JPH09158043A - Fiber structure and its production - Google Patents

Fiber structure and its production

Info

Publication number
JPH09158043A
JPH09158043A JP31094095A JP31094095A JPH09158043A JP H09158043 A JPH09158043 A JP H09158043A JP 31094095 A JP31094095 A JP 31094095A JP 31094095 A JP31094095 A JP 31094095A JP H09158043 A JPH09158043 A JP H09158043A
Authority
JP
Japan
Prior art keywords
fiber structure
structure according
less
weight
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31094095A
Other languages
Japanese (ja)
Inventor
Toshinori Hara
稔典 原
Jiro Amano
慈朗 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP31094095A priority Critical patent/JPH09158043A/en
Priority to TW84113882A priority patent/TW311949B/zh
Priority to MYPI96000870A priority patent/MY133117A/en
Publication of JPH09158043A publication Critical patent/JPH09158043A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a cellulosic fiber structure, having the shape stability and a soft touch feeling and useful for undershirt fabrics, etc., by carrying out the weight reduction treatment of a cellulosic fiber before or after cross-linking reactional treatment of the cellulosic fiber and respectively specifying washing shrinkage factor and a measured value of flexural rigidity determined by measurement with a Kawabata Evaluation System(KES) (R)/Metsuke [mass of a woven fabric per unit area (g/m<2> )] ratio. SOLUTION: The weight reduction processing of cellulosic fiber with a cellulolytic enzyme, etc., is carried out before or after cross-linking reactional treatment thereof by treatment with a cellulose reactional type resin. The washing shrinkage factor of the cellulosic textile structure is <=3% and the ratio B/W of a measured value B of flexural rigidity measured determined by measurement with the KES (R) to the Metsuke W is 0.0001-0.005.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、セルロース繊維か
らなる繊維構造物であって、形態安定性を有ししかも柔
軟な風合いをもつ繊維構造物およびその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber structure composed of cellulosic fibers, which has shape stability and a soft texture, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、セルロース繊維からなる繊維構造
物の形態安定加工には繊維素反応型樹脂もしくはホルム
アルデヒド蒸気による樹脂加工が行われてきた。しか
し、高度の形態安定性能を得るためには大量の樹脂を付
与することが必要であり、その場合に繊維構造物の風合
いが硬化することが問題となっていた。その問題の克服
のためには各種柔軟剤の利用などが一般的に行われてい
るが、その柔軟化効果には限界があった。
2. Description of the Related Art Conventionally, a fiber-reactive resin or a resin processing with formaldehyde vapor has been carried out for morphologically stable processing of a fiber structure composed of cellulose fibers. However, in order to obtain a high degree of morphological stability, it is necessary to add a large amount of resin, in which case the texture of the fiber structure is hardened. Various softening agents are generally used to overcome the problem, but the softening effect is limited.

【0003】また特開平7−189135号公報に見ら
れるように、縫製後の製品に対してホルムアルデヒド蒸
気による形態安定加工を施した後、セルロース分解酵素
で処理する方法が提案されているが、この方法では縫製
品の各部を均一に酵素処理することは難しく、縫製品の
品位が大きく損なわれたり局所的に大きく強度が低下す
ることが問題であった。また、縫製品での形態安定加工
と酵素処理には特別な装置を必要とするため、容易には
行いにくいことも問題であった。
As disclosed in Japanese Patent Application Laid-Open No. 7-189135, a method has been proposed in which a sewn product is subjected to form-stabilizing treatment with formaldehyde vapor and then treated with a cellulolytic enzyme. According to the method, it is difficult to uniformly treat each part of the sewn product with the enzyme, and there has been a problem that the quality of the sewn product is greatly impaired or the strength is locally greatly reduced. Another problem is that it is difficult to carry out morphologically stable processing and enzyme treatment of sewn products because it requires a special device.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
のような形態安定加工による風合いの硬化の問題点を克
服し、セルロース繊維からなる繊維構造物であって形態
安定性を有ししかも柔軟な風合いをもつ繊維構造物とそ
の製造方法を得ることにある。
The object of the present invention is to overcome the problems of the hardening of the texture due to the above-described morphological stability processing, and to have a morphological stability of a fiber structure composed of cellulose fibers. It is to obtain a fiber structure having a soft texture and a manufacturing method thereof.

【0005】さらに本発明の目的は、上記の縫製品での
加工法の問題点を克服し、均一な酵素処理により品位が
高く、局所的な強度低下のない製品を得ることにある。
A further object of the present invention is to overcome the problems of the above-mentioned processing method for a sewn product, and to obtain a product having a high quality by a uniform enzyme treatment and having no local strength reduction.

【0006】[0006]

【課題を解決するための手段】本発明の繊維構造物は、
上記目的を達するため、次の構成を有する。
The fibrous structure of the present invention comprises:
In order to achieve the above purpose, it has the following configuration.

【0007】すなわち、セルロース繊維からなる繊維構
造物において、洗濯収縮率が3%以下であり、かつKE
S(Kawabata Evaluation System)測定による曲げ剛性
測定値(B)と目付(W)の比B/Wが0.0001以
上0.005以下であることを特徴とする繊維構造物で
ある。
That is, in a fiber structure composed of cellulose fibers, the washing shrinkage rate is 3% or less, and KE
A fiber structure characterized in that a ratio B / W of a flexural rigidity measurement value (B) and a basis weight (W) measured by S (Kawabata Evaluation System) is 0.0001 or more and 0.005 or less.

【0008】また、本発明の繊維構造物の製造方法は、
次の構成を有する。
Further, the method for producing a fiber structure of the present invention is
It has the following configuration.

【0009】すなわち、繊維構造物を構成するセルロー
ス繊維に架橋反応を行なう工程の前または後に、該セル
ロース繊維を減量加工することを特徴とする繊維構造物
の製造方法である。
That is, the method for producing a fiber structure is characterized in that the cellulose fiber is subjected to a weight reduction process before or after the step of subjecting the cellulose fiber constituting the fiber structure to a crosslinking reaction.

【0010】[0010]

【発明の実施の形態】以下、本発明について詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0011】本発明において、セルロース繊維として
は、綿、麻などの天然セルロース繊維、レーヨン、ポリ
ノジック、キュプラ、テンセルなどの再生セルロース繊
維が挙げられるが、これに限定されるものではない。ま
た、セルロース繊維からなる繊維構造物とは、実質的に
セルロース繊維からなる織物、編物若しくは不織布、ま
たはこれらの縫製品などを挙げることができる。
In the present invention, the cellulose fibers include, but are not limited to, natural cellulose fibers such as cotton and hemp, and regenerated cellulose fibers such as rayon, polynosic, cupra and tencel. The fiber structure composed of cellulose fibers may be a woven fabric, a knitted fabric or a non-woven fabric substantially composed of cellulose fibers, or a sewing product thereof.

【0012】本発明でいう洗濯収縮率とはJIS−L1
042による方法で測定される値、若しくは、これと同
様の結果が得られるようなJIS−L1042による方
法から洗濯試験機や処理条件などを変更した方法で測定
される値をいう。
The washing shrinkage rate as used in the present invention is JIS-L1.
The value measured by the method according to 042, or the value measured by the method according to JIS-L1042 in which a similar result is obtained by changing the washing tester or the processing conditions.

【0013】本発明の繊維構造物の洗濯収縮率は3%以
下であることが必要である。この洗濯収縮率が3%を超
えると形態安定性が不良となる。この洗濯収縮率が2%
であることが好ましく、1%以下であることはより好ま
しい。
The washing shrinkage of the fiber structure of the present invention must be 3% or less. If the washing shrinkage ratio exceeds 3%, the morphological stability becomes poor. This washing shrinkage rate is 2%
Is preferable and 1% or less is more preferable.

【0014】本発明において、KES(Kawabata Evalu
ation System)測定とは、川端季雄著、繊維機械学会誌
(繊維工学), vol.26, No.10, P721-P728(1973)に記載
されているように、KESの曲げ特性測定機(カトーテ
ック製)を用いて繊維構造物を曲げたときの各曲率での
反発力を測定するものである。そして、曲率0.5から
1.5の間での反発力の平均値をB(単位:g・cm2
/cm)とし、さらに繊維構造物の縦、横の2つの方向
それぞれについてこの測定を行い、平均値をBとする。
このBの値と繊維構造物の目付W(単位:g/m2 )と
の比B/Wを求めるものである。
In the present invention, KES (Kawabata Evalu
ation system) is a KES bending property measuring machine (Kato), as described in Tokuo Kawabata, Textile Machinery Society of Japan (Textile Engineering), vol.26, No.10, P721-P728 (1973). TEC) is used to measure the repulsive force at each curvature when the fiber structure is bent. Then, the average value of the repulsive force between the curvatures of 0.5 and 1.5 is B (unit: g · cm 2
/ Cm), and further, this measurement is performed in each of two directions of the fiber structure, that is, the longitudinal direction and the lateral direction, and the average value is defined as B.
The ratio B / W between the value of B and the basis weight W (unit: g / m 2 ) of the fiber structure is obtained.

【0015】本発明の繊維構造物は、このKES測定に
よる曲げ剛性測定値(B)と目付(W)の比B/Wが
0.0001以上0.005以下であることが必要であ
る。
In the fiber structure of the present invention, the ratio B / W of the flexural rigidity measurement value (B) by the KES measurement and the basis weight (W) needs to be 0.0001 or more and 0.005 or less.

【0016】このKES測定によるB/Wが0.005
を超える場合は、風合いが硬くなり品位が低下する。こ
のB/Wが0.004以下であることが好ましく、0.
003以下であることはより好ましい。
B / W by this KES measurement is 0.005
If it exceeds, the texture becomes hard and the quality deteriorates. This B / W is preferably 0.004 or less, and 0.
It is more preferably 003 or less.

【0017】次に、本発明の繊維構造物の製造方法につ
いて説明する。
Next, a method for manufacturing the fiber structure of the present invention will be described.

【0018】本発明の繊維構造物は、セルロース繊維を
構成するセルロースを架橋することによって繊維構造物
が洗濯後にしわになるのを防ぐという、いわゆる形態安
定加工を施すことにより得られるものである。
The fiber structure of the present invention is obtained by subjecting the fiber structure to wrinkling after washing by cross-linking the cellulose constituting the cellulose fiber, that is, by subjecting it to a so-called morphological stabilizing process.

【0019】セルロースを架橋する手法としては、繊維
素反応型樹脂で繊維構造物を処理する方法、繊維構造物
をホルムアルデヒド蒸気にさらし、触媒の存在下で熱処
理する方法などが挙げられる。
Examples of the method for cross-linking cellulose include a method of treating a fiber structure with a fibrin reaction type resin, a method of exposing the fiber structure to formaldehyde vapor, and a heat treatment in the presence of a catalyst.

【0020】ここで繊維素反応型樹脂としては、ジメチ
ロールエチレン尿素、ジメチロールウロン、ジメチロー
ルトリアゾン、ジメチロールプロピレン尿素、ジメチロ
ールヒドロキシエチレン尿素などを挙げることができ
る。さらに繊維素反応型樹脂で繊維構造物を処理する方
法としては、例えば、前記樹脂の水溶液を触媒とともに
繊維構造物にパディングで付与した後、80℃以上20
0℃以下の温度で熱処理する方法を好ましく採用でき
る。触媒としては塩化マグネシウムなどの無機金属塩を
用いることができる。
Examples of the fiber-reactive resin include dimethylol ethylene urea, dimethylol urone, dimethylol triazone, dimethylol propylene urea, dimethylol hydroxyethylene urea and the like. Further, as a method for treating the fiber structure with the fibrin-reactive resin, for example, an aqueous solution of the resin is applied to the fiber structure together with a catalyst by padding, and then 80 ° C. or higher 20
A method of heat treatment at a temperature of 0 ° C. or lower can be preferably adopted. An inorganic metal salt such as magnesium chloride can be used as the catalyst.

【0021】一方、ホルムアルデヒド蒸気は、ホルムア
ルデヒド水溶液やパラホルムアルデヒドなどを加熱する
ことで発生させることができる。このホルムアルデヒド
蒸気に繊維構造物をさらした後の熱処理は60℃以上1
60℃以下で行うのが好ましく、その際の触媒としては
硫酸、亜硫酸などの酸性物質を用いることができる。
On the other hand, formaldehyde vapor can be generated by heating an aqueous formaldehyde solution or paraformaldehyde. The heat treatment after exposing the fiber structure to this formaldehyde vapor is 60 ° C or higher 1
It is preferably performed at 60 ° C. or lower, and an acidic substance such as sulfuric acid or sulfurous acid can be used as a catalyst in that case.

【0022】繊維素反応型樹脂および/またはホルムア
ルデヒドによる架橋は、液体クロマトグラフィーやNM
Rなど、一般的に使用されている各種分析法を用いて検
知できる。
Crosslinking with a fibrin reactive resin and / or formaldehyde is carried out by liquid chromatography or NM.
It can be detected using various commonly used analysis methods such as R.

【0023】本発明においては、前記した形態安定加工
に加えて、減量加工を施すことが必要である。
In the present invention, in addition to the above-described shape-stable processing, it is necessary to carry out weight reduction processing.

【0024】本発明における減量加工とは、繊維構造物
を構成する繊維の一部を分解除去し、その重量を減少せ
しめる処理をいう。セルロース繊維についての減量加工
法として一般的に知られているのはセルロース分解酵素
による処理や酸による加水分解などが知られているが、
本発明ではセルロース分解酵素による処理を用いること
が望ましい。
The weight-reducing process in the present invention means a treatment for decomposing and removing a part of the fibers constituting the fiber structure to reduce the weight thereof. Generally known as a weight loss processing method for cellulose fibers is treatment with a cellulolytic enzyme or hydrolysis with an acid,
In the present invention, it is desirable to use the treatment with a cellulolytic enzyme.

【0025】セルロース分解酵素としては、トリコデル
マ(Tricoderma)属、フミコラ(Fumicola)属、アスペ
ルギルス(Aspergills)属、バチルス(Bacillus)属な
どの菌体を培養して得られるものを用いることができ
る。これらのセルロース分解酵素は既に市販されてお
り、そのものをそのまま用いて差し支えない。
As the cellulolytic enzyme, those obtained by culturing bacterial cells of the genus Tricoderma, the genus Fumicola, the genus Aspergills, the genus Bacillus and the like can be used. These cellulolytic enzymes are already on the market and may be used as they are.

【0026】本発明において、減量加工の減量率とは、
加工の前後で分解除去された部分の割合をいい、具体的
には、(重量減少分/加工前の重量)×100から算出
される。
In the present invention, the weight reduction rate of weight reduction processing is
It refers to the ratio of the portion that is decomposed and removed before and after processing, and is specifically calculated from (weight loss / weight before processing) × 100.

【0027】本発明において、繊維構造物に柔軟性を付
与しつつ強度を保持するという観点から、減量率として
は3%以上10%以下が好ましい。
In the present invention, the weight reduction rate is preferably 3% or more and 10% or less from the viewpoint of imparting flexibility to the fiber structure while maintaining strength.

【0028】減量加工方法としては、例えば、前述の酵
素の濃度が1g/l以上30g/l%以下の水溶液に、
繊維構造物を浸漬して30℃以上90℃以下の温度で処
理すればよい。
As a method for reducing weight, for example, an aqueous solution having the above-mentioned enzyme concentration of 1 g / l or more and 30 g / l% or less,
The fibrous structure may be immersed and treated at a temperature of 30 ° C. or higher and 90 ° C. or lower.

【0029】本発明において、セルロースの架橋反応と
減量加工の処理の順序は、架橋反応を施した後に減量加
工を施してもよいし、逆に減量加工を先に施してもよ
い。形態安定加工を先に施す場合の利点は減量加工によ
り大きな繊維間空隙が生じるため、風合い柔軟化効果が
大きくなることである。逆に減量加工を先に施すと生じ
た繊維間空隙が形態安定加工の際に縮小するため、風合
い柔軟化効果は小さくなるが、形態安定効果は大きくな
る。目的とする特性に応じて適宜選択すればよい。
In the present invention, the order of the cross-linking reaction of cellulose and the weight-reducing process may be that after the cross-linking reaction, the weight-reducing process may be performed, or conversely, the weight-reducing process may be performed first. The advantage of performing the shape-stabilizing process first is that a large inter-fiber void is generated by the weight-reducing process, so that the effect of softening the texture becomes large. On the contrary, when the weight reduction process is performed first, the inter-fiber voids generated are reduced during the morphological stabilization process, so that the softening effect on the texture is reduced, but the morphological stabilization effect is increased. It may be appropriately selected according to the desired characteristics.

【0030】なお、繊維構造物をホルムアルデヒド蒸気
にさらし、触媒の存在下で熱処理する形態安定加工は一
般的に縫製された後の製品に対して行われることが多い
が、本発明における減量加工はこの縫製後の製品ではな
く縫製前の布帛に対して行うのが望ましい。その理由
は、縫製後の製品の処理では縫製品の各部を均一に処理
することは難しく、縫製品の品位が大きく損なわれたり
局所的に大きく強度が低下することが問題であるためで
ある。また、縫製品での形態安定加工や減量加工には特
別な装置を必要とするため、容易には行いにくい。本発
明では減量加工を縫製前の布帛の状態で行うことでこの
ような問題を回避することができる。
The shape-stabilizing process in which the fiber structure is exposed to formaldehyde vapor and heat-treated in the presence of a catalyst is generally performed on the product after being sewn. It is desirable to do this not for the product after sewing but for the cloth before sewing. The reason is that it is difficult to uniformly process each part of the sewn product in the processing of the sewn product, and there is a problem that the quality of the sewn product is greatly impaired or the strength is locally greatly reduced. In addition, it is difficult to easily perform the shape-stabilizing process and the weight-reducing process on the sewn product because a special device is required. In the present invention, such a problem can be avoided by performing the weight reduction processing in the state of the cloth before sewing.

【0031】[0031]

【実施例】以下、実施例を挙げて本発明をさらに具体的
に説明する。
The present invention will now be described more specifically with reference to examples.

【0032】なお、実施例中の洗濯収縮率、風合いの柔
軟性の評価は次の方法で行なった。
The evaluation of the washing shrinkage ratio and the softness of the texture in the examples was carried out by the following methods.

【0033】(1)洗濯収縮率 ここで洗濯収縮率の測定は、家庭用洗濯機を用いてJI
S−L1042記載の洗濯収縮率試験方法と同等の結果
が得られるよう下記の処理条件で行った。
(1) Washing shrinkage rate The washing shrinkage rate was measured by a JI using a household washing machine.
It carried out on the following processing conditions so that the result equivalent to the washing shrinkage rate test method of S-L1042 might be obtained.

【0034】約50cm×約50cmの試験片を3枚採
取し、たて、よこそれぞれに3箇所に150mm間隔で
長さ300mmの印を付けた。次に家庭用洗濯機(東芝
VH−1150形)に洗剤“ザブ”(花王株式会社登録
商標)を0.2%の濃度で含む液25リットルを入れ、
試験片と追加布を合わせた重さが約500gになるよう
に調整した後、40℃で25分間洗濯した。さらに40
℃で10分間すすぎを行い、脱水機で脱水した。その後
試験片をしぼらずに取り出し、乾燥濾紙の間にはさんで
軽く脱水した後水平においた金網の上で自然乾燥させ
た。最後に試験片を平らな台に置き、不自然なしわや張
力を除いてたて、よこそれぞれの印間の長さをはかり、
たて、よこ別々に3個の平均値を求めた。収縮率は下式
によって算定され、たて、よこそれぞれ3枚の平均値で
表した。
Three test pieces of about 50 cm × about 50 cm were taken, and vertical marks were made on each of the three pieces at intervals of 150 mm with a length of 300 mm. Next, put 25 liters of a liquid containing a detergent "Zab" (registered trademark of Kao Corporation) at a concentration of 0.2% into a household washing machine (Toshiba VH-1150 type),
The weight of the test piece and the additional cloth was adjusted to about 500 g, and the cloth was washed at 40 ° C. for 25 minutes. Further 40
It rinsed at 10 degreeC for 10 minutes, and dehydrated with the dehydrator. Thereafter, the test piece was taken out without squeezing, lightly dewatered by sandwiching it between dry filter papers, and then naturally dried on a horizontally placed wire net. Finally, place the test piece on a flat table, remove the artificial wrinkles and tension, measure the length between the marks on each side,
Freshly and horizontally, three average values were obtained separately. The shrinkage rate was calculated by the following formula, and was expressed as an average value of 3 sheets for each of vertical and horizontal.

【0035】 収縮率(%)=(300−L)/300×100 ここで、Lは処理後のたてまたはよこの印間の長さの平
均値(mm)を表す。
Shrinkage (%) = (300−L) / 300 × 100 Here, L represents the average value (mm) of the length between the vertical marks and the horizontal marks after the treatment.

【0036】(2)減量率 減量率は、減量加工を行う前の繊維構造物の絶乾重量
と、加工を行った後の繊維構造物の絶乾重量から、次式
により算出した。
(2) Weight loss rate The weight loss rate was calculated from the absolute dry weight of the fiber structure before weight reduction processing and the absolute dry weight of the fiber structure after processing by the following formula.

【0037】減量率(%)=(加工前の繊維構造物の絶
乾重量−加工後の繊維構造物の絶乾重量)/(加工前の
繊維構造物の絶乾重量)×100 (3)B/W KES(Kawabata Evaluation System)測定機を用いて
の曲げ剛性のたて、よこの平均値B(単位:g・cm2
/cm)と繊維構造物の目付W(単位:g/m2 )との
比B/Wを測定した。
Weight loss rate (%) = (absolute dry weight of fiber structure before processing-absolute dry weight of fiber structure after processing) / (absolute dry weight of fiber structure before processing) × 100 (3) B / W KES (Kawabata Evaluation System) Bending rigidity using a measuring machine, vertical mean value B (unit: g · cm 2
/ Cm) and the basis weight W (unit: g / m 2 ) of the fiber structure, the ratio B / W was measured.

【0038】実施例1 精練、漂白処理を施した綿織物(糸使い:経糸45番
手、緯糸45番手、平織物、織密度:経115本/inch
×緯76本/inch、目付:110g/m2 )に、ジメチ
ロールヒドロキシエチレン尿素を6%、触媒として塩化
マグネシウム6水和物を2%含む水溶液をパディングに
より付与した。しぼり率は90%であった。それからこ
の綿織物を100℃で3分間乾燥した後、160℃で1
分間熱処理した。
Example 1 Scoured and bleached cotton fabric (use of yarn: 45 count warp, 45 count weft, plain fabric, weave density: 115 warp / inch
An aqueous solution containing 6% of dimethylolhydroxyethyleneurea and 2% of magnesium chloride hexahydrate as a catalyst was applied by padding to × weft 76 lines / inch and basis weight: 110 g / m 2 ). The squeezing rate was 90%. Then, the cotton fabric was dried at 100 ° C for 3 minutes and then at 160 ° C for 1 minute.
Heat treated for minutes.

【0039】その後セルロース分解酵素(セルソフト
L、ノボノルディスク社製)を5g/lの濃度で含む処
理液中にその綿織物を浸漬し、60℃で1時間処理し
た。この結果、酵素処理前の綿織物に比べて織物の重量
は5.2%減少した。
Thereafter, the cotton fabric was dipped in a treatment solution containing a cellulolytic enzyme (Cellsoft L, manufactured by Novo Nordisk) at a concentration of 5 g / l and treated at 60 ° C. for 1 hour. As a result, the weight of the fabric was reduced by 5.2% as compared with the cotton fabric before the enzyme treatment.

【0040】これらの2つの処理の後、染色、仕上げ処
理を通常の方法で行い、その後上記の方法で織物の収縮
率と曲げ剛性を測定すると、洗濯収縮率は、たて1.0
%、よこ0.8%で、Bは0.270g・cm2 /cm
で、Wは104g/m2 であり、B/Wは0.0026
であった。
After these two treatments, dyeing and finishing treatments were carried out by a usual method, and then the shrinkage ratio and bending rigidity of the woven fabric were measured by the above-mentioned method.
%, Width 0.8%, B is 0.270 g · cm 2 / cm
And W is 104 g / m 2 , and B / W is 0.0026.
Met.

【0041】一方、これらの2つの処理が施されていな
い、精練、漂白処理をした直後の綿織物の洗濯収縮率は
たて5.5%、よこ5.0%で、Bは0.902g・c
2/cmで、Wは110g/m2 であり、B/Wは
0.0082であった。
On the other hand, the washing shrinkage of the cotton fabric which has not been subjected to these two treatments and which has just been subjected to the scouring and bleaching treatment is 5.5% and 5.0%, and B is 0.902 g. c
At m 2 / cm, W was 110 g / m 2 and B / W was 0.0082.

【0042】実施例2 精練、漂白処理を施した綿織物(糸使い:経糸45番
手、緯糸45番手、平織物、織密度:経115本/inch
×緯76本/inch、目付:110g/m2 )を、セルロ
ース分解酵素(セルソフトL、ノボノルディスク社製)
を5g/lの濃度で含む処理液中に浸漬し、60℃で1
時間処理した。この結果、酵素処理前の綿織物に比べて
織物の重量は7.5%減少した。
Example 2 Cotton fabric which has been scoured and bleached (use of yarn: warp yarn 45 count, weft yarn 45 count, plain fabric, weave density: warp 115 yarns / inch
× Weft 76 lines / inch, basis weight: 110 g / m 2 ), cellulolytic enzyme (CellSoft L, manufactured by Novo Nordisk)
Is immersed in a treatment liquid containing 5 g / l of the solution at 60 ° C. for 1 hour.
Time processed. As a result, the weight of the fabric was reduced by 7.5% as compared with the cotton fabric before the enzyme treatment.

【0043】その後、この綿織物にジメチロールヒドロ
キシエチレン尿素を6%、触媒として塩化マグネシウム
6水和物を2%含む水溶液をパディングにより付与し
た。しぼり率は90%であった。この綿織物を100℃
で3分間乾燥した後、160℃で1分間熱処理した。
Thereafter, this cotton fabric was padded with an aqueous solution containing 6% of dimethylolhydroxyethyleneurea and 2% of magnesium chloride hexahydrate as a catalyst. The squeezing rate was 90%. This cotton fabric is 100 ℃
After being dried for 3 minutes, it was heat-treated at 160 ° C. for 1 minute.

【0044】これらの2つの処理の後、染色、仕上げ処
理を通常の方法で行ったところ、洗濯収縮率は、たて
0.8%、よこ0.7%で、Bは0.305g・cm2
/cmで、Wは102g/m2 であり、B/Wは0.0
030であった。
After these two treatments, dyeing and finishing treatments were carried out by the usual methods. The washing shrinkage ratio was 0.8% and 0.7%, and B was 0.305 g.cm. 2
/ Cm, W is 102 g / m 2 , and B / W is 0.0
It was 030.

【0045】実施例3 精練、漂白処理を施した綿織物(糸使い:経糸45番
手、緯糸45番手、平織物、織密度:経115本/inch
×緯76本/inch、目付:110g/m2 )を、密閉し
た反応器中でパラホルムアルデヒドから発生させたホル
ムアルデヒド蒸気に5分間さらした。さらしている間の
反応器の温度は60℃であった。次に反応器に亜硫酸ガ
スを流入して布をさらした後、反応器の温度を160℃
に上昇させ3分間処理した。
Example 3 Cotton fabric which had been scoured and bleached (use of yarn: 45th warp, 45th weft, plain weave, weaving density: 115 warp / inch)
× weft 76 lines / inch, basis weight: 110 g / m 2 ) was exposed to formaldehyde vapor generated from paraformaldehyde for 5 minutes in a closed reactor. The reactor temperature during the exposure was 60 ° C. Then, after the sulfurous acid gas was introduced into the reactor to expose the cloth, the temperature of the reactor was changed to 160 ° C.
And treated for 3 minutes.

【0046】その後セルロース分解酵素(セルソフト
L、ノボノルディスク社製)を5g/lの濃度で含む処
理液中にこの綿織物を浸漬し、60℃で1時間処理し
た。この結果、酵素処理前の綿織物に比べて織物の重量
は6.5%減少した。
Thereafter, this cotton fabric was dipped in a treatment solution containing a cellulolytic enzyme (CellSoft L, manufactured by Novo Nordisk) at a concentration of 5 g / l, and treated at 60 ° C. for 1 hour. As a result, the weight of the fabric was reduced by 6.5% as compared with the cotton fabric before the enzyme treatment.

【0047】これらの2つの処理の後、染色、仕上げ処
理を通常の方法で行い、その後上記の方法で洗濯収縮率
と曲げ剛性を測定すると、洗濯収縮率は、たて1.0
%、ヨコ0.9%で、Bは0.237g・cm2 /cm
で、Wは103g/m2 であり、B/Wは0.0023
であった。
After these two treatments, dyeing and finishing treatments are carried out by a usual method, and then the washing shrinkage ratio and the bending rigidity are measured by the above-mentioned methods.
%, Horizontal 0.9%, B is 0.237 g · cm 2 / cm
And W is 103 g / m 2 , and B / W is 0.0023.
Met.

【0048】実施例4 精練、漂白処理を施した綿織物(糸使い:経糸45番
手、緯糸45番手、平織物、織密度:経115本/inch
×緯76本/inch、目付:110g/m2 )を、セルロ
ース分解酵素(セルソフトL、ノボノルディスク社製)
を5g/lの濃度で含む処理液中に浸漬し、60℃で1
時間処理した。この結果、酵素処理前の綿織物に比べて
織物の重量は7.3%減少した。
Example 4 Cotton fabric that had been scoured and bleached (yarn usage: warp 45 count, weft 45 count, plain fabric, weave density: 115 warp / inch
× Weft 76 lines / inch, basis weight: 110 g / m 2 ), cellulolytic enzyme (CellSoft L, manufactured by Novo Nordisk)
Is immersed in a treatment liquid containing 5 g / l of the solution at 60 ° C. for 1 hour.
Time processed. As a result, the weight of the fabric was reduced by 7.3% as compared with the cotton fabric before the enzyme treatment.

【0049】その後、この綿織物を密閉した反応器中に
導入し、パラホルムアルデヒドから発生させたホルムア
ルデヒド蒸気に5分間さらした。さらしている間の反応
器の温度は60℃であった。次に反応器に亜硫酸ガスを
流入して布をさらした後、反応器の温度を160℃に上
昇させ3分間処理した。
The cotton fabric was then introduced into a closed reactor and exposed to formaldehyde vapor generated from paraformaldehyde for 5 minutes. The reactor temperature during the exposure was 60 ° C. Next, after sulfurous acid gas was flown into the reactor to expose the cloth, the temperature of the reactor was raised to 160 ° C. and treated for 3 minutes.

【0050】これらの2つの処理の後、染色、仕上げ処
理を通常の方法で行い、その後上記の方法で洗濯収縮率
と曲げ剛性を測定すると、洗濯収縮率は、たて0.8
%、よこ0.8%で、Bは0.286g・cm2 /cm
で、Wは102g/m2 であり、B/Wは0.0028
であった。
After these two treatments, dyeing and finishing treatments were carried out by a usual method, and then the washing shrinkage ratio and the bending rigidity were measured by the above-mentioned methods.
%, Width 0.8%, B is 0.286 g · cm 2 / cm
And W is 102 g / m 2 , and B / W is 0.0028.
Met.

【0051】比較例1 精練、漂白処理を施した綿織物(糸使い:経糸45番
手、緯糸45番手、平織物、織密度:経115本/inch
×緯76本/inch、目付:110g/m2 )に、ジメチ
ロールヒドロキシエチレン尿素を6%、触媒として塩化
マグネシウム6水和物を2%含む水溶液をパディングに
より付与した。しぼり率は90%であった。それからこ
の綿織物を100℃で3分間乾燥した後、160℃で1
分間熱処理した。
Comparative Example 1 Scoured and bleached cotton fabric (use of yarn: 45 count warp, 45 count weft, plain fabric, weave density: 115 warp / inch
An aqueous solution containing 6% of dimethylolhydroxyethyleneurea and 2% of magnesium chloride hexahydrate as a catalyst was applied by padding to × weft 76 lines / inch and basis weight: 110 g / m 2 ). The squeezing rate was 90%. Then, the cotton fabric was dried at 100 ° C for 3 minutes and then at 160 ° C for 1 minute.
Heat treated for minutes.

【0052】この後、洗濯収縮率と曲げ剛性を測定する
と、洗濯収縮率は、たて0.9%、よこ0.9%で、B
は0.957g・cm2 /cmで、Wは110g/m2
であり、B/Wは0.0087であった。この場合、形
態安定性は得られたが柔軟性に劣るものであった。
After that, when the washing shrinkage ratio and the flexural rigidity are measured, the washing shrinkage ratio is 0.9% vertically, 0.9% horizontally, and B
Is 0.957 g · cm 2 / cm and W is 110 g / m 2
And B / W was 0.0087. In this case, morphological stability was obtained but flexibility was poor.

【0053】比較例2 精練、漂白処理を施した綿織物(糸使い:経糸45番
手、緯糸45番手、平織物、織密度:経115本/inch
×緯76本/inch、目付:110g/m2 )を、密閉し
た反応器中でパラホルムアルデヒドから発生させたホル
ムアルデヒド蒸気に5分間さらした。さらしている間の
反応器の温度は60℃であった。次に反応器に亜硫酸ガ
スを流入して布をさらした後、反応器の温度を160℃
に上昇させ3分間処理した。
Comparative Example 2 Scoured and bleached cotton fabric (yarn use: warp 45 count, weft 45 count, plain fabric, weave density: 115 warp / inch
× weft 76 lines / inch, basis weight: 110 g / m 2 ) was exposed to formaldehyde vapor generated from paraformaldehyde for 5 minutes in a closed reactor. The reactor temperature during the exposure was 60 ° C. Then, after the sulfurous acid gas was introduced into the reactor to expose the cloth, the temperature of the reactor was changed to 160 ° C.
And treated for 3 minutes.

【0054】この後、洗濯収縮率と曲げ剛性を測定する
と、洗濯収縮率は、たて1.0%、よこ1.0%で、B
は0.913g・cm2 /cmで、Wは110g/m2
であり、B/Wは0.0083であった。この場合、形
態安定性は得られたが柔軟性に劣るものであった。
After that, when the washing shrinkage ratio and the bending rigidity were measured, the washing shrinkage ratio was 1.0% vertically and 1.0% horizontally, and
Is 0.913 g · cm 2 / cm and W is 110 g / m 2
And B / W was 0.0083. In this case, morphological stability was obtained but flexibility was poor.

【0055】比較例3 精練、漂白処理を施した綿織物(糸使い:経糸45番
手、緯糸45番手、平織物、織密度:経115本/inch
×緯76本/inch、目付:110g/m2 )を、セルロ
ース分解酵素(セルソフトL、ノボノルディスク社製)
を5g/lの濃度で含む処理液中に浸漬し、60℃で1
時間処理した。この結果、酵素処理前の綿織物に比べて
織物の重量は7.5%減少した。
Comparative Example 3 Cotton fabric that has been scoured and bleached (yarn usage: warp 45 count, weft 45 count, plain fabric, weave density: 115 warp / inch
× Weft 76 lines / inch, basis weight: 110 g / m 2 ), cellulolytic enzyme (CellSoft L, manufactured by Novo Nordisk)
Is immersed in a treatment liquid containing 5 g / l of the solution at 60 ° C. for 1 hour.
Time processed. As a result, the weight of the fabric was reduced by 7.5% as compared with the cotton fabric before the enzyme treatment.

【0056】この後、洗濯収縮率と曲げ剛性を測定する
と、洗濯収縮率は、たて5.5%、よこ5.3%で、B
は0.275g・cm2 /cmで、Wは102g/m2
であり、B/Wは0.0027であった。この場合、柔
軟性は得られたが形態安定性に劣るものであった。
After that, when the washing shrinkage ratio and the bending rigidity are measured, the washing shrinkage ratio is 5.5% vertically and 5.3% horizontally, and B
Is 0.275 g · cm 2 / cm, W is 102 g / m 2
And B / W was 0.0027. In this case, flexibility was obtained but morphological stability was poor.

【0057】実施例5〜8 繊維素反応型樹脂の種類を変更したこと以外は実施例1
と同様に行った。結果を表1に示す。いずれも優れた形
態安定性と柔軟性を有していた。
Examples 5 to 8 Example 1 except that the kind of the fibrin reactive resin was changed.
The same was done. Table 1 shows the results. All had excellent morphological stability and flexibility.

【0058】[0058]

【表1】 実施例9〜12 乾燥温度と熱処理温度を変更したこと以外は実施例1と
同様に行った。結果を表2に示す。いずれも優れた形態
安定性と柔軟性を有していた。
[Table 1] Examples 9 to 12 The same procedure as in Example 1 was carried out except that the drying temperature and the heat treatment temperature were changed. Table 2 shows the results. All had excellent morphological stability and flexibility.

【0059】[0059]

【表2】 実施例13〜15 ホルムアルデヒド蒸気の温度と熱処理温度を変更したこ
と以外は実施例3と同様に行った。結果を表3に示す。
いずれも高い形態安定性と柔軟性を有していた。
[Table 2] Examples 13 to 15 The same procedure as in Example 3 was performed except that the temperature of the formaldehyde vapor and the heat treatment temperature were changed. Table 3 shows the results.
All had high morphological stability and flexibility.

【0060】[0060]

【表3】 [Table 3]

【0061】[0061]

【発明の効果】本発明によれば、高度の形態安定性を持
ちしかも柔軟性に優れており、シャツ地、特にドレスシ
ャツやカジュアル用途に最適なセルロース繊維からなる
繊維構造物を提供できる。
Industrial Applicability According to the present invention, it is possible to provide a fiber structure having a high degree of morphological stability and excellent in flexibility and made of a cellulose fiber which is most suitable for a shirt cloth, particularly a dress shirt and casual use.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年2月29日[Submission date] February 29, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0020】ここで繊維素反応型樹脂としては、ジメチ
ロールエチレン尿素、ジメチロールウロン、ジメチロー
ルトリアゾン、ジメチロールプロピレン尿素、ジメチロ
ールヒドロキシエチレン尿素などを挙げることができ
る。さらに繊維素反応型樹脂で繊維構造物を処理する方
法としては、例えば、前記樹脂の水溶液を触媒とともに
繊維構造物にパディングで付与した後、80℃以上20
0℃以下の温度で熱処理する方法を好ましく採用でき
る。触媒としては塩化マグネシウムなどの無機金属塩を
用いることができる。
[0020] As here cellulose reactive resin include dimethylol ethylene urea, dimethylol uronic, dimethylol triazone, dimethylol propylene urea and dimethylol di hydroxyethylene urea. Further, as a method for treating the fiber structure with the fibrin-reactive resin, for example, an aqueous solution of the resin is applied to the fiber structure together with a catalyst by padding, and then 80 ° C. or higher 20
A method of heat treatment at a temperature of 0 ° C. or lower can be preferably adopted. An inorganic metal salt such as magnesium chloride can be used as the catalyst.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0038[Correction target item name] 0038

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0038】実施例1 精練、漂白処理を施した綿織物(糸使い:経糸45番
手、緯糸45番手、平織物、織密度:経115本/inch
×緯76本/inch、目付:110g/m2 )に、ジメチ
ロールヒドロキシエチレン尿素を6%、触媒として塩
化マグネシウム6水和物を2%含む水溶液をパディング
により付与した。しぼり率は90%であった。それから
この綿織物を100℃で3分間乾燥した後、160℃で
1分間熱処理した。
Example 1 Scoured and bleached cotton fabric (use of yarn: 45 count warp, 45 count weft, plain fabric, weave density: 115 warp / inch
× weft 76 present / inch, basis weight: 110g / in m 2), 6% of dimethylol di hydroxyethylene urea, was applied by padding an aqueous solution containing 2% of magnesium chloride hexahydrate as catalyst. The squeezing rate was 90%. Then, the cotton fabric was dried at 100 ° C. for 3 minutes and then heat-treated at 160 ° C. for 1 minute.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0043[Correction target item name] 0043

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0043】その後、この綿織物にジメチロールヒド
ロキシエチレン尿素を6%、触媒として塩化マグネシウ
ム6水和物を2%含む水溶液をパディングにより付与し
た。しぼり率は90%であった。この綿織物を100℃
で3分間乾燥した後、160℃で1分間熱処理した。
[0043] Thereafter, the cotton fabric in dimethylol di hydrate <br/> Rokishiechiren urea 6% was applied by padding an aqueous solution containing 2% of magnesium chloride hexahydrate as catalyst. The squeezing rate was 90%. This cotton fabric is 100 ℃
After being dried for 3 minutes, it was heat-treated at 160 ° C. for 1 minute.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0051[Correction target item name] 0051

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0051】比較例1 精練、漂白処理を施した綿織物(糸使い:経糸45番
手、緯糸45番手、平織物、織密度:経115本/inch
×緯76本/inch、目付:110g/m2 )に、ジメチ
ロールヒドロキシエチレン尿素を6%、触媒として塩
化マグネシウム6水和物を2%含む水溶液をパディング
により付与した。しぼり率は90%であった。それから
この綿織物を100℃で3分間乾燥した後、160℃で
1分間熱処理した。
Comparative Example 1 Scoured and bleached cotton fabric (use of yarn: 45 count warp, 45 count weft, plain fabric, weave density: 115 warp / inch
× weft 76 present / inch, basis weight: 110g / in m 2), 6% of dimethylol di hydroxyethylene urea, was applied by padding an aqueous solution containing 2% of magnesium chloride hexahydrate as catalyst. The squeezing rate was 90%. Then, the cotton fabric was dried at 100 ° C. for 3 minutes and then heat-treated at 160 ° C. for 1 minute.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】セルロース繊維からなる繊維構造物におい
て、洗濯収縮率が3%以下であり、かつKES(Kawaba
ta Evaluation System)測定による曲げ剛性測定値
(B)と目付(W)の比B/Wが0.0001以上0.
005以下であることを特徴とする繊維構造物。
1. A fiber structure made of cellulose fibers, having a washing shrinkage of 3% or less and KES (Kawaba).
The ratio B / W of the flexural rigidity measurement value (B) and the basis weight (W) measured by the ta evaluation system is 0.0001 or more.
A fiber structure characterized by being 005 or less.
【請求項2】前記セルロース繊維が繊維素反応型樹脂お
よび/またはホルムアルデヒドにより架橋されているこ
とを特徴とする請求項1記載の繊維構造物。
2. The fiber structure according to claim 1, wherein the cellulose fibers are crosslinked with a fibrin-reactive resin and / or formaldehyde.
【請求項3】洗濯収縮率が2%以下であることを特徴と
する請求項1記載の繊維構造物。
3. The fiber structure according to claim 1, which has a washing shrinkage ratio of 2% or less.
【請求項4】洗濯収縮率が1%以下であることを特徴と
する請求項1記載の繊維構造物。
4. The fiber structure according to claim 1, which has a washing shrinkage ratio of 1% or less.
【請求項5】B/Wが0.0001以上0.004以下
であることを特徴とする請求項1記載の繊維構造物。
5. The fiber structure according to claim 1, wherein B / W is 0.0001 or more and 0.004 or less.
【請求項6】B/Wが0.0001以上0.003以下
であることを特徴とする請求項1記載の繊維構造物。
6. The fiber structure according to claim 1, wherein B / W is 0.0001 or more and 0.003 or less.
【請求項7】繊維構造物を構成するセルロース繊維に架
橋反応を行なう工程の前または後に、該セルロース繊維
を減量加工することを特徴とする繊維構造物の製造方
法。
7. A method for producing a fiber structure, which comprises reducing the weight of the cellulose fiber before or after the step of subjecting the cellulose fiber constituting the fiber structure to a crosslinking reaction.
【請求項8】前記セルロースを繊維素反応型樹脂の含浸
処理を施した後、熱処理を施すことにより架橋すること
を特徴とする請求項7記載の繊維構造物の製造方法。
8. The method for producing a fiber structure according to claim 7, wherein the cellulose is impregnated with a fibrin reaction type resin and then crosslinked by heat treatment.
【請求項9】前記熱処理の温度が80℃以上200℃以
下であることを特徴とする請求項8記載の繊維構造物の
製造方法。
9. The method for producing a fiber structure according to claim 8, wherein the temperature of the heat treatment is 80 ° C. or higher and 200 ° C. or lower.
【請求項10】前記セルロース繊維をホルムアルデヒド
蒸気にさらし、触媒の存在下で熱処理を施すことにより
架橋することを特徴とする請求項7記載の繊維構造物の
製造方法。
10. The method for producing a fiber structure according to claim 7, wherein the cellulose fiber is exposed to formaldehyde vapor and subjected to heat treatment in the presence of a catalyst to crosslink.
【請求項11】前記熱処理の温度が60℃以上160℃
以下であることを特徴とする請求項10記載の繊維構造
物の製造方法。
11. The temperature of the heat treatment is 60 ° C. or higher and 160 ° C.
The method for producing a fiber structure according to claim 10, wherein:
【請求項12】前記減量加工がセルロース分解酵素によ
るセルロース繊維の減量加工であることを特徴とする請
求項7記載の繊維構造物の製造方法。
12. The method for producing a fiber structure according to claim 7, wherein the weight-reducing process is a weight-reducing process of cellulose fibers with a cellulolytic enzyme.
【請求項13】減量率が3%以上10%以下であること
を特徴とする請求項12記載の繊維構造物の製造方法。
13. The method for producing a fiber structure according to claim 12, wherein the weight loss rate is 3% or more and 10% or less.
【請求項14】セルロース分解酵素の濃度が1g/l以
上30g/l以下の水溶液に繊維構造物を浸漬して30
℃以上90℃以下の温度で処理することを特徴とする請
求項12記載の繊維構造物の製造方法。
14. A fibrous structure is immersed in an aqueous solution having a cellulolytic enzyme concentration of 1 g / l or more and 30 g / l or less for 30 minutes.
The method for producing a fiber structure according to claim 12, wherein the treatment is performed at a temperature of not less than 90 ° C and not more than 90 ° C.
【請求項15】繊維構造物の縫製に際し、前記減量加工
を縫製前に行うことを特徴とする請求項7記載の繊維構
造物の製造方法。
15. The method for manufacturing a fiber structure according to claim 7, wherein, when sewing the fiber structure, the weight reduction process is performed before the sewing.
JP31094095A 1995-11-29 1995-11-29 Fiber structure and its production Pending JPH09158043A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP31094095A JPH09158043A (en) 1995-11-29 1995-11-29 Fiber structure and its production
TW84113882A TW311949B (en) 1995-11-29 1995-12-26
MYPI96000870A MY133117A (en) 1995-11-29 1996-03-08 A fabric and a production process therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31094095A JPH09158043A (en) 1995-11-29 1995-11-29 Fiber structure and its production

Publications (1)

Publication Number Publication Date
JPH09158043A true JPH09158043A (en) 1997-06-17

Family

ID=18011222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31094095A Pending JPH09158043A (en) 1995-11-29 1995-11-29 Fiber structure and its production

Country Status (1)

Country Link
JP (1) JPH09158043A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060222A3 (en) * 2002-01-18 2003-12-04 Guangdong Esquel Knitters Co L Method of producing fabric
EP1497493A1 (en) * 2002-04-05 2005-01-19 Novozymes North America, Inc. Improvement of strength and abrasion resistance of durable press finished cellulosic materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060222A3 (en) * 2002-01-18 2003-12-04 Guangdong Esquel Knitters Co L Method of producing fabric
EP1497493A1 (en) * 2002-04-05 2005-01-19 Novozymes North America, Inc. Improvement of strength and abrasion resistance of durable press finished cellulosic materials
EP1497493A4 (en) * 2002-04-05 2008-01-23 Novozymes North America Inc Improvement of strength and abrasion resistance of durable press finished cellulosic materials

Similar Documents

Publication Publication Date Title
US5512060A (en) Process for treating textile materials with enzyme containing compositions and high frequency fields
JP3529089B2 (en) Processing method of refined cellulose fiber woven or knitted fabric
JPH09158054A (en) Fiber structure and its production
JPH09158043A (en) Fiber structure and its production
JP3627411B2 (en) Textile structure and manufacturing method thereof
US3542503A (en) Process for imparting wrinkle resistance and recovery properties to cotton stretch fabrics
JPH05247852A (en) Lightly napped finishing of woven fabric of cellulosic fiber
JP4312337B2 (en) Method for modifying cellulosic fibers
JP2780747B2 (en) Cotton fiber-containing fiber product and method for producing the same
JP3730733B2 (en) Elongated animal hair fiber and production method thereof
JP2001131867A (en) Fiber structure and processing method therefor
JPH0711575A (en) Cellulosic yarn-containing fiber product and its production
JPH0835175A (en) Production of fiber structure having wrinkle resistance
JP2002030567A (en) Textured yarn or fabric using staple silk fiber and method for producing the same
JPH08269872A (en) Production of fiber structural material having shape stability
JP2002115175A (en) Method of manufacturing polyester based fabric containing cellulose based fiber
JPH0849168A (en) Production of crease-resistant textile fabric
JP3409716B2 (en) Method for shrink-proofing cellulosic fiber-containing structure
JPH09256271A (en) Fiber product containing cotton fiber and its production
JPH0657628A (en) Modification process for animal hair fiber structures
JPS5846142A (en) Production of cellulose fiber structure
JPH10245773A (en) Regulation of touch feeling of cellulosic fiber-containing textile product
JPH0967766A (en) Treatment of cellulosic fiber-containing woven or knitted fabric
JPH09195164A (en) Cotton fiber-containing fiber product
JP2001003274A (en) Animal hair fiber structure having shrink resistance and yellowing resistance, and its production