WO1997022747A1 - Fiber structures and process for the production thereof - Google Patents

Fiber structures and process for the production thereof Download PDF

Info

Publication number
WO1997022747A1
WO1997022747A1 PCT/JP1995/002598 JP9502598W WO9722747A1 WO 1997022747 A1 WO1997022747 A1 WO 1997022747A1 JP 9502598 W JP9502598 W JP 9502598W WO 9722747 A1 WO9722747 A1 WO 9722747A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
weight
less
fibrous structure
producing
Prior art date
Application number
PCT/JP1995/002598
Other languages
French (fr)
Japanese (ja)
Inventor
Toshinori Hara
Shinichi Okutani
Jiro Amano
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to PCT/JP1995/002598 priority Critical patent/WO1997022747A1/en
Priority to KR1019970705653A priority patent/KR19980702256A/en
Priority to US08/894,165 priority patent/US6074964A/en
Priority to EP95940464A priority patent/EP0814191A4/en
Publication of WO1997022747A1 publication Critical patent/WO1997022747A1/en
Priority to HK98110259A priority patent/HK1009470A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/402Amides imides, sulfamic acids
    • D06M13/432Urea, thiourea or derivatives thereof, e.g. biurets; Urea-inclusion compounds; Dicyanamides; Carbodiimides; Guanidines, e.g. dicyandiamides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic System
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/02Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of natural origin
    • D06M14/04Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of natural origin of vegetal origin, e.g. cellulose or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/08Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of synthetic origin
    • D06M14/12Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of synthetic origin of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M14/14Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/423Amino-aldehyde resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • D06M16/003Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic with enzymes or microorganisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2484Coating or impregnation is water absorbency-increasing or hydrophilicity-increasing or hydrophilicity-imparting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2762Coated or impregnated natural fiber fabric [e.g., cotton, wool, silk, linen, etc.]
    • Y10T442/277Coated or impregnated cellulosic fiber fabric
    • Y10T442/2787Coating or impregnation contains a vinyl polymer or copolymer

Definitions

  • the present invention relates to a fiber structure made of cellulose fiber, which has excellent hygroscopicity and a soft texture, and a method for producing the same.
  • the present invention relates to a fiber structure comprising a cellulose fiber and a polyester fiber, the fiber structure having the same or better hygroscopicity as that of the fiber structure made of a cellulose fiber, and having a soft texture.
  • the present invention relates to a method of manufacturing the yohi.
  • the present invention relates to a fibrous structure having excellent form stability and a soft texture, and a method for producing the same.
  • Cellulose fibers are known as typical fibers having hygroscopicity. In recent years, higher levels of hygroscopicity have been required to improve comfort. In addition, a fiber structure using a cellulose fiber and a polyester fiber is inferior in hygroscopicity to a fiber structure including a cellulose fiber. Therefore, in the case of fiber structures made of cotton / polyester blended yarn, improving the hygroscopicity is an issue in order to improve comfort.
  • the sewn product is subjected to shape-stabilizing processing with formaldehyde vapor and then treated with cellulolytic enzyme.
  • a method of processing has been proposed.
  • it is difficult to uniformly enzymatically treat each part of the product, and the problem is that the quality of the sewn product is greatly impaired, and the strength of the fibrous structure is significantly reduced locally.
  • An embodiment of the fiber structure of the present invention is a fiber structure made of a cellulose fiber, wherein a hydrophilic vinyl monomer is graft-polymerized on the cellulosic fiber, and a KES (Kawabata Evaluation System) measurement is performed.
  • This is a fibrous structure in which the ratio B, ⁇ V between the measured bending stiffness (B) and the basis weight (W) according to the above is not less than 0. ⁇ and not more than () 05.
  • This fiber structure is a cellulose fiber structure having a high degree of hygroscopicity that cannot be obtained with a conventional cellulose fiber structure and having a soft texture.
  • One embodiment of the method for producing a fiber structure of the present invention is a graph polymerization process in which a fiber structure made of a cellulose fiber is subjected to an impregnation treatment with an aqueous solution containing a hydrophilic vinyl monomer and a polymerization initiator, followed by heat treatment.
  • This is a method for producing a fibrous structure to be subjected to weight reduction processing before or after.
  • Another aspect of the fiber structure of the present invention is a fiber structure using a cellulose fiber and a polyester fiber, wherein a hydrophilic vinyl-based monomer is graft-polymerized on the cellulose fiber, and the force KES ( ; Kawabata Evaluation System)
  • KES Kawabata Evaluation System
  • B bending stiffness measurement value
  • W weight per unit area
  • the second fibrous structure has the same or better hygroscopicity as the fibrous structure composed of cellulose fibers, has a soft texture, and has a reduced shrinkage compared to the fibrous structure composed solely of cellulose fibers. It has excellent characteristics.
  • a fibrous structure comprising a polyester fiber and a cellulose fiber is impregnated with an aqueous solution containing a hydrophilic vinyl monomer and a polymerization initiator.
  • a fibrous structure comprising cellulose fibers
  • the washing shrinkage is 3% or less, and the flexural rigidity measured value (B) and the weight per unit weight (W) of KES (Kawabata Evaluation System) flU are not less than 0.00001 (). It is a fibrous structure of not more than 05.
  • This fibrous structure is a fibrous structure having morphological stability and a soft texture.
  • the method for producing a fibrous structure comprises the steps of: This is a method for producing a fibrous product by reducing and heating fibers.
  • Yet another embodiment of the male fibrous structure of the present invention is a male fibrous structure using cell orifice fibers and polyester male fibrous material, which has a washing shrinkage of 2 °. And a ratio B.W between the measured bending stiffness (13) and the basis weight (W) by the KES (Kawabaia HvaLu Lion System; measurement) and the weight per unit area (W) is greater than or equal to. It is a structure.
  • This fibrous structure has shape stability, has a soft hand, and suppresses shrinkage as compared with a structure composed of only cellulose fibers, and has excellent strength properties.
  • Still another embodiment of the method for producing a fibrous structure of the present invention includes a step of performing a cross-linking reaction on cellulose fibers constituting a fiber Wi structure using cellulose fibers and polyester fibers, This is a method for producing a fiber structure in which the cellulose fibers are reduced in weight.
  • An embodiment of the fiber structure of the present invention is a fiber structure comprising a cellulose fiber, wherein a hydrophilic vinyl monomer is graft-polymerized on the cellulose fiber, and measured by KE'S (Kawabata Evaluation System).
  • the fibrous structure has a ratio of the measured bending stiffness (B) to the basis weight (W) of not less than 0.001 and not more than 0.05.
  • examples of the cellulose fiber include, but are not limited to, natural cellulose fibers such as cotton and hemp, and regenerated cellulose fibers such as rayon, polynosic, cupra, and tencel. .
  • the fibrous structure composed of cell opening fibers can be a woven, knitted or non-woven fabric substantially composed of cell opening fibers, or a sewn product thereof. What Still, woven fabric, knitted fabric or these sewn products are preferred forms, and woven fabrics or sewn products are more preferred forms.
  • the fiber structure of the present invention is obtained by graft-polymerizing a hydrophilic vinyl-based monomer to a cellulose fiber. It is preferable that a hydrophilic vinyl monomer is graft-polymerized inside the single fiber on the cellulose fiber. Since the graft is polymerized inside the single fiber, the durability of the excellent moisture absorption is outstanding, and the texture of the woven or knitted fabric is not hindered. In addition, the fact that the graft polymerization is performed inside the single fiber of the cellulose fiber can be confirmed by, for example, a section staining method. w The piece staining method is performed as follows. The fiber bundle embedded in paraffin is cut perpendicularly to the fiber axis to make sections. After the sections are de-embedded in an organic solvent, they are stained with an appropriate dye (for example, a basic dye) and washed with water. You can see that it is doing.
  • an appropriate dye for example, a basic dye
  • the hydrophilic vinyl monomer means a compound having a compatible vinyl group in the molecular structure and an acidic group such as carboxylic acid or sulfonic acid, or a salt thereof, a hydroxyl group, an amide group, or the like. It refers to a monomer having a hydrophilic group.
  • acrylic acid monomers such as acrylic acid, sodium acrylate, aluminum acrylate, zinc acrylate, calcium acrylate, magnesium acrylate, etc .; MID-2-methyl sulfonic acid, methacrylic acid, aryl alcohol, sodium polysulfonate, acrylic acid mide, sodium bi'inolesulfonate,
  • sodium talylsulfonate, sodium styrenesulfonate, or the like can be used. These may be used alone or in combination of two or more.
  • 2 Akrilua Midor 2 — Methylproha. Sulfonic acid and / or its sodium salt, and vinyl-based monomer containing sulfonic acid and / or its salt in its molecular structure such as sodium arylsulfonate. I like it.
  • the reaction rate of the hydrophilic vinyl-based monomer with respect to the fiber structure is preferably 1% by weight or more and 20% by weight or less from the viewpoint of obtaining excellent moisture absorption while maintaining good texture of the fiber structure. 3 weight 0 ⁇ or more 1 7 weight? . It is more preferable that It is more preferable that the weight is not less than 5 weights 3 ⁇ 4 0 ⁇ and not more than 5 weights ⁇ ⁇ .
  • the reaction rate means the ratio (weight Q. ) of the weight it added to the fiber structure by the graph polymerization, and 1%, [( After fiber ⁇ structure absolute weight)
  • the fiber structure of the present invention has an ffi degree of 30 and a humidity of 90 °.
  • Moisture absorption MR 2 (° o) Te temperature 2 0, moisture absorption of the fiber creation in degrees 6 ⁇ ° ⁇ MR 1 (o 0 ⁇ MR force 3 ⁇ 4 a value obtained by subtracting the re fibrous structure in ⁇ , F It is preferable to add the expression.
  • the absorption rate ⁇ '1 R 1 (. ⁇ ) of the fibrous structure at a temperature of 20 V and a degree of 65 can be considered to be the hygroscopic property of clothes in the standard environment F.
  • the moisture absorption rate of the fibrous structure MR 2 " ⁇ can be considered as the moisture absorption property of the clothes after exercise.
  • the ⁇ MR of a textile structure composed of only cellulose fibers in which a hydrophilic vinyl monomer is not graft-polymerized is at most 4.
  • the fiber structure of the present invention is obtained by graft polymerization of a hydrophilic vinyl monomer, the MR is more than 4, which is larger than that of the conventional fiber structure consisting of only cellulose fibers.
  • ⁇ i L shows hygroscopicity.
  • KES Kawabata Evaluation System
  • KES Kawabata Evaluation System
  • the male fiber structure of the present invention has a ratio B, W between the measured value of bending stiffness (B) and the basis weight (W) by KES (Kawabata Evaluation System) measurement of not less than 0.0001 and 0.0005. It must be:
  • this B z ⁇ V be less than (). ⁇ () 1 and more preferably less than 0.03.
  • a fiber structure obtained by weaving or knitting into a woven, knitted or non-woven fabric made of cellulose fiber is subjected to a heat treatment after being impregnated with an aqueous solution containing a hydrophilic vinyl monomer and a polymerization initiator.
  • the fiber structure of the present invention can be obtained by performing weight reduction processing before or after graft polymerization processing.
  • a method of impregnating a fibrous structure composed of cellulose fibers with an aqueous solution containing a hydrophilic vinyl monomer and a polymerization initiator for example, a method of sifting for a fixed time or a method of padding can be adopted.
  • the impregnation temperature is not particularly limited, and the impregnation can be performed at room temperature.
  • a polymerization initiator generally used in radical polymerization is preferably used as the polymerization initiator.
  • peroxides such as ammonium persulfate and benzoyl peroxide, azo-based catalysts, cerium catalysts and the like are preferably used.
  • the concentration of the hydrophilic vinyl-based monomer in the aqueous solution containing the hydrophilic vinyl-based monomer and the polymerization initiator is not particularly limited, but from the viewpoint of efficiently performing the reaction, is preferably 0 wt Q 0 or more 3 A concentration of 0 weight or less is preferred. 1 3 3 ⁇ 4 amount more than 7 wt D o verses in it and this is favored more or less, 1 5 weight 0 to 2. 5-fold 3 ⁇ 4 arbitrarily favored by it to have been al follows.
  • the concentration of the polymerization initiator in the aqueous solution containing the hydrophilic vinyl monomer and the polymerization initiator is not particularly limited, but from the viewpoint of performing the reaction efficiently, 1% by weight based on the hydrophilic vinyl monomer. more than 5% by weight as in it is like following, 2 weight 3 ⁇ 4 more than ⁇ 1 double fi Q o less it is more preferred arbitrariness.
  • P H of the aqueous solution containing the polymerization initiator ⁇ hydrophilic vinyl-based monomer is 1 2 or less or more ⁇ It is more preferable that ⁇ ⁇ is 7 or more and 11 or less.
  • the force for performing the heat treatment after the impregnation treatment Indispensable for performing the graft polymerization reaction.
  • the heat treatment may be employed without particular limitation, such as a dry heat treatment and a ripening treatment.
  • the degree of heat treatment for carrying out the graphitization is not particularly limited, and it is preferable to carry out the reaction at a temperature of not less than 80 and not more than 200 from the viewpoint of efficiently carrying out a gas reaction.
  • Heat treatment can be performed in one or more stages.
  • the heat treatment time is determined in consideration of the heat treatment temperature in consideration of the desired graph reaction rate, and is preferably 20 seconds or more and 5 minutes or less.
  • washing is performed to remove unreacted monomers attached to the fiber structure and polymers not graft-polymerized to cellulose.
  • the washing method is not particularly limited, such as water washing and hot water washing. However, washing is preferably performed from the viewpoint of washing efficiency.
  • the reduction 1 the processing also performs the washing operation /!].
  • weight reduction processing refers to a treatment for decomposing and removing a part of the fibers constituting the fiber structure to reduce the weight thereof.
  • a treatment with a cellulolytic enzyme such as treatment with a cellulolytic enzyme or hydrolysis with an acid.
  • Cellulase-degrading enzymes include bacteria such as Tricoderma co, Fumicola ⁇ , Aspergillus As, Bacillus ⁇ , and the like. These cellulolytic enzymes are commercially available and can be used as they are.
  • the weight loss rate of the weight loss processing refers to the ratio of the parts decomposed and removed before and after the processing, and is specifically calculated from (weight loss / weight before processing> ⁇ 100).
  • a fiber structure having an excellent texture can be obtained by applying a physical stimulus to the fiber structure, in particular.
  • a physical structure such as rubbing, hitting, or rubbing the fiber structure Reduces the amount of fiber in the fabric while giving a sting.
  • Such a treatment is considered to give a soft texture to the fiber structure by forming a space between the fibers of the fiber structure.
  • it is necessary to ensure that the material is rich in irregularities such as fiber or ceramics while driving, and that it has a large frictional engagement (so that it comes into contact with the material).
  • weight reduction processing uses ceramic nozzles in a liquid dyeing machine or an airflow dyeing machine, or a similar material is used for the passage of a fiber structure during high-speed running. It is more preferable to use a partition or to install a partition plate.
  • the above-mentioned cellulose-degrading enzyme has a degree of 1 g / l or more and 3 () g. It is preferred to process at a temperature of
  • the order of the graft polymerization process and the reduction process may be such that the weight reduction process is performed after the graft polymerization process or the weight reduction process may be performed first.
  • the reduction is performed after the gel addition, a larger inter-fiber space is generated, and the texture softening effect can be increased.
  • another embodiment of the fiber structure of the present invention is a fiber structure using a cellulose fiber and a polyester fiber, wherein a hydrophilic vinyl monomer is graft-polymerized on the cell mouth fiber.
  • a hydrophilic vinyl monomer is graft-polymerized on the cell mouth fiber.
  • This fiber structure has the same or better hygroscopicity as a fiber structure made of cellulose fibers, has a soft texture, and has a reduced shrinkage compared to a fiber structure made of only cellulose fibers. It has excellent characteristics. From this perspective The cellulose fiber content is 1 kg by weight. . Above 9 0 duplex;..
  • polyester textiles 9 heavy ffi 0 o or 1 Y wt% or less arbitrarily rather then preferred over the content of the cellulose fibers 20 weight% Q or more and 80 weight ⁇ ⁇ or less
  • the content of polyester fiber is 80 weight% or more and 20 weight or less itt 0 o
  • the content of cellulose fiber is 3 0 — S: More than 7 o-ffi.a or less
  • the content of polyester fiber is 70 weight " 0 or more 30 1: ⁇ % « ".
  • a fiber made of a polyester polymer having a fiber forming property, such as polyethylene terephthalate, is used as the polyester fiber.
  • the polyester polymer mentioned here includes not only a homopolymer but also a copolymer.
  • a fiber oval product using cellulose fiber and polyester fiber is a yarn obtained by blending or knitting a polyester fiber and a cellulose fiber into a fabric, knitted fabric or non-woven fabric, or These sewing products are included.
  • a woven fabric, a knitted fabric, or a sewn product thereof is a preferred form, and a woven fabric or the sewn product is a more preferred form.
  • the fibrous structure of the present invention in this embodiment comprises polyester fibers, and the hydrophilic vinyl monomer is grafted together with the cellulose fibers obtained by grafting as described above. Because of this, it is excellent in hygroscopicity.
  • the fiber structure was obtained from the moisture absorption rate ViR 2 ') of the fibrous structure at a temperature of 3 ° C. and at a temperature of 9 ° C. from the ffi degree 20 : ' C, ffl degree 65 '.
  • Moisture absorption MR 1 (expressed by subtracting ° o) ⁇ -VI R force It is preferable to satisfy the following equation.
  • X represents the ratio (: weight) of the polyester fiber in the fiber structure.
  • the fibrous structure of this embodiment preferably has a shrinkage of 3 mm or less. More preferred arbitrariness or that contraction rate is less than or equal to 2 n o.
  • This fibrous structure exhibits a high hygroscopic property because a hydrophilic vinyl monomer is graft-polymerized on a cellulose fiber, and a hydrophilic vinyl monomer is grafted on one hydrophobic polyester fiber. It does not polymerize and can maintain the shrink-proof properties inherent in polyester fibers. .
  • This fiber structure is composed of polyester fiber and cellulosic fiber.
  • the product may be subjected to a weight reduction process as described above before or after the above-described graft polymerization process in which the product is subjected to an impregnation process of an aqueous solution containing a hydrophilic vinyl monomer and a polymerization initiator and then to a heat treatment. be able to.
  • the male fiber structure obtained in this way has almost no loss in the high shrinkage resistance of the polyester fiber, and is obtained by using a conventional polyester fiber and cellulose fiber. It will be highly absorbent.
  • the process for reducing the weight of the cell opening fiber is the same as described above.
  • a weight reducing process using an alkaline compound such as hydroxyl hydroxide can be used.
  • the fiber structure is immersed in an aqueous solution having a concentration of the cellulolytic enzyme of 1 g.i or more and 30 g / l or less and treated at a temperature of 30 or more and 90 or less. It is preferable.
  • the concentration of the alkaline compound is 10 g / 1 or more and 300 g,! It is preferable that the fiber structure is immersed in the following aqueous solution and treated at a temperature of 5 CTC or more and 200 or less.
  • the weight loss rate of the cellulose fiber is 3 ( 'o or more and 10 or less, weight loss of the polyester fiber).
  • the rate is preferably 3% or more and 20 or less.
  • still another embodiment of the fiber structure of the present invention is a fiber drawing made of cellulose fibers, wherein the washing i shrinkage is 3 n .
  • KES awabata Evaluation System; iJ (ij), the ratio of the measured bending stiffness (B) to the basis weight (W), B, W, is greater than or equal to 0.
  • the fiber structure of this embodiment is a fiber structure having shape stability and a soft texture.
  • the washing shrinkage ratio as used in the present invention is a value measured by the method according to j IS — L1042 or a method according to JS — L] 0.! 2 which can obtain similar results. It refers to the value measured by a method that changes the washing test machine, processing conditions, etc.
  • the fiber shrinkage of this embodiment must have a washing shrinkage of 3 or more. When the washing shrinkage exceeds 3%, the form stability becomes poor. This washing shrinkage rate is 2 or less. It is preferably below, and more preferably less than or equal to i3 ⁇ 4.
  • the fibrous structure of this embodiment includes a so-called form stabilization method of preventing the fibrous structure from wrinkling after washing by cross-linking the cellulose that forms the cellulose fibers, and a process for reducing the weight of the cellulose fiber. And is obtained by applying Methods for cross-linking cellulose include a method of treating a fibrous structure with a cellulose-reactive resin, a method of exposing a fibrous structure to formaldehyde, and ripening in the presence of a catalyst. No.
  • examples of the cellulose-reactive resin include dimethylol ethylene urea, dimethylol perone, dimethylol triazone, dimethylol propylene urea, and dimethylol hydroquinethylene urea.
  • a method for treating a fibrous structure with a cellulose-reactive resin for example, after applying an aqueous solution of the resin together with a catalyst to the fibrous structure by padding, the resin solution is subjected to at least 80 "C and at least 200" C. "A method of heat treatment at a temperature of not more than C can be preferably employed.
  • an inorganic gold salt such as magnesium chloride can be used.
  • formaldehyde vapor can be generated by ripening an aqueous solution of formaldehyde or paraformaldehyde.
  • the heat treatment after exposing the fibrous structure to the formaldehyde vapor is preferably performed at a temperature of at least 60 and a temperature of at most 0, and an acidic substance such as sulfuric acid or sulfuric acid is used as a catalyst in this case. Can be used.
  • Combing with protein u [t, resin and formaldehyde can be detected using a variety of commonly used analytical methods, such as liquid chromatography ⁇ MR.
  • Weight reduction processing is performed in addition to morphological stability processing, and the above-described weight reduction processing method can be used for this weight reduction processing.
  • the weight loss rate of the cellulose fiber is preferably 3 to 10%.
  • the fiber structure is immersed in an aqueous solution with an enzyme concentration of ⁇ g) or more and 30 g or 1 1 or less and treated at a temperature of 3 () or more and 90 or less. do it.
  • the number of celluloses is reduced and reduced.
  • the weight loss processing may be performed after applying the weight loss, or conversely, the weight reduction JT- may be performed first.
  • the advantage of applying the shape-stabilizing process first is that a large inter-fiber gap is generated due to the reduction, and the texture softening effect is increased.
  • the inter-fiber voids generated when the weight reduction processing is performed first are reduced during the form stabilization processing, the force for softening the texture is reduced, and the form stability effect is increased. What is necessary is just to select suitably according to the target characteristic.
  • morphological stabilization in which the fiber structure is exposed to formaldehyde vapor and heat-treated in the presence of a catalyst, is generally performed on the product after it has been manufactured. It is desirable to reduce the increase in the amount of power generated from the sewn fabric instead of the 3 ⁇ 4 after the s.
  • Still another embodiment of the fiber structure of the present invention is a fibrous structure comprising cellulose fibers and polyester fibers, wherein the fiber has a washing shrinkage of 2% or less and a K E
  • the ratio of the measured bending stiffness (B) to the basis weight ( ⁇ ') B, W is 0.0 001 or more and 0.0 ( )
  • the curtain structure is 5 or less. 13 / W force, preferably greater than 0.000 i, more preferably greater than (). () () 3.
  • This fibrous structure has shape stability, has a soft hand, and suppresses shrinkage as compared with a structure composed of only cellulose fibers, and has excellent strength characteristics.
  • the fibrous structure includes a yarn obtained by blending or mixing polyester fiber and cellulose fiber, woven or knitted into a woven fabric, a knitted fabric, or a nonwoven fabric, or a sewn product thereof.
  • this fibrous structure contains polyester fiber, shrinkage is suppressed as compared to that made of only cellulose fiber, it has excellent morphological stability, and it has strength characteristics even when weight reduction processing is performed. It will be excellent.
  • cellulose fiber The content of fiber is 10 weight. . Above 9 0 wt or less, arbitrary preferred that the content of the Po Li ester fibers 9 is 0 wt 0 o or 1 0 wt 0 0 below. More preferably, the content of the cellulose fiber is 20% by weight or more and 80% by weight or less, and the content of the polyester fiber is 80% by weight or more and 20% by weight. And more preferably, the content of cellulose fibers is 30% by weight. . More than 70% by weight Qo, polyester fiber content is 70% by weight Q. Hereafter, it is less than h30 ffi ° 0 .
  • the washing / shrinkage ratio of the fibrous structure of this embodiment is 2 or less. If the washing shrinkage exceeds 2%, the form stability becomes poor. It is preferable that the washing shrinkage ratio is 1 ⁇ “, more preferably () .5 ° ⁇ or less.
  • This fiber structure can be obtained by subjecting a fiber structure made of cell opening fibers and polyester fibers to the above-mentioned form stabilization processing and reduction processing.
  • the method of reducing the weight of cellulosic fiber is the same as described above.
  • a method of reducing the weight with an alkali compound such as sodium hydroxide can be used.
  • the weight reduction method is, for example, immersing the fibrous structure in an aqueous solution with a concentration of the cellulolytic enzyme of 1 g / l to 30 g / l and treating at a temperature of 30 to 90 ° C. It is preferable to do so.
  • the male compound is immersed in a solution in which the concentration of the alkaline compound is 1 () g 1 or more and 300 or less, and the treatment is performed at a temperature of 50 or less. I prefer to do that.
  • the weight loss rate of cellulose fiber is 3 or more and 1 () 3 ⁇ 4 or less, and the weight loss rate of polyester fiber is 3 or more and 20 °. ⁇ The following is preferred.
  • the rate of weight loss during weight loss refers to the proportion of the parts that have been decomposed and removed before and after weight loss, and is specifically calculated from (weight loss, weight before processing)> ⁇ ⁇ ⁇ .
  • the order of the treatment of the cellulose crosslinking reaction and the weight reduction processing may be such that the crosslinking processing is performed and then the reduction processing is performed, or conversely, the weight reduction processing may be performed first.
  • form stable processing in which the fibrous structure is exposed to formaldehyde vapor and heat-treated in the presence of a catalyst, is generally performed on the sewn product.
  • the mass processing in the present invention is not a product after sewing but a fiber before sewing. It is desirable to do this.
  • the moisture absorption rate is determined by the weight of the fiber structure when it is absolutely dried, and in a constant temperature and humidity chamber at a temperature of 20 °, a temperature of 6 ° ⁇ ⁇ or a temperature of 3 °, and a humidity of 9 °. From the change in weight with the weight after being left unattended for 2 to 1 hour, the following equation was used.
  • Moisture absorption [(Weight of fiber fabric after standing at constant temperature and humidity)-(absolute dry weight of fiber structure) 100
  • the temperature was determined by the above equation, and the temperature was 20 degrees and the temperature was 65 u . Under the conditions of moisture absorption iVI R 1, temperature 30 and humidity 90. . AMR was calculated from the moisture absorption rate MR2 under the following conditions by the following formula.
  • the reaction rate was calculated from the absolute dry weight of the fibrous structure before performing the graft polymerization and the absolute dry weight after performing the graft polymerization according to the following equation.
  • the weight loss rate was calculated from the absolute dry weight of the fiber structure before the weight reduction processing and the absolute dry weight of the fiber structure after the processing, using the following formula.
  • the measurement of the washing shrinkage rate was performed using a household washing machine under the following processing conditions so as to obtain the same result as the washing shrinkage rate test method described in JIS-104.
  • test pieces of about 5 () c ⁇ , about 5 ⁇ cm were collected, and each of them was marked with a height of 300 mm at a distance of 15 O mm fli] at each of three places.
  • Next house ⁇ washing machine Toshiba VH 1 I 5 ⁇ -shaped detergent "Zab” ingredients Kao Corporation registered trademark
  • the test piece After adjusting the weight so that the combined weight of the cloth and the additional cloth was about 500 g, the clothes were washed at 40 ° C for 25 minutes. Rinsing was further performed for 40 minutes at 40 ° C, and dehydration was performed with a dehydrator.
  • test piece was taken out without squeezing, sandwiched between dried filter papers, lightly dehydrated, and naturally dried on a horizontal wire mesh. Finally, the test piece was placed on a flat table to remove unnatural wrinkles and tension, and the length of each horizontal stamp was measured.
  • the shrinkage was calculated by the following formula, and was expressed as the average value of three pieces each.
  • Shrinkage rate (..) (3 0 0-L) / 3 0 0> 1 ⁇ 0
  • shi represents the average value of the length between the marks of the vertical or horizontal marks after processing (mm).
  • Cotton fabric with shrinking, white processing (use of yarn: warp 15th, weft-i5th, plain weave, veil density: yarn 115, inch> 7 6; i nc: h, with 5: j] () g .. m 2), 2 - Accession Rirua Mi de - 2 - 2 0% methylpropane sulfonic acid, 0 persulfate Anmoniu arm 6 ° o (monomer ratio 3 0).. An aqueous solution containing the solution at a concentration of 1 was applied by padding. The squeezing rate was 9 (). The cotton fabric was then heat treated at 160 for 3 minutes. After the heat treatment, washing was performed with six hot waters. Measurements Then the value of the reaction rate at this after the above method was found to be 1 6 0 o.
  • the cotton fabric was immersed in a treatment solution containing 5 g of cellulolytic enzyme (Celsoft, manufactured by Novo Nordisk) at a concentration of 1 and treated at 60 ° C. for 1 hour. As a result, the weight of the fabric was reduced by 5.2% compared to the fabric before the enzyme treatment.
  • cellulolytic enzyme Cellulolytic enzyme
  • B of the woven fabric which has not been subjected to the grafting process and the weight-reduction process, has just been scoured and bleached, is ⁇ 880 g, cm (: m, which is 1 1 () m '. , ⁇ ., W were ⁇ . ⁇ 0 80.
  • Cotton fabric with tanning and white treatment (yarn use: warp 15th, weft 15th, plain weave, weave density: warp 115 / 'inch, weft 76 / inch, basis weight: 110g / m 2 ) was immersed in a treatment solution containing cellulose-degrading enzyme (Celsoft L, manufactured by Novo Nordisk) at a concentration of 5 H, i, and treated with 60 at 1 hour R5].
  • cellulose-degrading enzyme Celsoft L, manufactured by Novo Nordisk
  • Cotton fabric with scouring and bleaching treatment [Thread usage: warp-15th, weft 15th, plain weave, weaving density: warp 115 / inch Weft 76, inch. Weight: ⁇ 1 ⁇ g, In m 2 ), add 20—acrylamide 2—methylpropanesulfonic acid. . , An aqueous solution containing a concentration of the persulfate Anmoniu ⁇ 0.6% (monomer ratio 3 0 o) was applied by padding. The squeezing rate is 9 (). . Met. The cotton fabric was then heat treated at 160 for 3 minutes. After the heat treatment, 60 minutes of hot water was used for washing. After that, when the reaction rate was measured by the above method, the value was 16 ⁇ . Met.
  • Cotton fabric with scouring and bleaching treatment (: Thread use: warp 45th, yarn 45th, plain weave, weaving density: warp 115, inch ⁇ mech 76 / inch, weight: I1 0 g, m 2 ) was immersed in a treatment solution containing cellulase-degrading enzyme (self-softened, manufactured by Novo Nordisc) at a concentration of 5 g / 1, and treated at 60 ° C. for 1 hour. As a result, the weight of the woven fabric was reduced by 7.5 mm compared to the cotton fabric before the enzyme treatment.
  • cellulase-degrading enzyme self-softened, manufactured by Novo Nordisc
  • Example 2 The procedure was the same as in Example 1 except that the type of hydrophilic vinyl monomer was changed. Table 1 shows the results. All had high hygroscopicity and flexibility.
  • Example 2 The procedure was performed in the same manner as in Example I, except that the pH of the aqueous solution containing the hydrophilic vinyl monomer and the initiator was changed. Table 2 shows the results. All had high moisture absorption and flexibility.
  • Example 15 to 18 The procedure was performed in the same manner as in Example 1 except that the concentration of the hydrophilic vinyl monomer in the aqueous solution was changed. Table 3 shows the results. All had high hygroscopicity and flexibility. Examples 15 to 18
  • Example 2 The same operation as in Example 1 was performed except that the heat treatment temperature was changed. The results are shown in Table 5. All had high hygroscopicity and flexibility.
  • the cotton fabric was immersed in a treatment solution containing 5 g I of cell mouth degrading enzyme (cell softened, manufactured by Novo Nordisc) and treated (at 30 ° C. for 2 hours).
  • the weight of the fabric was reduced by 8. () ⁇ compared to the fabric before the enzyme treatment.
  • B of the woven fabric immediately after scouring and bleaching treatment which has not been subjected to the graft polymerization processing and weight reduction processing, is ⁇ 0.9 9 g / cm 2 / cm, and W is 110 gm : B and YV were ⁇ . () ⁇ 83.
  • Example 23 instead of treating with cellulose degrading enzyme in Example 23, the woven fabric was immersed in an aqueous solution containing sodium hydroxide at a concentration of 5/1, and treated with 95 for 1 hour. At this time, the ft reduction rate was 15.2%.
  • the woven fabric was immersed in an aqueous solution containing sodium hydroxide at a concentration of 5 g i, and treated with 95 for 1 hour.
  • the weight loss rate at this time is 1-1.5.
  • Example 23 The same procedure was performed as in Example 23 except that the mixing ratio of the polyester fibers was changed. Table 6 shows the results. All had excellent hygroscopicity and flexibility.
  • Example 23 The procedure was performed in the same manner as in Example 23 except that the type of the hydrophilic vinyl monomer was changed. Table 7 shows the results. All had excellent hygroscopicity and flexibility.
  • Example 23 was performed in the same manner as in Example 23 except that the weight 1 of the aqueous solution containing the hydrophilic vinyl monomer and the initiator was changed. Table 8 shows the results. All had excellent moisture absorption and flexibility.
  • Example 11 1 to 4 4
  • Example 23 was carried out in the same manner as in Example 23 except that the concentration of initiator (II) for the hydrophilic vinyl monomer was changed. The results are shown in Table 10. All had excellent hygroscopicity and flexibility.
  • Example 23 The same procedure as in Example 23 was carried out except that the heat treatment temperature was changed. Table 1] Shown in All had excellent hygroscopicity and flexibility.
  • Cotton fabric with scouring and bleaching treatment (Thread usage: warp! 5th, weft 15th, plain weave, weaving density: warp 1 i5 / inch weft 76 / inch, weight: 110 g the kappa m 2), di-methylcarbamoyl port one Ruhi Dorokishechiren urea 6 3 ⁇ 4, a as the chloride catalyst Maguneshiumu 6 hydrate thereof 2 0.
  • the aqueous solution containing was applied by padding. The squeezing rate was 90.
  • the cotton fabric was then dried at 100 ° C. for 3 minutes and heat-treated at 160 ° C. for 1 minute.
  • the cotton fabric was immersed in a treatment solution containing 5 g of cellulose decomposing enzyme (Celsoft, manufactured by Novo Nordisk) at a concentration of 1 and treated with 60 hours for 60 hours. As a result, the weight of the fabric was reduced by 5.2 mm compared to the cotton fabric before the enzyme treatment.
  • cellulose decomposing enzyme Cosmetic, manufactured by Novo Nordisk
  • the washing shrinkage of the cotton fabric immediately after scouring and bleaching treatment which has not been subjected to these two treatments, is 5.5 5, and the ⁇ is 0.9 () 2 g.
  • ⁇ ' was 110 g and m 2
  • B and W were 0 ⁇ 0 () 82.
  • Cotton fabric with scouring and bleaching treatment (yarn use: warp i5th, weft 45th, plain weave, weaving density: warp 1) 5 pcs, inch weft 76 / inch, basis weight: 110 g , m 2 ) was immersed in a treatment solution containing cellulase-degrading enzyme (Celsoft L, manufactured by Novo Nordisk) at a concentration of 5 g /], and treated at 60 ° C. for 1 hour. As a result, the mass of the fabric was reduced by 7.5 compared to the cotton fabric before the enzyme treatment.
  • cellulase-degrading enzyme Cellulase-degrading enzyme
  • Refined and bleached cotton fabric (use of yarn: warp 45th, weft 15th, plain weave, weaving density: warp 1 i5 / inch> weft 76 / inch.
  • this cotton fabric was immersed in a treatment solution containing cellulose degrading enzyme (Celsoft, manufactured by Novo Nordisk) at a concentration of 5 g / 1, and treated at 60 for 1 hour. As a result, the weight of the fabric was reduced by 6.5 mm compared to the cotton fabric before the enzyme treatment.
  • cellulose degrading enzyme Celsoft, manufactured by Novo Nordisk
  • Cotton fabric with scouring and bleaching treatment (yarn use: warp 45th, weft 45th, plain weave, weaving density: warp 115 / inch weft 76, ihhh, weight: 110g ,, 'm 2 ) was crushed in a treatment solution containing 5 g of cellulase-degrading enzyme (Celsoft, Novo Nordisk) at a concentration of I and treated at 60 ° C for 1 hour. As a result, the weight of the fabric was reduced by 7.3 compared to the cotton fabric before the enzyme treatment.
  • cellulase-degrading enzyme Celsoft, Novo Nordisk
  • the cotton fabric was then introduced into a closed reactor and exposed to formaldehyde vapor generated from paraformaldehyde for 5 minutes.
  • the reactor temperature during the run was 60.
  • sulfuric acid gas was flowed into the reactor to expose the cloth, and then the temperature of the reactor was raised to 0 ° C. and subjected to a treatment for 3 minutes.
  • the washing shrinkage is 0.8 Q'o, 0. in 8 0, B is 0 in. 2 8 6 g 'cm 2 cm, W is 1 0 2 g, m 2, and B and ⁇ V are (J. 0 () 28.
  • Example 12 The procedure was the same as in Example 49 except that the type of the cellulose-reactive resin was changed. Table 12 shows the results. All had excellent morphological stability and flexibility.
  • Example 49 The same operation as in Example 49 was performed except that the drying temperature and the heat treatment temperature were changed. Table 13 shows the results. All had excellent morphological stability and flexibility.
  • Example 11 The operation was performed in the same manner as in Example 51, except that the temperature of the formaldehyde air and the processing temperature were changed. Table 11 shows the results. All had high form stability and flexibility.
  • the woven fabric was immersed in a treatment solution containing 5 g 1 of cellulolytic enzyme (Celsoft, manufactured by Novo Nordisc: ') and treated with 6 () for 2 hours. As a result, the weight was reduced by 10.2% compared to the fabric before the enzyme treatment.
  • cellulolytic enzyme Cellulolytic enzyme
  • the dyeing and finishing treatments are performed in the usual manner, and then the washing shrinkage and bending stiffness are determined by the above-mentioned methods.
  • the washing shrinkage is only 0.5 mm and the width is 0.4 mm. . .
  • was ⁇ .277 ⁇ ′ cm 2 , cm
  • W was 9.9 g, rn 2
  • B W li 0. ⁇ ⁇ 28.
  • these two processing has not been performed, scouring, washing shrinkage of woven material immediately after the 3 ⁇ 4 white processing, vertical 4. 5 u o, horizontal and 1 u o, B is 0.9 0 In 2 g.cm 2, c , ⁇ ′ was 1 1 () ⁇ .m 2 , and B, ⁇ W was 0 ⁇ 0.082.
  • the dyeing and finishing treatments are carried out in the usual way, with a wash shrinkage of just 0.4 3 ⁇ 4, horizontal ⁇ .3? ' ⁇ and ⁇ of ⁇ 0.292 gcm. 2 / m, W was 97 g, m 2 , and B / ⁇ V was 0.030.
  • J 5th cotton / polyester blended yarn (combination rate: 55% cotton amount.
  • Polyester (0.17 tex, fiber length 0.4 mm)) 15 weights are added to warp and weft, and refined.
  • a bleached plain woven fabric (woven density: warp: 15 ⁇ latitude 7 ⁇ / inch, weight: 110 m 2 ) was converted from paraformaldehyde in a closed reactor to formaldehyde. The reactor was exposed to steam for 5 minutes and the temperature of the reactor was 60. Next, sulfur dioxide gas was flowed into the reactor to remove the cloth, and then the temperature of the reactor was increased. Was raised to i 60 and treated for 3 minutes.
  • the woven fabric was immersed in a treatment solution containing 5 g of cellulolytic enzyme (Celsoft, manufactured by Novonoldisk) at a concentration of 1 and treated at 60 ° C. for 2 hours. Weight decreased by 10.5 0>.
  • cellulolytic enzyme Cellulolytic enzyme
  • I 5th cotton, polyester blend yarn (mixing rate: 55 ffi cotton .. Polyester (0.17 tex, fiber length 40 mm 45 wt B o) is used for warp and weft.
  • scouring, plain weave fabric which has been subjected to bleaching treatment (Omitsu ⁇ : 1 1 5 weft 7 six i nch, with eyes:! i 0 g / m 2 ) , and cell opening and one scan-degrading enzyme (Serusofu door, Nobono Rudisk Co., Ltd.) was immersed in a treatment solution containing 5k1 and treated at 6 ⁇ for 2 hours. As a result, the weight was reduced by 11.53 ⁇ 4 compared to the fabric before the enzyme treatment. .
  • the fabric was then introduced into a sealed reactor and exposed to formaldehyde vapor generated from paraformaldehyde for 5 minutes.
  • the temperature of the reactor during the brewing was 6 ⁇ .
  • sulfuric acid gas was flowed into the reactor to remove the cloth, and then the ffl degree of the reactor was raised to 1 ⁇ 0, followed by a treatment for 3 minutes.
  • washing shrinkage is just 0.4%, : 1 and ⁇ is (). 29 2 g ⁇ cm 2 cm, W is 97 g and m 2 , and ⁇ W is (). ⁇ 0 30.
  • Polyester blended yarn (mixing ratio: 55% cotton ". Polyester (0.17 tex, fiber length-10m nu 45% by weight ⁇ ) warp and weft Refined and white-treated plain woven fabric (woven density: warp: 115, about 76, inch. 0 attached: 110 0, m 2 ), dimethylol hydroxyethylene ethylene urea the 6 0 o, 2 .b including aqueous and Maguneshiumu chloride hexahydrate as a catalyst was applied by padding. teeth Helsingborg rate was 9 ()%. then 3 the fabric 1 0 0 hand After drying in batches, they were treated at 16 ⁇ for 1 minute.
  • Cotton / polyester blended yarn (mixing rate: cotton 55 wt. Polyester (0.17 tex, fiber length 40 mm) 45 wt.) Used for warp and weft, scouring and bleaching Woven fabric (weaving density: 115,76 warp, ⁇ , basis weight : 11 () «, m :) was converted to cellulose degrading enzyme (Celsoft L, 5 g 1 from Novo Nordisk). . crush i3 ⁇ 4 the processing solution containing at a concentration, 6 0 ° C 2 h treated 3 ⁇ 4 this in, m hydrogen processing 3 ⁇ 4; IE fi decreased one tooth 5 n o compared to / fabric.
  • the woven fabric was fcS-wasted in an aqueous solution containing 10 g of trihydric hydroxide at a concentration of 5 g i, and treated with 95 for 1 hour.
  • the weight loss rate at this time is 13.5. . It was.
  • the washing recovery rate is 5% for fresh and 3 for fresh.
  • B is 0.22 8 ⁇ ⁇ c m : .-cm
  • ⁇ V is 95 g. m 2
  • BW is ().
  • Example 64 The same operation as in Example 64 was performed except that the mixing ratio of the polyester fiber was changed. The results are shown in Table 16. All had excellent morphological stability and flexibility.
  • Example 17 The procedure was performed in the same manner as in Example 1 except that the type of the fiber reactive resin was changed. Table 17 shows the results. All had excellent morphological stability and flexibility.
  • Example 64 The operation was performed in the same manner as in Example 64 except that the drying temperature and the heat treatment temperature were changed. The results are shown in Table i8. All had excellent morphological stability and flexibility.
  • Example 66 The procedure was performed in the same manner as in Example 66, except that the temperature of the formaldehyde vapor and the heat treatment temperature were changed. The results are shown in Table 19. All of them had excellent morphological stability14: and flexibility.
  • the fiber structure which has excellent hygroscopicity, excellent soft texture, form stability, etc., and can be widely used for clothing use.
  • Example 1 5 ⁇ . 5 9 5. 7 5.2 0.0029
  • Example 1 6 1 15 10.3 4.1 0. 0031
  • Example 1 7 a 15 1 1. 0 4. 3 0.0037
  • Example 1 8 8 1 2 8.3 5.0 0.0030 Temperature Reaction rate ⁇ MR Weight loss rate B
  • Example 1 9 7 0 6 5.0 5.0 0.0027
  • Example 2 ⁇ 8 0 14 8.8 8.8 0.0030
  • Example 2 1 2 0 0 15 10.1 10.1 0.0043
  • Example 2 2 1 0 11 7.2 7.2 0.0039
  • Table 6
  • Example 3 3 ⁇ 7 4.2 8.0 0.0028
  • Example 3 4 6 9 5.8 7.2 0.0030
  • Example 3 5 1 2 8 5.1 1 7.6 0.0035
  • Table 9
  • Example 5 3 dimethylolethylene urea 0.0 0.9.5.0 0.001 0031
  • Example 5 4 dimethyloloneuronate 0.00.9 6.3 0.0027
  • Example 5 5 dimethyloltriazone 1.1 1. 0 5.8 0. 0030
  • Example 5 6 Dimethy D-Nolepropylene Urea 0.90 0.8 5.3 0.0042 Makyu ⁇ / Jl i! Fl m degree Wash shrinkage Weight loss B / W
  • Table 14
  • Example 7 2 1 0 0.9 0.8 14.4 0.0028
  • Example 7 3 3 0 0.6 0.6 10.2 0.0030
  • Example 7 4 5 0.3 0.3 4.2 0.0046 Table 17
  • Example 7 9 3 0 6 0 0.8 0.8 14.1 0.0022
  • Example 8 0 1 0 0 1 2 0 0.6 0.6 13.5 0.0030
  • Example 8 1 1 0 0 1 8 0 0.4 0.4 12.0 0.0033
  • Example 8 2 1 0 0 2 1 0 0.5 0.4 10.4 0.0036
  • Table 1 9

Abstract

Fiber structures having excellent moisture absorption, soft hand and excellent configurational stability. One embodiment of the fiber structures is one made of cellulosic fibers grafted with hydrophilic vinyl monomers and having a B to W ratio of 0.0001 to 0.005, wherein B is bending rigidity as determined by the Kawabata Evaluation System (KES) and W is a basis weight (the same applies hereinafter). Another embodiment of the fiber structures is one made of the above cellulosic fibers and polyester fibers. A still further embodiment of the structures is one made of the cellulosic fibers and having a shrinking percentage of 3 % or less after washing and a B to W ratio of 0.0001 to 0.005. Yet another embodiment thereof is one made of cellulosic fibers and polyester fibers and having a shrinking percentage of 2 % or less after washing and a B to W ratio of 0.0001 to 0.005.

Description

明細書  Specification
繊維構造物およびその製造方法  Fiber structure and method of manufacturing the same
技術分野  Technical field
本発明は、 セルロース繊維からなる繊維構造物であって、 優れた吸湿性を有し しかも柔軟な風合いをもつ繊維構造物およびその製造方法に関する。  TECHNICAL FIELD The present invention relates to a fiber structure made of cellulose fiber, which has excellent hygroscopicity and a soft texture, and a method for producing the same.
また本発明は、 セルロース繊維とポ リエステル繊維とからなる繊維構造物であ つて、 セルロース繊維からなる繊維構造物と同等あるいはそれ以上の優れた吸湿 性を持ち、 しかも風合いが柔軟な繊維桢造物およひその製造方法に関する。  Further, the present invention relates to a fiber structure comprising a cellulose fiber and a polyester fiber, the fiber structure having the same or better hygroscopicity as that of the fiber structure made of a cellulose fiber, and having a soft texture. The present invention relates to a method of manufacturing the yohi.
さ らにまた、 本発明は、 形態安定性に優れかつ柔軟な風合いを有する維維構造 物およびその製造方法に関する。  Furthermore, the present invention relates to a fibrous structure having excellent form stability and a soft texture, and a method for producing the same.
背景技術  Background art
セルロース繊維は吸湿性を有する代表的な繊維と して知られる力 <、 近年、 快適 性の向上のためさ らに高度な吸湿性が求められている。 また、 セルロース繊維と ポリエステル繊維を用いてなる繊維構造物は、 セルロース繊維からなる繊維構造 物と比較して吸湿性が劣る。 そのため綿/ ポ リエステルの混紡糸からなる繊維構 造物などでは快適性を向上させるため、 この吸湿性を向上させるこ とが課題とな つてし、る。  Cellulose fibers are known as typical fibers having hygroscopicity. In recent years, higher levels of hygroscopicity have been required to improve comfort. In addition, a fiber structure using a cellulose fiber and a polyester fiber is inferior in hygroscopicity to a fiber structure including a cellulose fiber. Therefore, in the case of fiber structures made of cotton / polyester blended yarn, improving the hygroscopicity is an issue in order to improve comfort.
吸湿性を向上するためには維維構造物に親水性ビニルモノマ一をグラフ 卜重合 して改質する加工が考えられる。 しかし、 このような技術ではグラフ ト重合で生 成した化合物が大量に繊維間に残存するため、 繊維構造物の風合いが硬化する。 一方、 セルロース繊維からなる繊維構造物またはセルロース繊維を含む繊維構 造物の形態安定加工には繊維素反応型樹脂も しく はホルムアルデヒ ド蒸気による 樹脂加工が行われてきた。  In order to improve the hygroscopicity, it is conceivable to modify the fiber structure by graft polymerization of hydrophilic vinyl monomer. However, in such a technique, since a large amount of the compound generated by the graft polymerization remains between the fibers, the texture of the fiber structure hardens. On the other hand, for morphological stabilization processing of a fibrous structure composed of cellulose fibers or a fibrous structure containing cellulose fibers, resin processing using fibrin-reactive resin or formaldehyde vapor has been performed.
しかし、 高度の形態安定性能を得るためには大量の樹脂を付与することが必要 であり、 その場合に繊維構造物の風合いが硬化することが問題となっていた。 こ の問題の克服のためには各種柔軟剂の利用などが一般的に行われている力^ その 柔軟化効果には限界があつた。  However, in order to obtain high form stability performance, it is necessary to apply a large amount of resin, and in that case, the texture of the fiber structure hardens. In order to overcome this problem, the use of various types of flexibility has been generally carried out.
また、 特閒平 7 — 1 8 9 1 3 5号公報に見られるように、 縫製後の製品に対し てホルムアルデヒ ド蒸気による形 安定加工を施した後、 セルロース分解酵素で 処理する方法が提案されている。 しかしながら、 この方法では ¾製品の各部を均 一に酵素処理することは難しく、 縫製品の品位が大きく損なわれたり、 局所的に 繊維構造物の強度が大幅に低下することが問題であった。 さらに、 縫製品での形 態安定加ェと酵素処理のためには特別な装置を必要とするため、 容易には行いに く いこと も問題であった。 In addition, as shown in Japanese Patent Publication No. 7-189139, the sewn product is subjected to shape-stabilizing processing with formaldehyde vapor and then treated with cellulolytic enzyme. A method of processing has been proposed. However, with this method, it is difficult to uniformly enzymatically treat each part of the product, and the problem is that the quality of the sewn product is greatly impaired, and the strength of the fibrous structure is significantly reduced locally. In addition, there was a problem that it was difficult to perform the stabilization process and the enzyme treatment of the sewn products because special equipment was required.
発明の開示  Disclosure of the invention
本発明の繊維構造物の 態様は、 セルロース繊維からなる繊維構造物であって、 該セル口ース繊維に親水性ビニル系モノ マがグラフ ト重合されており、 かつ K E S (Kawabata Evaluation System) 測定による曲げ剛性測定値 ( B ) と目付 (W) の比 B , \Vが 0. ϋ θ ϋ ΐ 以上 ϋ. () 0 5以下である繊維構造物である。  An embodiment of the fiber structure of the present invention is a fiber structure made of a cellulose fiber, wherein a hydrophilic vinyl monomer is graft-polymerized on the cellulosic fiber, and a KES (Kawabata Evaluation System) measurement is performed. This is a fibrous structure in which the ratio B, \ V between the measured bending stiffness (B) and the basis weight (W) according to the above is not less than 0.ϋθϋϋ and not more than () 05.
この繊維構造物は、 従来のセルロース繊維構造物では得 れない高度な吸湿性 を有ししかも柔軟な風合いをもつセルロース繊維構造物である。  This fiber structure is a cellulose fiber structure having a high degree of hygroscopicity that cannot be obtained with a conventional cellulose fiber structure and having a soft texture.
本発明の繊維構造物の製造方法の一態様は、 セルロース繊維からなる繊維構造 物を、 親水性ビニル系モノマと重合開始剤を含有する水溶液の含浸処理を施した 後に熱処理を施すグラフ ト重合加工の前または後に、 減量加工する維維構造物の 製造方法である。  One embodiment of the method for producing a fiber structure of the present invention is a graph polymerization process in which a fiber structure made of a cellulose fiber is subjected to an impregnation treatment with an aqueous solution containing a hydrophilic vinyl monomer and a polymerization initiator, followed by heat treatment. This is a method for producing a fibrous structure to be subjected to weight reduction processing before or after.
本発明の繊維構造物の他の態様は、 セルロース繊維とポリエステル繊維を用い てなる繊維構造物であって、 該セルロース繊維に親水性ビニル系モノマがグラフ 卜重合されており、 力、つ K E S (; Kawabata Evaluation System ) 測定による曲げ 剛性測定値 ( B; と目付 ( W) の比 B Wが 0 · ϋ 0 0 1 以上() . ϋ 0 5以下で ある繊維構造物である。  Another aspect of the fiber structure of the present invention is a fiber structure using a cellulose fiber and a polyester fiber, wherein a hydrophilic vinyl-based monomer is graft-polymerized on the cellulose fiber, and the force KES ( ; Kawabata Evaluation System) A fiber structure whose bending stiffness measurement value (B; ratio between the measured weight (B) and the weight per unit area (W)) is not less than 0 · ϋ001 and not more than (5) .ϋ05.
二の繊維構造物は、 セルロース繊維からなる繊維構造物と同等あるいはそれ以 上の優れた吸湿性をもち、 かつ風合いが柔軟で、 しかもセルロース繊維のみから なるものに比べて収縮が抑えられ、 強度特性に優れるものとなる。  The second fibrous structure has the same or better hygroscopicity as the fibrous structure composed of cellulose fibers, has a soft texture, and has a reduced shrinkage compared to the fibrous structure composed solely of cellulose fibers. It has excellent characteristics.
本発明の繊維楕造物の製造方法の他の態様は、 ポリエステル維維とセルロース 繊維を用いてなる繊維構造物を、 親水性ビニル系モノマと重合開始剤を含有する 水溶液の含浸処理を施した後に熱処理を施すグラフ 卜重合加工の前または後に、 減量加工する繊維構造物の製造方法である。  In another embodiment of the method for producing a fibrous oval product of the present invention, a fibrous structure comprising a polyester fiber and a cellulose fiber is impregnated with an aqueous solution containing a hydrophilic vinyl monomer and a polymerization initiator. This is a method for producing a fibrous structure to be subjected to weight reduction processing before or after graft polymerization processing to be subjected to heat treatment.
本発明の戡維 造物のさ らに他の態様は、 セルロース繊維からなる繊維構造物 であって、 洗濯収縮率が 3 %以下であり、 かつ K E S (Kawabata Evaluation System ) flU定による曲げ剛性測定値 ( B ) と目付 ( W の比 Wが ϋ . 0 0 0 1 以上(). 0 0 5以下である繊維構造物である。 In still another embodiment of the fibrous structure of the present invention, a fibrous structure comprising cellulose fibers The washing shrinkage is 3% or less, and the flexural rigidity measured value (B) and the weight per unit weight (W) of KES (Kawabata Evaluation System) flU are not less than 0.00001 (). It is a fibrous structure of not more than 05.
この繊維構造物は、 形態安定性を有ししかも柔軟な風合いをもつ維維構造物で ある。  This fibrous structure is a fibrous structure having morphological stability and a soft texture.
本発明の繊維構造物の製造方法のさ らに他の態様は、 セルロース繊維からなる 維 ¾造物を 成するセルロース繊維に架 ^反 ι'ί、'を行なう工程の前または後に、 該セルロース鎞維を減量加丄する繊維 造物の製造方法である。  In still another embodiment of the method for producing a fibrous structure of the present invention, the method for producing a fibrous structure comprises the steps of: This is a method for producing a fibrous product by reducing and heating fibers.
本発叨の雄維構造物のさ らにまた他の態様は、 セル口一ス繊維とポリエステル 雄維を用いてなる雄維楛造物であって、 洗濯収縮率が 2 °。以下であり、 かつ K E S ( Kawabaia HvaLu Lion System ; 測定による曲げ剛性測定値 ( 13 ) と目付 (W ) の比 B . Wが ϋ . U 0 () 1 以上() . 00 δ Fである繊維描造物である。  Yet another embodiment of the male fibrous structure of the present invention is a male fibrous structure using cell orifice fibers and polyester male fibrous material, which has a washing shrinkage of 2 °. And a ratio B.W between the measured bending stiffness (13) and the basis weight (W) by the KES (Kawabaia HvaLu Lion System; measurement) and the weight per unit area (W) is greater than or equal to. It is a structure.
この繊維構造物は、 形態安定性を有し しかも柔軟な風合いをもち、 しかもセル ロース繊維のみからなるものに比べて収縮が抑えられ、 強度特性に優れるものと なる。  This fibrous structure has shape stability, has a soft hand, and suppresses shrinkage as compared with a structure composed of only cellulose fibers, and has excellent strength properties.
本発明の繊維構造物の製造方法のさ らにまた他の態様は、 セルロース繊維とポ ')エステル繊維を用いてなる繊維 Wi造物を構成するセルロース繊維に架橋反応を 行なう工程の前または後に、 該セルロース繊維を減量加丁する繊維構造物の製造 方法である。  Still another embodiment of the method for producing a fibrous structure of the present invention includes a step of performing a cross-linking reaction on cellulose fibers constituting a fiber Wi structure using cellulose fibers and polyester fibers, This is a method for producing a fiber structure in which the cellulose fibers are reduced in weight.
発明を実施す の i¾良の形態  Embodiment of the Invention
本発明の繊維構造物の -態様は、 セルロース繊維からなる繊維構造物であって、 該セルロース繊維に親水性ビニル系モノマがグラフ 卜重合されており、 かつ K E 'S ( Kawabata Evaluation System ) 測定による曲げ剛性測定値 ( B ) と 目付 (W ) の比 が ϋ . 0 0 0 1 以上 0. 0 0 5以下である繊維構造物である。  An embodiment of the fiber structure of the present invention is a fiber structure comprising a cellulose fiber, wherein a hydrophilic vinyl monomer is graft-polymerized on the cellulose fiber, and measured by KE'S (Kawabata Evaluation System). The fibrous structure has a ratio of the measured bending stiffness (B) to the basis weight (W) of not less than 0.001 and not more than 0.05.
本発明において、 セルロース繊維と しては、 綿、 麻などの天然セルロース繊維、 レーヨ ン、 ポリ ノ ジッ ク、 キュプラ、 テンセルなどの再生セルロース維維が挙げ られるカ 、 これに限定されるものではない。  In the present invention, examples of the cellulose fiber include, but are not limited to, natural cellulose fibers such as cotton and hemp, and regenerated cellulose fibers such as rayon, polynosic, cupra, and tencel. .
セル口一ス繊維からなる繊維構造物とは、 実質的にセル口ース繊維からなる織 物、 編物若しく は不織布、 またはこれらの縫製品などを举げることができる。 な かでも織物、 編物、 またはこれらの縫製品が好ま しい形態であり、 織物またはそ の縫製品がより好ま しい形態である。 The fibrous structure composed of cell opening fibers can be a woven, knitted or non-woven fabric substantially composed of cell opening fibers, or a sewn product thereof. What Still, woven fabric, knitted fabric or these sewn products are preferred forms, and woven fabrics or sewn products are more preferred forms.
本発明の繊維構造物は、 セルロース繊維に親水性ビニル系モノマがグラフ 卜重 合されている ものである。 セルロース繊維に親水性ビニルモノマが単繊維内部に グラフ 卜重合されていることが好ま しい。 単維維内部にグラフ 卜重合されている ことで優れた吸湿性の耐久性が格別なものとなり、 かつ織編物の風合いを阻害し ない。 なお、 セルロース繊維の単繊維内部にグラフ 卜重合していることは、 例え ば切片染色法により «y忍てきる。 w片染色法は次のように行う。 パラフィ ンで包 埋した繊維束を繊維軸に垂直方向に切断し、 切片を作成する。 この切片を有機溶 媒 で脱包埋した後、 適切な染料 (例えば塩基性染料.〉 を用いて染色し、 水洗す る。 これを光学顕微鏡で観察するこ とにより、 繊維内部までグラフ 卜重合して いることがわかる。  The fiber structure of the present invention is obtained by graft-polymerizing a hydrophilic vinyl-based monomer to a cellulose fiber. It is preferable that a hydrophilic vinyl monomer is graft-polymerized inside the single fiber on the cellulose fiber. Since the graft is polymerized inside the single fiber, the durability of the excellent moisture absorption is outstanding, and the texture of the woven or knitted fabric is not hindered. In addition, the fact that the graft polymerization is performed inside the single fiber of the cellulose fiber can be confirmed by, for example, a section staining method. w The piece staining method is performed as follows. The fiber bundle embedded in paraffin is cut perpendicularly to the fiber axis to make sections. After the sections are de-embedded in an organic solvent, they are stained with an appropriate dye (for example, a basic dye) and washed with water. You can see that it is doing.
本発明において、 親水性ビニル系モノマとは、 分子構造内に ¾合性のビニル基 を有し、 かつカルボン酸、 スルホン酸等の酸性基および . またはその塩、 水酸基、 ア ミ ド基等の親水性基を有するモノマをいう。  In the present invention, the hydrophilic vinyl monomer means a compound having a compatible vinyl group in the molecular structure and an acidic group such as carboxylic acid or sulfonic acid, or a salt thereof, a hydroxyl group, an amide group, or the like. It refers to a monomer having a hydrophilic group.
具体的には、 アク リル酸、 アク リル酸ナ ト リ ウム、 アク リル酸アルミニウム、 アク リル酸亜鉛、 アク リル酸カルシウム、 アク リル酸マグネシウム等のァク リノレ 酸塩類モノマ一、 2 —アク リルア ミ ド— 2 —メチルプロハ°ンスルホン酸、 メ 夕ク リ ル酸、 ァ リ ノレアルコール、 了 リ ルスルホ ン酸ナ ト リ ウム、 ァ ク リ ノレア ミ ド、 ビ' ニノレスルホ ン酸ナ ト リ ウム、 メ タ リ ルスルホ ン酸ナ ト リ ウ ム、 スチ レ ン スルホ ン 酸ナ ト リ ウム等を用いるこ とができる。 これらは、 1 種単独で用いてもよ く、 ま たは 2種以上を併用してもよい。  Specifically, acrylic acid monomers such as acrylic acid, sodium acrylate, aluminum acrylate, zinc acrylate, calcium acrylate, magnesium acrylate, etc .; MID-2-methyl sulfonic acid, methacrylic acid, aryl alcohol, sodium polysulfonate, acrylic acid mide, sodium bi'inolesulfonate, For example, sodium talylsulfonate, sodium styrenesulfonate, or the like can be used. These may be used alone or in combination of two or more.
これらの中でも、 2 —アク リルア ミ ドー 2 —メ チルプロハ。ンスルホン酸および , またはそのナ ト リ ウム塩、 ァリルスルホン酸ナ ト リ ウム等の分子構造内にスル ホン酸および,' またはその塩を含有する ビニル系モノ マ力、'、 反応性に優れる点で 好ま しい。  Among these, 2 — Akrilua Midor 2 — Methylproha. Sulfonic acid and / or its sodium salt, and vinyl-based monomer containing sulfonic acid and / or its salt in its molecular structure such as sodium arylsulfonate. I like it.
親水性ビニル系モノマの繊維構造物に対する反応率は、 繊維構造物の風合いを 良好に保持しつつ優れた吸湿性を得る観点から、 1 重量%以上 2 0重量%以下で あることが好ま しい。 3重量 0ο以上 1 7重量?。以下であることはより好ま しく、 5重 ¾ 0ο以上 1 5重量 Οο以下であることはさ らに好ま しい。 なお、 こ こでいう反 応率とは、 綠維構造物がグラフ 卜重合によって增加した重 itの割合 (重量 Q。) の こ とをいい、 1 ϋ ϋ 、 [ (グラフ ト雷合をした後の繊維^造物の絶乾重量) 一The reaction rate of the hydrophilic vinyl-based monomer with respect to the fiber structure is preferably 1% by weight or more and 20% by weight or less from the viewpoint of obtaining excellent moisture absorption while maintaining good texture of the fiber structure. 3 weight 0 ο or more 1 7 weight? . It is more preferable that It is more preferable that the weight is not less than 5 weights ¾ 0 ο and not more than 5 weights Ο ο. Here, the reaction rate means the ratio (weight Q. ) of the weight it added to the fiber structure by the graph polymerization, and 1%, [( After fiber ^ structure absolute weight)
(グラフ ト重合をする前の繊維構造物の絶乾重量) ] . ( グラフ 卜重合をする前 の絶乾重量 j から算出される。 (Absolute dry weight of fiber structure before graft polymerization)]. (Calculated from the absolute dry weight j before graft polymerization.)
また、 本発明の繊維構造物は、 ffi度 3 0て、 湿度 9 0 °。における繊維構造物の 吸湿率 M R 2 ( °o ) から温度 2 0て、 度 6 δ °οにおける繊維 造物の吸湿率 M R 1 ( o0リ を差し引いた値で ¾される Δ M R力 <、 F ^式を ίι 足することが好ま し い。 The fiber structure of the present invention has an ffi degree of 30 and a humidity of 90 °. Moisture absorption MR 2 (° o) Te temperature 2 0, moisture absorption of the fiber creation in degrees 6 δ ° ο MR 1 (o 0 Δ MR force ¾ a value obtained by subtracting the re fibrous structure in <, F It is preferable to add the expression.
-1 . Δ M R≤ 1 4  -1. Δ M R≤ 1 4
なお、 温度 2 0 V、 &度 6 5 における繊維構造物の吸 率 λ'1 R 1 ( 。ο ) は、 標準的な ¾5境 Fでの衣服のもつ吸湿性と考えるこ とができるものであり、 温度 3 ()て、 湿度 9 0 における繊維構造物の吸湿率 M R 2 ( "ο は、 柽く運動した後 の衣服のもつ吸湿性と考えることができる ものである。  The absorption rate λ'1 R 1 (.ο) of the fibrous structure at a temperature of 20 V and a degree of 65 can be considered to be the hygroscopic property of clothes in the standard environment F. Yes, at a temperature of 3 () and a humidity of 90, the moisture absorption rate of the fibrous structure MR 2 ("ο can be considered as the moisture absorption property of the clothes after exercise.
親水性ビニル系モノマをグラフ 卜重合していないセルロース繊維のみからなる 織維構造物の△ M Rは高々 4である。  The △ MR of a textile structure composed of only cellulose fibers in which a hydrophilic vinyl monomer is not graft-polymerized is at most 4.
これに対して、 本発明の繊維構造物は親水性ビニル系モノマがグラフ 卜重合さ れてなるので△ M Rが 4を超えるものであり、 従来のセルロース繊維のみからな る繊維構造物に比べて设 i Lた吸湿性を示す。  On the other hand, since the fiber structure of the present invention is obtained by graft polymerization of a hydrophilic vinyl monomer, the MR is more than 4, which is larger than that of the conventional fiber structure consisting of only cellulose fibers.设 i L shows hygroscopicity.
本発明において、 K E S (. Kawabata Evaluation System ) 測定とは、 川端季雄 著、 繊維機械学会 ¾ (繊維工学) , vol.26, No. 10, P72i P728( 1973)に記載され ているように、 K E Sの曲げ特性測定機 (カ トーテッ ク製) を用いて繊維構造物 を曲げたときの各曲率での反発力を測定する ものである。 そして、 曲率 ϋ. 5力、 ら 】 . 5の間での反発力の平均値を Β (単位 : g · c m 2 ,· c m と し、 さ らに繊 維構造物の縦、 横の 2つの方向それぞれについてこの測定を行い、 平均値を B と する。 この Bの値と繊維構造物の目付 W 「単位 : g / m2) との比 B z Wを求める ものである。 In the present invention, KES (. Kawabata Evaluation System) measurement refers to KES as described in Kawabata Toshio, Textile Machinery Society ¾ (Fiber Engineering), vol. 26, No. 10, P72i P728 (1973). It measures the repulsive force at each curvature when a fiber structure is bent using a bending characteristic measuring machine (made by Kato Tec). The mean value of the repulsive force between the curvature ϋ.5 force, etc. 5 .5 is Β (unit: g · cm 2 , · cm), and the vertical and horizontal two sides of the fiber structure the measurement was carried out for each direction, the average value B basis weight W "units of value and the fiber structure of the B:. those determining the ratio B z W with g / m 2).
本発明の雄維構造物は、 この K E S (Kawabata Evaluation System) 測定によ る曲げ剛性測定値 ( B ) と目付 (W) の比 B , Wが 0. 0 0 0 1 以上 0. 0 0 5 以下である こ とが必要である。 The male fiber structure of the present invention has a ratio B, W between the measured value of bending stiffness (B) and the basis weight (W) by KES (Kawabata Evaluation System) measurement of not less than 0.0001 and 0.0005. It must be:
この K E S測定による B Wが 0 . 0 0 5を超える ¾合は、 風合いか硬く なり 品位か低下する。 この B z \Vが() . ϋ () 1 以 卩であることが好ま し く、 0 . 0 0 3以下であることはより好ま しい。  When the BW measured by the KES exceeds 0.005, the texture becomes hard and the quality deteriorates. It is preferred that this B z \ V be less than (). Ϋ () 1 and more preferably less than 0.03.
次に、 本発明の繊維構造物の製造方法の一態様について説明する。  Next, one embodiment of the method for producing a fiber structure of the present invention will be described.
セルロース繊維からなる織物、 編物、 または不織布等に織成、 編成などして得 れる繊維構造物を、 親水性ビニル系モノマと重合開始剤を含有する水溶液の含 浸処理を施した後に熱処理を施すグラフ 卜重合加工の前または後に、 減量加工す ることによ り本発明の繊維構造物を得ることができる。  A fiber structure obtained by weaving or knitting into a woven, knitted or non-woven fabric made of cellulose fiber is subjected to a heat treatment after being impregnated with an aqueous solution containing a hydrophilic vinyl monomer and a polymerization initiator. The fiber structure of the present invention can be obtained by performing weight reduction processing before or after graft polymerization processing.
セルロース繊維からなる繊維構造物に親水性ビニル系モノマと重合開始剂を含 有する水溶液の含浸処理を施す方法としては、 例えば、 一定時間 S ifする方法や パディ ングする方法を採用できる。 含浸温度は、 特に制限はなく、 常温で行う こ とかできる。  As a method of impregnating a fibrous structure composed of cellulose fibers with an aqueous solution containing a hydrophilic vinyl monomer and a polymerization initiator, for example, a method of sifting for a fixed time or a method of padding can be adopted. The impregnation temperature is not particularly limited, and the impregnation can be performed at room temperature.
本発明において、 重合 始剂にはラジカル重合で一般に用いられる重合開始剂 が好ま しく用いられる。 ϋ体的には、 過硫酸アンモニゥム、 過酸化ベンゾィル等 の過酸化物、 ァゾ系触媒、 セリ ウム触媒等が好ま しく 用いられる。  In the present invention, a polymerization initiator generally used in radical polymerization is preferably used as the polymerization initiator. Specifically, peroxides such as ammonium persulfate and benzoyl peroxide, azo-based catalysts, cerium catalysts and the like are preferably used.
親水性ビニル系モノマと贯合閒始剤を含有する水溶液中における親水性ビ二ル 系モノ マの濃度は、 特に制限はないが、 反応を効率的に行う観点から 丄 0重量 Q 0 以上 3 0重量 以下の濃度が好ま しい。 1 3 ¾量 以上 2 7重量 Do以下であるこ とがより好ま しく、 1 5重量 0以上 2 5重¾ 以下であることがさ らに好ま しい。 親水性ビニル系モノマと重合開始剂を含^する水溶液中における重合開始剤の 濃度は、 特に制限はないが、 反 を効率的に行うため観点から、 親水性ビニル系 モノマに対して 1 重量%以上 5重量%以下であることが好ま しく、 2重量 ¾以上 ■1 重 fi Qo以下であることがより好ま しい。 The concentration of the hydrophilic vinyl-based monomer in the aqueous solution containing the hydrophilic vinyl-based monomer and the polymerization initiator is not particularly limited, but from the viewpoint of efficiently performing the reaction, is preferably 0 wt Q 0 or more 3 A concentration of 0 weight or less is preferred. 1 3 ¾ amount more than 7 wt D o verses in it and this is favored more or less, 1 5 weight 0 to 2. 5-fold ¾ arbitrarily favored by it to have been al follows. The concentration of the polymerization initiator in the aqueous solution containing the hydrophilic vinyl monomer and the polymerization initiator is not particularly limited, but from the viewpoint of performing the reaction efficiently, 1% by weight based on the hydrophilic vinyl monomer. more than 5% by weight as in it is like following, 2 weight ¾ more than ■ 1 double fi Q o less it is more preferred arbitrariness.
また、 セルロース繊維からなる繊維構造物の強度物性低下を抑制し、 また反応 を効率的に行う観点から、 親水性ビニル系モノマと重合開始剂を含有する水溶液 の P Hは ΰ以上 1 2以下であることが好ま しく 、 Ρ Ηが 7以上 1 1 以下であるこ とがよ り好ま しい。 Further, to suppress the strength property decrease of the fiber structure of cellulose fibers, also from the viewpoint to carry out the reaction efficiently, P H of the aqueous solution containing the polymerization initiator剂hydrophilic vinyl-based monomer is 1 2 or less or more ΰ It is more preferable that あ る is 7 or more and 11 or less.
本発明の繊維構造物の製造方法では、 含浸処理後、 熱処理を行う力、 熱処理は グラフ 卜重合反応を行うために必須である。 熱処理は、 乾熱処理、 ^熟処理など 特に限定されず採用できる。 In the method for producing a fibrous structure according to the present invention, the force for performing the heat treatment after the impregnation treatment, Indispensable for performing the graft polymerization reaction. The heat treatment may be employed without particular limitation, such as a dry heat treatment and a ripening treatment.
このグラ フ 卜重合を行うための熱処理 度は、 特に制限はないカ^ 反応を効率 的に行う観点から、 8 0て以上 2 0 0 以下の溫度で行う ことが好ま しい。 1段 階または 2段階以上で熱処理を行う ことができる。 熱処理時問は、 目的とするグ ラフ ト反応率との関係から熱処理温度を勘案して定められるが、 2 0秒以上 5分 以下であることが好ま しい。  The degree of heat treatment for carrying out the graphitization is not particularly limited, and it is preferable to carry out the reaction at a temperature of not less than 80 and not more than 200 from the viewpoint of efficiently carrying out a gas reaction. Heat treatment can be performed in one or more stages. The heat treatment time is determined in consideration of the heat treatment temperature in consideration of the desired graph reaction rate, and is preferably 20 seconds or more and 5 minutes or less.
さ らに、 このグラフ 卜重合加工において、 熱処理を行った後、 繊維構造物に付 着している未反応モノマや、 セルロースにグラフ 卜重合していないポリ マを除去 するために洗浄を行う ことが好ま しい。 洗净する方法と しては、 水洗、 湯洗など 特に限定されずに行えるが、 洗浄効率などの観点から ¾洗が好ま し く採 fflできる。 なお、 グラフ 卜 ^合加丄を行った後で後述する減 加丄を行う場合には、 この減 1:加工が洗净作/!]をも奏するこ ととなる。  In addition, in this graft polymerization process, after heat treatment, washing is performed to remove unreacted monomers attached to the fiber structure and polymers not graft-polymerized to cellulose. Is preferred. The washing method is not particularly limited, such as water washing and hot water washing. However, washing is preferably performed from the viewpoint of washing efficiency. In addition, if the reduction described later is performed after performing the graph addition, the reduction 1: the processing also performs the washing operation /!].
そ して、 記グラフ ト重合加:匸に加えて、 減量加ェを施すことか必要である。 こ こでいう減量加工とは、 繊維構造物を構成する繊維の一部を分解除去し、 その 重量を減少せしめる処理をいう。  It is necessary to reduce the weight in addition to the above polymerization. The term "weight reduction processing" as used herein refers to a treatment for decomposing and removing a part of the fibers constituting the fiber structure to reduce the weight thereof.
セルロース繊維についての減量加工法と してはセルロース分解酵 ¾による処理 や酸による加水分解などがあげられる力 、 セルロース分解酵素による処理を用い るこ とが好ま しい。 セルロース分解酵素としては、 卜 リ コデルマ ( T r i code rma 厲、 フ ミ コラ (Fum i co l a ) 厲、 ァスペルギルス ( As pe rg i i I s ) 厲、 バチルス ( Baci l l us ) 属などの菌体を培養して得られるものを用いることができる。 これ らのセルロース分解酵素は市贩されており、 そのものをそのまま用いて差し支え ない。  As a method of reducing the weight of the cellulose fiber, it is preferable to use a treatment with a cellulolytic enzyme, such as treatment with a cellulolytic enzyme or hydrolysis with an acid. Cellulase-degrading enzymes include bacteria such as Tricoderma co, Fumicola 厲, Aspergillus As, Bacillus ス, and the like. These cellulolytic enzymes are commercially available and can be used as they are.
本発叨において、 減量加工の減量率とは、 加工の前後で分解除去された部分の 割合をいい、 具体的には、 (重量減少分/ 加工前の重量 > 〗 0 0から算出され る。  In the present invention, the weight loss rate of the weight loss processing refers to the ratio of the parts decomposed and removed before and after the processing, and is specifically calculated from (weight loss / weight before processing>〗 100).
本発明における減量加工では、 特に物理的な刺激を繊維構造物に加えながら行 う こ とで、 優れた風合いを有する繊維構造物とすることができる。 例えば、 液流 染色機、 気流染色機などを用い、 繊維構造物に揉み、 叩き、 擦過などの物理的な 刺 ¾を与えながら 維桢造物の - ¾を減少させる。 こ う した処理は、 ¾維構造物 の繊維問に空間を形成せしめることによ り繊維構造物に柔らかな風合いを付与す る ものと考えられる。 さ らに物理刺激を人き くする工夫と しては、 走行中に繊維 ½造物かセラ ミ ッ クのような凹凸に富み、 かつ摩擦係致の大き(、素材と接触する ようにするこ とが効果的である。 かかる観点から減量加工は液流染色機または気 流染色機などにおいてセラ ミ ッ ク製のノ ズルを用いたり、 高速走行中の繊維構造 物の通過部に同様の素材を用いたり、 仕切り板を設置したり して行う こ とかより 好ま しい。 In the weight-reduction processing in the present invention, a fiber structure having an excellent texture can be obtained by applying a physical stimulus to the fiber structure, in particular. For example, using a liquid-flow dyeing machine or an airflow dyeing machine, a physical structure such as rubbing, hitting, or rubbing the fiber structure Reduces the amount of fiber in the fabric while giving a sting. Such a treatment is considered to give a soft texture to the fiber structure by forming a space between the fibers of the fiber structure. In addition, in order to increase the physical stimulation, it is necessary to ensure that the material is rich in irregularities such as fiber or ceramics while driving, and that it has a large frictional engagement (so that it comes into contact with the material). From this point of view, weight reduction processing uses ceramic nozzles in a liquid dyeing machine or an airflow dyeing machine, or a similar material is used for the passage of a fiber structure during high-speed running. It is more preferable to use a partition or to install a partition plate.
従来のゥイ ンスなどによる減量加工では、 ¾み、 叩き、 擦過などの物理刺激が 少ないため、 柔らかな風合いを得ることはできず、 前述の B / W値は、 高々 0 . ϋ () 6程度のものしか得られなかつた。  In conventional weight reduction processing using a wire or the like, a soft texture cannot be obtained because there is little physical stimulus such as squeezing, tapping, and abrasion, and the B / W value described above is at most 0. Only a degree was obtained.
この態様の繊維構造物において、 柔軟性を付与しつつ強度を保持するという観 点から、 セル口一ス,敏維の減 ϋ率と しては 3 以上 1 ϋ Qo以下か好ま しい。 In fiber structure of this embodiment, from the viewpoint of keeping strength while imparting flexibility, cell opening one scan, is a reduction Y ratio of Satoshi維favored or 3 or 1 ϋ Q o or less arbitrarily.
減量加工方法と しては、 例えば、 前述のセルロース分解酵素の 度が 1 g / 1 以上 3 () g ■ I 以下の水溶液に、 繊維^造物を 濱して 3 ϋて以上 9 ()て以下の 温度で処理することが好ま しい。  As a method of weight reduction, for example, the above-mentioned cellulose-degrading enzyme has a degree of 1 g / l or more and 3 () g. It is preferred to process at a temperature of
本発明において、 グラフ 卜重合加工と減盘加工の処理の順序は、 グラフ 卜重合 加工を施した後に減量加丄を施してもよいし、 逆に減量加工を先に施してもよい。 ゲラフ 卜 合加ェの後に減 ffi加ェを施す ½合には、 より大きな繊維間空隙が生じ るため、 風合い柔軟化効果を大き く ることができる。  In the present invention, the order of the graft polymerization process and the reduction process may be such that the weight reduction process is performed after the graft polymerization process or the weight reduction process may be performed first. When the reduction is performed after the gel addition, a larger inter-fiber space is generated, and the texture softening effect can be increased.
次に、 本発明の繊維構造物の他の態様は、 セルロース繊維とポリエステル繊維 を用いてなる繊維構造物であつて、 該セル口ース繊維に親水性ビニル系モノマが グラフ 卜重合されており、 かつ K E S ( Kawa ba ta Eva l ua t i on Sys tem ) 測定によ る曲げ剛性測定値 ( B と目付 ( ' j の比 ϋ Wが ϋ . () () ϋ 1 以上 ϋ . () ϋ 5 以下である繊維構造物である。 0 が 0 . 0 0 1以下であることが好ま しく、 ϋ . ϋ ϋ 3以下であることはより好ま しい。  Next, another embodiment of the fiber structure of the present invention is a fiber structure using a cellulose fiber and a polyester fiber, wherein a hydrophilic vinyl monomer is graft-polymerized on the cell mouth fiber. And the bending stiffness measured by KES (Kawabata Eva lua ti on System) (B and the basis weight (the ratio W of 'j is approximately. () () Ϋ1 or more ϋ. () Ϋ5 The fibrous structure is as follows: 0 is preferably 0.01 or less, and more preferably 3 or less.
この繊維構造物は、 セルロース繊維からなる繊維構造物と同等あるいはそれ以 ヒの優れた吸湿性をもち、 かつ風合いが柔軟で、 しかもセルロース繊維のみから なる ものに比ベて収縮が抑えられ、 強度特性に優れる ものとなる。 かかる観点か ら、 セルロース繊維の含有率が 1 ϋ 重量。。以上 9 0重;1 ('。以下、 ポリエステル繊 維の含冇率が 9 ()重 ffi 0o以上 1 ϋ重量%以下であるこ とか好ま しい。 より好ま し く は、 セルロース繊維の含有率が 2 0重量。 Q以上 8 0重 « π。以下、 ポリエステル 繊維の含冇率が 8 0重量%以上 2 0 重 itt 0o以下であり、 さ らに好ま しく は、 セル ロース繊維の含有率が 3 0 — S:。。以上 7 o - ffi。a以下、 ポ リエステル繊維の含有 率が 7 0重量 "0以上 3 0 1:虽% « "である。 This fiber structure has the same or better hygroscopicity as a fiber structure made of cellulose fibers, has a soft texture, and has a reduced shrinkage compared to a fiber structure made of only cellulose fibers. It has excellent characteristics. From this perspective The cellulose fiber content is 1 kg by weight. . Above 9 0 duplex;.. 1 ( 'hereinafter, preferred Toka this is含冇rate of polyester textiles 9 () heavy ffi 0 o or 1 Y wt% or less arbitrarily rather then preferred over the content of the cellulose fibers 20 weight% Q or more and 80 weight < π or less, the content of polyester fiber is 80 weight% or more and 20 weight or less itt 0 o, and more preferably, the content of cellulose fiber is 3 0 — S: More than 7 o-ffi.a or less, the content of polyester fiber is 70 weight " 0 or more 30 1: 虽%« ".
本発明において、 ポリエステル維維には、 ポリエチレンテレフタ レー トなどの 繊維形成性を有するポリエステル重合体からなる繊維が用いられる。 こ こでいう ポリエステル重合体にはホモポリマーのみならず共 3Ϊ合体も含まれる。  In the present invention, a fiber made of a polyester polymer having a fiber forming property, such as polyethylene terephthalate, is used as the polyester fiber. The polyester polymer mentioned here includes not only a homopolymer but also a copolymer.
セルロース繊維とポリエステル繊維を用いてなる繊維楕造物とは、 ポ リエステ ル維維とセルロース繊維を混紡あるいは混繊した糸を縐物、 編物若しく は不織布 等に織成、 編成などしたもの、 またはこれらの縫製品が挙げられる。 なかでも織 物、 編物、 またはこれらの縫製品が好ま しい形態であり、 織物またはその縫製品 がよ り好ま しい形態である。  A fiber oval product using cellulose fiber and polyester fiber is a yarn obtained by blending or knitting a polyester fiber and a cellulose fiber into a fabric, knitted fabric or non-woven fabric, or These sewing products are included. Among them, a woven fabric, a knitted fabric, or a sewn product thereof is a preferred form, and a woven fabric or the sewn product is a more preferred form.
この態様の本発明の繊維構造物は、 ポリエステル繊維を含んでなるものであり ながら、 上記の親水性ビニルモノマが前述のようにグラフ 卜 :合されてなるセル ロース繊維と共に川いられてなるものであるため、 吸湿性に優れたものとなる。 また、 この繊維 ½造物は、 温度 3 ϋて、 ^度 9 () における繊維構造物の吸湿 率 Vi R 2 ' ) から ffi度 2 0 :'C、 ffl度 6 5 "。における繊維描造物の吸湿率 M R 1 ( °o を差し引いた値で表される△ -VI R力 下記式を満足するこ とが好ま しい。 The fibrous structure of the present invention in this embodiment comprises polyester fibers, and the hydrophilic vinyl monomer is grafted together with the cellulose fibers obtained by grafting as described above. Because of this, it is excellent in hygroscopicity. In addition, the fiber structure was obtained from the moisture absorption rate ViR 2 ') of the fibrous structure at a temperature of 3 ° C. and at a temperature of 9 ° C. from the ffi degree 20 : ' C, ffl degree 65 '. Moisture absorption MR 1 (expressed by subtracting ° o) △ -VI R force It is preferable to satisfy the following equation.
0 . 0 4 ( 1 0 0 - X ) Δ M R≤ 0 . 1 4 x ( 1 0 0 - x  0. 0 4 (1 0 0-X) Δ M R≤ 0 .1 4 x (1 0 0-x
こ こで、 X は繊維構造物におけるポリエステル繊維の割合 (:重量 。) を表す。 また、 この態様の繊維構造物は、 収縮率が 3 ¾以下であることが好ま しい。 収 縮率が 2 no以下であることかより好ま しい。 Here, X represents the ratio (: weight) of the polyester fiber in the fiber structure. Further, the fibrous structure of this embodiment preferably has a shrinkage of 3 mm or less. More preferred arbitrariness or that contraction rate is less than or equal to 2 n o.
この繊維構造物は、 セルロース繊維に親水性ビニル系モノマがグラフ 卜重合さ れてなるので ¾い吸湿性が発現し、 一方の疎水性のポリエステル維維には親水性 ビニル系モノ マがグラフ ト重合せず、 ポリエステル繊維本来の特徴である防縮性 を保持するこ とができる。 .  This fibrous structure exhibits a high hygroscopic property because a hydrophilic vinyl monomer is graft-polymerized on a cellulose fiber, and a hydrophilic vinyl monomer is grafted on one hydrophobic polyester fiber. It does not polymerize and can maintain the shrink-proof properties inherent in polyester fibers. .
この維維構造物は、 ポリエステル繊維とセル口ース繊維を用いてなる維維構造 物を、 親水性ビニル系モノマと重合開始剤を含有する水溶液の含浸処理を施した 後に熱処理を施す前述したグラフ ト重合加工の前または後に、 前述のように減量 加工するこ とによ り得ることができる。 This fiber structure is composed of polyester fiber and cellulosic fiber. The product may be subjected to a weight reduction process as described above before or after the above-described graft polymerization process in which the product is subjected to an impregnation process of an aqueous solution containing a hydrophilic vinyl monomer and a polymerization initiator and then to a heat treatment. be able to.
こ のよ う に して得られた雄維構造物は、 ポリエステル繊維が冇する高い防縮性 をほとんど損なう こ となく、 かつ従来のポリエステル繊維とセルロース繊維を用 いてなる,被維桢造物よ り ^い吸 ¾性を する ものとなる。  The male fiber structure obtained in this way has almost no loss in the high shrinkage resistance of the polyester fiber, and is obtained by using a conventional polyester fiber and cellulose fiber. It will be highly absorbent.
セル口一ス繊維の減量加工 -は前述同様であり、 ポリエステル繊維の減量加工 法と しては、 水酸化十 卜 リ ゥ厶などのアル力 リ化合物による減量加工を用いるこ とができる。  The process for reducing the weight of the cell opening fiber is the same as described above. As the method for reducing the weight of the polyester fiber, a weight reducing process using an alkaline compound such as hydroxyl hydroxide can be used.
減量加工方法は、 例えば、 前述のセルロース分解酵素の濃度が 1 g . i 以上 3 0 g / 1 以下の水溶液に、 繊維構造物を浸潰して 3 0て以上 9 0て以下の温度で 処理することが好ま しい。 または、 前記アルカ リ性化合物の濃度か 1 0 g / 1 以 上 3 0 0 g , ! 以下の水溶液に繊維構造物を浸潰して 5 CTC以上 2 0 0て以下の 温度で処理することが好ま しい。  For example, the fiber structure is immersed in an aqueous solution having a concentration of the cellulolytic enzyme of 1 g.i or more and 30 g / l or less and treated at a temperature of 30 or more and 90 or less. It is preferable. Alternatively, the concentration of the alkaline compound is 10 g / 1 or more and 300 g,! It is preferable that the fiber structure is immersed in the following aqueous solution and treated at a temperature of 5 CTC or more and 200 or less.
この態様の雄維構造物において、 繊維 ¾造物に柔軟性を付与しつつ強度を保持 するという観点から、 セルロース繊維の減量率と しては 3 ('o以上 1 0 以下、 ポ リエステル繊維の減量率と しては 3 %以上 2 0 以下が好ま しい。 In the male fiber structure of this embodiment, from the viewpoint of maintaining the strength while imparting flexibility to the fiber structure, the weight loss rate of the cellulose fiber is 3 ( 'o or more and 10 or less, weight loss of the polyester fiber). The rate is preferably 3% or more and 20 or less.
次に、 本発明の繊維構造物のさらに他の態様は、 セルロース繊維からなる繊維 描造物であって、 洗 i 収縮率が 3 n。以下であり、 かつ K E S ( awabata Evalua tion System; iJ(ij定による曲げ剛性測定値 ( B ) と目付 ( W ) の比 B , Wが 0. ϋ 0 0 1 以上() . ϋ 0 5以下てある繊維構造物である。 8 / \\'が 0. () ϋ 4以下で あることが好ま しく、 ϋ . 0 () 3以 Fであることはより好ま しい。 Next, still another embodiment of the fiber structure of the present invention is a fiber drawing made of cellulose fibers, wherein the washing i shrinkage is 3 n . And KES (awabata Evaluation System; iJ (ij), the ratio of the measured bending stiffness (B) to the basis weight (W), B, W, is greater than or equal to 0. It is a fibrous structure 8 / \\ 'is preferably 0. () ϋ 4 or less, and ϋ. 0 () 3 or more F is more preferable.
この態様の繊維構造物は、 形態安定性を有ししかも柔軟な風合いをもつ繊維構 造物である。  The fiber structure of this embodiment is a fiber structure having shape stability and a soft texture.
本発明でいう洗濯収縮率とは j I S — L 1 0 4 2による方法で測定される値、 若し く は、 これと同様の結果か得られるような J S — L 】 0 .! 2による方法か ら洗濯試験機や処理条件などを変更した方法で測定される値をいう。  The washing shrinkage ratio as used in the present invention is a value measured by the method according to j IS — L1042 or a method according to JS — L] 0.! 2 which can obtain similar results. It refers to the value measured by a method that changes the washing test machine, processing conditions, etc.
この態様の繊維^造物の洗 収縮率は 3 以 Fであることが必要である。 この 洗濯収縮率が 3 %を超えると形態安定性が不良となる。 この洗濯収縮率が 2 以 下であることが好ま しく、 i ¾以下であるこ とはより好ま しい。 The fiber shrinkage of this embodiment must have a washing shrinkage of 3 or more. When the washing shrinkage exceeds 3%, the form stability becomes poor. This washing shrinkage rate is 2 or less. It is preferably below, and more preferably less than or equal to i¾.
この態様の繊維構造物は、 セルロース繊維を^成するセルロースを架橋するこ とによつて繊維構造物が洗濯後にしわになるのを防ぐといういわゆる形態安定加 ェと、 該セルロース維維の減量加工とを施すことにより得られる ものである。 セルロースを架橋する手法と しては、 繊維素反応型樹脂で繊維構造物を処理す る方法、 ¾維構造物をホルムアルデヒ ド ¾気にさ らし、 触媒の存在下で熟処理す る方法などが挙げられる。  The fibrous structure of this embodiment includes a so-called form stabilization method of preventing the fibrous structure from wrinkling after washing by cross-linking the cellulose that forms the cellulose fibers, and a process for reducing the weight of the cellulose fiber. And is obtained by applying Methods for cross-linking cellulose include a method of treating a fibrous structure with a cellulose-reactive resin, a method of exposing a fibrous structure to formaldehyde, and ripening in the presence of a catalyst. No.
こ こで繊維素反応型樹脂と しては、 ジメチロールエチレン尿素、 ジメチロール ゥロ ン、 ジメ チロール ト リ ァゾン、 ジメ チロールプロ ピレ ン尿素、 ジメ チロール ヒ ドロキンェチレ ン尿素などを挙げることができる。 さ らに繊維素反応型樹脂で 繊維桢造物を処理する方法と しては、 例えば、 前記樹脂の水溶液を触媒とともに 繊維栊造物にパデ ΐ ングで付与した後、 8 0 "C以上 2 0 0 "C以下の温度で熱処理 する方法を好ま しく採用できる。 触媒と しては塩化マグネシゥムなどの無機金屈 塩を用いることができる。  Here, examples of the cellulose-reactive resin include dimethylol ethylene urea, dimethylol perone, dimethylol triazone, dimethylol propylene urea, and dimethylol hydroquinethylene urea. Further, as a method for treating a fibrous structure with a cellulose-reactive resin, for example, after applying an aqueous solution of the resin together with a catalyst to the fibrous structure by padding, the resin solution is subjected to at least 80 "C and at least 200" C. "A method of heat treatment at a temperature of not more than C can be preferably employed. As the catalyst, an inorganic gold salt such as magnesium chloride can be used.
一方、 ホルムアルデヒ ド蒸気は、 ホルムアルデヒ ド水溶液やパラホルムアルデ ヒ ドなどを加熟するこ とで発生させることができる。 このホルムアルデヒ ド蒸気 に繊維構造物をさ らした後の熱処理は 6 0 以上 〗 ΰ 0て以下で行うのか好ま し く 、 その際の触媒と しては硫酸、 'ίΕ硫酸などの酸性物晳を用いる ことができる。  On the other hand, formaldehyde vapor can be generated by ripening an aqueous solution of formaldehyde or paraformaldehyde. The heat treatment after exposing the fibrous structure to the formaldehyde vapor is preferably performed at a temperature of at least 60 and a temperature of at most 0, and an acidic substance such as sulfuric acid or sulfuric acid is used as a catalyst in this case. Can be used.
¾維素 u [t、 樹脂およひ またはホルムァルデヒ ドによる架梳は、 液体ク ロマ 卜グラフ ィ ーゃ \ M Rなど、 一般的に使 jflされている各種分析法を用いて検知で きる。  Combing with protein u [t, resin and formaldehyde can be detected using a variety of commonly used analytical methods, such as liquid chromatography \ MR.
形態安定加工に加えて減量加工を施すが、 この減量加工には前述した減量加工 方法が採用できる。  Weight reduction processing is performed in addition to morphological stability processing, and the above-described weight reduction processing method can be used for this weight reduction processing.
繊維構造物に柔軟性を付与しつつ強度を保持するという観点から、 セルロース 繊維の減量率と しては 3 ¾以上 1 0 以下が好ま しい。  From the viewpoint of maintaining the strength while imparting flexibility to the fiber structure, the weight loss rate of the cellulose fiber is preferably 3 to 10%.
減量加工方法と しては、 例えば、 前述の酵素の濃度が】 g ) 以上 3 0 g , 1 ¾以下の水溶液に、 繊維構造物を浸漬して 3 ()て以上 9 0 以下の温度で処理す ればよい。 - 本発明において、 セルロースの架 ¾反 と減. ¾加工の処理の順序は、 架橋反応 を施した後に減量加工を施してもよいし、 逆に減量加 JT-を先に施してもよい。 形 態安定加工を先に施す場合の利点は減 加ェにより大きな繊維間空隙が生じるた め、 風合い柔軟化効果が大き く なることである。 逆に減量加工を先に施すと生じ た繊維間空隙が形態安定加工の際に縮小するため、 風合い柔軟化効果は小さ く な る力、、 形態安定効果は大き く なる。 目的とする特性に じて適宜選択すればよい。 なお、 繊維構造物をホル厶アルデヒ ド蒸気にさ ら し、 触媒の存在下で熱処理す る形態安定加ェは 般的に ¾製された後の製品に文 'ίして行われるこ とが多い力 、 発 iリ」における減 ^加 £はこの s製後の ¾ ではなく縫製 'の維維 造物に対し て行うのが望ま しい。 その理由は、 縫製後の製品の処理では縫製品の各部を均一 に処理することは難しく、 鏠製品の品位が大き く 損なわれたり局所的に大き く強 度が低下することが問題であるためである。 また、 縫製品での形態安定加工や減 加工には特別な装 isを必要とするため、 容易には行いにく い。 本発明では減量 加工を縫製前の繊維構造物の状態で行う ことでこのような問題を回避することが できる。 As a method of weight reduction, for example, the fiber structure is immersed in an aqueous solution with an enzyme concentration of】 g) or more and 30 g or 1 1 or less and treated at a temperature of 3 () or more and 90 or less. do it. -In the present invention, the number of celluloses is reduced and reduced. The weight loss processing may be performed after applying the weight loss, or conversely, the weight reduction JT- may be performed first. The advantage of applying the shape-stabilizing process first is that a large inter-fiber gap is generated due to the reduction, and the texture softening effect is increased. Conversely, since the inter-fiber voids generated when the weight reduction processing is performed first are reduced during the form stabilization processing, the force for softening the texture is reduced, and the form stability effect is increased. What is necessary is just to select suitably according to the target characteristic. In addition, morphological stabilization, in which the fiber structure is exposed to formaldehyde vapor and heat-treated in the presence of a catalyst, is generally performed on the product after it has been manufactured. It is desirable to reduce the increase in the amount of power generated from the sewn fabric instead of the ¾ after the s. The reason for this is that it is difficult to treat each part of the sewn product uniformly in the post-sewn product processing, and it is a problem that the quality of the product is severely impaired or locally reduced in strength. It is. In addition, it is difficult to perform morphological stabilization and reduction processing on sewn products because special equipment is required. In the present invention, such a problem can be avoided by performing the weight reduction processing in a state of the fiber structure before sewing.
本発明の繊維構造物のさ らにまた他の態様は、 セルロース繊維とポリエステル 繊維を用いてなる維維構造物であって、 洗濯収縮率が 2 %以下であり、 かつ K E Still another embodiment of the fiber structure of the present invention is a fibrous structure comprising cellulose fibers and polyester fibers, wherein the fiber has a washing shrinkage of 2% or less and a K E
S ( a a ba t a E va l ua t i on Sy' s t cni ) 则定による曲げ剛性測定値 ( B ) と目付 ( \\' ) の比 B , Wが 0 . 0 0 0 1 以上 0 . 0 () 5以下である緞維構造物である。 13 / W 力、 0 . 0 0 i以 Fであることか好ま し く 、 () . () () 3以 ドであるこ とはより好ま しい。 S (aa ba ta E va l ua ti on Sy 'st cni) The ratio of the measured bending stiffness (B) to the basis weight (\\') B, W is 0.0 001 or more and 0.0 ( ) The curtain structure is 5 or less. 13 / W force, preferably greater than 0.000 i, more preferably greater than (). () () 3.
この繊維構造物は、 形態安定性を有ししかも柔軟な風合いをもち、 しかもセル ロース繊維のみからなるものに比べて収縮が抑えられ、 強度特性に優れるものと なる。  This fibrous structure has shape stability, has a soft hand, and suppresses shrinkage as compared with a structure composed of only cellulose fibers, and has excellent strength characteristics.
この繊維構造物は、 ポリエステル繊維とセルロース繊維を混紡あるいは混維し た糸を織物、 編物、 若しく は不織布 に織成、 編成などしたもの、 またはこれら の縫製品などが含まれる。  The fibrous structure includes a yarn obtained by blending or mixing polyester fiber and cellulose fiber, woven or knitted into a woven fabric, a knitted fabric, or a nonwoven fabric, or a sewn product thereof.
この繊維構造物は、 ポリエステル繊維を含んでなるものであるため、 セルロー ス繊維のみからなるものに比へて収縮が抑えられ、 形態安定性に俊れ、 しかも減 量加工を行っても強度特性に優れたものとなる。 かかる観点から、 セルロース繊 維の含有率が 1 0重量。。以上 9 0重量 以下、 ポ リ エステル繊維の含有率が 9 0 重量 0o以上 1 0重量0 0以下であることが好ま しい。 よ り好ま しく は、 セルロース 繊維の含有率が 2 0重量 以上 8 0重 ¾ %以下、 ポリエステル繊維の含有率が 8 0重量 ¾以上 2 ϋ重量 °。以下であり、 さ らに好ま しく は、 セルロース繊維の含有 率が 3 0重量。。以上 7 0重量 Qo以下、 ポリエステル繊維の含有率が 7 0重量 Q。以 h 3 0重 ffi °0以下である。 Since this fibrous structure contains polyester fiber, shrinkage is suppressed as compared to that made of only cellulose fiber, it has excellent morphological stability, and it has strength characteristics even when weight reduction processing is performed. It will be excellent. From this viewpoint, cellulose fiber The content of fiber is 10 weight. . Above 9 0 wt or less, arbitrary preferred that the content of the Po Li ester fibers 9 is 0 wt 0 o or 1 0 wt 0 0 below. More preferably, the content of the cellulose fiber is 20% by weight or more and 80% by weight or less, and the content of the polyester fiber is 80% by weight or more and 20% by weight. And more preferably, the content of cellulose fibers is 30% by weight. . More than 70% by weight Qo, polyester fiber content is 70% by weight Q. Hereafter, it is less than h30 ffi ° 0 .
この態様の繊維構造物の洗 ^収縮率は 2 以下であるこ とか必要である。 この 洗濯収縮率か 2 %を超えると形態安定性が不良となる。 この洗濯収縮率が 1 ϋο 「である こ とか好ま し く、 () . 5 °ο以下であるこ とはより好ま しい。 It is necessary that the washing / shrinkage ratio of the fibrous structure of this embodiment is 2 or less. If the washing shrinkage exceeds 2%, the form stability becomes poor. It is preferable that the washing shrinkage ratio is 1οο “, more preferably () .5 ° ο or less.
この繊維構造物は、 セル口一ス繊維とポ リエステル繊維とを用いてなる繊維搆 造物に対し、 前述した形態安定加工と減 ffi加工を施すことによ り得られる。  This fiber structure can be obtained by subjecting a fiber structure made of cell opening fibers and polyester fibers to the above-mentioned form stabilization processing and reduction processing.
セル口ース繊維の減量加工法は前述同様であり、 ボリエステル維維の減量加工 法と しては、 水酸化ナ ト リ ウムなどのアルカ リ化合物による減量加工を用いるこ とができる。  The method of reducing the weight of cellulosic fiber is the same as described above. As the method of reducing the weight of polyester fiber, a method of reducing the weight with an alkali compound such as sodium hydroxide can be used.
減量加工方法は、 例えば、 前述のセルロース分解酵素の濃度が 1 g / 1 以上 3 0 g / 1 以下の水溶液に、 繊維構造物を浸漬して 3 0て以上 9 0 °C以下の温度で 処理するこ とが好ま しい。 または、 前記アルカ リ性化合物の濃度が 1 () g 1 以 ヒ 3 0 0 ίί i 以下の/ 溶液に雄維^造物を浸演して 5 0て以 L 2 0 0て以下の 温度で処理することが好ま しい。  The weight reduction method is, for example, immersing the fibrous structure in an aqueous solution with a concentration of the cellulolytic enzyme of 1 g / l to 30 g / l and treating at a temperature of 30 to 90 ° C. It is preferable to do so. Alternatively, the male compound is immersed in a solution in which the concentration of the alkaline compound is 1 () g 1 or more and 300 or less, and the treatment is performed at a temperature of 50 or less. I prefer to do that.
識維構造物に柔軟性を付与しつつ強度を保持するという観点から、 セルロース 繊維の減量率と しては 3 以上 1 () ¾以下、 ポリエステル繊維の減量率と しては 3 以上 2 0 °ο以下が好ま しい。  From the viewpoint of maintaining the strength while imparting flexibility to the fiber structure, the weight loss rate of cellulose fiber is 3 or more and 1 () ¾ or less, and the weight loss rate of polyester fiber is 3 or more and 20 °. ο The following is preferred.
減量加上の減量率とは、 加上の前後で分解除去された部分の割合をいい、 具体 的には、 (重量減少分, 加工前の重量) > Ι ϋ Οから算出される。  The rate of weight loss during weight loss refers to the proportion of the parts that have been decomposed and removed before and after weight loss, and is specifically calculated from (weight loss, weight before processing)> Ι ϋ Ο.
セルロースの架橋反応と減量加工の処理の順序は、 架橋反応を施した後に減 加工を施してもよいし、 逆に減量加工を先に施してもよい。 なお、 前述したのと 同じ理由から、 繊維梢造物をホルムアルデヒ ド蒸気にさ ら し、 触媒の存在下で熱 処理する形態安定加工は 般的に縫製された後の製品に対して行われる ことが多 いが、 本発明における 量加工はこの縫製後の製品ではなく縫製前の繊維 ½造物 に対して行うのが望ま しい。 The order of the treatment of the cellulose crosslinking reaction and the weight reduction processing may be such that the crosslinking processing is performed and then the reduction processing is performed, or conversely, the weight reduction processing may be performed first. For the same reason as described above, form stable processing, in which the fibrous structure is exposed to formaldehyde vapor and heat-treated in the presence of a catalyst, is generally performed on the sewn product. In many cases, the mass processing in the present invention is not a product after sewing but a fiber before sewing. It is desirable to do this.
実施例  Example
以下、 本発明を実施例を挙げてより具体的に説明する。 なお、 実施例中の各特 性 mは次の jj ίΐによって求めた。  Hereinafter, the present invention will be described more specifically with reference to examples. In addition, each characteristic m in the examples was obtained by the following jjίΐ.
( 1 ) 吸湿率  (1) Moisture absorption rate
吸湿率は、 繊維構造物を、 絶乾した時の重量と、 温度 2 0て、 ^度 6 5 ποある いは温度 3 ()て、 湿度 9 () の雰囲気下、 恒温恒湿器中に 2 -1 時問放置した後の 重量との重量変化から、 次式により求めた。 The moisture absorption rate is determined by the weight of the fiber structure when it is absolutely dried, and in a constant temperature and humidity chamber at a temperature of 20 °, a temperature of 6 ° π ο or a temperature of 3 °, and a humidity of 9 °. From the change in weight with the weight after being left unattended for 2 to 1 hour, the following equation was used.
吸湿率 ("。) = [ (一定温度、 湿度下に放置後の繊維措造物の重量) - (繊維 構造物の絶乾重 ] 1 0 0  Moisture absorption (".) = [(Weight of fiber fabric after standing at constant temperature and humidity)-(absolute dry weight of fiber structure) 100
上記した式により求めた、 温度 2 0て、 ^度 6 5 u。の条件下ての吸湿率 iVI R 1 と、 温度 3 0て、 湿度 9 0。。の条件下での吸湿率 M R 2から、 次式により A M R を算出した。 The temperature was determined by the above equation, and the temperature was 20 degrees and the temperature was 65 u . Under the conditions of moisture absorption iVI R 1, temperature 30 and humidity 90. . AMR was calculated from the moisture absorption rate MR2 under the following conditions by the following formula.
△ M R M R 2 一 R 1  △ M R M R 2 1 R 1
こ こで Δ M Rは大きければ大きいほど、 吸湿性が高く快適性が良好であること に対応する。  Here, the larger the ΔMR, the higher the hygroscopicity and the better the comfort.
( 2 ) 反応率  (2) Reaction rate
反応率は、 繊維構造物を、 グラフ ト重合を行う前の絶乾重量と、 グラフ 卜重合 を行った後の、 絶乾重量から、 次式により算出した。  The reaction rate was calculated from the absolute dry weight of the fibrous structure before performing the graft polymerization and the absolute dry weight after performing the graft polymerization according to the following equation.
反応率 。0 = 1 0 0 [ (グラフ 卜重合をした後の繊維構造物の絶乾重量) 一 (グラフ ト重合をする前の繊維構造物の絶乾重量) ] / (グラフ ト重合をする 前の繊維構造物の絶乾重量) Reaction rate. 0 = 1 0 0 [(absolute dry weight of fiber structure after graft polymerization) 1 (absolute dry weight of fiber structure before graft polymerization)] / (fiber before graft polymerization) Absolute dry weight of structure)
( 3 ) 減量率  (3) Weight loss rate
減量率は、 減量加工を行う前の繊維構造物の絶乾重量と、 加工を行った後の繊 維構造物の絶乾重量から、 次式により算出した。  The weight loss rate was calculated from the absolute dry weight of the fiber structure before the weight reduction processing and the absolute dry weight of the fiber structure after the processing, using the following formula.
減量率 - (加工 の繊維構造物の絶乾重量 -加工後の繊維構造物の絶乾 m > , I:加工 liijの; ¾維½造物の絶乾重 ) - 1 ϋ 0  Weight loss rate-(absolute dry weight of processed fibrous structure-absolute dryness of fibrous structure after processing m>, I: processed liij; dry weight of fiber structure)-1 ϋ 0
( ) Β / \V  () Β / \ V
K E S f ka abata Evaluation System) 測定機を用いての曲け剛性のたて、 よ 二の平均値 B (単位 : g · c m 2 , m '; と繊維も 造物の 付 〔単位 : m 2 ) との比 B . Wを測定した。 KES f ka abata Evaluation System) The ratio B.W between the average value B (unit: g · cm 2 , m ′;) and the fiber attached to the structure (unit: m 2 ) was measured.
( 5 ) 洗濯収縮率  (5) Washing shrinkage
洗濯収縮率の測定は、 家庭用洗濯機を用いて J I S - し 1 0 4 2記載の洗濯収 縮率試験方法と同等の結果が得られるよう下記の処理条件で行つた。  The measurement of the washing shrinkage rate was performed using a household washing machine under the following processing conditions so as to obtain the same result as the washing shrinkage rate test method described in JIS-104.
約 5 () c πι , 約 5 ϋ c mの試験片を 3枚採取し、 たて、 よこそれぞれに 3箇所 に 1 5 O m m fli]隔で艮さ 3 0 0 m mの印を付けた。 次に家赶用洗濯機 (東芝 V H 1 I 5 ϋ形 に洗剤 "ザブ" ぐ花王株式会社登録商標) を 0 . 2 qQの^度で含 む液 2 5 リ ッ トルを入れ、 試験片と追加布を合わせた重さが約 5 0 0 gになるよ うに調整した後、 4 0てで 2 5分間洗濯した。 さ らに 4 0てで 1 ϋ分間すすぎを 行い、 脱水機で脱水した。 その後試験片をしぼらずに取り出し、 乾燥濾紙の間に はさんで軽く 脱水した後水平においた金網の上で自然乾燥させた。 最後に試験片 を平らな台に置き、 不自然なしわや張力を除いてたて、 よこそれぞれの印問の長 さをはかり、 たて、 よこ別々に 3個の平均値を求めた。 収縮率は下式によって算 定され、 たて、 よこそれぞれ 3枚の平均値で表した。 Three test pieces of about 5 () c πι, about 5 ϋcm were collected, and each of them was marked with a height of 300 mm at a distance of 15 O mm fli] at each of three places. Next house赶用washing machine (Toshiba VH 1 I 5 ϋ-shaped detergent "Zab" ingredients Kao Corporation registered trademark) 0. Put including liquid 2 5 liters in ^ of the 2 q Q, the test piece After adjusting the weight so that the combined weight of the cloth and the additional cloth was about 500 g, the clothes were washed at 40 ° C for 25 minutes. Rinsing was further performed for 40 minutes at 40 ° C, and dehydration was performed with a dehydrator. Thereafter, the test piece was taken out without squeezing, sandwiched between dried filter papers, lightly dehydrated, and naturally dried on a horizontal wire mesh. Finally, the test piece was placed on a flat table to remove unnatural wrinkles and tension, and the length of each horizontal stamp was measured. The shrinkage was calculated by the following formula, and was expressed as the average value of three pieces each.
収縮率 (。。) = ( 3 0 0 - L ) / 3 0 0 > 1 ϋ 0  Shrinkage rate (..) = (3 0 0-L) / 3 0 0> 1 ϋ 0
ここで、 しは処理後のたてまたはよこの印間の長さの平均値 m m ) を表す。 実施例 1  Here, “shi” represents the average value of the length between the marks of the vertical or horizontal marks after processing (mm). Example 1
精竦、 ¾白処¾を施した綿織物 (糸使い : 経糸 1 5番手、 緯糸 - i 5番手、 平織 物、 絨密度 : 絲 1 1 5本, i n c h > 7 6本., i nc: h、 5付 : j 】 () g .. m 2 ) に、 2 —アク リルア ミ ド— 2 —メチルプロパンスルホン酸を 2 0 %、 過硫酸アンモニゥ ムを 0 . 6 °o (モノマ比 3 0。) の濃度で含有する水溶液をパディ ングにより付与 した。 しぼり率は 9 () であった。 それからこの綿織物を 1 6 0てで 3分間熱処 理した。 熱処理後 6 ϋての湯で洗净を行った。 この後上記の方法で反応率を測定 するとその値は 1 6 0οであつた。 Cotton fabric with shrinking, white processing (use of yarn: warp 15th, weft-i5th, plain weave, veil density: yarn 115, inch> 7 6; i nc: h, with 5: j] () g .. m 2), 2 - Accession Rirua Mi de - 2 - 2 0% methylpropane sulfonic acid, 0 persulfate Anmoniu arm 6 ° o (monomer ratio 3 0).. An aqueous solution containing the solution at a concentration of 1 was applied by padding. The squeezing rate was 9 (). The cotton fabric was then heat treated at 160 for 3 minutes. After the heat treatment, washing was performed with six hot waters. Measurements Then the value of the reaction rate at this after the above method was found to be 1 6 0 o.
その後、 セルロース分解酵素 (セルソフ ト し、 ノボノルディ スク社製) を 5 g , 1 の濃度で含む処理液中にその綿織物を浸 ¾し、 6 0てで 】 時間処理した。 こ の結果、 酵素処理前の織物に比べて織物の重量は 5 . 2 %減少した。  Thereafter, the cotton fabric was immersed in a treatment solution containing 5 g of cellulolytic enzyme (Celsoft, manufactured by Novo Nordisk) at a concentration of 1 and treated at 60 ° C. for 1 hour. As a result, the weight of the fabric was reduced by 5.2% compared to the fabric before the enzyme treatment.
上^のグラフ 卜重合加工と '減量加工の後、 染色、 仕上げ処理を通常の方法で行 い、 その後上記の方法で各特性値を则定すると、 A M R = 1 2. 0 %で、 Bは() . 3 3 9 g · c m 2 / c mで、 Wは 1 2 1 g / m 2であり、 13 ,' Wは 0. 0 0 2 8で あった After the polymerization process and the weight reduction process, dyeing and finishing are performed in the usual way. Then, when each characteristic value is determined by the above method, AMR = 12.0%, B is () .3339 g · cm 2 / cm, and W is 1 21 g / m 2 . Yes, 13, 'W was 0.02
一方、 グラフ 卜 ¾合加工と減量加工が施されていない、 精練、 漂白処理をした 直後の織物の Bは ϋ . 8 8 0 g , c m (: mで、 は 1 1 () m 'であり、 Β ., Wは ϋ . ϋ 0 8 0であつた。  On the other hand, B of the woven fabric, which has not been subjected to the grafting process and the weight-reduction process, has just been scoured and bleached, is ϋ 880 g, cm (: m, which is 1 1 () m '. , Β., W were ϋ. Ϋ 0 80.
実施例 2  Example 2
拮狨、 白処理を施した綿織物 (糸使い : 経糸 1 5番手、 緯糸 1 5番手、 平織 物、 織密度 : 経 1 1 5本/' inch 緯 7 6本/ inch、 目付 : 1 1 0 g / m 2 ) を、 セ ルロース分解酵素 (セルソフ ト L、 ノボノルディ スク社製) を 5 H , i の濃度で 含む処理液中に浸濱し、 6 0 で 1 時 R5]処理した。 この結果、 酵素処理前の綿織 物に比べて織物の重量は 6. 5 ¾減少した。 Cotton fabric with tanning and white treatment (yarn use: warp 15th, weft 15th, plain weave, weave density: warp 115 / 'inch, weft 76 / inch, basis weight: 110g / m 2 ) was immersed in a treatment solution containing cellulose-degrading enzyme (Celsoft L, manufactured by Novo Nordisk) at a concentration of 5 H, i, and treated with 60 at 1 hour R5]. As a result, the weight of the fabric was reduced by 6.5 mm compared to the cotton fabric before the enzyme treatment.
その後、 この綿織物に 2 —アク リ ルア ミ ドー 2 —メ チルプロ/ぐンスルホン酸を 2 0 °0 過硫酸アンモニゥムを ϋ . 6 % (モノマ比 3。。) の濃度で含有する水溶 液をパディ ングにより付与した。 しぼり率は 9 0 %であった。 それからこの綿織 物を 1 6 ϋてで 3分問熱処理した。 熱処理後 6 ()ての湯で洗浄を行った。 この後 上 §己の方法で反応率を測定するとその値は 1 2 %であった。 Thereafter, padding the cotton fabric with an aqueous solution containing 2-acrylamide 2-methylpro / sulfonic acid at a concentration of about 2.6% (monomer ratio: 3.20%) at 20 ° 0 ammonium persulfate. Granted by The squeezing rate was 90%. The cotton fabric was then heat-treated for 3 minutes at 16 mm. After the heat treatment, the substrate was washed with hot water. After that, the reaction rate was measured by my own method and found to be 12%.
上記のグラフ 卜重合加工と減量加工の後、 染色、 仕上げ処理を通常の方法で行 つたところ、 △ M R = 8. 8 で、 Bは 0. 3 4 6 g · c m 2., c mで、 Wは 1 1 5 g z m 2であり、 B , \Vは ϋ . 0 0 3 0であった。 After reduction processing and Bok polymerization process above graph, dyeing, at row one in the usual manner a finishing treatment, with △ MR = 8. 8, B is 0. 3 4 6 g · cm 2 ., In cm, W Was 1 15 gzm 2 , and B and \ V were about 0.030.
比較例 1  Comparative Example 1
精練、 漂白処理を施した綿織物 〔糸使い : 経糸 - 1 5番手、 緯糸 1 5番手、 平織 物、 織密度 : 経 1 1 5本/ inch 緯 7 6本, inch. 目付 : 丄 1 ϋ g , m 2 ) に、 2 —アク リ ルア ミ ドー 2 —メ チルプロパンスルホン酸を 2 0。。、 過硫酸アンモニゥ 厶を 0. 6 % (モノマ比 3 0o ) の濃度で含有する水溶液をパディ ングにより付与 した。 しぼり率は 9 ()。。であった。 それからこの綿織物を 1 6 0てで 3分間熱処 理した。 熱処理後 6 0ての湯で洗 ί'争を行った。 この後上記の方法で反応率を測定 するとその値は 1 6 ϋ。であった。 Cotton fabric with scouring and bleaching treatment [Thread usage: warp-15th, weft 15th, plain weave, weaving density: warp 115 / inch Weft 76, inch. Weight: 丄 1 ϋ g, In m 2 ), add 20—acrylamide 2—methylpropanesulfonic acid. . , An aqueous solution containing a concentration of the persulfate Anmoniu厶0.6% (monomer ratio 3 0 o) was applied by padding. The squeezing rate is 9 (). . Met. The cotton fabric was then heat treated at 160 for 3 minutes. After the heat treatment, 60 minutes of hot water was used for washing. After that, when the reaction rate was measured by the above method, the value was 16 . Met.
この後、 上記の方法で各特性値を则定すると、 A M R = i し 5 ¾で、 Bは ] . 1 7 7 g · c m c mで、 Wは 1 2 8 g , m 2であり、 13 \Vは ϋ . () 0 9 2で あった。 この場合、 高度の吸 ffi性は得られたが柔軟性に劣るものであった。 After that, when each characteristic value is determined by the above method, AMR = i = 5 and B is]. At 177 g · cmcm, W was 128 g, m 2 , and 13 \ V was ϋ. () 092. In this case, a high degree of absorption was obtained, but the flexibility was poor.
比較例 2  Comparative Example 2
精練、 漂白処理を施した綿織物 (:糸使い : 経糸 4 5番手、 糸 4 5番手、 平織 物、 織密度 : 経 1 1 5本, i nchメ緯 7 6本/ i nch , 目付 : I 1 0 g , m 2 ) を、 セ ルロース分解酵素 (セルソフ ト し、 ノボノルディ スク社製) を 5 g / 1 の濃度で 含む処理液中に浸潰し、 6 0てで 1 時間処理した。 この結果、 酵素処理前の綿織 物に比べて織物の重量は 7 . 5 ¾減少した。 Cotton fabric with scouring and bleaching treatment (: Thread use: warp 45th, yarn 45th, plain weave, weaving density: warp 115, inch 緯 mech 76 / inch, weight: I1 0 g, m 2 ) was immersed in a treatment solution containing cellulase-degrading enzyme (self-softened, manufactured by Novo Nordisc) at a concentration of 5 g / 1, and treated at 60 ° C. for 1 hour. As a result, the weight of the woven fabric was reduced by 7.5 mm compared to the cotton fabric before the enzyme treatment.
この後、 上記の方法で各特性値を測定すると、 A M R = 3 . i °0で、 Bは 0 . 2 7 5 g · c m 2 / c mで、 Wは 1 0 2 g / m 2であり、 13 ' \Vは 0 . 0 ϋ 2 7で あった。 この処理では柔軟性は ί られた力、、 吸湿性に劣る ものであった。 After that, when each characteristic value is measured by the above method, AMR = 3.i ° 0 , B is 0.275 gcm 2 / cm, W is 102 g / m 2 , 13 '\ V was 0.0ϋ27. In this treatment, the flexibility was inferior to the obtained force and hygroscopicity.
実施例 3〜 ΰ  Example 3 ~ ΰ
親水性ビニル系モノマの種類を変更したこ と以外は突施例 1 と同様に行つた。 結果を表 1 に示す。 いずれも Ήい吸湿性と柔軟性を有していた。  The procedure was the same as in Example 1 except that the type of hydrophilic vinyl monomer was changed. Table 1 shows the results. All had high hygroscopicity and flexibility.
実施例 7〜 1 0  Examples 7 to 10
親水性ビニル系モノマと開始剂を含有する水溶液の P Πを変更したこと以外は 実施例 I と同様に行った。 結果を表 2に示す。 いずれも高い吸湿率と柔軟性を有 していた。  The procedure was performed in the same manner as in Example I, except that the pH of the aqueous solution containing the hydrophilic vinyl monomer and the initiator was changed. Table 2 shows the results. All had high moisture absorption and flexibility.
実施例 1 1 〜 し 4  Examples 11 to 4
水溶液中の親水性ビニル系モノマの濃度を変更したこと以外は、 実施例 1 と同 様に行った。 結果を表 3に示す。 いずれも高い吸湿性と柔軟性を有していた。 実施例 1 5 〜 1 8  The procedure was performed in the same manner as in Example 1 except that the concentration of the hydrophilic vinyl monomer in the aqueous solution was changed. Table 3 shows the results. All had high hygroscopicity and flexibility. Examples 15 to 18
親水性ビニル系モノマに対する開始剤の濃度を変更したこと以外は、 実施例 1 と同様に行った。 結果を表 4に示す。 いずれも高い吸湿性と柔軟性を有していた。 実施例 i 9〜 2 2  The procedure was performed in the same manner as in Example 1 except that the concentration of the initiator with respect to the hydrophilic vinyl monomer was changed. Table 4 shows the results. All had high hygroscopicity and flexibility. Example i 9 to 22
熱処理温度を変更したこと以外は、 実施例 1 と同様に行った。 結果を衷 5に示 す。 いずれも高い吸湿性と柔軟性を有していた。  The same operation as in Example 1 was performed except that the heat treatment temperature was changed. The results are shown in Table 5. All had high hygroscopicity and flexibility.
実施例 2 3  Example 23
1 5番手の綿/ ポリエステル混紡糸 (混合率 : 綿 5 5重量 ポリエステル ( 0. I 7テッ ク ス、 繊維長 1 0 m m ) - 1 5重量 ηο ) を経糸および緯糸に/!]いて なり、 精練、 漂白処理を施した平織物 (織密度 : 経 1 1 5 緯 7 6本 / inch, 目 付 : 1 】 0 g , m 2) に、 2 —アク リルア ミ ドー 2 —メ チルプロパンスルホン酸を1 5th Cotton / Polyester Blended Yarn (Mixing Ratio: Cotton 55 Weight Polyester (0.17 tex, fiber length 10 mm)-15 weight η ο) to warp and weft! ], Refined and bleached plain woven fabric (weaving density: 115, weft, 76 / inch, basis weight: 1] 0 g, m 2 ), and 2-acrylyl Tyl propane sulfonic acid
2 0 %、 過硫酸ア ンモニゥ厶を ϋ . 6 °ο (モノマ比 3 °() ) の濃度で含有する水溶 液をハ°デイ ングにより付与した。 しぼり率は 9 ϋ °0であった。 それからこの綿織 物を 1 6 0 °Cで 3分間熱処理した。 熱処理後 6 0 の ¾で洗浄を行った。 この後 上記の方法で反応率を測定するとその値は 8 であつた。 An aqueous solution containing 20% ammonium persulfate at a concentration of about 0.6 ° (monomer ratio of 3 ° () ) was applied by hardening. The squeezing rate was 9ϋ ° 0 . The cotton fabric was then heat treated at 160 ° C for 3 minutes. After the heat treatment, cleaning was performed at 60 ° C. After that, when the reaction rate was measured by the above method, the value was 8.
その後、 セル口ース分解酵素 〔セルソフ 卜 し、 ノボノルディ スク社製) を 5 g I の濃度で含む処理液中にその綿織物を浸漬し、 (3 0てで 2時間処理した。 こ の結果、 酵素処理前の織物に比べて織物の重量は 8. () ¾減少した。  Thereafter, the cotton fabric was immersed in a treatment solution containing 5 g I of cell mouth degrading enzyme (cell softened, manufactured by Novo Nordisc) and treated (at 30 ° C. for 2 hours). The weight of the fabric was reduced by 8. () に compared to the fabric before the enzyme treatment.
上;!己のグラフ 卜重合加工と減量加工の後、 染色、 仕上げ処理を通常の方法で行 い、 その後上記の方法で各特性値を測定すると、 ΛΜ Κ = ΰ. 5 %で、 Βは 0. Above ;! After the graft polymerization process and weight reduction process, dyeing and finishing were performed in the usual way, and after measuring each characteristic value by the above method, 方法 Κ = ΰ. 5%, and Β was 0.
3 0 6 g - c m2, c mで、 Wは 1 0 9 g / m 2であり、 β / \'Vは() · 0 0 2 8で めつ 300 g-cm 2 , cm, W is 109 g / m 2 , β / \ 'V is () · 0 28
一方、 グラフ 卜重合加工と減量加工が施されていない、 精練、 漂白処理をした 直後の織物の Bは ϋ . 9 】 3 g · c m2/ c mで、 Wは 1 1 0 g m :であり、 B , YVは ϋ . () ϋ 8 3であった。 On the other hand, B of the woven fabric immediately after scouring and bleaching treatment, which has not been subjected to the graft polymerization processing and weight reduction processing, is ϋ0.9 9 g / cm 2 / cm, and W is 110 gm : B and YV were ϋ. () Ϋ 83.
実施例 2 4  Example 2 4
5番手の綿 , ポリエステル混紡糸 混合率 : 綿 5 5重量。 Q ポ リエステル ( 0. 1 7テッ クス、 維維長 4 0 mm) 1 5重量 D。) を経糸および緯糸に用いて なり、 精練、 漂白処理を施した平織物 (織密度 : 経 1 1 5 X緯 7 6本, inch. 目 付 : 1 1 O g / m2) を、 セルロース分解酵素 (セルソフ ト し、 ノボノ ルディ スク 社製) を 5 g ./ 1 の濃度で含む処理液中に浸潰し、 6 0てで 2時間処理した。 こ の結果、 酵素処理前の織物に比べて重量は 9. 5 減少した。 5th cotton, polyester blended yarn Mixing ratio: cotton 5 5 weight. Q Polyester (0.17 tex, fiber length 40 mm) 15 weight D. ) Is used for warp and weft, and scoured and bleached to give a cellulose fabric (weaving density: 115 X W 76, inch. Basis: 11 Og / m 2 ) The enzyme (Celsoft, Novonorudisk) was immersed in a treatment solution containing 5 g./1 at a concentration of 60 and treated at 60 for 2 hours. As a result, the weight was reduced by 9.5 compared to the fabric before the enzyme treatment.
その後、 この織物に 2 —アク リルア ミ ドー 2 —メチルプロパンスルホン酸を 2 0 °o, 過硫酸アンモニゥムを ϋ. 6 ¾ (モノ マ比 3 °ο ) の濃度で含有する水溶液 をバディ ングによ り付与した。 しぼり率は 9 0 であった。 それからこの織物を 1 6 0てで 3分問熱処理した。 熱処理後 6 0 °Cの湯で洗净を行った。 この後上記 の方法で反応率を測定するとその値は 7 ¾であつた。 上記のグラフ 卜重合加工と減量加工の後、 染色、 仕上げ処理を通常の方法で行 つたとこ ろ、 I R = 1 . 5 0όで、 Bは 0. 3 2 () β · c m 2 / c mで、 \\'は 1 () 7 g / m 2であり、 B , Wは ϋ . 0 0 3 ()であった。 Then, an aqueous solution containing 2-acrylic acid 2-methylpropanesulfonic acid at a concentration of 20 ° o and ammonium persulfate at a concentration of 6ϋ (monomer ratio 3 ° o) was added to the fabric by budging. Granted. The squeezing rate was 90. The fabric was then heat treated at 160 for 3 minutes. After the heat treatment, washing was performed with hot water at 60 ° C. After that, when the reaction rate was measured by the above method, the value was 7%. After reduction processing and Bok polymerization process above graph, dyeing, row Tsutatoko filtration Workup in the usual way, with IR = 1. 5 0 ό, B is 0. 3 2 () β · cm 2 / cm , \\ 'was 1 () 7 g / m 2 , and B and W were ϋ .003 ().
突施例 2 5  Project 2 5
実施例 2 3でセルロース分解酵素で処理する代わりに、 水酸化ナ ト リ ウムを 5 « / 1 の濃度で含む水溶液中に織物を浸 ¾し、 9 5てで 1 時問処理した。 このと きの減 ft率は 1 5. 2 %であった。  Instead of treating with cellulose degrading enzyme in Example 23, the woven fabric was immersed in an aqueous solution containing sodium hydroxide at a concentration of 5/1, and treated with 95 for 1 hour. At this time, the ft reduction rate was 15.2%.
その後上 £の方法で各特性値を測定すると、 二. M R = 6. 9 で、 Bは 0. 2 ■1 2 g · c m : - c mで、 Wは 1 0 1 g , m 2であり、 13 , Wは ϋ . 0 0 2 であ つた。 Then, when each characteristic value is measured by the above method, 2. MR = 6.9, B is 0.2 ■ 12 g · cm : -cm, W is 101 g and m 2 , 13, W was about 0.02.
比較例 3  Comparative Example 3
1 5番手の綿, ポリェステル 紡糸 (混合率 : 綿 5 δ重量"。 . ポ リエステル ( 0. 1 7テッ クス、 繊維長 4 0 m m ) 1 5重量 u。 を経糸および緯糸に用いて なり、 精練、 漂白処理を施した平織物 (織密度 : 経 1 1 5 緯 7 6本/ inch、 目 付 : 】 1 0 g ' m 2) に、 2 —ァク リ ノレア ミ ド一 2 —メ チルプロ ノ"ンスルホン酸を 2 0。。、 過硫酸アンモニゥムを 0. 6 ¾ (モノマ比 3 (>。) の濃度で含有する水溶 液をパディ ングにより付 ^した。 しぼり率は 9 0 %であった。 それからこの織物 を 1 6 ϋてで 3分間熱処理した。 熱処理後 6 0ての湯で洗浄を行った。 この後上 の方法で反 率を測定するとその値は 8 η。であつた。 15 Cotton, polyester spinning (mixing ratio: cotton 5 δ weight). Polyester (0.17 tex, fiber length 40 mm) 15 weight u . Is used for warp and weft, and scouring is performed. , plain weave subjected to bleaching treatment (weaving density: after 1 1 5 weft 7 six / inch, with eyes:] 1 0 g 'm 2), the 2 - § click Li Norea Mi de one 2 - main Chirupuro Bruno An aqueous solution containing 20% sulfonic acid and 0.6% ammonium persulfate (monomer ratio: 3 (> )) was applied by padding. The squeezing rate was 90%. The fabric was then heat-treated for 3 minutes at 16 ° C. After the heat treatment, it was washed with 60 pieces of hot water, and the reflex was measured by the above method to find that the value was 8 η .
この後、 上記の方法で各特性値を測定すると、 lM R = i . 2 で、 Bは 1 . 0 9 3 g · c m 2 / c mで、 Wは i 1 9 g / mであり、 B κ Wは 0. 0 () 9 2で あった。 この場合、 高度の吸湿性は得られたが柔軟性に劣るものであった。 Thereafter, when measuring the characteristic values in the above manner, in lM R = i. 2, B is 1. 0 9 3 g · cm 2 / cm, W is i 1 9 g / m Σ, B κW was 0.0 () 92. In this case, a high degree of hygroscopicity was obtained, but the flexibility was poor.
比較例 1  Comparative Example 1
4 5番手の綿, ポ リ エステル混紡糸 (混合率 : 綿 5 5重量 ϋ。, ポ リエステル ( 0. 1 7テ ッ ク ス、 雄維長 1 0 m m ) 1 5重量 を経糸および緯糸に用いて なり、 精練、 漂白処理を施した平織物 (織密度 : 経 1 】 5 緯 7 6本.. inch. 目 付 : 1 1 ϋ g , m 2 ) を、 セルロース分解酵素 (セルソフ ト し、 ノ ボノ ルディ スク 社製) を 1 の濃度で含む処理液中に浸漬し、 6 0てで 2時間処理した。 こ の結果、 酵素処理前の織物に比べて '蛩は 9. 5 Do減少した。 この後、 上記の方法で各特性値を i!W定すると、 . M R = 2 . 8 ¾で、 Bは 0 . 2 3 9 g · c m 2 c mで、 Wは 1 0 0 g / m 2であり、 B / \Vは ϋ . 0 0 2 4 と なった。 二の処理では柔軟性は得られたが、 吸湿性に劣る ものであった。 4 5th cotton, polyester blended yarn (mixing rate: 55% cotton 綿) , 15% polyester (0.17 tex, male length 10mm) used for warp and weft Tanashi, scouring and bleaching treatment, weave a plain woven fabric (weaving density: 1), 5 wraps, 76 pieces .. inch. Weight: 11 ϋg, m 2 ) with cellulose degrading enzyme (cell softening, Bono immersed Rudy disk Co.) to the processing solution at a concentration of 1, 6 0 for 2 h at hand. this result, compared to the fabric prior to enzyme treatment '蛩decreased 9. 5 D o . Thereafter, when the characteristic values in the manner described above i! W is constant, at. MR = 2. 8 ¾, B 0. In 2 3 9 g · cm 2 cm , W is 1 0 0 g / m 2 Yes, B / \ V became ϋ.0.024. In the second treatment, flexibility was obtained, but poor hygroscopicity.
比較例 5  Comparative Example 5
比較例 4 でセルロース分解酵素で処理する代わりに、 水酸化ナ ト リ ウムを 5 g i の濃度で含む水 ¾液中に織物を浸潰し、 9 5てで 1 時問処理した。 このとき の減量率は 1 -1 . 5。oであつた。  Instead of treating with the cellulose degrading enzyme in Comparative Example 4, the woven fabric was immersed in an aqueous solution containing sodium hydroxide at a concentration of 5 g i, and treated with 95 for 1 hour. The weight loss rate at this time is 1-1.5. o
この後、 上記の方法で各特性値を測定すると、 ^ Vi R = 3 . 4 で、 Bは 0 . 2 ϋ 7 g · c m 2 , c mで、 Wは 9 4 g / m 2であり、 B ,' Wは 0 . 0 0 2 2 とな つた。 この処理では柔軟性は得られたが、 吸湿性に劣るものであった。 Thereafter, when measuring the characteristic values in the above manner, the ^ Vi R = 3. 4, B is 0. 2 ϋ 7 g · cm 2, cm, W is 9 4 g / m 2, B , 'W is now 0.02 2. This treatment provided flexibility, but was inferior in hygroscopicity.
実施例 2 ΰ 〜 2 8  Example 2 ΰ to 28
ポリエステル繊維の混合率を変更したこと以外は実施例 2 3 と同様に行った。 結果を表 6に示す。 いずれも優れた吸湿性と柔軟性を有していた。  The same procedure was performed as in Example 23 except that the mixing ratio of the polyester fibers was changed. Table 6 shows the results. All had excellent hygroscopicity and flexibility.
実施例 2 9 〜 3 2  Example 2 9 to 3 2
親水性ビニル系モノ マの種類を変更したこと以外は実施例 2 3 と同様に行つた。 結果を表 7 に示す。 いずれも優れた吸湿性と柔軟性を有していた。  The procedure was performed in the same manner as in Example 23 except that the type of the hydrophilic vinyl monomer was changed. Table 7 shows the results. All had excellent hygroscopicity and flexibility.
実施例 3 3 〜 3 (3  Example 3 3 to 3 (3
親水性ビニル系モノマと開始剤を含有する水溶液の Ρ ト 1を変更したこと以外は 実施例 2 3 と同様に行った。 結果を表 8に示す。 いずれも優れた吸湿率と柔軟性 を有していた。  Example 23 was performed in the same manner as in Example 23 except that the weight 1 of the aqueous solution containing the hydrophilic vinyl monomer and the initiator was changed. Table 8 shows the results. All had excellent moisture absorption and flexibility.
実施例 3 7 〜 4 0  Example 37 to 40
/ 溶液中の親水性ビニル系モノマの濃度を変更したこと以外は、 実施例 2 3 と 同様に行った。 結果を表 9 に示す。 いずれも優れた吸湿性と柔軟性を有していた。 実施例 1 1 〜 4 4  / In the same manner as in Example 23, except that the concentration of the hydrophilic vinyl monomer in the solution was changed. Table 9 shows the results. All had excellent hygroscopicity and flexibility. Example 11 1 to 4 4
親水性ビニル系モノマに対する開始剂の濃度を変更したこと以外は、 実施例 2 3 と同様に行った。 結采を表 1 0に示す。 いずれも優れた吸湿性と柔軟性を有し ていた。  Example 23 was carried out in the same manner as in Example 23 except that the concentration of initiator (II) for the hydrophilic vinyl monomer was changed. The results are shown in Table 10. All had excellent hygroscopicity and flexibility.
実施例 4 5 〜 1 8  Example 45 to 18
熱処理温度を変更したこ と以外は、 突施例 2 3 と同様に行った。 結果を表 1 】 に示す。 いずれも俊れた吸湿性と柔軟性を有していた。 The same procedure as in Example 23 was carried out except that the heat treatment temperature was changed. Table 1] Shown in All had excellent hygroscopicity and flexibility.
実施例 1 9  Example 19
精練、 漂白処理を施した綿織物 (糸使い : 経糸 ! 5番手、 緯糸 1 5番手、 平織 物、 織密度 : 経 1 i 5本/ i nch 緯 7 6本/ i nch、 目付 : 1 1 0 g κ m 2 ) に、 ジ メチ口一ルヒ ドロキシェチレン尿素を 6 ¾、 触媒と して塩化マグネシゥム 6水和 物を 2 0。含む水溶液をパディ ングにより付与した。 しぼり率は 9 0 であつた。 それからこの綿織物を 1 0 0てで 3分間乾燥した後、 1 6 0てて 1 分間熱処理し た。 Cotton fabric with scouring and bleaching treatment (Thread usage: warp! 5th, weft 15th, plain weave, weaving density: warp 1 i5 / inch weft 76 / inch, weight: 110 g the kappa m 2), di-methylcarbamoyl port one Ruhi Dorokishechiren urea 6 ¾, a as the chloride catalyst Maguneshiumu 6 hydrate thereof 2 0. The aqueous solution containing was applied by padding. The squeezing rate was 90. The cotton fabric was then dried at 100 ° C. for 3 minutes and heat-treated at 160 ° C. for 1 minute.
その後セルロース分解酵素 (セルソフ ト し、 ノ ボノルディ スク社製) を 5 g , 1 の濃度で含む処理液中にその綿織物を浸潰し、 6 0てで 】 時間処理した。 この 結果、 酵素処理前の綿織物に比べて織物の重量は 5 . 2 ¾減少した。  Thereafter, the cotton fabric was immersed in a treatment solution containing 5 g of cellulose decomposing enzyme (Celsoft, manufactured by Novo Nordisk) at a concentration of 1 and treated with 60 hours for 60 hours. As a result, the weight of the fabric was reduced by 5.2 mm compared to the cotton fabric before the enzyme treatment.
これらの 2つの処理の後、 ¾色、 仕上げ処理を通常の方法で行い、 その後上記 の方法で ¾物の収縮率と曲げ剛性を驯定すると、 洗 :収縮率は、 たて し ϋ 。0、 よこ 0 . 8 u。で、 Βは 0 . 2 7 0 g ' c m c mで、 Wは 1 0 4 g / m 2であり、 Bノ Wは 0 . () 0 2 ΰであつた。 After these two treatments, the color and finishing treatments are performed in the usual way, and then the shrinkage and bending stiffness of the animal are determined by the above method. 0, horizontal 0.8 u . Where Β was 0.270 g′cmcm, W was 104 g / m 2 , and B was W. 0 () 0 2 ΰ.
一方、 これらの 2つの処理が施されていない、 精練、 漂白処理をした直後の綿 織物の洗濯収縮率はたて 5 . 5 よこ 5 . 0 ¾>で、 Βは 0 . 9 () 2 g ' c m 2 / c mで、 \\'は 1 1 0 g , m 2であり、 B , Wは 0 · 0 () 8 2であった。 On the other hand, the washing shrinkage of the cotton fabric immediately after scouring and bleaching treatment, which has not been subjected to these two treatments, is 5.5 5, and the Β is 0.9 () 2 g. In 'cm 2 / cm, \\' was 110 g and m 2 , and B and W were 0 · 0 () 82.
実施例 5 0  Example 5 0
精練、 漂白処理を施した綿織物 (糸使い : 経糸 i 5番手、 緯糸 4 5番手、 平織 物、 織密度 : 経 1 】 5本, i nch 緯 7 6本/ i nch , 目付 : 1 1 0 g , m 2 ) を、 セ ルロース分解酵素 (セルソフ ト L、 ノボノルディ スク社製) を 5 g / 】 の濃度で 含む処理液中に浸清し、 6 0てで 1 時間処理した。 この結果、 酵素処理前の綿織 物に比べて織物の ¾量は 7 . 5 減少した。 Cotton fabric with scouring and bleaching treatment (yarn use: warp i5th, weft 45th, plain weave, weaving density: warp 1) 5 pcs, inch weft 76 / inch, basis weight: 110 g , m 2 ) was immersed in a treatment solution containing cellulase-degrading enzyme (Celsoft L, manufactured by Novo Nordisk) at a concentration of 5 g /], and treated at 60 ° C. for 1 hour. As a result, the mass of the fabric was reduced by 7.5 compared to the cotton fabric before the enzyme treatment.
その後、 この綿織物にジメチロールヒ ドロキシエチレン尿素を 6 0、 触媒と し て塩化マグネシゥム 6水和物を 2 %含む水溶液をパディ ングにより付与した。 し ぼり率は 9 0 "0であった。 この綿織物を 1 0 0てで 3分間乾燥した後、 1 6 0て で 1 分間熱処理した。 Thereafter, the cotton fabric in Jimechiroruhi mud carboxymethyl ethyleneurea 6 0, catalyst and to an aqueous solution containing 2% chloride Maguneshiumu hexahydrate was applied by padding. The squeezing rate was 90 " 0. The cotton fabric was dried at 100 ° C for 3 minutes, and then heat-treated at 160 ° C for 1 minute.
これらの 2つの処理の後、 染色、 仕上げ処理を通常の方法で行ったところ、 洗 濯収縮率は、 たて 0 . 8 ¾、 よこ ϋ . 7 %で、 Βは ϋ . 3 0 5 g ' c m c mで. Wは 1 0 2 g / m 2であり、 B , Wは() . 0 0 3 0であった。 After these two treatments, dyeing and finishing were carried out in the usual way. 濯shrinkage, vertical 0. 8 ¾, beside ϋ. 7%, Β is ϋ. 3 0 5 g 'in CMCM. W is 1 0 2 g / m 2, B, W is (). 0 0.30.
実施例 5 1  Example 5 1
精練、 漂白処理を施した綿織物 (糸使い : 経糸 4 5番手、 緯糸 1 5番手、 平織 物、 織密度 : 経 1 i 5本/ i nc h >緯 7 6本/ i nch . 目付 : 1 1 0 g , m 2 ) を、 密 閉した反応器中でパラホル厶アルデヒ ドから発生させたホルムアルデヒ ド蒸気に 5分間さ ら した。 さ ら している間の反応器の温度は 6 0 °Cであった。 次に反応器 に亜硫酸ガスを流入して織物をさ ら した後、 反応器の温度を 1 6 0てに上昇させ 3分間処理した。 Refined and bleached cotton fabric (use of yarn: warp 45th, weft 15th, plain weave, weaving density: warp 1 i5 / inch> weft 76 / inch. Weight: 1 1 0 g, m 2 ) was exposed to formaldehyde vapor generated from paraformaldehyde in a closed reactor for 5 minutes. The reactor temperature during the run was 60 ° C. Next, sulfuric acid gas was flowed into the reactor to remove the woven fabric, and then the temperature of the reactor was raised to 160 and treated for 3 minutes.
その後セルロース分解酵素 (セルソフ ト し、 ノボノルディ スク社製) を 5 g / 1 の濃度で含む処理液中にこの綿織物を浸溃し、 6 0てで 1 時間処理した。 この 結果、 酵素処理前の綿織物に比べて織物の重量は 6 . 5 ¾減少した。  Thereafter, this cotton fabric was immersed in a treatment solution containing cellulose degrading enzyme (Celsoft, manufactured by Novo Nordisk) at a concentration of 5 g / 1, and treated at 60 for 1 hour. As a result, the weight of the fabric was reduced by 6.5 mm compared to the cotton fabric before the enzyme treatment.
これらの 2つの処理の後、 染色、 仕上げ処理を通常の方法で行い、 その後上記 の方法で洗濯収縮率と曲げ剛性を则定すると、 洗濯収縮率は、 たて 1 . 0 、 ョ コ ϋ . 9 で、 Βは 0 . 2 3 7 g · c m 2 / c mで、 VVは 1 ϋ 3 g , m 2であり、 B / Wは 0 . 0 0 2 3であった。 After these two treatments, dyeing and finishing are carried out in the usual manner, and then the washing shrinkage and bending stiffness are determined by the above-mentioned methods. 9, 9 was 0.237 g · cm 2 / cm, VV was 1.3 g, m 2 , and B / W was 0.023.
実施例 5 2  Example 5 2
精練、 漂白処理を施した綿織物 (糸使い : 経糸 4 5番手、 緯糸 4 5番手、 平織 物、 織密度 : 経 1 1 5本/ i n c h 緯 7 6本, i nc h、 目付 : 1 1 0 g ,,' m 2 ) を、 セ ルロース分解酵素 (セルソフ ト し、 ノボノルディ スク社製) を 5 g , I の濃度で 含む処理液中に S潰し、 6 0 °Cで 1 時間処理した。 この結果、 酵素処理前の綿織 物に比べて織物の重量は 7 . 3 減少した。 Cotton fabric with scouring and bleaching treatment (yarn use: warp 45th, weft 45th, plain weave, weaving density: warp 115 / inch weft 76, ihhh, weight: 110g ,, 'm 2 ) was crushed in a treatment solution containing 5 g of cellulase-degrading enzyme (Celsoft, Novo Nordisk) at a concentration of I and treated at 60 ° C for 1 hour. As a result, the weight of the fabric was reduced by 7.3 compared to the cotton fabric before the enzyme treatment.
その後、 この綿織物を密閉した反応器中に導入し、 パラホルムアルデヒ ドから 発生させたホルムアルデヒ ド蒸気に 5分間さ らした。 さ ら している間の反応器の 温度は 6 0てであった。 次に反応器に亜硫酸ガスを流入して布をさ らした後、 反 応器の温度を 〗 ΰ 0てに上昇させ 3分問処理した。  The cotton fabric was then introduced into a closed reactor and exposed to formaldehyde vapor generated from paraformaldehyde for 5 minutes. The reactor temperature during the run was 60. Next, sulfuric acid gas was flowed into the reactor to expose the cloth, and then the temperature of the reactor was raised to 0 ° C. and subjected to a treatment for 3 minutes.
これらの 2つの処理の後、 染色、 仕上げ処理を通常の方法で行い、 その後上記 の方法で洗濯収縮率と曲げ剛性を測定すると、 洗濯収縮率は、 たて 0 . 8 Q'o、 よ こ 0 . 8 0 で、 Bは 0 . 2 8 6 g ' c m 2 c mで、 Wは 1 0 2 g , m 2であり、 B , \Vは(J . 0 () 2 8であつた。 After these two treatments, dyeing and finishing are carried out in the usual way, and then the washing shrinkage and bending stiffness are measured by the above method. The washing shrinkage is 0.8 Q'o, 0. in 8 0, B is 0 in. 2 8 6 g 'cm 2 cm, W is 1 0 2 g, m 2, and B and \ V are (J. 0 () 28.
比較例 6  Comparative Example 6
精練、 白処理を施した綿織物 (糸使い : 経糸 - 1 5番手、 緯糸 1 5番手、 平織 物、 織密度 : 経 1 1 5本, inch> 緯 7 6本 inch、 目付 : 1 1 0 g , m =) に、 ジ メチロールヒ ドロキンエチレン尿素を 6 () 0、 触媒と して塩化マグネシウム 6水和 物を 2 ϋ。含む水溶液をパディ ングにより付^した。 しぼり率は 9 0 Qoであった。 それからこの綿織物を 1 0 0てで 3分問乾燥した後、 1 6 0てで 1 分間熱処理し た。 Refined, white-treated cotton fabric (use of yarn: warp-15th, weft 15th, plain weave, weave density: 115 warp, inch> about 76 inch, weight per unit: 110 g, At m =), dimethylol hydroquinone ethylene urea was added to 6 () 0 , and magnesium chloride hexahydrate was used as a catalyst for 2 ml . The aqueous solution containing was applied by padding. Squeezed rate was 9 0 Q o. The cotton fabric was dried at 100 ° C for 3 minutes and then heat-treated at 160 ° C for 1 minute.
この後、 洗濯収縮率と曲げ剛性を则定すると、 洗濯収縮率は、 たて 0. 9 ¾、 よこ 0. 9 "0で、 Bは ϋ . 9 5 7 g · c m 2 ,' c mで、 \'Vは 1 1 0 g / m 2であり、 β ., \\'は ϋ. 0 0 8 7であった。 この場合、 形態安定性は得られたが柔軟性に劣 る ものであつた。 After that, when the washing shrinkage and bending stiffness are measured, the washing shrinkage is 0.9 mm, sideways 0.9 "0, and B is 0.957 g · cm 2 , 'cm. \ 'V is 1 1 0 g / m 2, β., \\' was ϋ. 0 0 8 7. in this case, the thickness but it was obtained form stability Ru poor flexibility Was.
比較例 7  Comparative Example 7
精練、 ^白処理を施した綿織物 (糸使い : 経糸 4 5番手、 緯糸 4 5番手、 平織 物、 織密度 : 経 1 1 5本, inch>緯 7 6本, inch、 目付 : 1 丄 ϋ g , m 2 ) を、 密 閉した反応器中でパラホルムアルデヒ ドから発生させたホルムアルデヒ ド蒸気に 5分間さ らした。 さら している間の反応器の温度は 6 0てであった。 次に反応器 に亜硫酸ガスを流入して布をさ らした後、 反応器の温度を 】 6 0てに上昇させ 3 分間処理した。 Refined, white-treated cotton fabric (use of yarn: warp 45th, weft 45th, plain weave, weaving density: warp 115, inch> weft 76, inch, basis weight: 1 丄 ϋ g , m 2 ) were exposed to formaldehyde vapor generated from paraformaldehyde in a closed reactor for 5 minutes. The reactor temperature during the exposure was 60. Next, sulfurous acid gas was introduced into the reactor to remove the cloth, and then the temperature of the reactor was raised to> 60 ° C. and the treatment was performed for 3 minutes.
この後、 洗濯収縮率と曲げ剛性を測定すると、 洗濯収縮率は、 たて 1 . ϋ «0、 よこ 1. ϋ 0。で、 Βは 0. 9 1 3 · c m2, c mで、 Wは 1 1 () g , m 2であり、 B , \Υ It ΰ . 0 0 8 3であった。 この場合、 形態安定性は得られたが柔軟性に劣 るものであつた。 Thereafter, when the washing shrinkage and the bending stiffness were measured, the washing shrinkage was 1. 1 « 0 , よ1.0 1 .. Where Β was 0.913 cm 2 , cm, W was 1 1 () g, m 2 , and B, \ ΥIt ΰ. In this case, morphological stability was obtained but flexibility was poor.
比較例 8  Comparative Example 8
精練、 漂白処理を施した綿織物 (糸使い : 経糸 4 5番手、 緯糸 ' 1 5番手、 平織 物、 織密度 : ¾ 1 1 5本, inch 緯 7 6本, inch, 目付 : 1 1 0 g , m ) を、 セ ルロース分解酵素 (セルソフ ト し、 ノボノルディ スク社製) を 5 g 1 の濃度で 含む処理液中に浸潰し、 6 0てで 】 時問処理した。 この結果、 酵素処理前の綿織 物に比べて溢物の重 ϋは 7. 5 。'。減少した。 この後、 洗濯収縮率と曲げ剛性を測定すると、 洗濯収縮率は、 たて 5 . 5 °o . よ こ 5 . 3 Οοで、 Bは ϋ . 2 7 5 g · c m 2 , c mで、 Wは 1 0 2 g , m 2であり、 B / Wは 0 . 0 ϋ 2 7であった。 この場合、 柔軟性は得られたが形態安定性に劣 る ものであつた。 Refined and bleached cotton fabric (yarn use: warp 45th, weft '15th, plain weave, weaving density: 115, inch weft 76, inch, basis weight: 110g, m ) was immersed in a treatment solution containing 5 g 1 of cellulase-degrading enzyme (cellulosic, manufactured by Novo Nordisk), and subjected to 60 hours. As a result, the weight of the overflow was 7.5 compared to the cotton fabric before the enzyme treatment. '. Diminished. After this, and to measure the bending rigidity and washing shrinkage, washing shrinkage, vertical 5. 5 ° o. Son 5. 3 Ο in ο, B in ϋ. 2 7 5 g · cm 2, cm, W was 102 g, m 2 , and B / W was 0.0ϋ27. In this case, flexibility was obtained but shape stability was poor.
実施例 5 3〜 5 6  Example 5 3 to 5 6
繊維素反応型樹脂の種類を変更したこ と以外は荬施例 4 9 と同様に行った。 結 果を表 1 2に示す。 いずれも優れた形態安定性と柔軟性を有していた。  The procedure was the same as in Example 49 except that the type of the cellulose-reactive resin was changed. Table 12 shows the results. All had excellent morphological stability and flexibility.
実施例 5 7〜 6 0  Example 5 7-6 0
乾燥温度と熱処理温度を変更したこと以外は実施例 4 9 と同様に行った。 結果 を表 1 3 に示す。 いずれも優れた形態安定性と柔軟性を有していた。  The same operation as in Example 49 was performed except that the drying temperature and the heat treatment temperature were changed. Table 13 shows the results. All had excellent morphological stability and flexibility.
実施例 6 1 〜 6 3  Example 6 1 to 6 3
ホルムアルデヒ ド¾気の温度と 処理温度を変更したこ と以外は実施例 5 1 と 同様に行った。 結果を表 1 1 に示す。 いずれも高い形態安定性と柔軟性を有して いた。  The operation was performed in the same manner as in Example 51, except that the temperature of the formaldehyde air and the processing temperature were changed. Table 11 shows the results. All had high form stability and flexibility.
実施例 6 4  Example 6 4
4 5番手の綿 ポリエステル混紡糸 (混合率 : 綿 5 5重量0。/ ポ リエステル '、' 0 . 1 7 テッ ク ス、 繊維長 4 0 m m ) 1 5重量 ϋο::' を経糸および緯糸に用いて なり、 精練、 漂白処理を施した平織物 (織密度 : 経 1 1 5 Λ緯 7 6本, i nch、 目 付 : 1 1 0 g , m 2 ) に、 ジメ チロールヒ ドロキシェチレン尿素を 6 "0、 触媒と し て塩化マグネシゥム 6水和物を 2 ('。含む水溶液をパディ ングにより付与した。 し ぼり率は 9 0 であった。 それからこの織物を 1 0 0てで 3分問乾燥した後、 1 6 0てで 1 分間熱処理した。 4 5th cotton polyester blended yarn (mixing ratio:. Cotton 5 5 wt 0 ./ Po Riesuteru ',' 0 1 7 TEC scan, fiber length 4 0 mm) 1 5 wt ϋ ο :: 'warp and weft The scoured and bleached plain woven fabric (weaving density: 115 Λ latitude 76, inch, basis weight: 110 g, m 2 ) and dimethylol hydroxyxylene urea in 6 "0, the Maguneshiumu chloride hexahydrate as a catalyst 2 ( '. an aqueous solution containing imparted by padding. teeth Helsingborg rate was 9 0. then 3 minutes question drying the fabric in 1 0 0 hand After that, heat treatment was performed at 160 ° C. for 1 minute.
その後セルロース分解酵素 (セルソフ ト し、 ノ ボノルディ スク社製:') を 5 g 1 の濃度で含む処理液中にその織物を浸潰し、 6 ()てで 2時問処理した。 この結 果、 酵素処理前の織物に比べて重 は 1 0 . 2 %減少した。  Thereafter, the woven fabric was immersed in a treatment solution containing 5 g 1 of cellulolytic enzyme (Celsoft, manufactured by Novo Nordisc: ') and treated with 6 () for 2 hours. As a result, the weight was reduced by 10.2% compared to the fabric before the enzyme treatment.
これらの 2つの処理の後、 染色、 仕上げ処理を通常の方法で行い、 その後上記 の方法で洗濯収縮率と曲げ剛性を则定すると、 洗濯収縮率はたて 0 . 5 ¾、 よこ ϋ . 4 。。で、 Βは ϋ . 2 7 7 κ ' c m 2 , c mで、 Wは 9 9 g , rn 2であり、 B , W li 0 . ϋ ϋ 2 8であつた。 一方、 これらの 2つの処理が施されていない、 精練、 ¾白処理をした直後の織 物の洗濯収縮率は、 たて 4. 5 uo、 よこ し 1 uo、 Bは 0. 9 0 2 g . c m 2 , c で、 \ 'は 1 1 () κ . m 2であり、 B ,· Wは 0 · 0 0 8 2であった。 After these two treatments, the dyeing and finishing treatments are performed in the usual manner, and then the washing shrinkage and bending stiffness are determined by the above-mentioned methods. The washing shrinkage is only 0.5 mm and the width is 0.4 mm. . . Where Β was ϋ .277 κ ′ cm 2 , cm, W was 9.9 g, rn 2 , and B, W li 0. Ϋ ϋ28. On the other hand, these two processing has not been performed, scouring, washing shrinkage of woven material immediately after the ¾ white processing, vertical 4. 5 u o, horizontal and 1 u o, B is 0.9 0 In 2 g.cm 2, c , \ ′ was 1 1 () κ.m 2 , and B, · W was 0 · 0.082.
実施例 6 5  Example 6 5
4 5番手の綿/ ポリエステル混紡糸 (混合率 : 綿 5 5 ?E量 u。 ポリエステル ( () . 1 7テッ クス、 繊維長 1 0 m mリ 1 5重量 °ο , を経糸および緯糸に用いて なり、 β練、 漂 ΰ処理を施した平織物 織密度 : 経 1 1 5 > 緯 7 6本 inch, 目 付 : 1 1 0 g / m 3) を、 セルロース分解酵素 (セルソフ ト し、 ノボノルディ スク 社製) を 1 の濃度で含む処理液中に浸漬し、 6 (TCで 2時間処理した。 こ の結果、 酵素処理前の織物に比べて重量は 1 1. 5 減少した。 4 5th cotton / polyester blend yarn (mixing rate: cotton 55-E amount u . Polyester ((). 17 tex, fiber length 10 mm li 15 weight ° ο), used for warp and weft , Β-kneaded, drift-treated plain woven fabric Woven density: warp 1 15> weft 76 inch, basis weight: 110 g / m 3 ) and cellulose degrading enzyme (cell softening, Novo nordisk) Was immersed in a treatment solution containing 1 at a concentration of 1 and treated with 6 (TC for 2 hours.) As a result, the weight was reduced by 11.5 compared to the fabric before the enzyme treatment.
その後、 二の織物にジメ チロールヒ ドロキシエチレン尿素を 6 "。、 触媒と して 塩化マグネシ ゥム 6水和物を 2 %含む水溶液をパディ ングにより付与した。 しぼ り率は 9 0 «0であつた。 この織物を ί () 0 Cで 3分問乾燥した後、 1 6 0てて 1 分間熱処理した。  Thereafter, an aqueous solution containing 6% of dimethylol hydroxyethylene urea and 2% of magnesium chloride hexahydrate as a catalyst was applied to the second fabric by padding. The squeezing rate was 90 to 0. This fabric was dried at C () 0 C for 3 minutes and then heat-treated at 160 ° C. for 1 minute.
これらの 2つの処理の後、 染色、 仕上げ処理を通常の方法で行い、 洗濯収縮率 は、 たて 0. 4 ¾、 よこ ϋ . 3 ?'όで、 βは ϋ . 2 9 2 g · c m 2 / し' mで、 Wは 9 7 g , m 2であり、 B / \Vは ϋ . 0 0 3 0であった。 After these two treatments, the dyeing and finishing treatments are carried out in the usual way, with a wash shrinkage of just 0.4 ¾, horizontal ϋ.3? 'Ό and β of ϋ0.292 gcm. 2 / m, W was 97 g, m 2 , and B / \ V was 0.030.
実施例 6 6  Example 6 6
J 5番手の綿, ポリエステル混紡糸 ( 合率 : 綿 5 5 ^量% . ポ リエステル ( 0. 1 7テッ クス、 繊維長 .4 ϋ m m ) 1 5重量 を経糸および緯糸に川いて なり、 精練、 漂白処理を施した平織物 (織密度 : 経 】 1 5 ゝ緯 7 ΰ本/ inch, 目 付 : 1 1 0 m2) を、 密閉した反応器中でパラホルムアルデヒ ドから発生させ たホルムアルデヒ ド蒸気に 5分間さ らした。 さ ら している問の反応器の温度は 6 0てであった。 次に反応器に亜硫酸ガスを流入して布をさ ら した後、 反応器の温 度を i 6 0てに上昇させ 3分間処理した。 J 5th cotton / polyester blended yarn (combination rate: 55% cotton amount. Polyester (0.17 tex, fiber length 0.4 mm)) 15 weights are added to warp and weft, and refined. A bleached plain woven fabric (woven density: warp: 15 ゝ latitude 7 ΰ / inch, weight: 110 m 2 ) was converted from paraformaldehyde in a closed reactor to formaldehyde. The reactor was exposed to steam for 5 minutes and the temperature of the reactor was 60. Next, sulfur dioxide gas was flowed into the reactor to remove the cloth, and then the temperature of the reactor was increased. Was raised to i 60 and treated for 3 minutes.
その後セルロース分解酵素 (セルソフ ト し、 ノボノ ルディ スク社製; を 5 g , 1 の濃度で含む処理液中にこの織物を浸潰し、 6 0てで 2時間処理した。 この結 果、 酵素処理前の織物に比べて重量は 1 0. 5 ¾>減少した。  Thereafter, the woven fabric was immersed in a treatment solution containing 5 g of cellulolytic enzyme (Celsoft, manufactured by Novonoldisk) at a concentration of 1 and treated at 60 ° C. for 2 hours. Weight decreased by 10.5 0>.
これらの 2つの処理の後、 染色、 仕上け処理を通常の方法で行い、 その後上記 の方法で洗濯収縮率と曲げ剛性を则定すると、 洗濯収縮率は、 たて 0 . 5 、 よ こ 0 . 4 o0で、 Bは 0 . 2 4 6 g · c m 2 , し' mで、 Wは 9 8 g , m :であり、 B , Wは ϋ . () 0 2 5 となった。 After these two treatments, dyeing and finishing are carried out in the usual way, If you则定the bending rigidity and washing shrinkage in the manner of, washing shrinkage, in vertical 0.5, good this 0. 4 o 0, B is 0. 2 4 6 g · cm 2, the teeth 'in m , W was 98 g, m : , and B, W were ϋ. () 0 25.
実施例 6 7  Example 6 7
I 5番手の綿, ポリエステル混紡糸 (混合率 : 綿 5 5 ffi量。。, ポ リエステル ( 0 . 1 7テッ クス、 繊維長 4 0 m m 4 5重量 Bo ) を経糸および緯糸に用いて なり、 精練、 漂白処理を施した平織物 (織密^ : 1 1 5 緯 7 6本 i nch、 目 付 : i ! 0 g / m 2 ) を、 セル口一ス分解酵素 (セルソフ ト し、 ノボノ ルディ スク 社製) を 5 k 1 の濃度で含む処理液中に浸潰し、 6 ϋてで 2時間処理した。 こ の結果、 酵素処理前の織物に比べて重量は 1 1 . 5 ¾減少した。 I 5th cotton, polyester blend yarn (mixing rate: 55 ffi cotton .. Polyester (0.17 tex, fiber length 40 mm 45 wt B o) is used for warp and weft. , scouring, plain weave fabric which has been subjected to bleaching treatment (Omitsu ^: 1 1 5 weft 7 six i nch, with eyes:! i 0 g / m 2 ) , and cell opening and one scan-degrading enzyme (Serusofu door, Nobono Rudisk Co., Ltd.) was immersed in a treatment solution containing 5k1 and treated at 6ϋ for 2 hours. As a result, the weight was reduced by 11.5¾ compared to the fabric before the enzyme treatment. .
その後、 この織物を密閉した反応器中に導入し、 パラホルムアルデヒ ドから発 生させたホルムアルデヒ ド蒸気に 5分問さら した。 さ らしている間の反応器の温 度は 6 ϋてであった。 次に反応器に亜硫酸ガスを流入して布をさ ら した後、 反応 器の ffl度を 1 ΰ 0てに上昇させ 3分問処理した。  The fabric was then introduced into a sealed reactor and exposed to formaldehyde vapor generated from paraformaldehyde for 5 minutes. The temperature of the reactor during the brewing was 6ϋ. Next, sulfuric acid gas was flowed into the reactor to remove the cloth, and then the ffl degree of the reactor was raised to 1ΰ0, followed by a treatment for 3 minutes.
これらの 2つの処理の後、 染色、 仕上げ処理を通常の方法で行い、 その後上 Κ の方法で洗濯収縮率と曲げ剛性を測定すると、 洗濯収縮率は、 たて 0 . 4 %、 よ こ 0 . :1 て、 Βは() . 2 9 2 g · c m 2 c mで、 Wは 9 7 g , m 2であり、 Β Wは() . ϋ 0 3 0 となつた。 After these two treatments, dyeing and finishing are carried out in the usual manner, and then the washing shrinkage and bending stiffness are measured by the above methods. The washing shrinkage is just 0.4%, : 1 and Β is (). 29 2 g · cm 2 cm, W is 97 g and m 2 , and Β W is (). Ϋ 0 30.
比較例 9  Comparative Example 9
1 5番手の綿,. ポリ エステル混紡糸 (混合率 : 綿 5 5重量"。 ポ リ エステル ( 0 . 1 7テッ ク ス、 繊維長 - 1 0 m nu 4 5重量 σ。) を経糸および緯糸に用いて なり、 精練、 ^白処理を施した平織物 (織密度 : 経 1 1 5 緯 7 6本, i nch . 0 付 : 1 1 0 ίί , m 2 ) に、 ジメ チロールヒ ドロキシエチレン尿素を 6 0ο、 触媒と し て塩化マグネシゥム 6水和物を 2 。b含む水溶液をパディ ングにより付与した。 し ぼり率は 9 () %であった。 それからこの織物を 1 0 0てで 3分問乾燥した後、 1 6 ϋてで 1 分間 処理した。 1 5th cotton ,. Polyester blended yarn (mixing ratio: 55% cotton ". Polyester (0.17 tex, fiber length-10m nu 45% by weight σ ) warp and weft Refined and white-treated plain woven fabric (woven density: warp: 115, about 76, inch. 0 attached: 110 0, m 2 ), dimethylol hydroxyethylene ethylene urea the 6 0 o, 2 .b including aqueous and Maguneshiumu chloride hexahydrate as a catalyst was applied by padding. teeth Helsingborg rate was 9 ()%. then 3 the fabric 1 0 0 hand After drying in batches, they were treated at 16ϋ for 1 minute.
この後、 ίί ¾! ¾率と曲け剛性を測定すると、 洗濯収縮率は、 たて ϋ . 5 °ο、 よこ 0 . 5 0οで、 Βは() . 7 7 ϋ g · c m 2 / c mで、 Wは i 1 0 g / m 2であり、 B , \Vは 0 . () 0 7 0 となつた。 この場合、 形態安定性は得られたが柔軟性に劣 る ものであつた。 After this, when you measure the ίί ¾! ¾ rate and the song only rigidity, washing shrinkage, vertical ϋ. 5 ° ο, next to 0. At 5 0 ο, is Β (). 7 7 ϋ g · cm 2 / In cm, W was i 10 g / m 2 , and B and \ V were 0. () 0 7 0. In this case, morphological stability was obtained but flexibility was poor. It was something.
比較例 丄 0  Comparative example 丄 0
4 5番手の綿/ ポ リエステル混紡糸 (混合率 : 綿 5 5重量。。, ポ リエステル ( 0. 1 7テッ ク ス、 繊維長 4 0 m m ) I 5重量0。) を経糸および緯糸に用いて なり、 精練、 漂白処理を施した平織物 (織密度 : 経 1 1 5 ' 緯 7 6本, inch、 目 付 : 1 1 0 g ... m ) を、 密閉した反応器中でパラホル厶アルデヒ ドから発生させ たホルムァルデヒ ド蒸気に 5分問さ ら した。 さら している問の反応器の ¾度は 6 ()てであつた。 次に反応器に亜硫酸ガスを流入して布をさ らした後、 反応 ¾の温 度を 1 6 0てに上昇させ 3分間処理した。 4 Use cotton / polyester blended yarn of 5th (mixing ratio: 55% cotton., Polyester (0.17 tex, fiber length 40mm) I5 weight 0. ) for warp and weft A plain fabric (weaving density: 115 11 'weft 76, inch, basis weight: 110 g ... m), which has been subjected to scouring and bleaching treatment, is paraformed in a closed reactor. I was asked for five minutes by formaldehyde vapor generated from aldehyde. The temperature of the reactor in question was 6 (). Next, sulfurous acid gas was flowed into the reactor to remove the cloth, and then the temperature of the reactor was raised to 160 and treated for 3 minutes.
この後、 洗濯収縮率と曲げ剛性を測定すると、 洗濯収縮率は、 たて 0. 5 ¾、 よこ ϋ . 4 0οで、 ΰは 0. 7 3 7 g · c m L' c mで、 Wは 1 丄 0 g ., m 2であり、 B / Wは 0. 0 0 ΰ 7 となつた。 この場合、 形態安定性は得られたが柔軟性に劣 るものであった。 Thereafter, when measuring the flexural rigidity and washing shrinkage, laundry shrinkage vertical 0. 5 ¾, beside ϋ. 4 0 ο, ΰ at 0. 7 3 7 g · cm L 'cm, W is 1 丄 0 g., M 2 , and B / W became 0.00 07. In this case, morphological stability was obtained, but flexibility was poor.
比較例 1 1  Comparative Example 1 1
4 5番手の綿 / ポリエステル混紡糸 (混合率 : 綿 5 5重量 ポ リエステル ( 0. 1 7テックス、 繊維長 4 0 m m ) 4 5重量 。) を経糸および緯糸に用いて なり、 精練、 漂白処理を施した平織物 (織密度 : 経 1 1 5 7 6本, ^^、 目 付 : 1 1 () « , m :) を、 セルロース分解酵素 (セルソフ ト L、 ノボノルディ スク 社製 を 5 g 1 の濃度で含む処理液中に i¾潰し、 6 0 °Cで 2時間処理した。 こ の ¾、 m素処理 ¾;/の織物に比べて IE fiは 1 し 5 no減少した。 45 Cotton / polyester blended yarn (mixing rate: cotton 55 wt. Polyester (0.17 tex, fiber length 40 mm) 45 wt.) Used for warp and weft, scouring and bleaching Woven fabric (weaving density: 115,76 warp, ^^, basis weight : 11 () «, m :) was converted to cellulose degrading enzyme (Celsoft L, 5 g 1 from Novo Nordisk). . crush i¾ the processing solution containing at a concentration, 6 0 ° C 2 h treated ¾ this in, m hydrogen processing ¾; IE fi decreased one tooth 5 n o compared to / fabric.
この後、 洗濯収縮率と曲げ剛性を測定すると、 洗濯収縮率は、 たて ^! . 5 Qo、 よこ 1. 2 ¾で、 Bは 0. 2 2 4 g · c m: , c mで、 Wは 9 7 g , m 2であり、 B . Wは(). 0 0 2 3 となった。 この場合、 柔軟性は得られたが形態安定性に劣 るものてあつた。 After that, when the washing shrinkage and bending stiffness were measured, the washing shrinkage was just ^! 5 Q o, horizontal 1.2 、, B is 0.224 g · cm:, cm, W is 97 g, m 2 , B. W is (). became. In this case, flexibility was obtained but shape stability was poor.
比較例 1 2  Comparative Example 1 2
比較例 1 1 でセルロース分解酵素で処理する代わりに、 水酸化十 卜 リ ウ厶を 5 g i の濃度で含む水溶液中に織物を fcS浪し、 9 5てで 1 時間処理した。 このと きの減量率は 1 3. 5 。。であつた。  Instead of treating with a cellulose-decomposing enzyme in Comparative Example 11, the woven fabric was fcS-wasted in an aqueous solution containing 10 g of trihydric hydroxide at a concentration of 5 g i, and treated with 95 for 1 hour. The weight loss rate at this time is 13.5. . It was.
結果、 洗 ¾収¾率は、 たて -に 5 %、 よこ に 3。0で、 Bは 0. 2 2 8 κ ■ c m : . - c mで、 \Vは 9 5 g . m 2であり、 B Wは() . () () 2 1 となった。 この場 合、 柔軟性は得られたが形態安定性に劣るものであった。 As a result, the washing recovery rate is 5% for fresh and 3 for fresh. At 0 , B is 0.22 8 κ ■ c m : .-cm, \ V is 95 g. m 2 , and BW is (). () () 21. In this case, flexibility was obtained but shape stability was poor.
実施例 5〜 8  Examples 5 to 8
実施例 6 4から実施例 6 7でセルロース分解酵素で処理する代わりに、 水酸化 ナ ト リ ウムを 5 g ,. 1 の濃度で含む水溶液中に縱物を ¾し、 9 5てで 1 時間処 理した。 結果を表 1 5に す。 いずれも優れた形態安定性と柔軟性を有していた c 実施例 9〜 1 1 Instead of treating with a cellulose-decomposing enzyme in Examples 64 to 67, a vertical substance was placed in an aqueous solution containing 5 g of sodium hydroxide at a concentration of 0.1, and then heated at 95 for 1 hour. Processed. Table 15 shows the results. C Example 9-1 1 both had excellent shape stability and flexibility
ポリエステル繊維の混合率を変更したこと以外は実施例 6 4 と同様に行った。 結果を表 1 6 に示す。 いずれも優れた形態安定性と柔軟性を有していた。  The same operation as in Example 64 was performed except that the mixing ratio of the polyester fiber was changed. The results are shown in Table 16. All had excellent morphological stability and flexibility.
実施例 1 2 〜 1 5  Examples 12 to 15
繊維 反応型樹脂の極類を変更したこと以外は実施例 ΰ 1 と同様に行った。 結 果を表 1 7に示す。 いずれも優れた形態安定性と柔軟性を有していた。  The procedure was performed in the same manner as in Example 1 except that the type of the fiber reactive resin was changed. Table 17 shows the results. All had excellent morphological stability and flexibility.
实施例 1 ΰ 〜 1 9  Example 1 ΰ 〜 1 9
乾燥温度と熱処理温度を変更したこと以外は実施例 6 4 と同様に行った。 結果 を表 i 8 に示す。 いずれも優れた形態安定性と柔軟性を有していた。  The operation was performed in the same manner as in Example 64 except that the drying temperature and the heat treatment temperature were changed. The results are shown in Table i8. All had excellent morphological stability and flexibility.
実施例 2 0 〜 2 2  Example 20 to 22
ホルムアルデヒ ド蒸気の温度と熱処理温度を変更したこと以外は実施例 6 6 と 同様に行った。 結果を表 1 9に示す。 いずれも優れた形態安定 14:と柔軟性を有し ていた。  The procedure was performed in the same manner as in Example 66, except that the temperature of the formaldehyde vapor and the heat treatment temperature were changed. The results are shown in Table 19. All of them had excellent morphological stability14: and flexibility.
産業 ίの利用可能性  Industry 産業 Availability
本発明によれば、 優れた吸湿性、 優れた柔らかな風合い、 形態安定性などを有 し、 衣料用途で広範に利用できる繊維構造物を 供できる。 ADVANTAGE OF THE INVENTION According to this invention, it can provide the fiber structure which has excellent hygroscopicity, excellent soft texture, form stability, etc., and can be widely used for clothing use.
表 1 table 1
Figure imgf000031_0001
表 2
Figure imgf000031_0001
Table 2
Figure imgf000031_0002
表 3
Figure imgf000031_0002
Table 3
Figure imgf000031_0003
Figure imgf000031_0003
¾ 4  ¾ 4
! ίκ 度 反応率 Δ M R 减量率 B / W  ! ίκ degree reaction rate Δ M R mass rate B / W
( % ) ( % ) ( % )  (%) (%) (%)
実施例 1 5 ϋ . 5 9 5. 7 5. 2 0. 0029 実施例 1 6 1 15 10. 3 4. 1 0. 0031 実施例 1 7 a 15 1 1. 0 4. 3 0. 0037 実施例 1 8 8 1 2 8. 3 5. 0 0. 0030 温 度 反応率 Δ M R 減量率 Bノ WExample 1 5 ϋ. 5 9 5. 7 5.2 0.0029 Example 1 6 1 15 10.3 4.1 0. 0031 Example 1 7 a 15 1 1. 0 4. 3 0.0037 Example 1 8 8 1 2 8.3 5.0 0.0030 Temperature Reaction rate ΔMR Weight loss rate B
(。C) ( % ) ( % ) ( % ) (.C) (%) (%) (%)
実施例 1 9 7 0 6 5.0 5.0 0.0027 施例 2 ϋ 8 0 14 8.8 8.8 0.0030 実施例 2 1 2 0 0 15 10. 1 10. 1 0.0043 実施例 2 2 2 1 0 11 7.2 7.2 0.0039 表 6  Example 1 9 7 0 6 5.0 5.0 0.0027 Example 2 ϋ 8 0 14 8.8 8.8 0.0030 Example 2 1 2 0 0 15 10.1 10.1 0.0043 Example 2 2 2 1 0 11 7.2 7.2 0.0039 Table 6
Figure imgf000032_0001
Figure imgf000032_0001
table
Figure imgf000032_0002
Figure imgf000032_0002
& 8 & 8
Ρ Η 反応率 Δ M R 減量率 B /W  Ρ Η Reaction rate Δ M R Weight loss rate B / W
( % ) ( % ) ( % )  (%) (%) (%)
実施例 3 3 ο 7 4.2 8.0 0.0028 実施例 3 4 6 9 5.8 7.2 0.0030 实施例 3 5 1 2 8 5. 1 7.6 0.0035 実施例 3 6 1 4 6 4.3 9. 1 0.0030 表 9 Example 3 3 ο 7 4.2 8.0 0.0028 Example 3 4 6 9 5.8 7.2 0.0030 Example 3 5 1 2 8 5.1 1 7.6 0.0035 Example 3 6 1 4 6 4.3 9.1 0.0030 Table 9
Figure imgf000033_0001
Figure imgf000033_0001
¾ 1 0  ¾ 1 0
Figure imgf000033_0002
Figure imgf000033_0002
表 1 1  Table 11
Figure imgf000033_0003
Figure imgf000033_0003
表 1 2  Table 1 2
親水性ビニル系モノマ 洗^収縮率 減量率 B / W タテ (% ) ョコ (.% ) ( % ) Hydrophilic vinyl monomer washing ^ Shrinkage rate Weight loss rate B / W Vertical (%) Horizontal (.%) (%)
実施例 5 3 ジメ チロールエチ レ ン尿素 し 0 0. 9 5. 0 0. 0031 実施例 5 4 ジメチローノレゥロ ン し 0 0. 9 6. 3 0. 0027 実施例 5 5 ジメチロールト リアゾン 1. 1 1. 0 5. 8 0. 0030 実施例 5 6 ジメチ D—ノレプロピレン尿素 0. 9 0. 8 5. 3 0. 0042 ま九 Ί/Jl i!fl m度 洗濯収縮率 減量率 B / WExample 5 3 dimethylolethylene urea 0.0 0.9.5.0 0.001 0031 Example 5 4 dimethyloloneuronate 0.00.9 6.3 0.0027 Example 5 5 dimethyloltriazone 1.1 1. 0 5.8 0. 0030 Example 5 6 Dimethy D-Nolepropylene Urea 0.90 0.8 5.3 0.0042 Makyu Ί / Jl i! Fl m degree Wash shrinkage Weight loss B / W
(°C) (°C) タテ ( % ) 3: ( % ) ( % ) (° C) (° C) Vertical (%) 3: (%) (%)
実施例 5 7 3 0 6 0 1.8 1.6 6. [ 0.0025 実施例 5 8 1 0 0 1 2 0 I.2 1.2 5.5 0.0027 実施例 5 9 1 0 0 1 8 0 0.9 0.9 5.0 0.0030 実施例 6 0 i () ϋ 2 1 0 0.9 j 0.8 5.4 0.0034 表 1 4  Example 5 7 3 0 6 0 1.8 1.6 6. [0.0025 Example 5 8 1 0 0 1 2 0 I.2 1.2 5.5 0.0027 Example 5 9 1 0 0 1 8 0 0.9 0.9 5.0 0.0030 Example 6 0 i ( ) ϋ 2 1 0 0.9 j 0.8 5.4 0.0034 Table 14
Figure imgf000034_0001
Figure imgf000034_0002
Figure imgf000034_0001
Figure imgf000034_0002
ポリエステル繊維混合率 洗^ S収縮率 減量率 B / W (重量%) タテ (%) ョコ (%) ( %)  Polyester fiber mixing rate Wash ^ S Shrinkage rate Weight loss rate B / W (% by weight) Vertical (%) Horizontal (%) (%)
実施例 7 2 1 0 0.9 0.8 14.4 0.0028 実施例 7 3 3 0 0.6 0.6 10.2 0.0030 実施例 7 4 8 5 0.3 0.3 4.2 0.0046 表 1 7 Example 7 2 1 0 0.9 0.8 14.4 0.0028 Example 7 3 3 0 0.6 0.6 10.2 0.0030 Example 7 4 8 5 0.3 0.3 4.2 0.0046 Table 17
Figure imgf000035_0001
Figure imgf000035_0001
乾燥温度 ¾処理温度 洗濯収縮率 減量率 B /WDrying temperature ¾Processing temperature Washing shrinkage Weight loss B / W
(V) (°C) 夕テ ( % :> Iョコ ( ¾ ) ( %) (V) (° C) Evening (%:> I horizontal (¾) (%)
¾施例 7 9 3 0 6 0 0.8 0.8 14.1 0.0022 実施例 8 0 1 0 0 1 2 0 0.6 0.6 13.5 0.0030 実施例 8 1 1 0 0 1 8 0 0.4 0.4 12.0 0.0033 実施例 8 2 1 0 0 2 1 0 0.5 0.4 10.4 0.0036 表 1 9  ¾ Example 7 9 3 0 6 0 0.8 0.8 14.1 0.0022 Example 8 0 1 0 0 1 2 0 0.6 0.6 13.5 0.0030 Example 8 1 1 0 0 1 8 0 0.4 0.4 12.0 0.0033 Example 8 2 1 0 0 2 1 0 0.5 0.4 10.4 0.0036 Table 1 9
蒸気温 ) 熱処理温度 洗^収縮率 量率 B / W (Steam temperature) Heat treatment temperature Washing ^ Shrinkage rate Volume rate B / W
(°C ) (。じ) ?テ (: % ) 3コ (:% ) ( 9 ) (° C) (.ji) Te (:%) 3 (:%) (9)
¾·施例 3 3 0 H 0 0.9 1.0 !4.6 ϋ.0023 実施例 8 4 6 0 1 2 0 0.5 0.6 13.0 0.0024 実施例 8 6 0 1 8 0 0.5 0.5 12.2  ¾Example 3 3 0 H 0 0.9 1.0! 4.6 ϋ.0023 Example 8 4 6 0 1 2 0 0.5 0.6 13.0 0.0024 Example 8 6 0 1 8 0 0.5 0.5 12.2

Claims

請求の範囲 The scope of the claims
1. セルロース繊維からなる繊維構造物において、 該セルロース雄維に親水性ビ ニル系モノマがグラフ ト重合されており、 かつ K E S (Kawabata Evaluation System; 測定による曲げ剛性測定値 ( B ) と目付 (W) の比 B \\'が 0. ϋ 0 ϋ 1 以上 ϋ. 0 0 5以下であることを特徴とする繊維構造物。  1. In a fibrous structure composed of cellulose fibers, a hydrophilic vinyl monomer is graft-polymerized on the cellulose male fiber, and the flexural rigidity measured by KES (Kawabata Evaluation System; measurement) (B) and the weight (W ) Ratio B \\ 'is not less than 0.ϋ0ϋ1 and not more than 0.05.
2. ·求項 1 において、 温度 3 0て、 湿度 9 ϋ における繊維構造物の吸湿率 Μ 2 (: 。0 ) から温度 2 0。 (:、 湿度 6 5 %における繊維楕造物の吸湿率 M R 1 (¾) を差し引いた値で表される Δ ινΐ Rカ^ 下記式を満足することを特徴とする繊維構 造物。 2. In-Motomeko 1, Te temperature 3 0, moisture absorption rate Micromax 2 of the fiber structure in the humidity 9 ϋ (:. 0) from a temperature 2 0. (: Δ ινΐ R power represented by a value obtained by subtracting the moisture absorption rate MR 1 (¾) of the fibrous structure at a humidity of 65%) A fiber structure characterized by satisfying the following expression.
4 -: Δ M R≤ 1  4-: Δ M R≤ 1
3. セルロース維維とポリエステル繊維を fflいてなる繊維構造物において、 該セ ルロース繊維に親水性ビニル系モノマがグラフ 卜重合されており、 かつ K E S 3. In a fibrous structure composed of cellulose fibers and polyester fibers, a hydrophilic vinyl monomer is graft-polymerized on the cellulose fibers, and KS
(Kawabata Evaluation System; 測定による曲げ剛性測定値 ( B ) と目付 (W) の比 B ' Wが 0. 0 0 0 1 以上 0. 0 0 5以下であることを特徴とする繊維構造 物。 (Kawabata Evaluation System; a fibrous structure characterized in that the ratio B'W between the measured value of bending stiffness (B) and the basis weight (W) by measurement is not less than 0.001 and not more than 0.05.
4. 請求項 3において、 温度 3 0て、 湿度 9 ϋ ¾における繊維構造物の吸湿率 M 4. The moisture absorption rate M of the fibrous structure according to claim 3, at a temperature of 30 and a humidity of 9 ° C.
R 2 ( "ο ) から温度 2 0て、 湿度 6 5 %における繊維構造物の吸湿率; VI R 1 ( °ό ) を差し引いた値で表される A M R力;、 下記式を満足することを特徴とする繊維構 造物。 R 2 ("ο), the moisture absorption of the fibrous structure at a temperature of 20% and a humidity of 65% at a temperature of 20%; VI The AMR force expressed as the value obtained by subtracting R 1 (° ό); Characteristic fiber structure.
ϋ . 0 4 , { [ 0 0 - X Δ M R≤ 0. 1 -1 ( 1 ϋ 0 - χ  4. 0 4, {[0 0-X Δ M R≤ 0. 1 -1 (1 ϋ 0-
こ こで、 Xは繊維構造物におけるポリエステル繊維の割合 (重量 °ο ) を表す。 Here, X represents the ratio (weight ° ο) of the polyester fiber in the fiber structure.
5. 請求項 3 において、 ポリエステル繊維の割合が 1 ϋ重量?。以上 9 0重量 ¾以 下であることを特徴とする繊維構造物。 5. In claim 3, the ratio of polyester fiber is 1% by weight? . A fibrous structure characterized by not less than 90% by weight.
6. 請求項 1 または 3 において、 前記親水性ビニル系モノ マの繊維構造物に対す る反応率が 1 重 以上 2 0重量00以下であるこ とを特徴とする繊維楕造物。 6. In claim 1 or 3, wherein the hydrophilic vinyl-based mono-Ma reaction rate against the fiber structure of the fiber楕造was characterized and this is 2 0 wt 0 0 less than 1-fold.
7. 諝求項 1 または 3において、 前記親水性ビニル系モノマが、 スルホン酸およ び/ またはスルホン酸塩を含有する ビニル系モノマであることを特徴とする繊維 構造物。  7. The fiber structure according to claim 1, wherein the hydrophilic vinyl monomer is a vinyl monomer containing a sulfonic acid and / or a sulfonic acid salt.
8. 請求項 1 または 3において、 Bノ Wが 0. 0 0 0 1 以上 0. 0 0 '4以下であ ることを特徴とする繊維構造物。 8. The claim 1 or claim 3, wherein the value of B is not less than 0.0 0 0 1 and not more than 0.0 0 '4. A fibrous structure characterized by the fact that:
9 . 求项 J または 3 において、 B , Wか(). () 0 () 】 以上 0 . ϋ 0 3以下であ るこ とを特徴とする繊維構造物。  9. The fiber structure according to claim J or 3, wherein B, W or (). () 0 ()] or more and 0.3 or less.
1 0 . 諳求項 1 または 3において、 前記セルロース繊維の単繊維内部に親水性ビ ニル系モノマがグラフ ト重合されていることを特徴とする織編物。  10. The woven or knitted fabric according to item 1 or 3, wherein a hydrophilic vinyl monomer is graft-polymerized inside the single fiber of the cellulose fiber.
1 1 . セル口一ス鏃維からなる繊維構造物を、 親水性ビニル系モノ マと重合開始 剂を含有する水溶液の含浸処理を施した後に熱処理を施すグラフ ト ¾合加工の前 または後に、 減量加工することを特徴とする繊維構造物の製造方法。  1 1. The fiber structure consisting of cell-mouth arrowheads is subjected to a heat treatment after being impregnated with an aqueous solution containing a hydrophilic vinyl-based monomer and a polymerization initiator, before or after grafting. A method for producing a fibrous structure, characterized by performing weight reduction processing.
1 2 . ポリエステル繊維とセルロース繊維を用いてなる繊維構造物を、 親水性ビ ニル系モノマと重合開始剤を含有する水溶液の含浸処理を施した後に熱処理を施 すグラフ 卜 合加工の前または後に、 減量加工することを特徴とする繊維構造物 の製造方法。  1 2. A fiber structure made of polyester fiber and cellulose fiber is subjected to heat treatment after being impregnated with an aqueous solution containing a hydrophilic vinyl monomer and a polymerization initiator, before or after grafting. A method for producing a fibrous structure, characterized by performing weight reduction.
1 3 . 請求項 1 2において、 ポリエステル繊維の割合が 1 ()重量 。以上 9 ϋ重量 。ο以下である こ とを特徴とする繊維構造物の製造方法。  13. The polyester fiber according to claim 12, wherein a ratio of the polyester fiber is 1 () weight. More than 9ϋ weight. ο A method for producing a fibrous structure, characterized in that:
1 4 . 請求項 1 】 または 1 2において、 前記親水性ビニル系モノマが、 スルホン 酸および, またはスルホン酸塩を含有する ビニル系モノマであることを特徴とす る繊維構造物の製造方法。  14. The method for producing a fibrous structure according to claim 1 or 12, wherein the hydrophilic vinyl monomer is a vinyl monomer containing sulfonic acid and / or a sulfonic acid salt.
1 5 . 請求項 1 1 または 1 2において、 前記水溶液の ρ Ηが 6以上 1 2以下であ るこ とを特徴とする; ! 求項 7記載の繊維描造物の製≥方法。  15. The method according to claim 11, wherein ρ Η of the aqueous solution is 6 or more and 12 or less;
1 6 . 求■¾ 1 1 または i 2において、 ^記水溶液中における ^記親水性ビニル 系モノマの濃度が 1 0重量%以上 3 0重!! 以下であるこ とを特徴とする繊維構 造物の製造方法。  16. In the above 1 1 or i 2, the concentration of the hydrophilic vinyl monomer in the aqueous solution was 10% by weight or more and 30 times in the aqueous solution. ! A method for producing a fiber structure, characterized by the following.
1 7 . 請求項 1 1 または 1 2において、 前記宽合開始剂が前記親水性ビニル系モ ノマに対して 1 重量 Q。以上 5重量 °。以下含有していることを特徴とする繊維構造 物の製造方法。 17. The method according to claim 11, wherein the composite initiator is 1 weight Q with respect to the hydrophilic vinyl-based monomer. More than 5 weight °. A method for producing a fibrous structure, comprising:
1 8 . 請求墳 1 1 または 1 2において、 記熱処理温度が 8 0て以上 2 ϋ 0 °C以 下であることを特徴とする維維構造物の製造方法。  18. The method for producing a fibrous structure according to claim 11, wherein the heat treatment temperature is at least 80 and at most 200 ° C.
1 9 . 請求頃 1 1 または 1 2において、 減量率が 3 ()。以上 2 0 ?0以下であること を特徴とする雄維構造物の製造方法。 2 ϋ . 請求項 l i または 1 2において、 lit!記減量加工がセルロース分解酵素によ るセルロース繊維の減量加工であることを特徴とする繊維構造物の製造方法。 2 1. 請求項 】 1 または 1 2において、 前記セルロース分解酵素の濃度が 1 1 以上 3 0 g , I 以下の水溶液に織維構造物を浸潰して 3 0て以上 9 0て以下の 温度で処理するこ とを特徴とする繊維構造物の製造方法。 1 9. At the time of billing 1 1 or 12, the weight loss rate is 3 () . Method for producing a male維構creature, characterized in that more than 2 0? Is 0 or less. 2. The method for producing a fibrous structure according to claim 1 or 2, wherein the lit! 2 1. The method according to claim 1 or 12, wherein the woven fabric is immersed in an aqueous solution having a concentration of the cellulose-degrading enzyme of 11 to 30 g, I or less, at a temperature of 30 to 90 and less. A method for producing a fibrous structure, characterized by treating.
2 2. 請求項 1 2において、 前記減量加工がアルカ リ性化合物によるポ リエステ ル維維の減量加工であるこ とを特徴とする繊維構造物の製造方法。  22. The method for producing a fibrous structure according to claim 12, wherein the weight-reducing process is a weight-reduction process for polyester fibers with an alkaline compound.
2 3. 請求項 2 2において、 減量率が 3 %以上 2 0 () 0以下であることを特徴とす る繊維構造物の製造方法。 23. The method for producing a fibrous structure according to claim 22, wherein the weight loss rate is 3% or more and 20 () 0 or less.
2 に 請求項 2 2 において、 前記アルカ リ性化合物の濃度が 1 O g / 1 以上 3 0 () g 1 以下の水 液に湖';維^造物を浸湞して 5 0 C以上 2 0 () 以下の温度で 処理することを特徴とする繊維構造物の製造方法。  2. The method according to claim 2, wherein the lake's structure is immersed in a water solution having a concentration of the alkaline compound of 1 Og / 1 or more and 30 () g1 or less, and the concentration of the alkaline compound is 50 C or more. (1) A method for producing a fibrous structure, comprising treating at the following temperature.
2 5. セルロース繊維からなる繊維^造物において、 洗濯収縮率が 3 °0以下であ り、 かつ K E S (Kawabata Evaluation System) 測定による曲げ剛性測定値 ( B ) と目付 ( W ) の比 β , Wが 0. ϋ 0 0 1 以上 0. () 0 5以下であることを特徴と する繊維構造物。 2 5. In the fiber structure made of cellulose fiber, the washing shrinkage is 3 ° 0 or less, and the ratio of the measured bending stiffness (B) to the basis weight (W) by KES (Kawabata Evaluation System) β, W The fiber structure is characterized in that the ratio is not less than 0 ϋ 0 0 1 and not more than 0 () 0 5.
2 6. セルロース繊維とポリエステル繊維を fflいてなる繊維構造物において、 洗 濯収縮率が 2 ϋ。以 ドであり、 かつ K E S C Kawabata Evaluation System) 測定に よる曲げ剛性側定 'to' ( B ) と目付 (' IV の比 B , Wが 0. () 0 () i 以上 0. 0 0 δ以下であることを特徴とする維維^造物。 2 6. Washing shrinkage of fiber structure composed of cellulose fiber and polyester fiber is 2 mm . In addition, the bending stiffness side measured by KESC Kawabata Evaluation System) 'to' (B) and the basis weight ('IV ratio B, W is 0. () 0 () i or more and 0.00 0 δ or less) A textile structure characterized by the following.
2 7. 請求項 2 6において、 セルロース繊維の含有率が I ()重量 °。以上 9 ϋ重 ¾ 以下、 ポ リエステル繊維の含有率が 9 ϋ重量 () 0以上 1 ϋ重量 "0以下であること を特徴とする維維構造物。 2 7. The method according to claim 26, wherein the content of the cellulose fiber is I () weight °. Or 9 Y heavy ¾ hereinafter維維structure, wherein the content of the Po Riesuteru fibers is 9 Y weight () 0 or 1 Y weight "0 or less.
2 8. 請求項 2 5 または 2 6において、 前記セルロース繊維か繊維素反応型樹脂 および またはホルムアルデヒ ドにより架橋されているこ とを特徴とする繊維構 造物。  28. The fiber structure according to claim 25 or 26, wherein the cellulose fiber is cross-linked with the cellulose fiber or the cellulose-reactive resin and / or formaldehyde.
2 9. ,请求項 2 5において、 洗濯収縮率が 2 %以下であることを特徵とする繊維 構造物。  29. The fiber structure according to claim 25, wherein the washing shrinkage is 2% or less.
3 0. 請求項 2 5 または 2 6において、 洗濯収縮率が 1 %以下であることを特徴 とする繊維槁造物。 30. The method according to claim 25 or 26, wherein a washing shrinkage rate is 1% or less. A fiber structure.
3 1. 諮求項 2 ΰ において、 洗濯収縮率が 0. 5 %以下であることを特徴とする 繊維構造物。  3 1. A fiber structure according to item 2 of the above, which has a laundry shrinkage ratio of 0.5% or less.
3 2. 請求項 2 5 または 2 6において、 13 / \'が 0. リ 0 0 1 以上 0. 0 0 4以 下である ことを特徴とする繊維構造物。  3 2. The fibrous structure according to claim 25 or 26, wherein 13 / \ 'is not less than 0.01 and not more than 0.004.
3 3. 請求項 2 5 または 2 6において、 1 , が 0. 0 0 0 1 以上 0. () 0 3以 下である こ とを特徴とする繊維構造物。  3 3. The fiber structure according to claim 25 or 26, wherein 1, is not less than 0.00001 and not more than 0.30.
3 4. セルロース繊維からなる繊維構造物を構成するセルロース繊維に架橋反応 を行なう工程の前または後に、 該セルロース繊維を減量加工することを特徴とす る繊維構造物の製造方法。  3 4. A process for producing a fibrous structure, characterized in that the cellulose fiber is subjected to a weight reduction process before or after a step of performing a crosslinking reaction on the cellulose fiber constituting the fibrous structure composed of the cellulose fiber.
3 5. セルロース繊維とボリエステル繊維を用いてなる雄維桢造物を構成するセ ルロース繊維に ¾橋反応を行なう工程の前または後に、 該セル口一ス繊維を減量 加工する こ とを特徴とする繊維構造物の製造方法。  3 5. Before or after the step of performing a cross-linking reaction on the cellulose fiber constituting the male fiber structure using cellulose fiber and polyester fiber, the cell mouth fiber is reduced in weight. A method for producing a fibrous structure.
3 6. ¾求項 3 5において、 セルロース維維の含有率が 1 ()重量 D。以上 9 0重量 %以下、 ポリエステル繊維の含有率が 9 0重量 ¾以上 1 ϋ重量 Go以下であること を特徴とする繊維構造物の製造方法。 3 6. In claim 35, the content of cellulose fiber is 1 () weight D. Above 9 0 wt% or less, the production method of the fiber structure, wherein the content of the polyester fiber is less than 9 0 wt ¾ or 1 Y weight G o.
3 7. 請求項 3 .1 または 3 5において、 前記セルロースを繊維素反応型樹脂の含 浸処理を施した後、 熱処理を施すことにより架橋することを特徴とする繊維構造 物の製造方法。  37. The method for producing a fibrous structure according to claim 35, wherein the cellulose is impregnated with a cellulose-reactive resin, and then heat-treated to be crosslinked.
3 8. 請求項 3 7において、 前記熱処理の温度が 8 0 以上 2 0 ()て以下である ことを特徴とする繊維 ½造物の製造方法。  38. The method for producing a fibrous structure according to claim 37, wherein the temperature of the heat treatment is not less than 80 and not more than 20 ().
3 9. 請求項 3 4 または 3 5において、 前記セルロース繊維をホルムアルデヒ ド 蒸気にさ ら し、 触媒の存在下で熱処理を施すことにより架橋することを特徴とす る繊維構造物の製造方法。  3 9. The method for producing a fibrous structure according to claim 34 or 35, wherein the cellulose fibers are exposed to formaldehyde vapor and crosslinked by heat treatment in the presence of a catalyst.
4 0. |#求項 3 9において、 前記熱処理の温度が 6 0て以上 1 6 0て以下である ことを特徴とする繊維梢造物の製造方法。  40. | The method of claim 39, wherein the temperature of the heat treatment is not less than 60 and not more than 160.
4 1. 請求項 3 4 または 3 5において、 Η'ϊ記減量加工がセルロース分解酵素によ るセルロース繊維の減量加工であることを特徴とする繊維構造物の製造方法。 4 2. 請求項 4 1 において、 減量率が 3 以上 1 0 ¾以下であることを特徴とす る繊維構造物の製造方法。 4 1. The method for producing a fibrous structure according to claim 34, wherein the weight loss processing is weight reduction processing of cellulose fibers by a cellulolytic enzyme. 4 2. The method according to claim 41, wherein the weight loss rate is 3 or more and 10% or less. Manufacturing method of a fibrous structure.
I 3. 靖求項 4 】 において、 セルロース分解酵素の濃度が 1 g ,, 1 以上 3 ϋ g , 1 以下の水溶液に繊維構造物を浸潰して 3 0て以上 9 0て以下の温度で処理する ことを特徴とする繊維構造物の製造方法。  I 3. The fiber structure was immersed in an aqueous solution with a cellulolytic enzyme concentration of 1 g, 1 to 3 μg, 1 and treated at a temperature of 30 to 90, below A method for producing a fiber structure.
4 4. 請求項 3 5において、 前記減量加工がアル力 リ性化合物によるポリエステ ル繊維の減量加工であることを特徴とする繊維構造物の製造方法。  4 4. The method for producing a fibrous structure according to claim 35, wherein the weight-reducing process is a weight-reducing process of polyester fiber by an alkaline compound.
4 5. 請求項 '1 -1 において、 |jJ記アルカ リ性化合物の濃度が 1 ϋ g , 1 以上 3 0 0 g / 1 以下の水溶液に繊維構造物を浸溃して 5 0 以上 2 0 0 °C以下の温度で 処理することを特徴とする繊維構造物の製造方法。  4 5. In Claim '1-1, the fiber structure is immersed in an aqueous solution having a concentration of | jJ of the alkaline compound of 1 μg, 1 or more and 300 g / l or less, and 50 to 20%. A method for producing a fibrous structure, comprising treating at a temperature of 0 ° C or less.
4 6. 請求項 4 4 において、 減量率が 3 ¾以上 2 0 ¾以下であることを特徴とす る繊維構造物の製造方法。  4 6. The method for producing a fibrous structure according to claim 44, wherein the weight loss rate is 3% or more and 20% or less.
4 7. 請求項 3 I または 3 5において、 前記維維構造物が縫製品であって、 前記 減量加工をその縫製の前に行う ことを特徴とする繊維構造物の製造方法。  4 7. The method for producing a fibrous structure according to claim 3I or 35, wherein the fibrous structure is a sewn product, and the weight reduction process is performed before the sewing.
4 8. 請求項 1 1 , 1 2, 3 4 または 3 5において、 液流染色機を用いて前記減 量加工を行う ことを特微とする繊維構造物の製造方法。  4 8. The method for producing a fibrous structure according to claim 11, 12, 13, 34 or 35, wherein the weight reduction processing is performed using a liquid jet dyeing machine.
4 9. 請求項 1 1, 1 2, 3 4 または 3 5において、 気流染色機を用いて前記減 量加工を行う ことを特徴とする繊維構造物の製造方法。  4 9. The method for producing a fibrous structure according to claim 11,12, 34, or 35, wherein the weight reduction is performed using an airflow dyeing machine.
PCT/JP1995/002598 1995-12-19 1995-12-19 Fiber structures and process for the production thereof WO1997022747A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP1995/002598 WO1997022747A1 (en) 1995-12-19 1995-12-19 Fiber structures and process for the production thereof
KR1019970705653A KR19980702256A (en) 1995-12-19 1995-12-19 Fiber structure and manufacturing method
US08/894,165 US6074964A (en) 1995-12-19 1995-12-19 Fabric and a production process therefor
EP95940464A EP0814191A4 (en) 1995-12-19 1995-12-19 Fiber structures and process for the production thereof
HK98110259A HK1009470A1 (en) 1995-12-19 1998-08-27 A fabric and a production process therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/002598 WO1997022747A1 (en) 1995-12-19 1995-12-19 Fiber structures and process for the production thereof

Publications (1)

Publication Number Publication Date
WO1997022747A1 true WO1997022747A1 (en) 1997-06-26

Family

ID=14126554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002598 WO1997022747A1 (en) 1995-12-19 1995-12-19 Fiber structures and process for the production thereof

Country Status (5)

Country Link
US (1) US6074964A (en)
EP (1) EP0814191A4 (en)
KR (1) KR19980702256A (en)
HK (1) HK1009470A1 (en)
WO (1) WO1997022747A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW490515B (en) * 1998-07-23 2002-06-11 Toyo Boseki Modified hydrophobic textile product
TWI243264B (en) * 2000-12-04 2005-11-11 Fuji Photo Film Co Ltd Optical compensating sheet and process for producing it, polarizing plate and liquid crystal display device
CN1172053C (en) * 2001-02-09 2004-10-20 广东溢达纺织有限公司 Technology for knitting washing-resistant cotton fabric without ironing
CN114423308A (en) * 2019-09-26 2022-04-29 东丽株式会社 Clothing article
CN113774533A (en) * 2021-10-25 2021-12-10 罗莱生活科技股份有限公司 Acrylic fiber and polyester fiber blended yarn and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149998A (en) * 1974-07-05 1976-04-30 Strike Corp Orimonono eikyupuresuhoho
JPH06502458A (en) * 1990-10-16 1994-03-17 ジェネンコア インターナショナル インコーポレーテッド Method for improving the appearance and feel properties of woven cotton fabrics
JPH06123074A (en) * 1992-01-30 1994-05-06 Toyobo Co Ltd Fiber structure containing cellulosic fiber and its production
JPH06184941A (en) * 1992-11-10 1994-07-05 Nippon Sanmou Senshoku Kk Modified cellulosic fiber and its production
JPH07189135A (en) * 1993-12-27 1995-07-25 Unitika Ltd Processing method for cellulose-based sewn product

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3553306A (en) * 1969-10-24 1971-01-05 American Can Co Films and filaments having ion-exchange properties and process for making same
US4063885A (en) * 1976-02-06 1977-12-20 The United States Of America As Represented By The Secretary Of Agriculture Single-treatment radiation process for imparting durable soil-release properties to cotton and cotton-polyester blend fabrics
AT354972B (en) * 1977-04-14 1980-02-11 Chemiefaser Lenzing Ag GRAFT-POLYMERIZED HYDROXYL GROUP-CONTAINING POLYMER FIBERS
DE4128256C1 (en) * 1991-08-27 1993-04-15 H. Krantz Gmbh & Co, 5100 Aachen, De
US5466601A (en) * 1992-04-10 1995-11-14 Exxon Chemical Patents Inc. Selectively removing embedded lint precursors with cellulase

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149998A (en) * 1974-07-05 1976-04-30 Strike Corp Orimonono eikyupuresuhoho
JPH06502458A (en) * 1990-10-16 1994-03-17 ジェネンコア インターナショナル インコーポレーテッド Method for improving the appearance and feel properties of woven cotton fabrics
JPH06123074A (en) * 1992-01-30 1994-05-06 Toyobo Co Ltd Fiber structure containing cellulosic fiber and its production
JPH06184941A (en) * 1992-11-10 1994-07-05 Nippon Sanmou Senshoku Kk Modified cellulosic fiber and its production
JPH07189135A (en) * 1993-12-27 1995-07-25 Unitika Ltd Processing method for cellulose-based sewn product

Also Published As

Publication number Publication date
US6074964A (en) 2000-06-13
EP0814191A1 (en) 1997-12-29
KR19980702256A (en) 1998-07-15
HK1009470A1 (en) 1999-09-10
EP0814191A4 (en) 1998-10-07

Similar Documents

Publication Publication Date Title
JP2001172866A (en) Hygroscopic and exothermic cellulose-based fiber product having excellent heat retaining property
WO1997022747A1 (en) Fiber structures and process for the production thereof
JP3627411B2 (en) Textile structure and manufacturing method thereof
WO1982000164A1 (en) Fibrous product containing viscose
TW311949B (en)
JP4321691B2 (en) Processing method of fiber structure
JP2898623B1 (en) Hygroscopic heat-generating cellulose fiber and method for producing the same
JP3698204B2 (en) High whiteness hygroscopic synthetic fiber and method for producing the fiber
JP3627410B2 (en) Textile structure and manufacturing method thereof
JPH09158054A (en) Fiber structure and its production
JPH09256278A (en) Hygroscopic fiber structure
JP3197510B2 (en) Method for producing crimped fabric made of artificial cellulosic fiber
JP3229307B2 (en) Modification method of artificial cellulosic fiber
JPS6366946B2 (en)
JP3716984B2 (en) Method for producing hygroscopic fiber
JPH0835175A (en) Production of fiber structure having wrinkle resistance
JPH064934B2 (en) Method for processing pseudo-hema of cellulose fibers
JPH055275A (en) Production of processed cloth of silk fibroin
JP3317006B2 (en) Processing method of cellulosic fiber
JPS6331589B2 (en)
JP2003166172A (en) Textile treatment agent, textile structure and method for producing the same
JPH09158043A (en) Fiber structure and its production
JPH08269872A (en) Production of fiber structural material having shape stability
KR100477468B1 (en) Method of producing high-washability acetate textiles for retaining antibacterial function
JP2001172870A (en) Moisture-absorbing fiber structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95197815.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019970705653

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995940464

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08894165

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995940464

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970705653

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1995940464

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995940464

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019970705653

Country of ref document: KR