Judging from the CLK count value, it can be said that there is almost no error that occurs even if it is determined which element (location) in the sector format is currently picked up.
また、 一旦、 セクタマークがセクタマーク検出回路 6 によって 検出され、 又は補間回路 8 によってセクタマークが捕間された後 は、 たとえその後で銃み取られたセクタからセク タマークが検出 又は補間されなかったとしても、 データフォーマ ツ ト は予め決め られており 、 どのタ イ ミ ングでウ ィ ン ドウパルス P wをオ ン/ォ フするかは、 基準周波数発生回路 1 4 からのラ イ ト ク ロ ン ク W CL K をスィ ツチング制御画路 9 のカウ ンタで計数するこ とにより決 定され得る。 従って、 全てのセクタで、 セクタマークが検出され 、 又は補間されな く ても、 本実施例に係る再生回路は動作するこ とが出来る。  Further, once a sector mark is detected by the sector mark detection circuit 6 or a sector mark is captured by the interpolation circuit 8, even if the sector mark is not detected or interpolated from the subsequently picked-up sector. However, the data format is predetermined, and the timing at which the window pulse Pw is turned on / off is determined by the light clock from the reference frequency generation circuit 14. It can be determined by counting the number of clocks W CL K by the counter of the switching control circuit 9. Therefore, the reproducing circuit according to the present embodiment can operate even if the sector mark is not detected or interpolated in all the sectors.
以上によ って説明したように、 光磁気ディ スクへの記録データ が高記録密度の向上を図った例えば ( 1 , 7 ) — R L L方式であ る場合、 データに含まれる D C成分も有効な信号成分の一部と し てデジタル信号の再生 (復調) に使用される こ とになる。 このと き、 単に一定の時定数をもつ A C結合回路において、 D C レベル の変動を抑えるために、 D C レベル自体を消失させた場合、 上記 のような信号をもつデジタル信号を有効に再生させる ことができ な  As described above, when the data recorded on the magneto-optical disc is of the (1,7) -RLL type in which the recording density is improved, for example, the DC component included in the data is also effective. It will be used to reproduce (demodulate) digital signals as part of the signal components. At this time, if the DC level itself is eliminated in order to suppress the fluctuation of the DC level in an AC coupling circuit having only a constant time constant, it is possible to effectively reproduce the digital signal having the above signal. Can not
しかし、 上記実施例に係る再生回路においては、 A C結合回路 3 の時定数を r L ( > τ„ ) に切り換える こ とが出来るため、 ァ ド レス部のア ド レスに含まれる D C成分及びデータ部のデータに 含まれる D C成分の消失を防止するこ とができ、 再生信号 S i n に含まれるァ ド レス及びデータをそれぞれァ ド レスデコーダ 7及 びデコーダ 1 0 にて適正に再生処理することが可能となる。 However, in the reproducing circuit according to the above embodiment, since the time constant of the AC coupling circuit 3 can be switched to r L (> τ „), the DC component and the data included in the address of the address section are not included. It is possible to prevent the loss of the DC component contained in the data of the section, and to properly reproduce the address and data contained in the reproduction signal S in by the address decoder 7 and the decoder 10, respectively. Becomes possible.
( A C結合回路の変形) 上記実施例に係る再生回路においては、 A C結合回路 3をコ ン デンサじ と、 2 つの抵抗 R 1 及び R 2 と、 スイ ッチング回路 S W にて構成し、 上記 2 つの抵抗 R 1 及び R 2 のう ち、 一方の抵抗 ( 第 2 の抵抗 R 2 ) と接地間にスイ ッチング回路 S Wを挿入接続し た構成と したが、 その他、 図 5 に示すように、 上記 2つの抵抗 R 1 及び R 2 の各一方の端子を第 1 及び第 2 の画定接点 2 1 a及び 2 1 b とし、 接地側を可動接点 2 1 c とするス ィ ツチング回路 S Wを挿入接続して、 ウ ィ ン ドウパルス P wのレベルに応じて選択 的に第 1 の抵抗及び第 2 の抵抗 R 1 及び R 2 を切り換えるよう に 構成するよう にしてもよい。 (Deformation of AC coupling circuit) In the reproduction circuit according to the above embodiment, the AC coupling circuit 3 is composed of a capacitor, two resistors R 1 and R 2, and a switching circuit SW. Of these, the switching circuit SW was inserted and connected between one resistor (the second resistor R 2) and the ground. In addition, as shown in FIG. 5, the above two resistors R 1 and R 2 Are connected to the first and second demarcated contacts 21a and 21b, and the switching circuit SW is connected to the movable contact 21c on the ground side. The configuration may be such that the first resistance and the second resistance R 1 and R 2 are selectively switched according to the level of the current.
この場合、 ウ ィ ン ドウパルス P wが高レベルとき、 抵抗値が低 い第 1 の抵抗 R 1 における第 1 の固定接点 2 1 a と可動接点 2 1 c とを電気的に接続するようにし、 ウ ィ ン ドウパルス P wが低レ ベルのとき、 抵抗値が高い第 2 の抵抗 R 2 における第 2 の固定接 点 2 1 b と可動接点 2 1 c とを電気的に接続するようにする。  In this case, when the window pulse Pw is at a high level, the first fixed contact 21a and the movable contact 21c of the first resistor R1 having a low resistance value are electrically connected, When the window pulse Pw is at a low level, the second fixed contact 21b of the second resistor R2 having a high resistance value and the movable contact 21c are electrically connected.
また、 上記 A C結合回路 3 は、 少な く ともセクタマークの出力 期間において時定数が小さ く 、 ァ ド レス出力期間及びデータ出力 期間において時定数が大き く なるよう に構成すればよいため、 上 記構成のほか、 種々の構成を採用する こ とができ、 例えば、 3 つ 以上の抵抗をウ イ ン ドウパルス P wのレベルに応じて選択的に切 り換えるようにしてもよいし、 あるいは再生信号ライ ンに複数の コ ンデンサをそれぞれ並列に接統し、 これらコ ンデンサをウ ィ ン ドウパルス P wのレベルに応じて選択的に切り換えるようにして もよい。  Further, the AC coupling circuit 3 may be configured such that the time constant is small at least during the output period of the sector mark and is large during the address output period and the data output period. In addition to the configuration, various configurations can be adopted.For example, three or more resistors may be selectively switched according to the level of the window pulse Pw, or a reproduction signal may be used. A plurality of capacitors may be connected to the line in parallel, and these capacitors may be selectively switched according to the level of the window pulse Pw.
更に、 上記 A C結合回路はハイバスフ ィ ルタ ( H P F ) と等価 である。 即ち、 時定数の小さい A C結合回路はカ ツ トオフ周波数 の比較的高いハイパスフ イ ルクに相当し、 時定数の大きい A C結 合回路はカ ツ トオフ周波数の比較的低いハイ バスフ ィ ルタに相当 する。 従って、 カ ツ トオフ周波数を変更し得るあらゆる任意のハ ィ バスフ ィ ルタによって本実施例に係る A C結合回路を置換して も、 その変更は本発明の技術的範囲に舍まれる。 Furthermore, the AC coupling circuit is equivalent to a high-pass filter (HPF). That is, an AC coupling circuit with a small time constant is equivalent to a high-pass filter with a relatively high cut-off frequency, and an AC coupling circuit with a large time constant is equivalent to a high-pass filter with a relatively low cut-off frequency. I do. Therefore, even if the AC coupling circuit according to the present embodiment is replaced by any arbitrary high frequency filter capable of changing the cut-off frequency, the change falls within the technical scope of the present invention.
上述のように、 本発明に係るデジタル信号再生回路によれば、 入力デジタル信号に含まれる D C レベルの変動を抑える A C結合 回路と、 上記 A C結合回路の時定数を所定タ イ ミ ングで切り換え る時定数切換え回路を設けるようにしたので、 簡単な構成で、 再生信号に含まれるべき D C成分の消失を防止するこ とができ、 しかも、 データの不連続部分での過渡状態の期間を短く すること ができる。  As described above, according to the digital signal reproduction circuit of the present invention, the AC coupling circuit that suppresses the fluctuation of the DC level included in the input digital signal and the time constant of the AC coupling circuit are switched at a predetermined timing. The time constant switching circuit is provided, so that the DC component to be included in the reproduced signal can be prevented from disappearing with a simple configuration, and the period of the transient state in the discontinuous portion of the data is shortened. be able to.

Claims

請求の範囲 . 情報データと該情報データを再生する際に同期をとるため に使用される同期データとが ト ラ ッ クに沿って順次記録された 記録媒体を再生する再生装置において、 Claims: In a reproducing apparatus for reproducing a recording medium on which information data and synchronous data used for synchronization when reproducing the information data are sequentially recorded along a track,
上記情報データ及び上記同期データを読み出して再生信号を 生成する銃出手段と、  Firing means for reading out the information data and the synchronization data to generate a reproduction signal;
第 1 の時定数と該第 1 の時定数より も大きい第 2の時定数の 内 1 つを選択して上記再生信号に A C結合を行うことで修正再 生信号を生成する A C結合手段と、  AC coupling means for selecting one of the first time constant and the second time constant larger than the first time constant and performing AC coupling on the reproduced signal to generate a modified reproduced signal;
上記読出手段が上記同期データを読み出すタイ ミ ングを示す 検出信号を出力する検出手段と、  Detecting means for outputting a detection signal indicating a timing at which the reading means reads the synchronous data;
上記検出信号に基づいて決定される第 1 のタ イ ミ ングから所 定時間後の第 2 のタイ ミ ングまでは上記第 1 の時定数を選択し 、 上記第 2 のタイ ミ ングで上記第 2 の時定数を選択するように 上記 A C結合手段を制御する制御手段と、  From the first timing determined based on the detection signal to the second timing after a predetermined time, the first time constant is selected, and the second time is used in the second timing. Control means for controlling the AC coupling means so as to select the time constant of 2,
上記修正再生信号を 2値化して 2値化修正再生信号を生成す る二値化手段と、  Binarizing means for binarizing the modified reproduction signal to generate a binarized modified reproduction signal;
上記 2値化修正再生信号から上記情報信号を復調する復調手 段と  A demodulation means for demodulating the information signal from the binarized modified reproduction signal;
を備えた再生装置。 Playback device equipped with
. 特許請求の範囲第 1項に記載の再生装置において、 上記 A C結合手段は、 The playback device according to claim 1, wherein the AC coupling means comprises:
上記読出手段の出力側に一端が接続されたコ ンデンサ と、 上記コ ンデ ンサの他端に一端が接続された複数個の抵抗と、 上記複数個の抵抗の他端を上記制御手段によって選択的に接 地する接続手段と  A capacitor having one end connected to the output side of the reading means, a plurality of resistors having one end connected to the other end of the capacitor, and the other end of the plurality of resistors being selected by the control means Connection means that
を備えた再生装置。 Playback device equipped with
. 上記情報データは D C成分を含んでいる、 特許請求の範囲 第 1 項に記載の再生装置。 The reproduction device according to claim 1, wherein the information data includes a DC component.
. 上記 D C成分を舍む情報データは ( 1 , 7 ) — R L L変換 されてパルス変調されている、 特許請求の範囲第 3項に記載の 再生装置。 4. The reproducing apparatus according to claim 3, wherein the information data containing the DC component is subjected to (1,7) -RLL conversion and pulse modulation.
. 上記記録媒体に対し、 セ ク タ の先頭を示すセ ク タマーク, 上記同期データ及び上記情報データを有するセクタが上記 ト ラ ッ クに'ぬつて順次記録されており、 A sector mark indicating the head of the sector, a sector having the synchronization data and the information data are sequentially recorded on the track in the recording medium,
上記検出手段は、 上記読出手段によって読み出された再生信 号が上記セクタマークからの再生信号である際に上記検出信号 を出力する、  The detection means outputs the detection signal when the reproduction signal read by the reading means is a reproduction signal from the sector mark.
特許請求の範囲第 1 項に記載の再生装置。The playback device according to claim 1.
. 情報データ と該情報データを再生する際に同期をとるため に使用される同期データ とが ト ラ ッ クに沿って順次記録された 記録媒体を再生する再生装置において、 In a reproducing apparatus for reproducing a recording medium on which information data and synchronous data used for synchronizing the reproduction of the information data are sequentially recorded along a track,
上記同期データ及び上記情報データを読み出して再生信号を 生成する読出手段と、  Reading means for reading the synchronization data and the information data to generate a reproduction signal;
第 1 の時定数で上記再生信号に A C結合を行う こ とで第 1 の 修正再生信号を生成する第 1 の A C結合手段と、  First AC coupling means for generating a first modified reproduction signal by performing AC coupling on the reproduction signal with a first time constant;
上記第 1 の時定数より も時定数の大きい第 2 の時定数で上記 再生信号に A C結合を行う こ とで第 2 の修正再生信号を生成す る第 2 の A C結合手段と、  Second AC coupling means for generating a second modified reproduction signal by performing AC coupling with the reproduction signal at a second time constant larger than the first time constant;
上記読出手段が上記同期データを読み出すタイ ミ ングを示す 検出信号を出力する検出手段と、  Detecting means for outputting a detection signal indicating a timing at which the reading means reads the synchronous data;
上記検出信号に基づいて決定される第 1 のタ イ ミ ングから所 定時間後の第 2 のタ イ ミ ングまで上記第 1 の修正再生信号を選 択し て出力し、 上記第 2 のタイ ミ ングで上記第 2 の修正再生 信号を選択して出力する選択手段と、 上記第 1及び第 2 の修正再生信号を 2値化して 2値化修正再 生信号を生成する二値化手段と、 From the first timing determined based on the detection signal to the second timing after a predetermined time, the first corrected reproduction signal is selected and output, and the second time signal is output. Selecting means for selecting and outputting the second modified reproduction signal by mining; Binarizing means for binarizing the first and second modified reproduction signals to generate a binarized modified reproduction signal;
上記 2値化修正再生信号から上記情報データを復調する復調 手段と  Demodulation means for demodulating the information data from the binarized modified reproduction signal;
を備えた再生装置。 Playback device equipped with
PCT/JP1996/002743 1995-09-21 1996-09-24 Reproducing circuit WO1997023874A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/836,829 US5864531A (en) 1996-09-24 1996-09-24 DC level fluctuation correction by selecting a time constant coupled to a reproduced signal
JP51646397A JP4150074B2 (en) 1995-09-21 1996-09-24 Reproduction circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/243264 1995-09-21
JP24326495 1995-09-21

Publications (1)

Publication Number Publication Date
WO1997023874A1 true WO1997023874A1 (en) 1997-07-03

Family

ID=17101287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002743 WO1997023874A1 (en) 1995-09-21 1996-09-24 Reproducing circuit

Country Status (3)

Country Link
JP (1) JP4150074B2 (en)
KR (1) KR100488636B1 (en)
WO (1) WO1997023874A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243344B1 (en) 1998-01-29 2001-06-05 Fujitsu Limited Optical storage device having a sector mark detecting circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5577020A (en) * 1978-12-01 1980-06-10 Nec Corp Readout circuit of magnetic recording device
JPH04162257A (en) * 1990-10-26 1992-06-05 Olympus Optical Co Ltd Digital information reading circuit for recording and reproducing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2865966B2 (en) * 1993-01-28 1999-03-08 株式会社日立製作所 Recording medium signal reproduction method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5577020A (en) * 1978-12-01 1980-06-10 Nec Corp Readout circuit of magnetic recording device
JPH04162257A (en) * 1990-10-26 1992-06-05 Olympus Optical Co Ltd Digital information reading circuit for recording and reproducing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243344B1 (en) 1998-01-29 2001-06-05 Fujitsu Limited Optical storage device having a sector mark detecting circuit
DE19834280C2 (en) * 1998-01-29 2001-12-13 Fujitsu Ltd Optical storage device

Also Published As

Publication number Publication date
KR100488636B1 (en) 2005-09-30
KR970707541A (en) 1997-12-01
JP4150074B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
US7406010B2 (en) Data recording/reproducing method with robust error handling capability and data recording/reproducing apparatus thereof
JPH0831092A (en) Optical disk device
WO2011121948A1 (en) Optical disc recording device and recording signal generation device
RU2480848C2 (en) Optical disc and optical disc recording/reproduction method
US6188655B1 (en) Information recording apparatus
JP3956417B2 (en) Disc device and disc playback method
US5864531A (en) DC level fluctuation correction by selecting a time constant coupled to a reproduced signal
JP4211158B2 (en) Recording / reproducing apparatus and method
CA2465864C (en) Reproduction-only recording medium, reproduction device, reproduction method
JP3492647B2 (en) Information recording method and apparatus
WO2007015492A1 (en) Method for reproducing optical disc signal, and optical disc device
US6819642B2 (en) Data recording device, data reproducing device, and optical disc
JP2002329369A (en) Optical disk and optical disk device
JPH11149644A (en) Optical disk, optical disk record device, its method, optical disk recording and reproducing device and its method
JP2001127640A (en) Optical rotary recording medium, data recording method, recorder and reproducing device
WO1997023874A1 (en) Reproducing circuit
US20030012110A1 (en) Optical disk, optical disk playback apparatus, and optical disk playback method, optical disk recording apparatus and optical disk recording method, and recording medium
JP2002109743A (en) Optical information recording/reproducing apparatus
KR100746181B1 (en) Optical rotating recording medium, address information recording method, address information recovery method, optical recording apparatus, optical recording apparatus and optical recording/reproducing apparatus
JP3884940B2 (en) Information recording device
JP3191376B2 (en) Information recording method
JP3223881B2 (en) Information recording device
JP3191763B2 (en) Information recording medium
KR100801037B1 (en) Information Recording Method, Information Recording Apparatus and Information Recording Media
JP2954128B2 (en) Information recording / reproducing medium, information recording / reproducing medium format device, and information recording / reproducing device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 08836829

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019970703359

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

WWP Wipo information: published in national office

Ref document number: 1019970703359

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970703359

Country of ref document: KR