WO1997018625A1 - Fm modulator - Google Patents
Fm modulator Download PDFInfo
- Publication number
- WO1997018625A1 WO1997018625A1 PCT/JP1996/001706 JP9601706W WO9718625A1 WO 1997018625 A1 WO1997018625 A1 WO 1997018625A1 JP 9601706 W JP9601706 W JP 9601706W WO 9718625 A1 WO9718625 A1 WO 9718625A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- phase shift
- phase
- signal
- resistor
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03C—MODULATION
- H03C3/00—Angle modulation
- H03C3/10—Angle modulation by means of variable impedance
Definitions
- the present invention relates to an FM modulator that FM-modulates a ⁇ signal input from the outside and sends it out.
- the FM modulation circuit is generally configured using an LC oscillator that generates a sine wave with little distortion.
- LC oscillators for example, Colpitts type oscillators.
- the capacity of the LC resonance circuit contained in the oscillator is composed of varicaps (variable capacitance diodes), and the capacitance is the voltage level of the FM modulation signal. FM modulation is performed by changing the bell according to the fluctuation.
- the present invention has been conceived in order to solve such a problem, and a purpose thereof is to provide an FM modulator having a simple circuit configuration.
- the FM modulator of the present invention includes two all-pass type phase shift circuits including a differential amplifier and a CR circuit, and cascade-connects these two phase shift circuits to output the output of the phase shift circuit at a subsequent stage. Is fed back to the input side of the phase shift circuit in the preceding stage, and F ⁇ ⁇ ⁇ ⁇ is used as a resistor in the CR circuit included in one of the two phase shift circuits, and the gate of the F ⁇ ⁇ is used.
- an FM-modulated signal is output from one of the two phase shift circuits.
- FM modulation can be directly performed by changing a resistance or an element constant of a capacity according to a signal input from the outside, and the circuit configuration of the entire FM modulation device can be simplified. Also, since an all-pass type circuit is used, a stable output amplitude can always be obtained regardless of the output frequency.
- FIG. 1 is a diagram showing a configuration of an FM modulator according to a first embodiment
- FIG. 2 is a diagram showing another configuration of the FM modulator
- FIG. 3 is a circuit diagram showing the configuration of an oscillator in which the FET included in the FM modulator shown in FIG. 1 and its peripheral circuits are replaced by resistors having fixed resistance values,
- Fig. 4 is a vector diagram related to the human output voltage etc. of the preceding phase shift circuit shown in Fig. 3
- Fig. 5 is a vector related to the human output voltage etc. of the subsequent phase shift circuit shown in Fig. 3.
- Fig. 6 is a circuit diagram showing the configuration of the phase shift circuit including the FET.
- FIG. 7 is a circuit diagram showing a configuration of a phase shift circuit including an LR circuit
- FIG. 8 is a vector diagram relating to the input / output voltage of the phase shift circuit shown in FIG. 7,
- FIG. 9 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit,
- FIG. 10 is a vector diagram relating to input / output voltages and the like of the phase shift circuit shown in FIG. 9,
- FIG. 11 is a circuit diagram showing a configuration of a phase shift circuit including a FET as a part of the LR circuit
- FIG. 12 is a circuit diagram showing another configuration of the phase shift circuit including the FET in a part of the LR circuit.
- FIG. 13 is a configuration diagram of an oscillator having a voltage dividing circuit in the phase shift circuit.
- FIG. 14 is a circuit diagram showing another configuration of the oscillator,
- FIG. 15 is a circuit diagram showing a configuration of a phase shift circuit that can be replaced with the preceding phase shift circuit shown in FIG. 14,
- FIG. 16 is a circuit diagram showing a configuration of a phase shift circuit that can be replaced with the subsequent phase shift circuit shown in FIG. 14,
- FIG. 17 is a circuit diagram showing a detailed configuration of an FM modulator according to a fourth embodiment.
- FIG. 18 is a circuit diagram showing a configuration of an oscillator including a phase inversion circuit.
- FIG. 19 is a circuit diagram showing another configuration of an oscillator including a phase inversion circuit
- FIG. 20 is a circuit diagram showing a detailed configuration of an FM modulator according to a seventh embodiment
- FIG. 21 is a circuit diagram showing the configuration of an oscillator in which the FET and its peripheral circuits included in the FM modulator shown in FIG.
- FIG. 22 is a vector diagram relating to input / output voltages and the like of the preceding phase shift circuit shown in FIG. 21;
- FIG. 23 is a vector diagram relating to the input / output voltage of the subsequent phase shift circuit shown in FIG. 21;
- FIG. 24 is a circuit diagram showing a configuration of a phase shift circuit including FET,
- FIG. 25 is a circuit diagram showing a configuration of a phase shift circuit that can be replaced with the preceding phase shift circuit shown in FIG. 21;
- Fig. 26 is a vector diagram of the input / output voltage of the phase shift circuit shown in Fig. 25, and Fig. 27 is a phase shift circuit that can be replaced with the subsequent phase shift circuit shown in Fig. 21 Circuit diagram showing the configuration of
- FIG. 28 is a vector diagram showing input / output voltages of the phase shift circuit shown in FIG. 27,
- FIG. 29 is a circuit diagram showing a configuration of a phase shift circuit including an FET in a part of the LR circuit,
- FIG. 30 is a circuit diagram showing a configuration of a phase shift circuit including a variable capacitance element,
- FIG. 31 is a circuit diagram showing a configuration of an oscillator including a phase inversion circuit
- FIG. 32 is a circuit diagram showing another configuration of an oscillator including a phase inversion circuit
- FIG. 33 is a circuit diagram showing the configuration of the FM modulator according to the tenth embodiment.
- FIG. 34 is a diagram showing the FET and its peripheral circuits included in the FM modulator shown in FIG. A circuit diagram showing a configuration of an oscillator in which the value is replaced by a fixed resistor,
- FIG. 35 is a vector diagram relating to the input / output voltage of the former phase shift circuit shown in FIG. 34,
- FIG. 36 is a vector diagram relating to the input and output voltages of the subsequent phase shift circuit shown in FIG. 34,
- FIG. 37 is a circuit diagram showing the configuration of a phase shift circuit including FET,
- FIG. 38 is a circuit diagram showing a configuration of a phase shift circuit including an LR circuit
- Fig. 39 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit.
- FIG. 40 is a circuit diagram showing the configuration of an oscillator including a phase inversion circuit.
- FIG. 41 is a circuit diagram showing another configuration of the generator including the phase inversion circuit
- FIG. 42 is a circuit diagram showing a portion necessary for the operation of the phase shift circuit in the configuration of the operational amplifier.
- FIG. 1 is a circuit diagram showing a configuration of an FM modulator according to a first embodiment to which the present invention is applied.
- the FM modulator 1 shown in the figure has a total of 360 at a predetermined frequency.
- the two phase shifters 1 0 C and 130 C, and the feedback resistor 7 that feeds back the output of the subsequent phase shift circuit 130 C to the input side of the previous phase shift circuit 10 C The feedback resistor 70 has a finite resistance value from 0 ⁇ . These two phase shift circuits 10 C and 130 C and the feedback resistor 70 constitute an oscillator.
- the FM modulator 1 has an external input terminal 90, and FM-modulates a signal input from the external input terminal 90 and outputs the signal.
- an amplifier 2 and an antenna 3 are connected after the FM modulator 1, and the output of the FM modulator 1 is amplified by the amplifier 2 and transmitted from the antenna 3 to the air.
- the signal may be transmitted to the transmission path 400 via the transmitting driver 4 as shown in FIG.
- FIG. 3 shows the configuration of the oscillator 5 when the FET 35 and its peripheral circuit included in the FM modulator 1 shown in FIG. 1 are replaced with a resistor 36 having a fixed resistance value. It is a circuit diagram.
- the oscillator 5 shown in the figure is composed of two phase shift circuits 10 C and 30 C that perform a total of 360 ° phase shift at a predetermined frequency, and the output of a subsequent phase shift circuit 30 C. And a feedback resistor 70 for feeding back to the input side of the phase shift circuit 10 C in the preceding stage.
- the phase shift circuit 10 C at the preceding stage that constitutes the oscillator 5 shown in FIG. 3 is a type of differential amplifier.
- An operational amplifier (operational amplifier) 12 a resistor 16 that shifts the phase of the signal input to the phase shift circuit 10 C by a predetermined amount, and inputs the resulting signal to the non-inverting input terminal of the operational amplifier 12 and a capacitor 1. 4 and a resistor 18 inserted between the human input end of this phase shift circuit 10 C and the inverted human input terminal of the operational amplifier 12, and a resistor 18 inserted between the output end of the operational amplifier 12 and the inverted input terminal And a resistor 20.
- the input voltage E1 is obtained by adding the voltage VR1 across the resistor 18 in a vector as shown in FIG.
- the output voltage Eo is obtained by vectorially subtracting the voltage VR1 of the resistor 20 from i
- the relationship between the magnitude and phase of the input / output voltage is expressed by the manpower voltage Ei and the output voltage Eo as hypotenuse.
- the amplitude of the output signal is the same as the amplitude of the input signal regardless of the frequency, and the phase shift ⁇ 0 is shown in Fig. 4. It can be seen that it is represented by 1.
- the phase shift circuit 30 C of the subsequent stage constituting the oscillator 5 shown in FIG. 3 is provided with an operational amplifier 32 which is a kind of a differential amplifier and a phase of a signal manually input to the phase shift circuit 30 C.
- An operational amplifier 32 which is a kind of a differential amplifier and a phase of a signal manually input to the phase shift circuit 30 C.
- phase shift circuit 30 C is the same as that of the previous stage phase shift circuit 10 C, and the connection of the CR circuit composed of the capacitor 34 and the resistor 36 is performed by connecting the phase shift circuit 10 C of the previous stage. From resistor 1 6 and capacitor 1 4 in Is different from the connection of the CR circuit.
- the output voltage Eo can be expressed as an oblique side and can be expressed as an isosceles triangle with the base of twice the voltage VC2.
- the amplitude of the output signal is the same as the amplitude of the input signal regardless of the frequency, and the phase shift amount It can be seen that it is represented by 02 shown in FIG.
- phase of each of the two phase shift circuits 10 C and 30 C is shifted by a certain amount, and the phase is shifted by the entire two phase shift circuits 10 C and 30 C at a predetermined frequency.
- a signal with a total shift amount of 360 ° is output.
- the output of the subsequent phase shift circuit 30 C is fed back to the input side of the phase shift circuit 10 C via the feedback resistor 70, and by setting the loop gain of the feedback loop to 1 or more, However, sinusoidal oscillation is performed at such a frequency that the total phase shift amount becomes 360 ° when the circuit makes one round.
- the resistors 18 and 20 have the same resistance and the resistors 38 and 40 have the same resistance, the gains of the phase shift circuits 10 C and 30 C become 1, In addition, there is a loss in the return loop, so the loop gain is smaller than 1. Therefore, in order to increase the loop gain to 1 or more, the resistance of the resistor 20 must be higher than that of the resistor 18, or the resistance of the resistor 40 must be higher than that of the resistor 38.
- the FM modulator 1 shown in FIG. 1 is configured such that a resistance value is changed according to the voltage level of an externally input AC signal through a later-stage phase shift [ill path 30 C] included in the oscillator 5 described above.
- An FM modulator 1 having a configuration in which the phase shifter circuit 130 C including the changing FET 35 is replaced, and having such a configuration will be described.
- FIG. 6 is a circuit diagram showing a configuration of a phase shift circuit including the above-described FET.
- FIG. 6A shows a configuration of a subsequent phase shift circuit 130 C included in the FM modulator 1. ing.
- This phase shift circuit 130 C is a phase shift circuit 30 C included in the oscillator 5 shown in FIG.
- a CR circuit composed of a capacitor 34 and a resistor 36 is replaced with a capacitor 34
- a CR circuit consisting of an FET 35 that uses ffl as a resistor applying a predetermined bias to this FET 35 and a resistor 42 that applies a predetermined bias to the gate of the FET 35 from the outside It has a DC current blocking capacitor 44 provided to apply only the AC component of the input signal.
- each of the two phase shift circuits 10C and 130C constituting the FM modulator 1 is an all-pass circuit, and the amplitude is almost constant even when the frequency of the FM-modulated carrier is changed. This eliminates the need for another configuration to prevent amplitude fluctuations.
- phase shift circuit 10 C of the preceding stage constituting the oscillator 5 shown in FIG. 3 is replaced with the phase shift circuit 1 10 C shown in FIG. 6B (instead of the resistor 16 in the phase shift circuit 10 C, FET 15, a resistor 22 for bias application and a capacitor 24 for blocking DC current) may be used.
- both of the two phase shift circuits include a CR circuit, but at least one of the phase shift circuits can be replaced with a phase shift circuit including an LR circuit.
- FIG. 7 is a circuit diagram showing a configuration of a phase shift circuit 10L that can be replaced with the preceding phase shift circuit 10C included in the oscillator 5 shown in FIG.
- the phase shift circuit 10 L shown in Fig. 7 is a 1 ° C phase shift circuit shown in Fig. 3, which is a CR circuit consisting of a resistor 16 and a capacitor 14, and an LR circuit consisting of an inductor 17 and a resistor 16.
- the configuration has been replaced with Considering the relationship between the magnitude and phase of the input / output voltage with the voltage across the inductor 17 as VL1 and the voltage across the resistor 16 as VR1, as shown in Fig. 8, the input voltage Ei and the output voltage Eo And the amplitude of the output signal i ⁇ is the same as the amplitude of the input signal regardless of the frequency. It can be seen that the amount of phase shift is represented by 03 shown in FIG.
- phase shift circuit 10L is equivalent to the phase shift circuit 10C, and the phase shift circuit 10C can be replaced with the phase shift circuit 10L. Therefore, in the oscillator 5 shown in FIG. 3, the preceding phase shift circuit 10C is replaced with the phase shift circuit 10L shown in FIG. 7, and the latter phase shift circuit 30C is replaced with the phase shift circuit 30C shown in FIG.
- phase shift circuit 130 C shown in (1) each of the two phase shift circuits can constitute an FM modulator including an LR circuit or a CR circuit.
- FIG. 9 is a circuit diagram showing a configuration of a phase shift circuit 30L that can be replaced with a subsequent phase shift circuit 30C included in the oscillator 5 shown in FIG.
- the phase shift circuit 30L shown in Fig. 9 is different from the phase shift circuit 30C shown in Fig. 3 in that the CR circuit consisting of the capacitor 34 and the resistor 36 is replaced by an LR circuit consisting of the resistor 36 and the inductor 37.
- Configuration Considering the relationship between the magnitude and phase of the input / output voltage with the voltage across the resistor 36 as VR2 and the voltage across the inductor 37 as VL2, as shown in Fig.
- the input voltage Ei and output voltage Eo are The output signal amplitude is the same as the input signal amplitude regardless of the frequency, and the amount of phase shift is shown in Fig. 10. It can be seen that By the way, assuming that the time constant of the CR circuit in the phase shift circuit 30C shown in FIG. 3 and the time constant of the LR circuit in the phase shift circuit 30L shown in FIG. The transfer functions of the paths 30 C and 30 L are both 1 (1 ⁇ Ts) / (1 + Ts). As described above, the phase shift circuit 30L is equivalent to the phase shift circuit 30C, and the phase shift circuit 30C can be replaced with the phase shift circuit 30L. Therefore, in the oscillator 5 shown in FIG.
- each of the two phase shift circuits can constitute an FM modulator including an LR circuit or a CR circuit. Also, in the various FM modulators described above, an external signal is input to the phase shift circuit including the CR circuit, but the external signal may be manually input to the phase shift circuit including the LR circuit. Good.
- FIG. 11 is a circuit diagram showing a configuration of a phase shift circuit including a FET in a part of the LR circuit.
- Fig. 11 (A) shows a phase shifter using a FET 15, a resistor 22 for bias application, and a capacitor 24 for blocking DC current, instead of the resistor 16 in the phase shift circuit 10L shown in Fig. 7.
- the configuration of M road 110L is shown.
- the FM modulator can be configured by replacing the phase shift circuit 10 (:) in the preceding stage with the phase shift circuit 110L shown in Fig. 11 (A).
- the preceding phase shift circuit 10 ⁇ is replaced with the phase shift circuit 110L shown in FIG. 11 (A), and the latter phase shift circuit 30C is shown in FIG.
- the FM modulator can be configured by replacing the phase shift circuit 30 shown.
- Fig. 11 (B) shows a phase shifter using a FET 35, a resistor 42 for applying a bias, and a capacitor 44 for blocking DC current, instead of the resistor 36 in the phase shift circuit 30L shown in Fig. 9.
- 19 shows a configuration of a circuit 130L.
- an FM modulator can be configured by replacing the subsequent phase shift circuit 30C with the phase shift circuit 130L shown in FIG. 11 (B).
- the subsequent phase shift circuit 30 C is replaced with the phase shift circuit 130 shown in FIG. 11B, and the preceding phase shift circuit 10 C is replaced with the seventh phase. It is possible to construct an FM modulator by substituting the phase shift circuit 10 shown in FIG.
- the resistance value of the resistor formed by FET is changed by an externally input signal, but the capacitance of the capacitor constituting the CR circuit is externally input. It may be changed by a different signal.
- FIG. 12 is a circuit diagram for reducing the configuration of a phase shift circuit including a variable capacitance element in a CR circuit.
- Fig. 12 (A) shows the FET 35 in the phase shifter 130C shown in Fig. 6 (A) as the fixed resistor 36, and the capacitor 34 as the variable capacitance diode 34-1 and DC current blocking.
- FIG. 34-2 shows the configuration of the phase shifter 1 30 C ′ in which 11 is replaced.
- a bias circuit is formed by the two resistors 42 and 43, and only the AC component of the input signal passes through the capacitor 44. And this AC component is superimposed on a predetermined bias voltage to become a reverse bias voltage applied to the oj variable capacitance diode 34-1.
- phase shift circuit 130 C ′ is shown in FIG. 6 (A) because the capacitance of the J variable capacitance diode 34-1 changes slightly according to the signal input from the outside.
- An FM modulation device can be configured by using the phase shift circuit 130C instead of the phase shift circuit 130C.
- Fig. 12 (B) shows the FET 15 in the phase shift circuit 110C shown in Fig. 6 (B) as the fixed resistor 16 and the capacitor 14 as the variable capacitance diode 1.
- the structure of the phase shifter 110 C ′ replaced with each other is shown in Fig. 4-11 and the capacity for DC current blocking.
- a bias circuit is formed by the two resistors 22 and 23, and only the AC component of the input signal is separated by passing through the capacitor 24, and this AC component is separated by a predetermined bias.
- the reverse bias voltage is superimposed on the voltage and applied to the variable capacitance diode 14 11.
- phase shift circuit 110C is replaced with the phase shift circuit shown in FIG. 6 (B). By using it in place of 110 C, it is possible to configure an FM modulator.
- each phase shift circuit shown in Fig. 3 the output of the operational amplifier is directly fed back to the input side of the operational amplifier via the feedback resistor 70, but the voltage divider is connected to the output terminal of each operational amplifier.
- the output may be ii on the human side of the operational amplifier.
- FIG. 13 is a circuit diagram showing a detailed configuration of an oscillator provided with a voltage dividing circuit in the Park I circuit.
- a voltage dividing circuit composed of resistors 28 and 29 is connected to the output terminal of the operational amplifier 12 in the phase shift circuit 210C.
- the output terminal is connected to the inverting human terminal of the operational amplifier 12 via the resistor 20.
- a voltage dividing circuit composed of resistors 48 and 49 is connected to the output terminal of the operational amplifier 32 in the phase shift circuit 230 C.
- the voltage dividing output terminal is connected to the operational amplifier via the resistor 40. 3 Connected to 2 inverted human power terminals.
- the resistance in the CR circuit of either one of the two phase shift circuits 210C and 230C shown in Fig. 13 is configured by using the FET and the bias application resistance.
- an FM modulator can be configured in the same manner as in FIG.
- FIG. 13 shows an example in which a voltage dividing circuit is connected to the output terminals of the operational amplifiers 12 and 32 in the phase shift circuits 10 C and 30 C shown in FIG.
- Connect a divider / operator circuit to the output terminals of the operational amplifiers 12 and 32 in the phase shift circuits 10 L and 30 L shown in the figures and Fig. 9, and connect the voltage divider output terminals to the operational amplifiers 12 and 3 2 respectively.
- the same stable oscillating operation as that of the oscillator 5A shown in FIG. 13 is performed.
- FIG. 14 is a circuit diagram showing another configuration of the oscillator.
- the oscillator 5B shown in the figure is configured to include two phase shift circuits 410C and 430C that perform a total of 360 ° phase shift at a predetermined frequency.
- the frequency of the input AC signal changes by setting the resistance values of the resistors 18 and 20 in the preceding phase shift circuit 10C to the same value. It suppresses the amplitude change when it is turned on.
- the phase shift circuit 410C in the preceding stage included in the oscillator 5B shown in FIG. The phase shift circuit 4 1 0
- the gain of C is set to a value greater than 1.
- phase shift circuit 430 C By setting the resistance value of the resistor 40 ′ larger than the resistance value of the resistor 38 ′, the gain of the phase shift circuit 430 C is increased. Set to a value greater than 1.
- gain fluctuation may occur depending on the frequency of the input signal.
- the gain at this time becomes 1 because the phase shift circuit 410 C becomes a voltage follower circuit.
- the phase shift circuit 410C becomes an inverting amplifier, so the gain at this time is 1 m (m is the resistance ratio between the resistance 20 'and the resistance 18').
- Such amplitude fluctuations can be suppressed by connecting a resistor 19 to the inverting input terminal of the operational amplifier 12 and matching the gains when the input frequency is low and high.
- the input signal is set by setting the resistance value of the resistor 19 to mr / (m-1).
- Each gain of the phase shift circuit 410C when the frequency of the signal is 0 and infinity can be matched.
- the phase shift circuit 43OC by connecting a resistor 39 having a predetermined resistance value to the inverting input terminal of the operational amplifier 32, the amplitude fluctuation of the output i can be suppressed.
- one ends of the resistors 19 and 39 may be connected to a fixed potential other than the ground level.
- an FM modulator can be configured in the same manner as in FIG. '
- the oscillator 5B shown in Fig. 14 has a cascade connection of phase shift circuits 411C and 430C including a CR circuit, but the CR circuit can be replaced with an LR circuit. It is.
- the phase shift circuit 4 10 shown in FIG. This is equivalent to 10 C, and the phase shift circuit 410 C can be replaced with a phase shift circuit 410 L.
- the phase shift circuit 430 L shown in FIG. 16 is equivalent to the subsequent phase shift circuit 430 C shown in FIG. Can be replaced by 4300L.
- an FM modulator can be configured in the same manner as in FIG.
- the phase shift amount of the two phase shift circuits is set to be 360 ° at a predetermined frequency, but the two phase shift circuits are connected in cascade.
- the FM modulator may be configured by connecting a non-inverting circuit that does not change the phase to a part of the formed feedback loop.
- FIG. 17 is a circuit diagram showing a detailed configuration of the FM modulator according to the fourth embodiment.
- the FM modulator 1A shown in the figure is the same as the FM modulator 1 shown in FIG. 1 in that the phase shift circuit 10C and the phase shift circuit 13OC are connected in cascade, and the subsequent phase shifter is used. This is different from the FM modulator 1 shown in FIG. 1 in that a non-inverting circuit 50 is connected to the output side of the circuit 130 C.
- the non-inverting circuit 50 includes an operational amplifier 52 and resistors 54 and 56, and has a predetermined gain according to a resistance ratio of the two resistors 54 and 56. Therefore, the loss at the time of forming the closed loop can be compensated by this gain, and the loop gain of the feedback loop can be easily set to 1 or more. Further, the non-inverting circuit 50 can have a function as a power amplification stage.
- FIG. 17 as an example, the configuration in which the non-inverting circuit 50 is connected to the FM modulator 1 shown in FIG. 1 is described, but the above-described various phase shift circuits are cascaded in an arbitrary order.
- the non-inverting circuit 50 shown in FIG. 17 may be connected to various FM modulators configured as described above.
- the oscillation operation was performed at a frequency where the total amount of phase shift by the two phase shift circuits was 360 °, but the phase inversion circuit must be connected in a closed loop. Accordingly, the oscillation operation may be performed at a frequency at which the total amount of phase shift by the two phase shift circuits is 180 °.
- FIG. 18 is a circuit diagram of an oscillator configured by cascade-connecting two phase shift circuits and a phase inversion circuit.
- the oscillator 5C shown in the figure has a two-stage cascade connection of the preceding stage phase shift circuit 10C in the oscillator 5 shown in FIG. 3, and an operational amplifier 82 and resistors 84, 86 at the subsequent stage.
- the phase inversion circuit 80 is connected, and the output of the phase inversion circuit 80 is fed back to the human side of the preceding phase shift circuit 10 C via the feedback resistor 70.
- the phase shift amount when making a round of the closed loop is 3 60 °, and a predetermined oscillation operation is performed by setting the loop gain of the feedback loop at this time to 1 or more.
- the FM modulator used for the FM modulation signal can be configured.
- one of the two phase shift circuits 10 C included in the damper 5 C is replaced with the phase shift circuit 110 C shown in FIG. 6 (B), and the other is replaced with the phase shift circuit 110 C shown in FIG.
- the FM modulator may be configured by replacing the phase shift circuit 10L shown in the figure.
- the FM modulator may be configured by replacing the capacity in the CR circuit included in one of the two phase shift circuits 10 C with a variable capacitance diode and a resistor for bias application.
- the oscillator 5 C shown in FIG. 18 shows an example in which the phase shift circuit 10 C is cascaded, but the oscillator is constructed by cascading the subsequent phase shift circuit 30 C shown in FIG. You may.
- FIG. 19 is a circuit diagram showing another configuration of the oscillator including the phase inversion circuit.
- the oscillator 5D shown in the figure has a cascade connection of two stages of the phase shift circuit 30C at the subsequent stage in the oscillator 5 shown in FIG. 3, and a phase inversion circuit 80 is connected to the subsequent stage.
- the output of the circuit 80 is fed back to the input side of the preceding phase shift circuit 30 C via the feedback resistor 70. ing.
- the phase inverting circuit 80 Since the signal is inverted by the phase inverting circuit 80, when the total phase shift amount of the two phase shift circuits 30C is 180 °, the phase shift amount when making a round of the closed loop becomes 3 60 °, and a predetermined oscillation operation is performed by setting the loop gain of the feedback loop at this time to 1 or more.
- an FM modulator by replacing one of the two phase shift circuits 30 C included in the oscillator 5 D with the phase shift circuit 130 C shown in FIG. 6 (A). it can.
- one of the two phase shift circuits 30C included in the oscillator 5D is replaced with the phase shift circuit 130C shown in FIG. 6 (A), and the other is shifted as shown in FIG.
- the phase modulation circuit may be replaced with 30 L to form an FM modulator.
- FIG. 20 is a circuit diagram showing a detailed configuration of the FM modulator according to the seventh embodiment.
- the FM modulator 1B shown in the figure includes two phase shift circuits 61 0C and 73 0 that perform a total of 360 ° phase shift at a predetermined frequency, and a phase shift circuit 73 0 at the subsequent stage.
- a non-inverting circuit 650 that amplifies and outputs the output signal of C at a predetermined amplification level without changing the phase, and an output of the non-inverting circuit 65 0 It is configured to include a feedback resistor 670 for feeding back.
- This feedback resistor 670 has a finite resistance value from 0 ⁇ .
- the feedback resistor 670 and the capacitor 672 connected to the column are for blocking DC current, and the impedance is extremely small at the operating frequency, that is, it has a large capacitance. I have.
- the FM modulator 1B has an external input terminal 90, and outputs a signal input from the external input terminal 90 as an FM modulated signal.
- an amplifier 2 and an antenna 3 are connected to the subsequent stage of the FM modulator 1B, and the output of the FM modulator 1B is amplified by the amplifier 2 and transmitted from the antenna 3 to the air. Then it becomes an FM wireless transmitter.
- the signal may be transmitted to the transmission path 400 via the transmission driver 4 as shown in FIG.
- FIG. 21 is a circuit diagram showing a configuration of the oscillator 5E in which the FET 635 included in the FM modulator 1B shown in FIG. 20 and its peripheral circuit are replaced with a resistor 636 having a fixed resistance value. is there.
- the generator 5E shown in the figure is composed of two phase shift circuits 6 10C and 630C that perform a total of 360 ° phase shift at a predetermined frequency, and the output signals of the subsequent phase shift circuit 630C.
- a non-inverting circuit 650 that amplifies and outputs a predetermined degree of amplification without changing the phase, a feedback resistor 670 that feeds back the output of the non-inverting circuit 650 to the input side of the two-stage phase shifting circuit 6100 It is composed of
- the phase shift circuit 610C of the preceding stage constituting the oscillator 5 shown in Fig. 21 is composed of an FET 612 whose gate is connected to the human-powered end of the phase shift circuit 610C, and a FET 612
- the capacitor 614 and the resistor 616 connected in series with the drain of the FET's, the resistor 618 connected between the drain of FE 612 and the positive power supply, and the FET 612 And a resistor 620 connected between the source and the ground.
- the resistor 626 in the phase shift circuit 610 C is for applying an appropriate bias voltage to the FET 612.
- at least one of the F ⁇ 6 12 and the F ⁇ 632 described later may be replaced with a bipolar transistor.
- the resistance values of the two resistors 620 and 618 connected to the source and drain of F ⁇ 1 6 12 described above are set substantially equal, and the input voltage applied to the gate is Focusing on the AC component, a signal with the same phase is output from the source of FET 612, and a signal whose phase is inverted and whose amplitude is equal to the signal output from the source is output from the drain of F ⁇ 612 It is output as it is.
- the amplitude of the AC voltage appearing at the source and drain is Ei.
- a series circuit composed of a capacitor 614 and a resistor 616 is connected between the source and the drain of the FET 612, and the voltage appearing at the source and the drain of the FET 612 is connected.
- a signal obtained by synthesizing them through the resistor 616 or the capacitor 614 is output from the phase shift circuit 610C.
- the ti voltage VC1 appearing at both ends of the capacitor 614 and the voltage VR1 appearing at both ends of the resistor 616 are 90 ° out of phase with each other, and the vector combination of these is the FET 6 1 Since the voltage between the source and drain of 2 is equal to 2 Ei, As shown in Fig. 22, the hypotenuse is defined as twice the voltage Ei, and the voltage VC1 across the capacitor 614 and the voltage VR1 across the resistor 616 form a right-angled triangle forming two sides that are orthogonal to each other. .
- this output voltage Eo starts at the center point of the semicircle shown in FIG. It can be represented by a vector ending at a point on the circumference where VC1 and voltage VR1 intersect.
- the amplitude of the output signal is constant regardless of the frequency, and the amount of phase shift is shown in Fig. 22. It can be seen that it is represented by 05 shown in Fig.
- the phase shift circuit 630C of the subsequent stage constituting the oscillator 5E shown in FIG. 21 includes a FET 632 whose gate is connected to the input terminal of the phase shift circuit 630C, and a source and a drain of the FET 632.
- the resistor 636 and the capacitor 634 connected in series with the resistor 632, the resistor 638 connected between the drain of the FET 632 and the positive power supply, and the resistor 640 connected between the source of the FET 632 and the ground. It is comprised including.
- the resistor 646 in the phase shift circuit 630 C is for applying an appropriate bias voltage to the FET 632, and the capacitor 648 inserted between the phase shift circuit 630 C and It is for current blocking.
- This phase shift circuit 630C has the same basic configuration as the phase shift circuit 610C in the preceding stage.
- the connection of the CR circuit consisting of the resistor 636 and the capacitor 634 is connected to the phase shift circuit 610C in the preceding stage.
- the difference is that the connection is opposite to the connection of the CR circuit consisting of the capacity 6 14 and the resistor 6 16.
- the amplitude of the output signal is constant regardless of the frequency, and the amount of phase shift is denoted by 06 in Fig. 23. It can be seen that it is represented. In this way, the phase is shifted by a predetermined amount in each of the two phase shift circuits 610C and 630C, and the whole of the two phase shift circuits 610C and 630C at a predetermined frequency is changed. As a result, a signal having a total phase shift amount of 360 ° is output.
- the non-inverting circuit 650 shown in FIG. 21 has a resistor 654 between the drain and the positive power supply, and a FET 656 connected between the source and the ground. Appropriate bias voltage to FET 652, transistor 652 whose base is connected to the drain of FET 652, and whose collector is connected to the source via resistor 660 And a resistor 6 62.
- the capacity 664 provided before the non-inverting circuit 650 shown in FIG. 21 is for blocking DC current that removes a DC component from the output of the subsequent phase shift circuit 630C. Yes, only the AC component is input to the non-reverse circuit 650.
- the FET 652 When an AC signal is input to the gate, the FET 652 outputs a signal of the opposite phase from the drain. Also, when the signal having the opposite phase is input to the base, the transistor 658 becomes a signal whose phase is further inverted, that is, the signal having the same phase when considering the phase of the signal input to the gate of the FET 652 as a reference. Is output from the collector, and this in-phase signal is output from the non-inverting circuit 650. The output of the non-inverting circuit 650 is taken out from the output terminal 92 as the output of the oscillator 5E, and is fed back to the input side of the preceding phase shift circuit 610C via the feedback resistor 670. I have.
- the amplification degree of the non-inverting circuit 65 0 described above is determined by the respective resistance values of the above-described resistors 65 4, 65 6, and 66 0.
- the loop gain of the feedback loop formed by including the two phase shift circuits 61 0 C and 63 0 C and the feedback resistor 67 0 shown in Fig. 1 can be set to 1 or more. Then, a sine wave oscillation is performed at a frequency such that the total phase shift amount is 360 °.
- FIG. 24 is a circuit diagram showing a configuration of the phase shift circuit including the FET described above.
- (A) shows the configuration of the subsequent phase shift circuit 730C included in the FM modulator 1B.
- the phase shift circuit 730C is a phase shift circuit 630C in the subsequent stage included in the oscillator 5E shown in FIG.
- the resistor 642 for applying a predetermined bias to this FET 635 and the AC component of the signal input externally to the gate of the FET 635 are used. It has a current blocking capacitor 644 provided for application.
- the channel resistance between the source and the drain of the FET 635 is minutely changed by using the FET 635 as a resistor and inputting a signal from the outside to the gate of the FET 635.
- the two phase shift circuits 6 10 C and 730 C constituting the FM modulator 1 B are all-pass circuits, and even if the frequency of the FM-modulated carrier is changed, the amplitude is changed. Is almost--, and another configuration for preventing amplitude fluctuation is not required.
- an external signal is input to the subsequent phase shift circuit 730C, but an external signal is input to the preceding phase shift circuit 6100C.
- the number may be input. That is, the phase shift circuit 610C of the preceding stage constituting the oscillator 5E shown in FIG. 21 is replaced by the phase shift circuit 710C shown in FIG. 24 (B) (the phase shift circuit 610C).
- a resistor 622 of FET 6 15 and a bias application ffl of the resistor 622 and a capacitor 624 for blocking DC current may be used.
- both of the two phase shift circuits include a CR circuit, but at least one of the phase shift circuits is replaced with a phase shift circuit including an LR circuit. You can also.
- FIG. 25 is a circuit diagram showing a configuration of a phase shift circuit 6100L that can be replaced with the preceding phase shift circuit 6100C included in the oscillator 5E shown in FIG.
- the phase shift circuit 610 L shown in FIG. 25 is different from the phase shift circuit 61 0 C shown in FIG. 21 in that a CR circuit consisting of a capacitor 614 and a resistor 6 16 is connected to a resistor 6 16 It has a configuration in which it is replaced with an LR circuit consisting of an inductor 6 17. Assuming that the voltage between both ends of the resistor 6 16 is VR1 and the voltage between both ends of the inductor 6 17 is VL1, as shown in FIG.
- the oblique side is twice the voltage Ei, and the voltage VR1 across the resistor 6 16 and the inductor In the evening, the voltage VL1 at both ends of 617 forms a right triangle forming two sides that are orthogonal to each other.
- this output voltage Eo starts from the center point of the semicircle shown in FIG. It can be represented by a vector ending at a point on the circumference where voltage VR1 and voltage VL1 intersect.
- the amplitude of the output signal is constant regardless of the frequency, and the amount of phase shift is shown in Fig. 26. It can be seen that it is represented by 07 shown.
- phase shift circuit 610L is equivalent to the phase shift circuit 610C, and the phase shift circuit 610C can be replaced with the phase shift circuit 610L. Therefore, in the oscillator 5E shown in FIG. 21, the former-stage phase shift circuit 610C is replaced with the phase-shift circuit 610 L shown in FIG. 25, and the latter-stage phase shift circuit 630C is replaced.
- phase shift circuit 730C shown in Fig. 24 (A) each of the two phase shift circuits can constitute an FM modulator including an LR circuit or a CR circuit.
- FIG. 27 is a circuit diagram showing a configuration of a phase shift circuit 630L which can be replaced with a subsequent phase shift circuit 630C included in the oscillator 5E shown in FIG.
- the phase shift circuit 630 L shown in FIG. 27 is different from the phase shift circuit 630 C shown in FIG. 21 in that a CR circuit comprising a resistor 636 and a capacitor 634 is replaced by an LR comprising an inductor 637 and a resistor 636. It has a configuration replaced with a circuit.
- V across inductor 637 Assuming that the voltage across L2 and the resistor 636 is VR2, as shown in Fig.
- phase shift circuit 63 0 C shown in Fig. 21 and the time constant of the LR circuit in the phase shift circuit 63 0 L shown in Fig. 27 are both T.
- the transfer functions of these phase shift circuits 63 0 C and 63 0 L are both-a (1-T s) / (1 + T s).
- each of the two phase shift circuits can constitute an FM modulator including an LR circuit or a CR circuit .
- an external signal is input to the phase shift circuit including the CR circuit, but an external signal may be input to the phase shift circuit including the LR circuit. Good.
- FIG. 29 is a circuit diagram showing a configuration of a phase shift circuit including an FET in a minus portion of the LR circuit.
- the 29th (A) is replaced with the FET 615, biasing resistor 622 and DC current blocking instead of the resistor 616 in the phase shift circuit 610L shown in Fig. 25.
- the figure shows a configuration of a phase shift circuit 7110 L using a capacitor 624 for use. ⁇
- the FM modulator by replacing the phase shift circuit 6100C in the preceding stage with the phase shift circuit 7 10L shown in Fig. 29 (A). it can.
- the preceding phase shift circuit 6100C is replaced with the phase shift circuit 7100L shown in FIG. 6 3 0 C
- An FM modulator can be configured by replacing the phase shift circuit 630 L shown in FIG.
- a FET 635 instead of the resistor 636 in the phase shift circuit 630L shown in Fig. 27, a FET 635, a resistor 642 for applying a bias, and a capacitor 644 for blocking a DC current are used.
- the configuration of the phase shift circuit 730L is shown.
- the subsequent phase shift circuit 630C can be replaced with the phase shift circuit 730L shown in FIG. 29 (B) to constitute an FM modulator.
- the subsequent phase shift circuit 630C is replaced by the phase shifter 730L shown in FIG.
- the FM modulator can be constructed by replacing 10 C with the phase shift circuit 6 10 L shown in FIG.
- the resistance of the resistor formed by FET is changed by a signal input from the outside, but the capacity of the CR circuit is changed by a signal input from the outside. You may make it change.
- FIG. 30 is a circuit diagram showing a configuration of a phase shift circuit in which a variable capacitance element is included in a CR circuit.
- Fig. 30 (A) shows the FET 635 in the phase shift circuit 730C shown in Fig. 24 (A) as the fixed resistor 636, and the capacity 634 as the variable capacitance diode 634-1 and
- the configuration of the phase shift circuit 730 C ' is shown in Fig. 64-2, which is a DC current blocking capacitor.
- a bias circuit is formed by the two resistors 642 and 643, and only the AC component of the signal to be input is separated by passing through the capacitor 644, and this AC component is superimposed on a predetermined bias voltage.
- variable capacitance diode 634-1 As a result, a reverse bias voltage is applied to the variable capacitance diode 634-1. Since the capacitance of the variable capacitance M-diode 634-1 changes slightly according to the signal input from the outside, the above-described phase shift circuit 730C 'is connected to the phase shift circuit shown in FIG. 24 (A). By using the circuit instead of the circuit 730C, an FM modulator can be configured.
- Fig. 30 (B) shows the FET 615 in the phase shift circuit 710 shown in Fig. 24 (B) as the fixed resistor 616, and the capacitor 614 as the variable capacitance diode 6 1 4 1 1 and phase shifter replaced by DC current blocking capacitor 6 14- [o] shows the configuration of the path 7110C '. Also, a bias circuit is formed by the two resistors 6 2 2 and 6 2 3, and only the AC component of the input signal is separated by passing through the capacitor 6 24, and this AC component is The reverse bias voltage is superimposed on the voltage and applied to the variable capacitance diode 6 14-4-1.
- phase shift circuit 7 110 C is shown in FIG. 24 (B).
- the FM modulator can be configured.
- the oscillation operation is performed at a frequency at which the sum of the phase shifts fi by the two phase shift circuits is 360 °, but within the closed loop.
- the oscillation operation may be performed at a frequency at which the total phase shift amount of the two phase shift circuits is 180 °.
- FIG. 31 is a circuit diagram of an oscillator configured using two phase shift circuits and a phase inversion circuit.
- the oscillator 5F shown in the figure is composed of a two-stage cascade connection of the preceding phase-shift circuit 6100C in the oscillator 5E shown in FIG. 21I, and a FET 682 and a resistor 684
- a phase inverting circuit 680 composed of the phase inverting circuit 686 and the output of the phase inverting circuit 680 is fed back to the input side of the preceding phase shift circuit 610C via the resistor 670.
- the sum of the phase shifts:: by the two phase shifting circuits 610C is 1800.
- the phase shift amount when the circuit goes through the closed loop becomes 360 °, and a predetermined oscillation operation is performed by setting the loop gain of the feedback loop at this time to 1 or more.
- phase shift circuit 710C shown in FIG. 29 (A) or the phase shift circuit 7 shown in FIG. 30 (B) may be used.
- Use 10 C or other The phase shift circuit 610 L shown in FIG. 25 may be used as the other phase shift circuit (a phase shift circuit to which no external signal is input).
- FIG. 32 is a circuit diagram of another oscillator configured by cascading two phase shift circuits and a phase inversion circuit.
- the oscillator 5G shown in the figure has a two-stage cascade connection of the subsequent phase shift circuit 630C in the oscillator 5E shown in FIG. 21 and a phase inversion circuit 680 connected to the subsequent stage. Then, the output of the phase inversion circuit 680 is fed back to the input side of the preceding phase shift circuit 630 C via the resistor 670.
- the phase inverting circuit 680 Since the signal is inverted by the phase inverting circuit 680, when the total phase shift amount by the two phase shifting circuits 630C is 180 °, the phase shift when the circuit goes through a closed loop ffi becomes 360 °, and a predetermined generating operation is performed by setting the loop gain of the feedback loop at this time to 1 or more.
- phase shift circuit 730C shown in FIG.
- An FM modulator that converts signals into FM modulation signals can be configured.
- the phase shift circuit 730 C instead of the above-described phase shift circuit 730 C, the phase shift circuit 730 L shown in FIG. 29 (B) or the phase shift circuit shown in FIG. 30 (A) 730C may be used, or the phase shift circuit 630L shown in FIG. 27 may be used as the other phase shift circuit (a phase shift circuit to which no external signal is input).
- FIG. 33 is a circuit diagram showing the detailed configuration of the FM modulator of the tenth embodiment c .
- the FM modulator 1C shown in FIG. 33 does not change the phase of the input AC signal.
- the non-inverting circuit 850 functions as a buffer circuit, and includes, for example, an emitter follower circuit, a source follower circuit, and the like.
- the non-inverting circuit 850 is omitted and the FM modulator is omitted. Make up 1 C Is also good.
- the FM modulator 1C shown in FIG. 33 has an external input terminal 90.
- the signal input from the external input terminal 90 is FM-modulated and output.
- the output of the FM modulator 1 is amplified by the amplifier 2 and transmitted from the antenna 3 to the air. Becomes an FM wireless transmitter.
- the signal may be transmitted to the transmission line 400 via the transmitting driver 4 as shown in FIG.
- Fig. 34 shows the configuration of the oscillator when the FET 835 and its peripheral circuit included in the FM modulator 1C shown in Fig. 33 are replaced with a fixed resistor 836.
- the preceding phase shift circuit 810C shown in the figure is a differential amplifier 812 that amplifies the differential voltage of the two inputs with a predetermined amplification and outputs the amplified signal, and a phase difference of the input AC signal by a predetermined amount.
- the capacitance and the resistance input to the non-inverting human input terminal of the differential amplifier 812 are shifted to about 1/2 of the voltage level without changing the phase of the input AC signal.
- the resistors 818 and 820 to be input to the inverting input terminal of the differential amplifier 812.
- FIG. 35 is a vector ⁇ showing the relationship between the human output voltage of the phase shift circuit 8100 C shown in FIG. 34 and the voltage appearing in the capacity and the like.
- the voltage VR1 appearing at both ends of the resistor 816 and the voltage VC1 appearing at both ends of the capacitor 814 are 90 ° out of phase with each other.
- the phase shift circuit is equivalent to a human input voltage Ei of 8100C. Therefore, when the amplitude of the input voltage E i is constant and only the frequency changes, the voltage VR1 across the resistor 8 16 and the voltage across the capacitor 8 14 along the circumference of the semicircle shown in FIG. The voltage VC1 changes.
- the voltage H applied to the non-inverting input terminal of the differential amplifier 812 (the voltage VC1 across the capacitor 814) is applied to the voltage applied to the inverting human terminal (the voltage across the resistor 8200).
- the vector obtained by subtracting E i / 2) is the difference voltage E o '.
- This difference voltage E o ' is expressed as a vector with the center point as the starting point and the end point at one point on the circumference where voltage VC1 and voltage VR1 intersect in the semicircle shown in Fig. 35. And its size is equal to the radius of the semicircle E i / 2.
- the output voltage Eo of the differential amplifier 812 is obtained by amplifying the differential voltage Eo 'with a predetermined amplification factor. Therefore, the above-described phase shift circuit 8100C operates as an all-pass circuit because the output voltage E o is constant irrespective of the frequency of the input voltage E i. Further, as is apparent from FIG. 35, since the voltage VC1 and the voltage VR1 intersect at right angles on the circumference, the phase difference between the input voltage Ei and the voltage VC1 varies from a frequency ⁇ of 0 to ⁇ . Then, it changes from 0 ° to 90 ° in the clockwise direction (phase lag direction) based on the human-power voltage E i. Then, the phase shift amount 09 of the entire phase shift circuit 8110C changes from 0 ° to 180 ° according to the frequency.
- the subsequent phase shift circuit 8330C shown in FIG. 34 includes a differential amplifier 832 that amplifies the differential voltage of the two inputs at a predetermined amplification degree and outputs the amplified signal, and a differential amplifier 832 of the input AC signal. After shifting the phase by a predetermined amount, the voltage level of the capacitor 834 and the resistor 836 input to the non-inverting input terminal of the differential amplifier 832, and the voltage level of the input AC signal are changed without changing the phase. It is configured to include resistors 838 and 840 which divide the voltage by 1/2 and input to the inverting input terminal of the differential amplifier 812.
- FIG. 36 is a vector diagram showing a relationship between the human output voltage of the phase shift circuit 830 C shown in FIG. 34 and the overpressure appearing in the capacity and the like.
- the voltage VC2 appearing at both ends of the capacitor 834 and the voltage VR2 appearing at both ends of the resistor 836 are 90 ° out of phase with each other, and are vector-wise added. Becomes the input voltage E i. Therefore, when the amplitude of the input signal is constant and only the frequency changes, the voltage V C2 across the capacitor 834 and the voltage across the resistor 836 along the circumference of the semicircle shown in Fig. 36 The voltage VR2 changes.
- the voltage applied to the non-inverting input terminal of the differential amplifier 832 (the voltage VR2 across the resistor 836) and the voltage applied to the inverting input terminal (the voltage E i / 2 ) Is the difference voltage E o '.
- the difference voltage E o ′ is calculated from the center point of the graduation circle shown in FIG. It can be represented by a vector ending at a point on the circumference where C2 intersects, and its size is equal to the radius Ei / 2 of the semicircle.
- the output voltage Eo of the differential amplifier 832 is obtained by amplifying the differential voltage Eo ′ with a predetermined amplification factor. Therefore, the above-described phase shift circuit 830C operates as an all-pass circuit in which the output voltage Eo is constant regardless of the frequency of the input signal.
- the phase difference between the input voltage Ei and the voltage VR2 increases as the frequency ⁇ changes from 0 to ⁇ . 1 80 ° to 270.
- the phase shift amount 010 of the entire phase shift circuit 830C changes from 180 ° to 360 ° according to the frequency.
- the phase of each of the two phase shift circuits 810C and 830C is shifted by a predetermined amount, and the phase shift circuit 810C and 830C as a whole is shifted at a predetermined frequency.
- a signal with a total of 360 ° is output.
- the FM modulator 1C shown in FIG. 33 has a phase shifter 830C included in the oscillator 5H shown in FIG. 34 which is connected to a resistor in accordance with the voltage level of an externally input AC signal. It has a configuration in which the phase shift circuit 930C including the FET 835 whose value changes is replaced with a phase shift circuit 930C. Next, an FM modulator 1C having such a configuration will be described.
- FIG. 37 is a circuit diagram showing a configuration of a phase shift circuit including the above-described FET.
- FIG. 37A shows a configuration of a subsequent phase shift circuit 930C included in the FM modulator 1C. I have.
- This phase shift circuit 930C uses a CR circuit composed of a resistor 836 and a capacitor 834 as a resistor between a source and a drain in the subsequent phase shift circuit 830C included in the oscillator 5H shown in FIG.
- the resistor 842 for applying a predetermined bias to the FET 835 and the AC component of the signal input from the outside to the FET 835 gate are applied. To prevent DC current from being provided.
- the channel resistance between the source and the drain of the FET 835 slightly changes.
- FET 835 whose resistance value changes according to the external input, it is possible to easily obtain an FM-modulated signal. Therefore, the circuit configuration itself of the FM modulator 1C can be simplified.
- the two phase-shift circuits 8100C and 930C that make up the FM modulator 1C are all-pass circuits, and even if the frequency of the FM-modulated carrier is changed, Is almost equal to one, and an additional circuit for preventing amplitude fluctuation is not required.
- an external signal is input to the subsequent phase shift circuit 930C, but an external signal is input to the preceding phase shift circuit 8100C. May be input. That is, the phase shift circuit 8100C in the preceding stage shown in FIG. 33 is replaced with the phase shift circuit 910C shown in FIG. 37 (B) (in place of the resistor 816 in the phase shift circuit 8100C). , FET 815, resistor 822 for applying bias and capacitor 824 for blocking DC current).
- both of the two phase shift circuits include a CR circuit, but at least the-phase shift circuit can be replaced with a phase shift circuit including an LR circuit. .
- FIG. 38 is a circuit diagram showing a configuration of a phase shift circuit 8110L which can be replaced with the preceding phase shift circuit 8100C included in the oscillator 5H shown in FIG.
- the phase shift circuit 8 10 L shown in FIG. 38 is different from the phase shift circuit 8 10 C shown in FIG. 34 in that a CR circuit consisting of a capacitor 814 and a resistor 8 16 is connected to the resistor 8 16 C. It has a configuration in which it is replaced with an LR circuit consisting of
- phase shift circuits of 8 10 C and 8 10 L are both a (1 — T s) / (1 + T s: where s 2, where a is each phase shift circuit Is the gain.
- phase shift circuit 8100L is equivalent to the phase shift circuit 8110C, and the phase shift circuit 8110C can be replaced with the phase shift circuit 8110L. Therefore, the 34th In the oscillator 5H shown in the figure, the former phase shift circuit 8100C is replaced with the phase shift circuit 810L shown in FIG. 38, and the latter phase shift circuit 830C is replaced in FIG.
- each of the two phase shifters can constitute an FM modulator including an LR circuit or a CR circuit.
- FIG. 39 is a circuit diagram showing a configuration of a phase shift circuit 830L which can be replaced with a subsequent phase shift circuit 830C included in the oscillator 5H shown in FIG.
- the phase shift circuit 830L shown in Fig. 39 is different from the phase shift circuit 830C shown in Fig. 34 in that a CR circuit consisting of a resistor 835 and a capacitor 834 is hidden in an LRfyl path consisting of an inductor 837 and a resistor 836. It has a changed configuration.
- the phase shift circuit 830L is equivalent to the phase shift circuit 830C, and the phase shift circuit 830C can be replaced with the phase shift circuit 830L. Therefore, in the oscillator 5H shown in FIG. 34, the subsequent phase shift circuit 830C is replaced with the phase shift circuit 830L shown in FIG.
- an FM modulator can be configured.
- the capacity in the CR circuit included in the preceding phase shift circuit 8100C may be configured using a variable capacitance diode and a bias application resistor.
- the oscillation operation is performed at a frequency at which the sum of the phase shift amounts by the two phase shift circuits becomes 360 °.
- the oscillation operation may be performed at a frequency at which the total phase shift amount of the two phase shift circuits is 180 °.
- FIG. 40 is a circuit diagram of an oscillator configured using two phase shift circuits and a phase inversion circuit.
- the oscillator 5J shown in the figure is connected to the phase shift circuit 8100C in the oscillator 5J shown in FIG.
- An inverting circuit is connected, and the output of the subsequent phase shift circuit 830C is fed back to the input side of the phase inverting circuit 880 via a feedback resistor 870.
- the phase inverting circuit 880 inverts the phase of an input AC signal, and is realized by, for example, an emitter grounding circuit, a source grounding circuit, or a circuit combining an operational amplifier and a resistor.
- phase shift when the circuit goes through a closed loop is completed. 3600.
- a predetermined oscillation operation is performed by setting the loop gain of the feedback loop at this time to 1 or less.
- phase inverting circuit 880 since the phase of the signal is inverted by the phase inverting circuit 880, when the total phase shift amount of the two phase shifting circuits 810C becomes 180 °, when the circuit goes through a closed loop, The phase shift amount becomes 360 °, and a predetermined oscillation operation is performed by setting the loop gain of the feedback loop at this time to 1 or more.
- an FM modulator can be constructed by replacing one of the two phase shift circuits 810C included in the oscillator 5J with the phase shift circuit 910C shown in FIG. 37 (B). Can be. Alternatively, one of the two phase-shift circuits 8100C included in the oscillator 5J is replaced with the phase-shift circuit 9110C shown in FIG. 37 (B), and the other is replaced with the phase shifter shown in FIG.
- the FM modulator may be configured by replacing the phase shift circuit 8101L shown in FIG.
- FIG. 41 is a circuit diagram of another oscillator configured using two phase shift circuits and a phase inversion circuit.
- the oscillator 5K shown in the figure is connected in cascade with two stages of the phase shift circuit 830C at the subsequent stage in the oscillator 5H shown in FIG.
- a phase inversion circuit 880 is connected to the input side, and the output of the subsequent phase shift circuit 830C is returned to the input side of the phase inversion circuit 880 via a feedback resistor 870.
- an FM modulator is constructed by replacing one of the two phase shifters 830C included in the generator 5K with the phase shifter 930C shown in Fig. 37 ( ⁇ ). can do.
- one of the two phase shifters 830C included in the oscillator 5 ⁇ is replaced with the phase shifter 930C shown in FIG. 37 ( ⁇ ), and the other is replaced with the phase shifter shown in FIG.
- the FM modulator may be configured by replacing the phase shift circuit 830 L shown in FIG.
- the above-mentioned oscillators 5C, 5D, 5E, 5F, 5G, 5H, 5J, 5K, etc. are composed of a non-inverting circuit and two phase shifting circuits or a phase inverting circuit and two phase shifting circuits.
- the circuit is configured to include a circuit, and a predetermined tuning operation is performed by setting the total phase shift amount to 360 ° at a predetermined frequency by a total of three connected circuits. ing. Therefore, focusing only on the amount of phase shift, there is a certain degree of freedom as to which of the two phase shift circuits is used in the preceding stage or in what order the three circuits described above are connected. Connection order can be determined according to
- the element constant of each element other than the FET or the variable capacitance diode to which a signal is input from the outside is fixed, and the FM modulation apparatus in which the carrier frequency is fixed is realized.
- the frequency may be arbitrarily changed by changing each element constant.
- the FM modulator E1 shown in the 1st-1 ⁇ 1 as an example, by replacing the resistor 16 in the phase shift circuit 10 C with a variable resistor and changing the resistance value, or by changing the phase shift circuit 1
- the capacitance 14 in 0 C with a variable capacitance element and changing this capacitance
- the amount of phase shift by the phase shift circuit 10 C is changed, and the FM modulator IS 1
- the carrier frequency of the output signal can be changed.
- variable capacitance diode is used as an example of a variable capacitance element.
- a FET whose gate capacitance can be changed when the gate voltage to be applied is varied is used as a variable capacitance element. It may be.
- FM modulator ⁇ 1 ⁇ signals input from the outside are joined. Although it is input to the FET of the MOS type, a MOS type F ⁇ F may be used.
- high stability is realized by configuring an FM modulator using a phase shift circuit 10 C, 130 C, etc. using an operational amplifier.
- the offset voltage and the voltage gain are not required to have a high performance. Therefore, a differential input amplifier having a predetermined gain may be used instead of the operational amplifier in each phase shift circuit.
- FIG. 42 ⁇ is a circuit diagram in which portions necessary for the operation of the phase shift circuit in the configuration of the operational amplifier are extracted, and the whole operates as a differential input amplifier having a predetermined gain.
- the differential input amplifier shown in the figure includes a differential human power stage 100 composed of FETs, a current circuit 102 for supplying a constant current to the differential human power stage 100, and a constant current circuit 102 A bias circuit 104 for applying a predetermined bias voltage to the input terminal and an output amplifier 106 connected to the differential input stage 100 are provided.
- the multistage amplifier circuit for gaining the voltage gain included in the actual operational amplifier is omitted, and the configuration of the differential input amplifier can be simplified, and the bandwidth can be widened.
- the upper limit of the operating frequency can be reduced by simplifying the circuit, the upper limit of the output frequency of the FM modulator configured using the differential input amplifier is increased accordingly. be able to. Industrial applicability
- the present invention it is possible to directly perform FM modulation by changing the resistance and capacitance of a capacitor according to a signal input from the outside, thereby simplifying the circuit configuration of the entire FM modulator. be able to. Also, since an all-pass 3 ⁇ 4 circuit is used, a stable output amplitude can always be obtained regardless of the output frequency.
Landscapes
- Networks Using Active Elements (AREA)
- Transmitters (AREA)
- Amplitude Modulation (AREA)
- Amplifiers (AREA)
- Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
Abstract
An FM modulator (1) includes two phase shifting circuits (10C and 130C) and an FET (35) is provided in a CR circuit in the circuit (130C). The FM modulator (1) oscillates at the frequency at which the sum of the amounts of phase shift by means of the two circuits (10C and 130C) is 360°. When the channel resistance of the FET (35) is slightly changed by a signal inputted externally, the modulator (1) outputs FM signals from an output terminal (92) by directly utilizing the change for the frequency modulation.
Description
明 細 書 Specification
F M変調装置 技術分野 FM modulator Technical field
本発明は、 外部から入力される β号を F M変調して送出する F M変調装置に関 する。 背景技術 The present invention relates to an FM modulator that FM-modulates a β signal input from the outside and sends it out. Background art
F M変調回路は一般に、 歪みの少ない正弦波を発生する L C発振器を用いて構 成されている。 この L C発振器としては、 例えばコルピッツ型等の各種の発振器 があり、 例えばその内部に含まれる L C共振回路のキャパシ夕をバリキャップ (可変容量ダイオード) で構成し、 そのキャパシタンスを F M変調信号の電圧レ ベルの変動に応じて変化させることにより、 F M変調を行っている。 The FM modulation circuit is generally configured using an LC oscillator that generates a sine wave with little distortion. There are various types of LC oscillators, for example, Colpitts type oscillators. For example, the capacity of the LC resonance circuit contained in the oscillator is composed of varicaps (variable capacitance diodes), and the capacitance is the voltage level of the FM modulation signal. FM modulation is performed by changing the bell according to the fluctuation.
ところが、 この種の L C発振器は、 発振周波数を大きく変えると発板出力の電 圧レベルも変化するという問題があり、 そのままでは実用的でない。 そのため、 この種の L C発振器を用いる場合には、 F Mキヤリァの振幅を一定にする fnl路が 必要となり、 回路構成が複雑になる。 発明の開示 However, this type of LC oscillator has the problem that if the oscillation frequency is significantly changed, the voltage level of the plate output will also change, which is not practical. Therefore, when this type of LC oscillator is used, an fnl path for keeping the amplitude of the FM carrier constant is required, and the circuit configuration becomes complicated. Disclosure of the invention
本発明は、 このような課題を解決するために考えられたものであり、 その冃的 は回路構成が簡単な F M変調装置を提供することにある。 The present invention has been conceived in order to solve such a problem, and a purpose thereof is to provide an FM modulator having a simple circuit configuration.
本発明の F M変調装置は、 差動増幅器と C R冋路とを含む全域通過型の 2つの 移相回路を備え、 これら 2つの移相回路を縦続接続して後段の前記移相回路の出 力を前段の前記移相问路の入力側に帰還させるとともに、 前記 2つの移相冋路の いずれか一方に含まれる前記 C R回路内の抵抗として F Ε Τを用い、 前記 F Ε Τ のゲー卜に印加される所定のバイアス電圧に外部から入力される信 の交流成分 を重^させることにより、 前記 2つの移相回路のいずれかから F M変調されたィ 号を出力する。
P 70 The FM modulator of the present invention includes two all-pass type phase shift circuits including a differential amplifier and a CR circuit, and cascade-connects these two phase shift circuits to output the output of the phase shift circuit at a subsequent stage. Is fed back to the input side of the phase shift circuit in the preceding stage, and F Ε と し て is used as a resistor in the CR circuit included in one of the two phase shift circuits, and the gate of the F Ε Τ is used. By superimposing an AC component of a signal input from the outside on a predetermined bias voltage applied to the phase shifter, an FM-modulated signal is output from one of the two phase shift circuits. P 70
2 Two
本発明は、 外部から入力される信号に応じて抵抗やキャパシ夕の素子定数を変 化させることにより直接 F M変調することができ、 F M変調装置全体の回路構成 を簡略化することができる。 また、 全域通過型冋路を用いているため、 出力周波 数にかかわらず常に安定した出力振幅を得ることができる。 図面の簡単な説明 According to the present invention, FM modulation can be directly performed by changing a resistance or an element constant of a capacity according to a signal input from the outside, and the circuit configuration of the entire FM modulation device can be simplified. Also, since an all-pass type circuit is used, a stable output amplitude can always be obtained regardless of the output frequency. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 第 1の実施形態の F M変調装置の構成を示す図、 FIG. 1 is a diagram showing a configuration of an FM modulator according to a first embodiment,
第 2図は、 F M変調装置の他の構成を示す図、 FIG. 2 is a diagram showing another configuration of the FM modulator,
第 3図は、 第 1図に示した F M変調装置に含まれる F E Tとその周辺回路を抵 抗値が固定の抵抗に置き換えた発振器の構成を示す回路図、 FIG. 3 is a circuit diagram showing the configuration of an oscillator in which the FET included in the FM modulator shown in FIG. 1 and its peripheral circuits are replaced by resistors having fixed resistance values,
第 4図は、 第 3図に示す前段の移相回路の人出力電圧等に関するべク トル図、 第 5図は、 第 3図に示す後段の移相回路の人出力電圧等に関するべク トル図、 第 6図は、 F E Tを含む移相回路の構成を示す回路図、 Fig. 4 is a vector diagram related to the human output voltage etc. of the preceding phase shift circuit shown in Fig. 3, and Fig. 5 is a vector related to the human output voltage etc. of the subsequent phase shift circuit shown in Fig. 3. Fig. 6 is a circuit diagram showing the configuration of the phase shift circuit including the FET.
第 7図は、 L R回路を含む移相回路の構成を示す冋路図、 FIG. 7 is a circuit diagram showing a configuration of a phase shift circuit including an LR circuit,
第 8図は、 第 7図に示す移相回路の入出力電圧等に関するべク トル図、 第 9図は、 L R冋路を含む移相回路の他の構成を示す回路図、 FIG. 8 is a vector diagram relating to the input / output voltage of the phase shift circuit shown in FIG. 7, FIG. 9 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit,
第 1 0図は、 第 9図に示す移相回路の入出力電圧等に関するべク トル図、 第 1 1図は、 L R回路の一部に F E Tを含む移相回路の構成を示す回路図、 第 1 2図は、 L R回路の一部に F E Tを含む移相回路の他の構成を示す冋路図、 第 1 3図は、 移相冋路内に分圧回路を設けた発振器の構成を示す回路図、 第 1 4闵は、 発振器の他の構成を示す回路図、 FIG. 10 is a vector diagram relating to input / output voltages and the like of the phase shift circuit shown in FIG. 9, FIG. 11 is a circuit diagram showing a configuration of a phase shift circuit including a FET as a part of the LR circuit, FIG. 12 is a circuit diagram showing another configuration of the phase shift circuit including the FET in a part of the LR circuit. FIG. 13 is a configuration diagram of an oscillator having a voltage dividing circuit in the phase shift circuit. FIG. 14 is a circuit diagram showing another configuration of the oscillator,
第 1 5図は、 第 1 4図に示した前段の移相回路と置き換え可能な移相回路の構 成を示す 路図、 FIG. 15 is a circuit diagram showing a configuration of a phase shift circuit that can be replaced with the preceding phase shift circuit shown in FIG. 14,
第 1 6図は、 第 1 4図に示した後段の移相问路と置き換え可能な移相回路の構 成を示す冋路図、 FIG. 16 is a circuit diagram showing a configuration of a phase shift circuit that can be replaced with the subsequent phase shift circuit shown in FIG. 14,
第 1 7図は、 第 4の実施形態の F M変調装置の詳細構成を示す回路図、 第 1 8図は、 位相反転回路を含む発振器の構成を示す回路図、 FIG. 17 is a circuit diagram showing a detailed configuration of an FM modulator according to a fourth embodiment. FIG. 18 is a circuit diagram showing a configuration of an oscillator including a phase inversion circuit.
第 1 9図は、 位相反転回路を含む発振器の他の構成を示す回路図、 FIG. 19 is a circuit diagram showing another configuration of an oscillator including a phase inversion circuit,
第 2 0図は、 第 7の実施形態の F M変調装置の詳細構成を示す回路図、
第 2 1図は、 第 2 0図に示した F M変調装置に含まれる F E Tとその周辺回路 を抵抗値が 定の抵抗に置き換えた発振器の構成を示す回路図、 FIG. 20 is a circuit diagram showing a detailed configuration of an FM modulator according to a seventh embodiment; FIG. 21 is a circuit diagram showing the configuration of an oscillator in which the FET and its peripheral circuits included in the FM modulator shown in FIG.
第 2 2図は、 第 2 1図に示す前段の移相回路の入出力電圧等に関するべクトル 図、 FIG. 22 is a vector diagram relating to input / output voltages and the like of the preceding phase shift circuit shown in FIG. 21;
第 2 3図は、 第 2 1図に示す後段の移相回路の入出力電圧等に関するべクトル 図、 FIG. 23 is a vector diagram relating to the input / output voltage of the subsequent phase shift circuit shown in FIG. 21;
第 2 4図は、 F E Tを含む移相回路の構成を示す回路図、 FIG. 24 is a circuit diagram showing a configuration of a phase shift circuit including FET,
第 2 5図は、 第 2 1図に示した前段の移相回路と置き換え可能な移相回路の構 成を示す回路図、 FIG. 25 is a circuit diagram showing a configuration of a phase shift circuit that can be replaced with the preceding phase shift circuit shown in FIG. 21;
第 2 6図は、 第 2 5図に示す移相回路の入出力電圧等に関するべクトル図、 第 2 7図は、 第 2 1図に示した後段の移相回路と置き換え可能な移相回路の構 成を示す回路図、 Fig. 26 is a vector diagram of the input / output voltage of the phase shift circuit shown in Fig. 25, and Fig. 27 is a phase shift circuit that can be replaced with the subsequent phase shift circuit shown in Fig. 21 Circuit diagram showing the configuration of
第 2 8図は、 第 2 7図に示す移相回路の入出力電圧等に関するべクトル図、 第 2 9図は、 L R回路の一部に F E Tを含む移相回路の構成を示す回路図、 第 3 0図は、 可変容量素子を含む移相回路の構成を示す回路図、 FIG. 28 is a vector diagram showing input / output voltages of the phase shift circuit shown in FIG. 27, FIG. 29 is a circuit diagram showing a configuration of a phase shift circuit including an FET in a part of the LR circuit, FIG. 30 is a circuit diagram showing a configuration of a phase shift circuit including a variable capacitance element,
第 3 1図は、 位相反転回路を含む発振器の構成を示す回路図、 FIG. 31 is a circuit diagram showing a configuration of an oscillator including a phase inversion circuit,
第 3 2図は、 位相反転回路を含む発振器の他の構成を示す回路図、 FIG. 32 is a circuit diagram showing another configuration of an oscillator including a phase inversion circuit,
第 3 3図は、 第 1 0の実施形態の F M変調装置の構成を示す间路図、 第 3 4図は、 第 3 3図に示した F M変調装置に含まれる F E Tとその周辺回路 を抵抗値が固定の抵抗に置き換えた発振器の構成を示す回路図、 FIG. 33 is a circuit diagram showing the configuration of the FM modulator according to the tenth embodiment. FIG. 34 is a diagram showing the FET and its peripheral circuits included in the FM modulator shown in FIG. A circuit diagram showing a configuration of an oscillator in which the value is replaced by a fixed resistor,
第 3 5図は、 第 3 4図に示す前段の移相回路の入出力電圧等に関するべク トル 図、 FIG. 35 is a vector diagram relating to the input / output voltage of the former phase shift circuit shown in FIG. 34,
第 3 6図は、 第 3 4図に示す後段の移相回路の入出力電圧等に関するべク トル 図、 FIG. 36 is a vector diagram relating to the input and output voltages of the subsequent phase shift circuit shown in FIG. 34,
第 3 7図は、 F E Tを含む移相回路の構成を示す冋路図、 FIG. 37 is a circuit diagram showing the configuration of a phase shift circuit including FET,
第 3 8図は、 L R回路を含む移相回路の構成を示す回路図、 FIG. 38 is a circuit diagram showing a configuration of a phase shift circuit including an LR circuit,
第 3 9図は、 L R回路を む移相回路の他の構成を示す回路 |、 Fig. 39 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit.
第 4 0図は、 位相反転回路を含む発振器の構成を示す回路「 、 FIG. 40 is a circuit diagram showing the configuration of an oscillator including a phase inversion circuit.
第 4 1図は、 位相反転回路を含む発^器の他の構成を示す冋路図、
第 4 2図は、 オペアンプの構成の中で移相回路の動作に必要な部分を抽出した 回路図である。 発明を実施するための最良の形態 FIG. 41 is a circuit diagram showing another configuration of the generator including the phase inversion circuit, FIG. 42 is a circuit diagram showing a portion necessary for the operation of the phase shift circuit in the configuration of the operational amplifier. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を適用した一の実施形態について、 図面を参照しながら具体的に 説明する。 Hereinafter, one embodiment to which the present invention is applied will be specifically described with reference to the drawings.
〔第 1の実施形態〕 [First embodiment]
第 1図は、 本発明を適用した第 1の実施形態の F M変調装置の構成を示す回路 図である。 同図に示す F M変調装置 1は、 所定の周波数において合計で 3 6 0。 の位相シフ トを行う 2つの移相回路 1 0 C、 1 3 0 Cと、 後段の移相回路 1 3 0 Cの出力を前段の移相回路 1 0 Cの入力側に帰還させる帰還抵抗 7 0とを含んで 構成され、 帰還抵抗 7 0は 0 Ωから有限の抵抗値を有している。 これら 2つの移 相回路 1 0 C、 1 3 0 Cと帰還抵抗 7 0は発振器を構成している。 FIG. 1 is a circuit diagram showing a configuration of an FM modulator according to a first embodiment to which the present invention is applied. The FM modulator 1 shown in the figure has a total of 360 at a predetermined frequency. The two phase shifters 1 0 C and 130 C, and the feedback resistor 7 that feeds back the output of the subsequent phase shift circuit 130 C to the input side of the previous phase shift circuit 10 C The feedback resistor 70 has a finite resistance value from 0 Ω. These two phase shift circuits 10 C and 130 C and the feedback resistor 70 constitute an oscillator.
また、 この F M変調装置 1は、 外部入力端子 9 0を有しており、 この外部入力 端子 9 0から入力される信号を F M変調して出力する。 Further, the FM modulator 1 has an external input terminal 90, and FM-modulates a signal input from the external input terminal 90 and outputs the signal.
例えば、 第 1図に示すように、 F M変調装置 1の後段に増幅器 2およびアンテ ナ 3を接続し、 F M変調装置 1の出力を増幅器 2によって増幅してアンテナ 3か ら空中に送出すれば F Mワイヤレス送信機となる。 また、 アンテナ 3から空中に 送出する場合の他、 第 2図に示すように送信ドライバ 4を介して伝送路 4 0 0に 送出してもよい。 For example, as shown in Fig. 1, an amplifier 2 and an antenna 3 are connected after the FM modulator 1, and the output of the FM modulator 1 is amplified by the amplifier 2 and transmitted from the antenna 3 to the air. Become a wireless transmitter. In addition to transmitting the signal from the antenna 3 to the air, the signal may be transmitted to the transmission path 400 via the transmitting driver 4 as shown in FIG.
第 1図に示した F M変調装置 1の詳細について説明する前に、 その基本となる 発振器の動作について説明する。 Before describing the details of the FM modulator 1 shown in FIG. 1, the basic operation of the oscillator will be described.
第 3図は、 第 1図に示した F M変調装置 1に^まれる F E T 3 5とその周辺回 路を、 抵抗値が固定の抵抗 3 6に Sき換えた場合の発振器 5の構成を示す回路図 である。 同図に示す発振器 5は、 所定の周波数において合計で 3 6 0 ° の位相シ フ トを行う 2つの移相回路 1 0 C、 3 0 Cと、 後段の移相回路 3 0 Cの出力を前 段の移相回路 1 0 Cの入力側に帰還させる 還抵抗 7 0とを含んで構成されてい る。 FIG. 3 shows the configuration of the oscillator 5 when the FET 35 and its peripheral circuit included in the FM modulator 1 shown in FIG. 1 are replaced with a resistor 36 having a fixed resistance value. It is a circuit diagram. The oscillator 5 shown in the figure is composed of two phase shift circuits 10 C and 30 C that perform a total of 360 ° phase shift at a predetermined frequency, and the output of a subsequent phase shift circuit 30 C. And a feedback resistor 70 for feeding back to the input side of the phase shift circuit 10 C in the preceding stage.
第 3図に示す発振器 5を構成する前段の移相回路 1 0 Cは、 差動増幅器の一種
であるオペアンプ (演算増幅器) 1 2と、 この移相回路 1 0 Cに入力された信号 の位相を所定量シフ トしてオペアンプ 1 2の非反転入力端子に入力する抵抗 1 6 およびキャパシ夕 1 4と、 この移相回路 1 0 Cの人力端とオペアンプ 1 2の反転 人力端子との間に挿入された抵抗 1 8と、 オペアンプ 1 2の出力端と反転入力端 子との間に挿入された抵抗 2 0とを含んで構成されている。 The phase shift circuit 10 C at the preceding stage that constitutes the oscillator 5 shown in FIG. 3 is a type of differential amplifier. An operational amplifier (operational amplifier) 12, a resistor 16 that shifts the phase of the signal input to the phase shift circuit 10 C by a predetermined amount, and inputs the resulting signal to the non-inverting input terminal of the operational amplifier 12 and a capacitor 1. 4 and a resistor 18 inserted between the human input end of this phase shift circuit 10 C and the inverted human input terminal of the operational amplifier 12, and a resistor 18 inserted between the output end of the operational amplifier 12 and the inverted input terminal And a resistor 20.
このような構成を有する移相回路 1 0 Cに交流信号が入力されると、 オペアン プ 1 2の非反転入力端子にはキャパシ夕 1 4の両端に現れる電圧 VC1が印加され る。 また、 オペアンプ 1 2の 2入力端子間には電位差が牛-じないので、 オペアン ブ 1 2の反転入力端子の電位と、 抵抗 1 6とキャパシ夕 1 4の接続点の電位とは 等しくなる。 したがって、 抵抗 1 8の両端には抵抗 1 6の両端電圧 VR1と同じ電 圧 VR1が現れる。 When an AC signal is input to the phase shift circuit 10C having such a configuration, a voltage VC1 appearing at both ends of the capacitor 14 is applied to the non-inverting input terminal of the operational amplifier 12. In addition, since the potential difference between the two input terminals of the operational amplifier 12 does not vary, the potential of the inverting input terminal of the operational amplifier 12 is equal to the potential of the connection point between the resistor 16 and the capacitor 14. Therefore, the same voltage VR1 as the voltage VR1 across the resistor 16 appears at both ends of the resistor 18.
ここで、 抵抗 1 8と抵抗 2 0の各抵抗値が等しいものとすると、 これら 2つの 抵抗 1 8、 2 0に同じ電流が流れるため、 抵抗 2 0の両端にも電圧 VR1が現れる c しかも、 これら 2つの抵抗 1 8、 2 0の^両端に現れる電圧 VR1はベク トル的に 同方向を している。 したがって、 オペアンプ 1 2の反転入力端子 (電圧 VC1 ) を基準にして考えると、 第 4図に示すように、 抵抗 1 8の両端電圧 VR1をべク ト ル的に加^したものが入力電圧 E i に、 抵抗 2 0の電圧 VR1をベク トル的に減算 したものが出力電圧 E o になるため、 入出力電圧の大きさと位相の関係は、 人力 電圧 E i および出力電圧 E o を斜辺とし、 電圧 VR1の 2倍を底辺とする二等辺二 角形で表すことができ、 出力信号の振幅は周波数に関係なく入力信号の振幅と冏 じであって、 位相シフ ト≤は第 4図に示す 0 1 で表されることがわかる。 Here, assuming that the resistance values of the resistor 18 and the resistor 20 are equal, the same current flows through these two resistors 18 and 20, so that the voltage VR1 appears at both ends of the resistor 20. The voltage VR1 appearing at both ends of these two resistors 18 and 20 is in the same vector direction. Therefore, considering the inverting input terminal (voltage VC1) of the operational amplifier 12 as a reference, the input voltage E1 is obtained by adding the voltage VR1 across the resistor 18 in a vector as shown in FIG. Since the output voltage Eo is obtained by vectorially subtracting the voltage VR1 of the resistor 20 from i, the relationship between the magnitude and phase of the input / output voltage is expressed by the manpower voltage Ei and the output voltage Eo as hypotenuse. The amplitude of the output signal is the same as the amplitude of the input signal regardless of the frequency, and the phase shift ≤ 0 is shown in Fig. 4. It can be seen that it is represented by 1.
また、 第 3図に示す発振器 5を構成する後段の移相回路 3 0 Cは、 差動増幅器 の一種であるオペアンプ 3 2と、 この移相回路 3 0 Cに人力された信号の位相を 所定量シフ 卜 してオペアンプ 3 2の非反転入力端子に入力するキャパシ夕 3 4お よび抵抗 3 6と、 この移相冋路 3 0 Cの入力端とオペアンプ 3 2の反転入力端子 との問に挿入された抵抗 3 8と、 オペアンプ 3 2の出力端と反転入力端子との問 に挿入された抵抗 4 0とを含んで構成されている。 この移相回路 3 0 Cは、 基本 的な構成は前段の移相冋路 1 0 Cと同じであり、 キャパシタ 3 4と抵抗 3 6から なる C R回路の接続を前段の移相回路 1 0 C内の抵抗 1 6とキャパシタ 1 4から
なる C R回路の接続と反対にした点が異なっている。 The phase shift circuit 30 C of the subsequent stage constituting the oscillator 5 shown in FIG. 3 is provided with an operational amplifier 32 which is a kind of a differential amplifier and a phase of a signal manually input to the phase shift circuit 30 C. A question was asked about the capacitance 34 and the resistor 36 input to the non-inverting input terminal of the operational amplifier 32 after the quantitative shift, and the input terminal of the phase shift circuit 30 C and the inverting input terminal of the operational amplifier 32. It is configured to include a resistor 38 inserted and a resistor 40 inserted between the output terminal of the operational amplifier 32 and the inverting input terminal. The basic configuration of the phase shift circuit 30 C is the same as that of the previous stage phase shift circuit 10 C, and the connection of the CR circuit composed of the capacitor 34 and the resistor 36 is performed by connecting the phase shift circuit 10 C of the previous stage. From resistor 1 6 and capacitor 1 4 in Is different from the connection of the CR circuit.
したがって、 キャパシ夕 3 4の両端電圧を VC2、 抵抗 3 6の両端電圧を VR2と して入出力電圧の大きさと位相の関係を考えると、 第 5図に示すように、 入力電 圧 E i および出力電圧 Eo を斜辺とし、 電圧 VC2の 2倍を底辺とする二等辺三角 形で表すことができ、 出力信号の振幅は周波数に関係なく入力信号の振幅と同じ であって、 位相シフ ト量は第 5図に示す 02 で表されることがわかる。 Therefore, considering the relationship between the magnitude and phase of the input / output voltage assuming that the voltage across capacitor 34 is VC2 and the voltage across resistor 36 is VR2, as shown in FIG. The output voltage Eo can be expressed as an oblique side and can be expressed as an isosceles triangle with the base of twice the voltage VC2.The amplitude of the output signal is the same as the amplitude of the input signal regardless of the frequency, and the phase shift amount It can be seen that it is represented by 02 shown in FIG.
このようにして、 2つの移相回路 1 0 C、 3 0 Cのそれそれにおいて位相が所 定量シフ トされ、 所定の周波数において 2つの移相回路 1 0 C、 3 0 Cの全体に より位相シフ ト量の合計が 3 6 0 ° となる信号が出力される。 しかも、 後段の移 相回路 3 0 Cの出力は、 帰還抵抗 7 0を介して移相回路 1 0 Cの入力側に帰還さ れており、 帰還ループのループゲインを 1以上に設定することにより、 一巡した ときに位相シフ ト量の合計が 3 6 0 ° となるような周波数で正弦波発振が行われ る。 なお、 抵抗 1 8と 2 0の抵抗値を同じにするとともに抵抗 3 8と 4 0の抵抗 値を同じにした場合には、 移相回路 1 0 C、 3 0 Cの利得が 1になり、 しかも帰 還ループで牛じる損失もあるため、 ループゲインが 1より小さくなる。 このため、 ループゲインを 1以上にするためには、 抵抗 1 8よりも抵抗 2 0の抵抗値を高く、 あるいは抵抗 3 8よりも抵抗 4 0の抵抗値を高くする必要がある。 In this way, the phase of each of the two phase shift circuits 10 C and 30 C is shifted by a certain amount, and the phase is shifted by the entire two phase shift circuits 10 C and 30 C at a predetermined frequency. A signal with a total shift amount of 360 ° is output. In addition, the output of the subsequent phase shift circuit 30 C is fed back to the input side of the phase shift circuit 10 C via the feedback resistor 70, and by setting the loop gain of the feedback loop to 1 or more, However, sinusoidal oscillation is performed at such a frequency that the total phase shift amount becomes 360 ° when the circuit makes one round. If the resistors 18 and 20 have the same resistance and the resistors 38 and 40 have the same resistance, the gains of the phase shift circuits 10 C and 30 C become 1, In addition, there is a loss in the return loop, so the loop gain is smaller than 1. Therefore, in order to increase the loop gain to 1 or more, the resistance of the resistor 20 must be higher than that of the resistor 18, or the resistance of the resistor 40 must be higher than that of the resistor 38.
ところで、 第 1図に示した F M変調装置 1は、 上述した発振器 5に含まれる後 段の移相 [ill路 3 0 Cを、 外部から入力される交流信号の電圧レベルに応じて抵抗 値が変化する F E T 3 5を含む移相回路 1 3 0 Cに置き換えた構成を有しており、 次にこのような構成を有する F M変調装置 1について説明する。 By the way, the FM modulator 1 shown in FIG. 1 is configured such that a resistance value is changed according to the voltage level of an externally input AC signal through a later-stage phase shift [ill path 30 C] included in the oscillator 5 described above. An FM modulator 1 having a configuration in which the phase shifter circuit 130 C including the changing FET 35 is replaced, and having such a configuration will be described.
第 6図は、 上述した F E Tを含む移相回路の構成を示す回路図であり、 同図 ( A ) には F M変調装置 1に含まれる後段の移相回路 1 3 0 Cの構成が示されて いる。 この移相回路 1 3 0 Cは、 第 3図に示した発振器 5に含まれる後段の移相 回路 3 0 Cにおいて、 キャパシ夕 3 4と抵抗 3 6からなる C R回路を、 キャパシ 夕 3 4とソース · ドレイン問のチャネルを抵抗として利 fflした F E T 3 5からな る C R回路に置き換えるとともに、 この F E T 3 5に所定のバイアスを印加する 抵抗 4 2と、 F E T 3 5のゲ一トに外部から入力される信号の交流成分のみを印 加するために設けられた直流電流阻 I卜.用のキャパシタ 4 4を有している。
このように、 FE T 35を抵抗として用いるとともに、 この FET35のゲ一 トに外部から信号を入力することにより、 FET35のソース ' ドレイン間のチ ャネル抵抗が微小変化する。 F Ε Τ 35のチャネル抵抗が変化すると、 キャパシ 夕 34と FE Τ 35からなる CR回路の時定数 Τ (= CR) も変わることから発 振出力の周波数も変化する。 すなわち、 外部入力の信号レベルに応じて抵抗値が 変化する FET 35を用いることにより、 簡単に FM変調された信号を得ること ができる。 したがって、 FM変調装置 1の回路構成自体を簡略化することができ る。 FIG. 6 is a circuit diagram showing a configuration of a phase shift circuit including the above-described FET. FIG. 6A shows a configuration of a subsequent phase shift circuit 130 C included in the FM modulator 1. ing. This phase shift circuit 130 C is a phase shift circuit 30 C included in the oscillator 5 shown in FIG. 3 in which a CR circuit composed of a capacitor 34 and a resistor 36 is replaced with a capacitor 34 In addition to replacing the channel between the source and drain with a CR circuit consisting of an FET 35 that uses ffl as a resistor, applying a predetermined bias to this FET 35 and a resistor 42 that applies a predetermined bias to the gate of the FET 35 from the outside It has a DC current blocking capacitor 44 provided to apply only the AC component of the input signal. Thus, by using the FET 35 as a resistor and inputting a signal from the outside to the gate of the FET 35, the channel resistance between the source and the drain of the FET 35 is minutely changed. When the channel resistance of F Ε Τ 35 changes, the time constant Τ (= CR) of the CR circuit consisting of the capacitor 34 and FE Τ 35 also changes, so the frequency of the oscillation output also changes. That is, by using the FET 35 whose resistance value changes according to the signal level of the external input, it is possible to easily obtain an FM-modulated signal. Therefore, the circuit configuration of the FM modulator 1 can be simplified.
また、 FM変調装置 1を構成する 2つの移相回路 10C、 130 Cのそれそれ は全域通過型回路であって、 FM変調されたキヤ リアの周波数を変更した場合で あっても振幅がほぼ 定であり、 振幅変動を防止するための他の構成が不要とな る。 Further, each of the two phase shift circuits 10C and 130C constituting the FM modulator 1 is an all-pass circuit, and the amplitude is almost constant even when the frequency of the FM-modulated carrier is changed. This eliminates the need for another configuration to prevent amplitude fluctuations.
なお、 第 1図に示した FM変調装置 1では、 後段の移相回路 130 Cに外部か らの信号を入力するようにしたが、 前段の移相回路に外部からの信号を入力して もよい。 すなわち、 第 3図に示した発振器 5を構成する前段の移相回路 10 Cを、 第 6図 (B) に す移相回路 1 10 C (移相回路 10 C内の抵抗 16の代わりに、 FE T 15とバイァス印加用の抵抗 22および直流電流阻止用のキャパシ夕 24 を用いたもの) に置き換えるようにしてもよい。 In the FM modulator 1 shown in FIG. 1, an external signal is input to the subsequent phase shift circuit 130C. However, even if an external signal is input to the previous phase shift circuit 130C. Good. That is, the phase shift circuit 10 C of the preceding stage constituting the oscillator 5 shown in FIG. 3 is replaced with the phase shift circuit 1 10 C shown in FIG. 6B (instead of the resistor 16 in the phase shift circuit 10 C, FET 15, a resistor 22 for bias application and a capacitor 24 for blocking DC current) may be used.
また、 上述した FM変調装置 1は、 2つの移相回路をともに CR回路を含んで 構成したが、 少なくとも一方の移相回路を LR回路を含む移相回路に置き換える こともできる。 Further, in the FM modulator 1 described above, both of the two phase shift circuits include a CR circuit, but at least one of the phase shift circuits can be replaced with a phase shift circuit including an LR circuit.
第 7図は、 第 3図に示した発振器 5に含まれる前段の移相回路 10 Cと置き換 え可能な移相回路 10 Lの構成を示す回路図である。 第 7図に示す移相回路 10 Lは、 第 3図に示した移相回路 1◦ Cに対して、 抵抗 16とキャパシ夕 14から なる CR回路を、 インダク夕 17と抵抗 16からなる LR回路に置き換えた構成 を有している。 インダク夕 17の両端電圧を VL1、 抵抗 16の両端電圧を VR1と して入出力電圧の大きさと位相の関係を考えると、 第 8図に示すように、 入力 ¾ 圧 Ei および出力電圧 Eo を斜辺とし、 電圧 VL1の 2倍を底辺とする二等辺三角 形で表すことができ、 出力 i†号の振幅は周波数に関係なく入力信号の振幅と同じ
であって、 位相シフ ト量は第 8図に示す 03 で表されることがわかる。 FIG. 7 is a circuit diagram showing a configuration of a phase shift circuit 10L that can be replaced with the preceding phase shift circuit 10C included in the oscillator 5 shown in FIG. The phase shift circuit 10 L shown in Fig. 7 is a 1 ° C phase shift circuit shown in Fig. 3, which is a CR circuit consisting of a resistor 16 and a capacitor 14, and an LR circuit consisting of an inductor 17 and a resistor 16. The configuration has been replaced with Considering the relationship between the magnitude and phase of the input / output voltage with the voltage across the inductor 17 as VL1 and the voltage across the resistor 16 as VR1, as shown in Fig. 8, the input voltage Ei and the output voltage Eo And the amplitude of the output signal i † is the same as the amplitude of the input signal regardless of the frequency. It can be seen that the amount of phase shift is represented by 03 shown in FIG.
ところで、 第 3図に示した移相回路 10 C内の CR回路の時定数と第 7図に示 した移相回路 10 L内の LR回路の時定数をともに Tとすると、 これらの移相回 路 10 C、 10 Lの伝達関数はともに ( l _Ts) / (1 +Ts) となる。 ここ で、 s = joである。 By the way, if both the time constant of the CR circuit in the phase shift circuit 10C shown in FIG. 3 and the time constant of the LR circuit in the phase shift circuit 10L shown in FIG. The transfer functions of the paths 10C and 10L are both (l_Ts) / (1 + Ts). Where s = jo.
このように、 移相回路 10Lは移相回路 10 Cと等価であり、 移相回路 10C を移相回路 10 Lに置き換えることが可能となる。 したがって、 第 3図に示した 発振器 5において、 前段の移相回路 10 Cを第 7図に示した移相回路 10Lに置 き換えるとともに、 後段の移相回路 30 Cを第 6図 (A) に示した移相回路 13 0 Cに^き換えることにより、 2つの移相回路のそれそれが LR回路あるいは C R回路を含んだ FM変調装置を構成することができる。 As described above, the phase shift circuit 10L is equivalent to the phase shift circuit 10C, and the phase shift circuit 10C can be replaced with the phase shift circuit 10L. Therefore, in the oscillator 5 shown in FIG. 3, the preceding phase shift circuit 10C is replaced with the phase shift circuit 10L shown in FIG. 7, and the latter phase shift circuit 30C is replaced with the phase shift circuit 30C shown in FIG. By replacing the phase shift circuit 130 C shown in (1), each of the two phase shift circuits can constitute an FM modulator including an LR circuit or a CR circuit.
また、 第 9図は第 3図に示した発振器 5に含まれる後段の移相回路 30 Cと置 き換え可能な移相回路 30 Lの構成を示す回路図である。 第 9図に示す移相回路 30 Lは、 第 3図に示した移相回路 30 Cに対して、 キャパシ夕 34と抵抗 36 からなる CR回路を抵抗 36とインダク夕 37からなる LR回路に置き換えた構 成を有している。 抵抗 36の両端電圧を VR2、 インダク夕 37の両端電圧を VL2 として入出力電圧の大きさと位相の関係を考えると、 第 10図に示すように、 入 力電圧 Ei および出力電圧 Eo を斜辺とし、 電圧 VR2の 2倍を底辺とする一等辺 二角形で衷すことができ、 出力信号の振幅は周波数に関係なく入力信号の振幅と 同じであって、 位相シフ ト量は第 10図に示す 04で表されることがわかる。 ところで、 第 3図に示した移相回路 30 C内の CR回路の時定数と第 9図に示 した移相回路 30 L内の LR回路の時定数をともに Tとすると、 これらの移相回 路 30 C、 30 Lの伝達関数はともに一 ( 1— Ts) / (1 +Ts) となる。 このように、 移相回路 30 Lは移相回路 30 Cと等価であり、 移相回路 30 C を移相回路 30 Lに ·き換えることが可能となる。 したがって、 第 3図に示した 発振器 5において、 後段の移相回路 30 Cを第 9図に示した移相回路 30 Lに置 き換えるとともに、 前段の移相回路 10 Cを第 6図 (B) に示した移相回路 1 1 0 Cに置き換えることにより、 2つの移相回路のそれそれが LR回路あるいは C R回路を含んだ FM変調装置を構成することができる。
また、 上述した各種の FM変調装置では、 CR回路を含む移相回路に外部から の信号を入力したが、 LR回路を含む移相回路に対して外部からの信号を人力す るようにしてもよい。 FIG. 9 is a circuit diagram showing a configuration of a phase shift circuit 30L that can be replaced with a subsequent phase shift circuit 30C included in the oscillator 5 shown in FIG. The phase shift circuit 30L shown in Fig. 9 is different from the phase shift circuit 30C shown in Fig. 3 in that the CR circuit consisting of the capacitor 34 and the resistor 36 is replaced by an LR circuit consisting of the resistor 36 and the inductor 37. Configuration. Considering the relationship between the magnitude and phase of the input / output voltage with the voltage across the resistor 36 as VR2 and the voltage across the inductor 37 as VL2, as shown in Fig. 10, the input voltage Ei and output voltage Eo are The output signal amplitude is the same as the input signal amplitude regardless of the frequency, and the amount of phase shift is shown in Fig. 10. It can be seen that By the way, assuming that the time constant of the CR circuit in the phase shift circuit 30C shown in FIG. 3 and the time constant of the LR circuit in the phase shift circuit 30L shown in FIG. The transfer functions of the paths 30 C and 30 L are both 1 (1− Ts) / (1 + Ts). As described above, the phase shift circuit 30L is equivalent to the phase shift circuit 30C, and the phase shift circuit 30C can be replaced with the phase shift circuit 30L. Therefore, in the oscillator 5 shown in FIG. 3, the subsequent phase shift circuit 30C is replaced by the phase shift circuit 30L shown in FIG. 9, and the preceding phase shift circuit 10C is replaced by the phase shift circuit 10C shown in FIG. By replacing the phase shift circuit 110C shown in), each of the two phase shift circuits can constitute an FM modulator including an LR circuit or a CR circuit. Also, in the various FM modulators described above, an external signal is input to the phase shift circuit including the CR circuit, but the external signal may be manually input to the phase shift circuit including the LR circuit. Good.
第 1 1図は、 LR回路の一部に FETを含む移相回路の構成を示す回路図であ る。 第 1 1図 (A) は、 第 7図に示した移相回路 10L内の抵抗 16の代わりに、 F E T 15とバイァス印加用の抵抗 22および直流電流阻止用のキャパシ夕 24 を用いた移相 M路 1 10Lの構成を示している。 第 3図に示した発振器 5におい て、 前段の移相回路 10(:を第1 1図 (A) に示した移相回路 1 10Lに置き換 えて FM変調装置を構成することができる。 あるいは、 第 3図に示した発振器 5 において、 前段の移相回路 10〇を第1 1図 (A) に示した移相回路 1 10Lに 置き換えるとともに、 後段の移相回路 30 Cを第 9図に示した移相回路 30 に 置き換えて FM変調装置を構成することができる。 FIG. 11 is a circuit diagram showing a configuration of a phase shift circuit including a FET in a part of the LR circuit. Fig. 11 (A) shows a phase shifter using a FET 15, a resistor 22 for bias application, and a capacitor 24 for blocking DC current, instead of the resistor 16 in the phase shift circuit 10L shown in Fig. 7. The configuration of M road 110L is shown. In the oscillator 5 shown in Fig. 3, the FM modulator can be configured by replacing the phase shift circuit 10 (:) in the preceding stage with the phase shift circuit 110L shown in Fig. 11 (A). In the oscillator 5 shown in FIG. 3, the preceding phase shift circuit 10 の is replaced with the phase shift circuit 110L shown in FIG. 11 (A), and the latter phase shift circuit 30C is shown in FIG. The FM modulator can be configured by replacing the phase shift circuit 30 shown.
第 1 1図 (B) は、 第 9図に示した移相回路 30 L内の抵抗 36の代わりに、 FET35とバイァス印加用の抵抗 42および直流電流阻止用のキャパシ夕 44 を用いた移相回路 130Lの構成を示している。 第 3図に示した発振器 5におい て、 後段の移相回路 30 Cを第 1 1図 (B) に示した移相回路 130 Lに置き換 えて FM変調装置を構成することができる。 あるいは、 第 3図に示した発振器 5 において、 後段の移相回路 30 Cを第 1 1図 (B) に示した移相回路 130 に 置き換えるとともに、 前段の移相回路 10 Cを第 7闵に示した移相回路 10 に ;!き換えて FM変調装置を構成することができる。 Fig. 11 (B) shows a phase shifter using a FET 35, a resistor 42 for applying a bias, and a capacitor 44 for blocking DC current, instead of the resistor 36 in the phase shift circuit 30L shown in Fig. 9. 19 shows a configuration of a circuit 130L. In the oscillator 5 shown in FIG. 3, an FM modulator can be configured by replacing the subsequent phase shift circuit 30C with the phase shift circuit 130L shown in FIG. 11 (B). Alternatively, in the oscillator 5 shown in FIG. 3, the subsequent phase shift circuit 30 C is replaced with the phase shift circuit 130 shown in FIG. 11B, and the preceding phase shift circuit 10 C is replaced with the seventh phase. It is possible to construct an FM modulator by substituting the phase shift circuit 10 shown in FIG.
また、 上述した各種の FM変調装置では、 FE Tによって形成した抵抗の抵抗 値を外部から入力される信号によって変化させたが、 CR回路を構成するキャパ シ夕の静電容量を外部から入力される信号によって変化させてもよい。 In the various FM modulators described above, the resistance value of the resistor formed by FET is changed by an externally input signal, but the capacitance of the capacitor constituting the CR circuit is externally input. It may be changed by a different signal.
第 12図は、 CR回路に可変容量素子を含ませた移相问路の構成を小す回路図 である。 第 12図 (A) は、 第 6図 (A) に示した移相回路 130 C内の FET 35を抵抗値が固定の抵抗 36に、 キャパシタ 34を可変容量ダイォード 34— 1および直流電流阻止用のキャパシ夕 34— 2にそれそれ 11き換えた移相回路 1 30 C' の構成を示している。 また、 2つの抵抗 42、 43によってバイアス问 路が形成されており、 入力される '号の交流成分のみがキャパシ夕 44を介すこ
とにより分離され、 この交流成分が所定のバイアス電圧に重畳されて oj変容量ダ ィオード 3 4— 1に印加される逆バイアス電圧となる。 外部から人力される信号 に応じて "J変容量ダイオード 3 4— 1が有する静電容量が微小変化するため、 上 述した移相回路 1 3 0 C ' を第 6図 (A ) に示した移相回路 1 3 0 Cの代わりに 用いることにより、 F M変調装置を構成することができる。 FIG. 12 is a circuit diagram for reducing the configuration of a phase shift circuit including a variable capacitance element in a CR circuit. Fig. 12 (A) shows the FET 35 in the phase shifter 130C shown in Fig. 6 (A) as the fixed resistor 36, and the capacitor 34 as the variable capacitance diode 34-1 and DC current blocking. FIG. 34-2 shows the configuration of the phase shifter 1 30 C ′ in which 11 is replaced. Also, a bias circuit is formed by the two resistors 42 and 43, and only the AC component of the input signal passes through the capacitor 44. And this AC component is superimposed on a predetermined bias voltage to become a reverse bias voltage applied to the oj variable capacitance diode 34-1. The above-mentioned phase shift circuit 130 C ′ is shown in FIG. 6 (A) because the capacitance of the J variable capacitance diode 34-1 changes slightly according to the signal input from the outside. An FM modulation device can be configured by using the phase shift circuit 130C instead of the phase shift circuit 130C.
第 1 2図 (B ) は、 第 6図 (B ) に示した移相回路 1 1 0 C内の F E T 1 5を 抵抗値が固定の抵抗 1 6に、 キャパシ夕 1 4を可変容量ダイオード 1 4一 1およ び直流電流阻止用のキャパシ夕 1 4 一 2にそれそれ置き換えた移相回路 1 1 0 C ' の構成を示している。 また、 2つの抵抗 2 2、 2 3によってバイアス回路が形 成されており、 入力される信号の交流成分のみがキャパシ夕 2 4を介すことによ り分離され、 この交流成分が所定のバイァス電圧に重畳されて可変容量ダイォー ド 1 4 一 1に印加される逆バイァス電圧となる。 外部から入力される信号に応じ て可変容量ダイオード 1 4 一 1が有する静電容量が微小変化するため、 上述した 移相回路 1 1 0 C ' を第 6図 (B ) に示した移相回路 1 1 0 Cの代わりに用いる ことにより、 F M変調装置を構成することが可能となる。 Fig. 12 (B) shows the FET 15 in the phase shift circuit 110C shown in Fig. 6 (B) as the fixed resistor 16 and the capacitor 14 as the variable capacitance diode 1. The structure of the phase shifter 110 C ′ replaced with each other is shown in Fig. 4-11 and the capacity for DC current blocking. Also, a bias circuit is formed by the two resistors 22 and 23, and only the AC component of the input signal is separated by passing through the capacitor 24, and this AC component is separated by a predetermined bias. The reverse bias voltage is superimposed on the voltage and applied to the variable capacitance diode 14 11. Since the capacitance of the variable capacitance diode 1411 changes slightly according to a signal input from the outside, the above-described phase shift circuit 110C 'is replaced with the phase shift circuit shown in FIG. 6 (B). By using it in place of 110 C, it is possible to configure an FM modulator.
〔第 2の実施形態〕 [Second embodiment]
第 3図に示した各移相回路は、 オペアンプの出力を帰還抵抗 7 0を介して直接 オペアンプの入力側に帰還させているが、 各オペアンプの出力端子に分圧回路を 接続して分圧出力をオペアンプの人力側に iiさせてもよい。 In each phase shift circuit shown in Fig. 3, the output of the operational amplifier is directly fed back to the input side of the operational amplifier via the feedback resistor 70, but the voltage divider is connected to the output terminal of each operational amplifier. The output may be ii on the human side of the operational amplifier.
第 1 3図は移朴 I回路内に分圧回路を設けた発振器の詳細構成を示す回路図であ る。 同図に示す発振器 5 Aにおいて、 移相回路 2 1 0 C内のオペアンプ 1 2の出 力端には抵抗 2 8および抵抗 2 9からなる分圧回路が接続され、 この分圧回路の 分圧出力端は抵抗 2 0を介してオペアンプ 1 2の反転人力端子と接続されている。 同様に、 移相回路 2 3 0 C内のオペアンプ 3 2の出力端には抵抗 4 8および抵抗 4 9からなる分圧回路が接続され、 この分圧出力端は抵抗 4 0を介してオペアン ブ 3 2の反転人力端子と接続されている。 FIG. 13 is a circuit diagram showing a detailed configuration of an oscillator provided with a voltage dividing circuit in the Park I circuit. In the oscillator 5A shown in the figure, a voltage dividing circuit composed of resistors 28 and 29 is connected to the output terminal of the operational amplifier 12 in the phase shift circuit 210C. The output terminal is connected to the inverting human terminal of the operational amplifier 12 via the resistor 20. Similarly, a voltage dividing circuit composed of resistors 48 and 49 is connected to the output terminal of the operational amplifier 32 in the phase shift circuit 230 C. The voltage dividing output terminal is connected to the operational amplifier via the resistor 40. 3 Connected to 2 inverted human power terminals.
第 1 3図において、 抵抗 2 8の抵抗値を R 28、 抵抗 2 9の抵抗値を R 29とする と、 オペアンプ 1 2の出力電圧 E o と抵抗 2 8および抵抗 2 9からなる分圧回路 の分圧出力 E o ' との間には、 抵抗 2 0の抵抗値に対して R 28、 R 29が十分小さ
いときは E o = ( 1 + R 28/R 29) E o ' の関係がある。 したがって、 R 28およ び R 29の値を調整することにより 1より大きなゲインが得られ、 しかもべク トル 図は第 4図に示した電圧 E o を分圧出力 E o ' に置き換えればよいため、 周波数 が変化しても出力電圧 E o の ¾幅が一定であり、 位相のみを所定量シフ トするこ とができる。 移相回路 2 3 0 Cについても同様であり、 周波数が変化しても出力 電圧 E o の振幅を一定にしたまま位相のみを所定量シフ 卜することができる。 このように、 2つの移相回路内にそれそれ分圧回路を設けることにより、 抵抗 1 8と 2 0の抵抗値を同じにするとともに抵抗 3 8と 4 0の抵抗値を同じにした 場合であっても、 2つの移相回路を縦続接続して形成される帰還ループの利得を 確実に 1以上にすることができ、 発振動作を安定化させることができる。 In Fig. 13, assuming that the resistance value of resistor 28 is R28 and the resistance value of resistor 29 is R29, the voltage divider circuit consisting of the output voltage Eo of operational amplifier 12 and resistors 28 and 29 R 28 and R 29 are sufficiently smaller than the resistance value of resistor 20 between the voltage divider output E o ' Then, there is a relationship of E o = (1 + R 28 / R 29) E o '. Therefore, a gain larger than 1 can be obtained by adjusting the values of R28 and R29, and the vector diagram can be obtained by replacing the voltage Eo shown in Fig. 4 with the divided output Eo ' Therefore, even if the frequency changes, the width of the output voltage E o is constant, and only the phase can be shifted by a predetermined amount. The same applies to the phase shift circuit 230C. Even when the frequency changes, only the phase can be shifted by a predetermined amount while keeping the amplitude of the output voltage Eo constant. Thus, by providing a voltage dividing circuit in each of the two phase shift circuits, when the resistance values of the resistors 18 and 20 are the same and the resistance values of the resistors 38 and 40 are the same. Even if there is, the gain of the feedback loop formed by cascading the two phase shift circuits can be reliably set to 1 or more, and the oscillation operation can be stabilized.
また、 第 1 3図に示す 2つの移相回路 2 1 0 C、 2 3 0 Cのいずれか一方が有 する C R回路内の抵抗を F E Tとバイアス印加用の抵抗を用いて構成することに より、 あるいは C R回路内のキャパシ夕を可変容量ダイォードとバイアス印加用 の抵抗を用いて構成することにより、 第 1図と同様に F M変調装置を構成するこ とができる。 In addition, the resistance in the CR circuit of either one of the two phase shift circuits 210C and 230C shown in Fig. 13 is configured by using the FET and the bias application resistance. Alternatively, by configuring the capacity in the CR circuit using a variable capacitance diode and a resistor for applying a bias, an FM modulator can be configured in the same manner as in FIG.
なお、 第 1 3図では、 第 3図に示した移相回路 1 0 C、 3 0 C内のオペアンプ 1 2、 3 2の出力端に分圧回路を接続する例を示したが、 第 7図および第 9図に 示す移相回路 1 0 L、 3 0 L内のオペアンプ 1 2、 3 2の出力端に分/王回路を接 続して分圧出力端を各オペアンプ 1 2、 3 2の入力側に帰還させる場合も、 第 1 3図に示した発振器 5 Aと同様の安定した発振動作が行われる。 FIG. 13 shows an example in which a voltage dividing circuit is connected to the output terminals of the operational amplifiers 12 and 32 in the phase shift circuits 10 C and 30 C shown in FIG. Connect a divider / operator circuit to the output terminals of the operational amplifiers 12 and 32 in the phase shift circuits 10 L and 30 L shown in the figures and Fig. 9, and connect the voltage divider output terminals to the operational amplifiers 12 and 3 2 respectively. When the signal is fed back to the input side, the same stable oscillating operation as that of the oscillator 5A shown in FIG. 13 is performed.
〔第 3の実施形態〕 [Third embodiment]
第 1 4図は発振器の他の構成を示す回路図である。 同図に示す発振器 5 Bは、 所定の周波数において合計で 3 6 0 ° の位相シフ 卜を行う 2つの移相问路 4 1 0 C、 4 3 0 Cを含んで構成されている。 FIG. 14 is a circuit diagram showing another configuration of the oscillator. The oscillator 5B shown in the figure is configured to include two phase shift circuits 410C and 430C that perform a total of 360 ° phase shift at a predetermined frequency.
第 1 3図に示した発振器 5 Aは、 前段の移相回路 1 0 C内の抵抗 1 8と抵抗 2 0の各抵抗値を同じに設定することで、 入力される交流信号の周波数が変わつた ときの振幅変化を抑えている。 これに対し、 第 1 4図に示す発振器 5 Bに含まれ る前段の移相回路 4 1 0 Cは、 移相回路内に分圧回路を設けずに、 抵抗 1 8 ' の 抵抗値よりも抵抗 2 0 ' の抵抗値を火きく設定することにより、 移相回路 4 1 0
Cの利得を 1より大きな値に設定している。 In the oscillator 5A shown in Fig. 13, the frequency of the input AC signal changes by setting the resistance values of the resistors 18 and 20 in the preceding phase shift circuit 10C to the same value. It suppresses the amplitude change when it is turned on. On the other hand, the phase shift circuit 410C in the preceding stage included in the oscillator 5B shown in FIG. The phase shift circuit 4 1 0 The gain of C is set to a value greater than 1.
後段の移相问路 4 3 0 Cについても同様であり、 抵抗 3 8 ' の抵抗値よりも抵 抗 4 0 ' の抵抗値を大きく設定することで、 移相回路 4 3 0 Cの利得を 1より大 きな値に設定している。 The same applies to the subsequent phase shift circuit 430 C. By setting the resistance value of the resistor 40 ′ larger than the resistance value of the resistor 38 ′, the gain of the phase shift circuit 430 C is increased. Set to a value greater than 1.
ところで、 上述したように、 移相回路の利得が 1より大きな値になるように各 抵抗の値を設定すると、 入力される信号の周波数に応じて利得変動が生じるおそ れがある。 例えば、 前段の移相回路 4 1 0 Cについて考えると、 入力信号の周波 数が低い場合には移相回路 4 1 0 Cはボルテージホロワ回路となるためこのとき の利得は 1倍となるのに対し、 周波数が ¾い場合には移相回路 4 1 0 Cは反転増 幅器となるためこのときの利得は一 m倍 (mは抵抗 2 0 ' と抵抗 1 8 ' の抵抗比) となり、 入力信号の周波数が変化したときに移相回路 4 1 0 Cの利得も変化して 出力信号の振幅変動が生じる。 By the way, as described above, when the value of each resistor is set so that the gain of the phase shift circuit becomes a value larger than 1, gain fluctuation may occur depending on the frequency of the input signal. For example, considering the phase shift circuit 410 C at the preceding stage, when the frequency of the input signal is low, the gain at this time becomes 1 because the phase shift circuit 410 C becomes a voltage follower circuit. On the other hand, when the frequency is high, the phase shift circuit 410C becomes an inverting amplifier, so the gain at this time is 1 m (m is the resistance ratio between the resistance 20 'and the resistance 18'). When the frequency of the input signal changes, the gain of the phase shifter 410C also changes, and the amplitude of the output signal fluctuates.
このような振幅変動は、 オペアンプ 1 2の反転入力端子に抵抗 1 9を接続して、 入力 の周波数が低い場合と高い場合の利得を一致させることにより抑えるこ とができる。 W体的には、 抵抗 1 8 ' の抵抗値を r、 抵抗 2 0 ' の抵抗値を m r とすると、 抵抗 1 9の抵抗値を m r / ( m— 1 ) に設定することにより、 入力信 号の周波数が 0と無限大のときの移相回路 4 1 0 Cの各利得を -致させることが できる。 同様に、 移相回路 4 3 0 Cについてもオペアンプ 3 2の反転入力端子に 所定の抵抗値を有する抵抗 3 9を接続することにより、 出力 i 号の振幅変動を抑 えることができる。 なお、 抵抗 1 9および抵抗 3 9の一方端はグランドレベル以 外の固定電位に接続してもよい。 Such amplitude fluctuations can be suppressed by connecting a resistor 19 to the inverting input terminal of the operational amplifier 12 and matching the gains when the input frequency is low and high. In general, assuming that the resistance value of the resistor 18 'is r and the resistance value of the resistor 20' is mr, the input signal is set by setting the resistance value of the resistor 19 to mr / (m-1). Each gain of the phase shift circuit 410C when the frequency of the signal is 0 and infinity can be matched. Similarly, in the phase shift circuit 43OC, by connecting a resistor 39 having a predetermined resistance value to the inverting input terminal of the operational amplifier 32, the amplitude fluctuation of the output i can be suppressed. Note that one ends of the resistors 19 and 39 may be connected to a fixed potential other than the ground level.
第 1 4図に示す 2つの移相回路 4 1 0 C、 4 3 0 Cのいずれか 方が有する C R回路内の抵抗を F E Tとバイァス印加用の抵抗等を用いて構成することにより、 あるいは C R回路内のキャパシ夕を可変容量ダイオードとバイアス印加用の抵抗 を用いて構成することにより、 第 1図と同様に F M変調装置を構成することがで ぎる。 ' By constructing the resistance in the CR circuit of either of the two phase shift circuits 410C or 430C shown in Fig. 14 using FET and bias application resistance, or By configuring the capacity in the circuit using a variable capacitance diode and a resistor for bias application, an FM modulator can be configured in the same manner as in FIG. '
なお、 第 1 4図に示す発振器 5 Bは、 C R回路を含む移相回路 4 1 0 C、 4 3 0 Cを縦続接 έしているが、 C R回路を L R回路に ί き換えることも可能である。 例えば、 第 1 5図に示す移相冋路 4 1 0 は第 1 4図に示した前段の移相回路 4
1 0 Cと等価であり、 移相回路 4 1 0 Cを移相回路 4 1 0 Lに置き換えることが できる。 同様に、 第 1 6図に示す移相回路 4 3 0 Lは第 1 4図に示した後段の移 相问路 4 3 0 Cと等価であり、 移相回路 4 3 0 Cを移相回路 4 3 0 Lに置き換え ることができる。 第 1 4図に示した前段の移相回路 4 1 0 Cを第 1 5図に示す移 相回路 4 1 0 Lに置き換える場合に、 第 1 4図に示した後段の移相回路 4 3 0 C 内の抵抗 3 6を F E Tとバイアス印加用の抵抗を用いて構成することにより、 あ るいは C R问路内のキャパシ夕を 変容量ダイォ一ドとバイァス印加用の抵抗を 用いて構成することにより、 第 1図と同様に F M変調装置を構成することができ る。 The oscillator 5B shown in Fig. 14 has a cascade connection of phase shift circuits 411C and 430C including a CR circuit, but the CR circuit can be replaced with an LR circuit. It is. For example, the phase shift circuit 4 10 shown in FIG. This is equivalent to 10 C, and the phase shift circuit 410 C can be replaced with a phase shift circuit 410 L. Similarly, the phase shift circuit 430 L shown in FIG. 16 is equivalent to the subsequent phase shift circuit 430 C shown in FIG. Can be replaced by 4300L. When replacing the preceding phase shift circuit 4 10 C shown in FIG. 14 with the phase shift circuit 4 10 L shown in FIG. 15, the latter phase shift circuit 4 3 0 shown in FIG. By configuring the resistor 36 in C using an FET and a resistor for bias application, or by using a variable capacitance diode and a resistor for bias application in the CR circuit. Thus, an FM modulator can be configured in the same manner as in FIG.
〔第 4の実施形態〕 (Fourth embodiment)
第 1図に示した F M変調装 では、 2つの移相回路を合わせた位相シフ 卜量が 所定の周波数において 3 6 0 ° となるようにしているが、 2つの移相回路を縦続 接続して形成される帰還ループの一部に、 位相を変化させない非反転回路を接続 して F M変調装置を構成してもよい。 In the FM modulator shown in Fig. 1, the phase shift amount of the two phase shift circuits is set to be 360 ° at a predetermined frequency, but the two phase shift circuits are connected in cascade. The FM modulator may be configured by connecting a non-inverting circuit that does not change the phase to a part of the formed feedback loop.
第 1 7図は、 第 4の実施形態の F M変調装置の詳細構成を示す回路図である。 同図に示す F M変調装置 1 Aは、 移相 路 1 0 Cと移相回路 1 3 0 Cを縦続接続 する点では第 1図に示した F M変調装置 1と同じであり、 後段の移相回路 1 3 0 Cの出力側に非反転回路 5 0を接絞する点で第 1図に示した F M変調装置 1 と異 なる。 FIG. 17 is a circuit diagram showing a detailed configuration of the FM modulator according to the fourth embodiment. The FM modulator 1A shown in the figure is the same as the FM modulator 1 shown in FIG. 1 in that the phase shift circuit 10C and the phase shift circuit 13OC are connected in cascade, and the subsequent phase shifter is used. This is different from the FM modulator 1 shown in FIG. 1 in that a non-inverting circuit 50 is connected to the output side of the circuit 130 C.
この非反転回路 5 0は、 オペアンプ 5 2と抵抗 5 4および 5 6によって構成さ れており、 2つの抵抗 5 4、 5 6の抵抗比に応じた所定の利得を有している。 し たがって、 閉ループを形成した際の損失をこの利得で補うことができ、 帰還ルー プのループゲインを容易に 1以上に設定することができる。 また、 非反転回路 5 0に電力増幅段としての機能を持たせることもできる。 The non-inverting circuit 50 includes an operational amplifier 52 and resistors 54 and 56, and has a predetermined gain according to a resistance ratio of the two resistors 54 and 56. Therefore, the loss at the time of forming the closed loop can be compensated by this gain, and the loop gain of the feedback loop can be easily set to 1 or more. Further, the non-inverting circuit 50 can have a function as a power amplification stage.
なお、 第 1 7図では、 一例として第 1図に示した F M変調装置 1に非反転回路 5 0を接続した構成を説明したが、 上述した各種の移相回路を任意の順序で縦続 接続して構成される各種の F M変調装置に第 1 7図に示す非反転回路 5 0を接続 してもよい。 Note that, in FIG. 17, as an example, the configuration in which the non-inverting circuit 50 is connected to the FM modulator 1 shown in FIG. 1 is described, but the above-described various phase shift circuits are cascaded in an arbitrary order. The non-inverting circuit 50 shown in FIG. 17 may be connected to various FM modulators configured as described above.
〔第 5の突施形態〕
上述した各種の F M変調装置においては、 2つの移相回路による位相シフ ト量 の合計が 3 6 0 ° となる周波数の発振動作を行っていたが、 閉ループ内に位相反 転回路を接続することにより、 2つの移相回路による位相シフ 卜量の合計が 1 8 0 ° となる周波数で発振動作を行わせるようにしてもよい。 [Fifth projection form] In the various FM modulators described above, the oscillation operation was performed at a frequency where the total amount of phase shift by the two phase shift circuits was 360 °, but the phase inversion circuit must be connected in a closed loop. Accordingly, the oscillation operation may be performed at a frequency at which the total amount of phase shift by the two phase shift circuits is 180 °.
第 1 8図は、 2つの移相回路と位相反転回路とを縦続接続して構成した発振器 の回路図である。 同図に示す発振器 5 Cは、 第 3図に示した発振器 5内の前段の 移相回路 1 0 Cを 2段縦続接続するとともに、 その後段にオペアンプ 8 2および 抵抗 8 4、 8 6からなる位相反転回路 8 0を接続し、 この位相反転回路 8 0の出 力を帰還抵抗 7 0を介して前段の移相冋路 1 0 Cの人力側に帰還させている。 位相反転回路 8 0によって信号が反転するため、 2つの移相回路 1 0 Cによる 位相シフ ト鲎の合計が 1 8 0 ° となるときに、 閉ループを一巡したときの位相シ フ ト量が 3 6 0 ° となり、 このときの帰還ループのループゲインを 1以上に設定 することにより所定の発振動作が行われる。 FIG. 18 is a circuit diagram of an oscillator configured by cascade-connecting two phase shift circuits and a phase inversion circuit. The oscillator 5C shown in the figure has a two-stage cascade connection of the preceding stage phase shift circuit 10C in the oscillator 5 shown in FIG. 3, and an operational amplifier 82 and resistors 84, 86 at the subsequent stage. The phase inversion circuit 80 is connected, and the output of the phase inversion circuit 80 is fed back to the human side of the preceding phase shift circuit 10 C via the feedback resistor 70. Since the signal is inverted by the phase inverting circuit 80, when the total phase shift of the two phase shift circuits 10C becomes 180 °, the phase shift amount when making a round of the closed loop is 3 60 °, and a predetermined oscillation operation is performed by setting the loop gain of the feedback loop at this time to 1 or more.
したがって、 発振器 5 Cに含まれる 2つの移相回路 1 0 Cのいずれか一方を第 6図 (B ) に示した移相回路 1 1 0 Cに置き換えることにより、 外部から入力さ れた信号を F M変調信号に用いた F M変調装置を構成することができる。 あるい は、 允振器 5 Cに含まれる 2つの移相回路 1 0 Cのいずれか -方を第 6図 (B ) に示した移相回路 1 1 0 Cに置き換えるとともに、 他方を第 7図に示した移相回 路 1 0 Lに置き換えて F M変調装置を構成してもよい。 あるいは、 2つの移相回 路 1 0 Cのいずれか一方に含まれる C R回路内のキャパシ夕を可変容量ダイォー ドとバイァス印加用の抵抗に置き換えて F M変調装置を構成してもよい。 Therefore, by replacing one of the two phase shift circuits 110 C included in the oscillator 5 C with the phase shift circuit 110 C shown in FIG. 6 (B), a signal input from the outside can be obtained. The FM modulator used for the FM modulation signal can be configured. Alternatively, one of the two phase shift circuits 10 C included in the damper 5 C is replaced with the phase shift circuit 110 C shown in FIG. 6 (B), and the other is replaced with the phase shift circuit 110 C shown in FIG. The FM modulator may be configured by replacing the phase shift circuit 10L shown in the figure. Alternatively, the FM modulator may be configured by replacing the capacity in the CR circuit included in one of the two phase shift circuits 10 C with a variable capacitance diode and a resistor for bias application.
〔第 6の実施形態〕 (Sixth embodiment)
第 1 8図に示した発振器 5 Cは、 移相回路 1 0 Cを縦続接続する例を示してい るが、 第 3図に示す後段の移相回路 3 0 Cを縦続接続して発振器を構成してもよ い。 The oscillator 5 C shown in FIG. 18 shows an example in which the phase shift circuit 10 C is cascaded, but the oscillator is constructed by cascading the subsequent phase shift circuit 30 C shown in FIG. You may.
第 1 9図は、 位相反転回路を含む発振器の他の構成を示す回路図である。 同図 に示す発振器 5 Dは、 第 3図に示した発振器 5内の後段の移相回路 3 0 Cを 2段 縦続接続するとともに、 その後段に位相反転回路 8 0を接続し、 この位相反転回 路 8 0の出力を帰還抵抗 7 0を介して前段の移相回路 3 0 Cの入力側に帰還させ
ている。 FIG. 19 is a circuit diagram showing another configuration of the oscillator including the phase inversion circuit. The oscillator 5D shown in the figure has a cascade connection of two stages of the phase shift circuit 30C at the subsequent stage in the oscillator 5 shown in FIG. 3, and a phase inversion circuit 80 is connected to the subsequent stage. The output of the circuit 80 is fed back to the input side of the preceding phase shift circuit 30 C via the feedback resistor 70. ing.
位相反転回路 8 0によって信号が反転するため、 2つの移相回路 3 0 Cによる 位相シフ ト量の合計が 1 8 0 ° となるときに、 閉ループを一巡したときの位相シ フ ト量が 3 6 0 ° となり、 このときの帰還ループのループゲインを 1以上に設定 することにより所定の発振動作が行われる。 Since the signal is inverted by the phase inverting circuit 80, when the total phase shift amount of the two phase shift circuits 30C is 180 °, the phase shift amount when making a round of the closed loop becomes 3 60 °, and a predetermined oscillation operation is performed by setting the loop gain of the feedback loop at this time to 1 or more.
したがって、 発振器 5 Dに含まれる 2つの移相回路 3 0 Cのいずれか一方を第 6図 (A ) に示した移相回路 1 3 0 Cに置き換えることにより F M変調装置を構 成することができる。 あるいは、 発振器 5 Dに含まれる 2つの移相回路 3 0 Cの いずれか一方を第 6図 (A ) に示した移相回路 1 3 0 Cに置き換えるとともに、 他方を第 9図に示した移相回路 3 0 Lに置き換えて F M変調装置を構成してもよ い。 Therefore, it is possible to construct an FM modulator by replacing one of the two phase shift circuits 30 C included in the oscillator 5 D with the phase shift circuit 130 C shown in FIG. 6 (A). it can. Alternatively, one of the two phase shift circuits 30C included in the oscillator 5D is replaced with the phase shift circuit 130C shown in FIG. 6 (A), and the other is shifted as shown in FIG. The phase modulation circuit may be replaced with 30 L to form an FM modulator.
〔第 7の実施形態〕 (Seventh embodiment)
第 2 0図は、 第 7の実施形態の F M変調装置の詳細構成を示す回路図である。 同図に示す F M変調装置 1 Bは、 所定の周波数において合計で 3 6 0 ° の位相 シフ トを行う 2つの移相回路 6 1 0 C、 7 3 0 と、 後段の移相回路 7 3 0 Cの 出力信号の位相を変えずに所定の増幅度で増幅して出力する非反転回路 6 5 0と、 非反転回路 6 5 0の出力を前段の移相回路 6 1 0 Cの入力側に帰還させる帰還抵 抗 6 7 0とを含んで構成されている。 この帰還抵抗 6 7 0は 0 Ωから有限の抵抗 値を有している。 また、 帰還抵抗 6 7 0と 列に接続されたキャパシ夕 6 7 2は 直流電流を阻止するためのものであり、 そのィンピーダンスは動作周波数におい て極めて小さく、 すなわち大きな静電容量を有している。 FIG. 20 is a circuit diagram showing a detailed configuration of the FM modulator according to the seventh embodiment. The FM modulator 1B shown in the figure includes two phase shift circuits 61 0C and 73 0 that perform a total of 360 ° phase shift at a predetermined frequency, and a phase shift circuit 73 0 at the subsequent stage. A non-inverting circuit 650 that amplifies and outputs the output signal of C at a predetermined amplification level without changing the phase, and an output of the non-inverting circuit 65 0 It is configured to include a feedback resistor 670 for feeding back. This feedback resistor 670 has a finite resistance value from 0 Ω. The feedback resistor 670 and the capacitor 672 connected to the column are for blocking DC current, and the impedance is extremely small at the operating frequency, that is, it has a large capacitance. I have.
この F M変調装置 1 Bは、 外部入力端子 9 0を有しており、 この外部入力端子 9 0から人力される信号を F M変調信 として出力する。 The FM modulator 1B has an external input terminal 90, and outputs a signal input from the external input terminal 90 as an FM modulated signal.
例えば、 第 2 0図に示すように、 F M変調装置 1 Bの後段に増幅器 2およびァ ンテナ 3を接続し、 F M変調装置 1 Bの出力を増幅器 2によって増幅してアンテ ナ 3から空中に送出すれば F Mワイヤレス送信機となる。 また、 アンテナ 3から 空中に送出する場合の他、 第 2図に示したような送信ドライバ 4を介して伝送路 4 0 0に送出するようにしてもよい。 For example, as shown in Fig. 20, an amplifier 2 and an antenna 3 are connected to the subsequent stage of the FM modulator 1B, and the output of the FM modulator 1B is amplified by the amplifier 2 and transmitted from the antenna 3 to the air. Then it becomes an FM wireless transmitter. In addition to transmitting the signal from the antenna 3 to the air, the signal may be transmitted to the transmission path 400 via the transmission driver 4 as shown in FIG.
第 1の実施形態と同様に、 第 2 0図に示した F M変調装置 1 Bの詳細について
説明する前に、 その基本となる発振器の動作について説明する。 As in the first embodiment, the details of the FM modulator 1B shown in FIG. Before explaining, the operation of the basic oscillator will be described.
第 2 1図は、 第 20図に示した FM変調装置 1 Bに含まれる FET 635とそ の周辺回路を抵抗値が固定の抵抗 636に置き換えた場合の発振器 5 Eの構成を 示す回路図である。 同図に示す発据器 5 Eは、 所定の周波数において合計で 36 0° の位相シフ トを行う 2つの移相回路 6 10 C、 630 Cと、 後段の移相回路 630 Cの出力信号の位相を変えずに所定の増幅度で増幅して出力する非反転回 路 650と、 非反転回路 650の出力を ¾段の移相冋路 6 1 0 Cの入力側に帰還 させる帰還抵抗 670とを^んで構成されている。 FIG. 21 is a circuit diagram showing a configuration of the oscillator 5E in which the FET 635 included in the FM modulator 1B shown in FIG. 20 and its peripheral circuit are replaced with a resistor 636 having a fixed resistance value. is there. The generator 5E shown in the figure is composed of two phase shift circuits 6 10C and 630C that perform a total of 360 ° phase shift at a predetermined frequency, and the output signals of the subsequent phase shift circuit 630C. A non-inverting circuit 650 that amplifies and outputs a predetermined degree of amplification without changing the phase, a feedback resistor 670 that feeds back the output of the non-inverting circuit 650 to the input side of the two-stage phase shifting circuit 6100 It is composed of
第 2 1図に示す発振器 5 Εを構成する前段の移相回路 6 1 0 Cは、 ゲートが移 相回路 6 1 0 Cの人力端に接続された F E T 6 1 2と、 この FET 6 1 2のソ一 ス ' ドレイン問に直列に接続されたキャパシ夕 6 14および抵抗 6 1 6と、 FE Τ 6 1 2のドレインと正電源との間に接続された抵抗 6 18と、 FET 6 1 2の ソースとアースとの間に接続された抵抗 620とを含んで構成されている。 なお、 移相回路 6 1 0 C内の抵抗 62 6は FE T 6 1 2に適切なバイアス電圧を印加す るためのものである。 また、 F Ε Τ 6 1 2および後述する F Ε Τ 632は、 少な くとも一方をバイポーラ トランジスタに置き換えてもよい。 The phase shift circuit 610C of the preceding stage constituting the oscillator 5 shown in Fig. 21 is composed of an FET 612 whose gate is connected to the human-powered end of the phase shift circuit 610C, and a FET 612 The capacitor 614 and the resistor 616 connected in series with the drain of the FET's, the resistor 618 connected between the drain of FE 612 and the positive power supply, and the FET 612 And a resistor 620 connected between the source and the ground. The resistor 626 in the phase shift circuit 610 C is for applying an appropriate bias voltage to the FET 612. In addition, at least one of the F Τ 6 12 and the F Ε 632 described later may be replaced with a bipolar transistor.
ここで、 卜.述した F Ε Τ 6 1 2のソースおよびドレインに接続された 2つの抵 抗 620、 6 1 8の抵抗値はほぼ等しく設定されており、 ゲートに印加される入 力電圧の交流成分に着目すると、 位相が一致した信号が FE T 6 1 2のソースか ら出力され、 位相が反転するとともにソースから出力される信号と振幅が等しい 信 が F Ε Τ 6 1 2のドレインからそれそれ出力される。 このソースおよびドレ インに現れる交流電圧の振幅をともに Ei とする。 Here, the resistance values of the two resistors 620 and 618 connected to the source and drain of F Ε 1 6 12 described above are set substantially equal, and the input voltage applied to the gate is Focusing on the AC component, a signal with the same phase is output from the source of FET 612, and a signal whose phase is inverted and whose amplitude is equal to the signal output from the source is output from the drain of F Ε 612 It is output as it is. The amplitude of the AC voltage appearing at the source and drain is Ei.
この FET 6 1 2のソース · ドレイン間にはキャパシタ 6 14と抵抗 6 1 6と により構成される直列回路 (CR回路) が接続されており、 FET 6 1 2のソー スおよびドレインに現れる' 圧のそれそれを抵抗 6 1 6あるいはキャパシ夕 6 1 4を介して合成した信号が移相回路 6 1 0 Cから出力される。 A series circuit (CR circuit) composed of a capacitor 614 and a resistor 616 is connected between the source and the drain of the FET 612, and the voltage appearing at the source and the drain of the FET 612 is connected. A signal obtained by synthesizing them through the resistor 616 or the capacitor 614 is output from the phase shift circuit 610C.
ところで、 キャパシタ 6 14の両端に現れる ti圧 VC1と抵抗 6 1 6の両端に現 れる電圧 VR1とは Hいに 90 ° 位相がずれており、 これらをベク トル的に合成し たものが F E T 6 1 2のソース ' ドレイン間の電圧 2 Ei に等しくなるため、 第
22図に示すように、 電圧 Ei の 2倍を斜辺とし、 キャパシ夕 6 14の両端電圧 VC1と抵抗 6 1 6の両端電圧 VR1とが直交する 2辺を構成する直角三角形を形成 することになる。 キャパシ夕 6 14と抵抗 6 1 6の接続点とグラン ドレベルとの 電位差を出力電圧 Eo として取り出すものとすると、 この出力電圧 Eo は第 22 図に示した半円においてその中心点を始点とし、 電圧 VC1と電圧 VR1とが交差す る円周上の一点を終点とするべク トルで表すことができ、 出力信号の振幅は周波 数に関係なく一定であって、 位相シフ ト量は第 22図に示す 05 で表されること がわかる。 By the way, the ti voltage VC1 appearing at both ends of the capacitor 614 and the voltage VR1 appearing at both ends of the resistor 616 are 90 ° out of phase with each other, and the vector combination of these is the FET 6 1 Since the voltage between the source and drain of 2 is equal to 2 Ei, As shown in Fig. 22, the hypotenuse is defined as twice the voltage Ei, and the voltage VC1 across the capacitor 614 and the voltage VR1 across the resistor 616 form a right-angled triangle forming two sides that are orthogonal to each other. . Assuming that the potential difference between the connection point of the capacitor 614 and the resistor 616 and the ground level is taken out as the output voltage Eo, this output voltage Eo starts at the center point of the semicircle shown in FIG. It can be represented by a vector ending at a point on the circumference where VC1 and voltage VR1 intersect.The amplitude of the output signal is constant regardless of the frequency, and the amount of phase shift is shown in Fig. 22. It can be seen that it is represented by 05 shown in Fig.
また、 第 2 1図に示す発振器 5 Eを構成する後段の移相回路 630 Cは、 ゲー トが移相回路 630 Cの入力端に接続された F E T 632と、 この FET 632 のソース · ドレイン問に直列に接続された抵抗 636およびキャパシ夕 634と、 FET 632のドレインと正電源との間に接続された抵抗 638と、 FET 63 2のソースとアースとの間に接続された抵抗 640とを含んで構成されている。 なお、 移相回路 630 C内の抵抗 646は F E T 632に適切なバイアス電圧を 印加するためのものであり、 移相回路 630 Cと 6 1 0 Cの間に挿入されたキヤ パシ夕 648は直流電流阻止用である。 The phase shift circuit 630C of the subsequent stage constituting the oscillator 5E shown in FIG. 21 includes a FET 632 whose gate is connected to the input terminal of the phase shift circuit 630C, and a source and a drain of the FET 632. The resistor 636 and the capacitor 634 connected in series with the resistor 632, the resistor 638 connected between the drain of the FET 632 and the positive power supply, and the resistor 640 connected between the source of the FET 632 and the ground. It is comprised including. The resistor 646 in the phase shift circuit 630 C is for applying an appropriate bias voltage to the FET 632, and the capacitor 648 inserted between the phase shift circuit 630 C and It is for current blocking.
この移相回路 630 Cは、 基本的な構成は前段の移相回路 6 10 Cと同じであ り、 抵抗 636とキャパシ夕 634からなる CR回路の接続を前段の移相回路 6 1 0 C内のキャパシ夕 6 14と抵抗 6 1 6からなる CR回路の接続と反対にした 点が異なっている。 This phase shift circuit 630C has the same basic configuration as the phase shift circuit 610C in the preceding stage. The connection of the CR circuit consisting of the resistor 636 and the capacitor 634 is connected to the phase shift circuit 610C in the preceding stage. The difference is that the connection is opposite to the connection of the CR circuit consisting of the capacity 6 14 and the resistor 6 16.
したがって、 抵抗 636の両端電圧を VR2、 キャパシ夕 634の両端電圧を V C2としてこれらの位相関係を考えると、 第 23図に示すように、 電圧 Ei の 2倍 を斜辺とし、 抵抗 636の両端電圧 VR2とキャパシ夕 634の両端電圧 VC2とが 直交する 2辺を構成する直角三角形を形成することになる。 抵抗 636とキャパ シ夕 634の接続点とグランドレベルとの電位差を出力電圧 Eo として取り出す ものとすると、 この出力電圧 Eo は第 23図に示した半円においてその中心点を 始点とし、 電圧 VR2と電圧 VC2とが交差する円周上の一点を終点とするべク トル で表すことができ、 出力信号の振幅は周波数に関係なく一定であって、 位相シフ ト量は第 23図に示す 06 で表されることがわかる。
このようにして、 2つの移相回路 6 1 0 C、 6 3 0 Cのそれぞれにおいて位相 が所定量シフ トされ、 所定の周波数において 2つの移相回路 6 1 0 C、 6 3 0 C の全体により位相シフ ト量の合計が 3 6 0 ° となる信号が出力される。 Therefore, considering the phase relationship between the voltage across resistor 636 as VR2 and the voltage across capacitor 634 as V C2, as shown in Fig. 23, the oblique side is twice the voltage Ei, and the voltage across resistor 636 is VR2 and the voltage VC2 across the capacitor 634 form a right-angled triangle that forms two orthogonal sides. Assuming that the potential difference between the connection point between the resistor 636 and the capacitor 634 and the ground level is taken out as the output voltage Eo, this output voltage Eo starts from the center point of the semicircle shown in FIG. It can be represented by a vector ending at a point on the circumference where the voltage VC2 intersects, the amplitude of the output signal is constant regardless of the frequency, and the amount of phase shift is denoted by 06 in Fig. 23. It can be seen that it is represented. In this way, the phase is shifted by a predetermined amount in each of the two phase shift circuits 610C and 630C, and the whole of the two phase shift circuits 610C and 630C at a predetermined frequency is changed. As a result, a signal having a total phase shift amount of 360 ° is output.
また、 第 2 1図に示した非反転回路 6 5 0は、 ドレインと正電源との間に抵抗 6 5 4が、 ソースとアースとの間に抵抗 6 5 6がそれそれ接続された F E T 6 5 2と、 ベースが F E T 6 5 2のドレインに接続されているとともにコレクタが抵 抗 6 6 0を介してソースに接続されたトランジスタ 6 5 8と、 F E T 6 5 2に適 切なバイァス電圧を印加するための抵抗 6 6 2とを含んで構成されている。 なお、 第 2 1図に示した非反転回路 6 5 0の前段に設けられたキャパシ夕 6 6 4は、 後 段の移相回路 6 3 0 Cの出力から直流成分を取り除く直流電流阻止用であり、 交 流成分のみが非反 回路 6 5 0に入力される。 The non-inverting circuit 650 shown in FIG. 21 has a resistor 654 between the drain and the positive power supply, and a FET 656 connected between the source and the ground. Appropriate bias voltage to FET 652, transistor 652 whose base is connected to the drain of FET 652, and whose collector is connected to the source via resistor 660 And a resistor 6 62. The capacity 664 provided before the non-inverting circuit 650 shown in FIG. 21 is for blocking DC current that removes a DC component from the output of the subsequent phase shift circuit 630C. Yes, only the AC component is input to the non-reverse circuit 650.
F E T 6 5 2は、 ゲートに交流信号が入力されると、 逆相の信号をドレイ ンか ら出力する。 また、 トランジスタ 6 5 8は、 ベースにこの逆相の信号が入力され ると、 さらに位相を反転した信号、 すなわち F E T 6 5 2のゲートに入力された 信号の位相を基準に考えると同相の信号をコレクタから出力し、 この同相の信号 が非反転回路 6 5 0から出力される。 この非反転回路 6 5 0の出力は、 出力端子 9 2から発振器 5 Eの出力として取り出されるとともに、 帰還抵抗 6 7 0を介し て前段の移相回路 6 1 0 Cの入力側に帰還されている。 When an AC signal is input to the gate, the FET 652 outputs a signal of the opposite phase from the drain. Also, when the signal having the opposite phase is input to the base, the transistor 658 becomes a signal whose phase is further inverted, that is, the signal having the same phase when considering the phase of the signal input to the gate of the FET 652 as a reference. Is output from the collector, and this in-phase signal is output from the non-inverting circuit 650. The output of the non-inverting circuit 650 is taken out from the output terminal 92 as the output of the oscillator 5E, and is fed back to the input side of the preceding phase shift circuit 610C via the feedback resistor 670. I have.
ヒ述した非反転回路 6 5 0の増幅度は、 上述した抵抗 6 5 4、 6 5 6、 6 6 0 の各抵抗値によって决まり、 これら各抵抗の抵抗値を調整することにより、 第 2 1図に示した 2つの移相回路 6 1 0 C、 6 3 0 Cおよび帰還抵抗 6 7 0を含んで 形成される帰還ループのループゲインを 1以上に設定することができ、 -巡した ときに位相シフ ト量の合計が 3 6 0 ° となるような周波数で正弦波発振が行われ る。 The amplification degree of the non-inverting circuit 65 0 described above is determined by the respective resistance values of the above-described resistors 65 4, 65 6, and 66 0. The loop gain of the feedback loop formed by including the two phase shift circuits 61 0 C and 63 0 C and the feedback resistor 67 0 shown in Fig. 1 can be set to 1 or more. Then, a sine wave oscillation is performed at a frequency such that the total phase shift amount is 360 °.
ところで、 第 2 0図に示した F M変調装置 1 Bは、 上述した発振器 5 Eに含ま れる後段の移相回路 6 3 0 Cを外部から入力される交流信 の電圧レベルに応じ て抵抗値が変化する F E T 6 3 5を含む移相冋路 7 3 0 Cに置き換えた構成を有 しており、 次にこのような構成を有する F M変調装置 1 Bについて説明する。 第 2 4図は、 上述した F E Tを含む移相回路の構成を示す冋路図であり、 同図
(A) には FM変調装置 1 Bに含まれる後段の移相回路 730 Cの構成が示され ている。 この移相回路 730 Cは、 第 2 1図に示した発振器 5 Eに含まれる後段 の移相回路 630 Cにおいて、 抵抗 636とキャパシ夕 634からなる CR回路 をソース . ドレイン間のチャネルを抵抗として利用した F E T 635とキャパシ 夕 634からなる CR回路に置き換えるとともに、 この FE T 635に所定のバ ィァスを印加する抵抗 642と、 FET 635のゲー卜に外部から入力される信 号の交流成分のみを印加するために設けられた 流電流阻止用のキャパシ夕 64 4を有している。 By the way, the FM modulator 1B shown in FIG. 20 has a resistance value in accordance with the voltage level of the AC signal input from the outside through the subsequent phase shift circuit 630C included in the oscillator 5E. An FM modulator 1B having a configuration in which the phase shift circuit 730C including the changing FET 635 is replaced by a phase shifter 730C will be described next. FIG. 24 is a circuit diagram showing a configuration of the phase shift circuit including the FET described above. (A) shows the configuration of the subsequent phase shift circuit 730C included in the FM modulator 1B. The phase shift circuit 730C is a phase shift circuit 630C in the subsequent stage included in the oscillator 5E shown in FIG. In addition to using the CR circuit consisting of the FET 635 and the capacitor 634 used, only the resistor 642 for applying a predetermined bias to this FET 635 and the AC component of the signal input externally to the gate of the FET 635 are used. It has a current blocking capacitor 644 provided for application.
このように、 F E T 635を抵抗として用いるとともに、 この FET 635の ゲー卜に外部から信号を入力することにより、 F E T 635のソース · ドレイン 間のチャネル抵抗が微小変化する。 F E T 635のチャネル抵抗が変化すると、 キャパシ夕 634と FET 635からなる CR回路の時定数 T (= CR) も変わ ることから発振出力の周波数も変化する。 すなわち、 外部入力によって抵抗値が 変化する FET 635を用いることにより、 簡単に FM変調された信号を得るこ とができる。 したがって、 FM変調装置 1 Bの回路構成自体を簡略化することが できる。 As described above, the channel resistance between the source and the drain of the FET 635 is minutely changed by using the FET 635 as a resistor and inputting a signal from the outside to the gate of the FET 635. When the channel resistance of F ET 635 changes, the time constant T (= CR) of the CR circuit composed of the capacitor 634 and FET 635 also changes, so the frequency of the oscillation output also changes. That is, by using the FET 635 whose resistance value changes according to the external input, an FM-modulated signal can be easily obtained. Therefore, the circuit configuration itself of the FM modulator 1B can be simplified.
また、 FM変調装置 1 Bを構成する 2つの移相回路 6 10 C、 730 Cのそれ それは全域通過 ¾冋路であって、 FM変調されたキヤリァの周波数を変更した場 合であっても振幅がほぼ- - であり、 振幅変動を防止するための他の構成が不要 となる。 Moreover, the two phase shift circuits 6 10 C and 730 C constituting the FM modulator 1 B are all-pass circuits, and even if the frequency of the FM-modulated carrier is changed, the amplitude is changed. Is almost--, and another configuration for preventing amplitude fluctuation is not required.
なお、 第 20図に示した FM変調装置 1 Bでは、 後段の移相回路 730 Cに外 部からの信号を入力するようにしたが、 前段の移相回路 6 1 0 Cに外部からの信 号を入力するようにしてもよい。 すなわち、 第 2 1図に示した発振器 5 Eを構成 する前段の移相回路 6 1 0 Cを、 第 24図 (B) に示す移相回路 7 1 0 C (移相 回路 6 1 0 C内の抵抗 6 1 6の代わりに、 FE T 6 1 5とバイアス印加 fflの抵抗 622および直流電流阻 用のキャパシ夕 624を用いたもの) に置き換えるよ うにしてもよい。 In the FM modulator 1B shown in FIG. 20, an external signal is input to the subsequent phase shift circuit 730C, but an external signal is input to the preceding phase shift circuit 6100C. The number may be input. That is, the phase shift circuit 610C of the preceding stage constituting the oscillator 5E shown in FIG. 21 is replaced by the phase shift circuit 710C shown in FIG. 24 (B) (the phase shift circuit 610C). Instead of the resistor 6 16 of the above, a resistor 622 of FET 6 15 and a bias application ffl of the resistor 622 and a capacitor 624 for blocking DC current may be used.
また、 上述した FM変調装置 1 Bは、 2つの移相回路をともに CR回路を含ん で構成したが、 少なくとも 方の移相回路を L R回路を含む移相回路に; gき換え
ることもできる。 In the above-described FM modulator 1B, both of the two phase shift circuits include a CR circuit, but at least one of the phase shift circuits is replaced with a phase shift circuit including an LR circuit. You can also.
第 25図は、 第 2 1図に示した発振器 5 Eに含まれる前段の移相回路 6 1 0 C と置き換え可能な移相回路 6 1 0 Lの構成を示す回路図である。 第 25図に示す 移相回路 6 1 0 Lは、 第 2 1図に/ した移相回路 61 0 Cに対して、 キャパシ夕 6 14と抵抗 6 1 6からなる CR回路を抵抗 6 1 6とインダク夕 6 1 7からなる LR回路に置き換えた構成を有している。 抵抗 6 1 6の両端電圧を VR1、 インダ クタ 6 1 7の両端電圧を VL1とすると、 第 26図に示すように、 電圧 Ei の 2倍 を斜辺とし、 抵抗 6 1 6の両端電圧 VR1とィンダク夕 6 1 7の両端電圧 VL1とが 直交する 2辺を構成する直角三角形を形成することになる。 抵抗 6 1 6とインダ クタ 6 1 7の接続点とグランドレベルとの電位差を出力電圧 Eo として取り出す ものとすると、 この出力電圧 Eo は第 26図に示した半円においてその中心点を 始点とし、 電圧 VR1と電圧 VL1とが交差する円周上の一点を終点とするべク トル で表すことができ、 出力信号の振幅は周波数に関係なく一定であって、 位相シフ ト量は第 26図に示す 07 で表されることがわかる。 FIG. 25 is a circuit diagram showing a configuration of a phase shift circuit 6100L that can be replaced with the preceding phase shift circuit 6100C included in the oscillator 5E shown in FIG. The phase shift circuit 610 L shown in FIG. 25 is different from the phase shift circuit 61 0 C shown in FIG. 21 in that a CR circuit consisting of a capacitor 614 and a resistor 6 16 is connected to a resistor 6 16 It has a configuration in which it is replaced with an LR circuit consisting of an inductor 6 17. Assuming that the voltage between both ends of the resistor 6 16 is VR1 and the voltage between both ends of the inductor 6 17 is VL1, as shown in FIG. 26, the oblique side is twice the voltage Ei, and the voltage VR1 across the resistor 6 16 and the inductor In the evening, the voltage VL1 at both ends of 617 forms a right triangle forming two sides that are orthogonal to each other. Assuming that the potential difference between the connection point of the resistor 6 16 and the inductor 6 17 and the ground level is taken out as the output voltage Eo, this output voltage Eo starts from the center point of the semicircle shown in FIG. It can be represented by a vector ending at a point on the circumference where voltage VR1 and voltage VL1 intersect.The amplitude of the output signal is constant regardless of the frequency, and the amount of phase shift is shown in Fig. 26. It can be seen that it is represented by 07 shown.
ところで、 第 2 1図に示した移相回路 6 1 0 C内の CR回路の時定数と第 25 図に示した移相回路 6 10 L内の LR回路の時定数をともに Tとすると、 これら の移相回路 6 10 C;、 6 10 Lの ίム達関数はともに a ( l—T s) / ( 1 +T s) となる。 ここで、 s= j wであり、 aは各移相回路の利得である。 By the way, assuming that the time constant of the CR circuit in the phase shift circuit 6 10 C shown in FIG. 21 and the time constant of the LR circuit in the phase shift circuit 6 10 L shown in FIG. Both the phase shift circuits 6 10 C; and 6 10 L have a function of a (l−T s) / (1 + T s). Here, s = jw, and a is the gain of each phase shift circuit.
このように、 移相问路 6 1 0 Lは移相回路 6 1 0 Cと等価であり、 移相回路 6 1 0 Cを移相回路 6 1 0 Lに置き換えることができる。 したがって、 第 2 1図に 示した発振器 5 Eにおいて、 前段の移相回路 6 1 0 Cを第 25図に示した移相回 路 6 1 0 Lに置き換えるとともに、 後段の移相回路 630 Cを第 24図 (A) に 示した移相回路 730 Cに置き換えることにより、 2つの移相回路のそれぞれが LR回路あるいは CR回路を含んだ FM変調装置を構成することができる。 As described above, the phase shift circuit 610L is equivalent to the phase shift circuit 610C, and the phase shift circuit 610C can be replaced with the phase shift circuit 610L. Therefore, in the oscillator 5E shown in FIG. 21, the former-stage phase shift circuit 610C is replaced with the phase-shift circuit 610 L shown in FIG. 25, and the latter-stage phase shift circuit 630C is replaced. By replacing the phase shift circuit 730C shown in Fig. 24 (A), each of the two phase shift circuits can constitute an FM modulator including an LR circuit or a CR circuit.
また、 第 27図は第 2 1図に示した発振器 5 Eに含まれる後段の移相回路 63 0 Cと置き換え可能な移相回路 630 Lの構成を示す回路図である。 第 27図に 示す移相冋路 630 Lは、 第 2 1図に示した移相回路 630 Cに対して、 抵抗 6 36とキャパシ夕 634からなる C R回路をィンダク夕 637と抵抗 636から なる LR回路に置き換えた構成を有している。 インダクタ 637の両端電圧を V
L2、 抵抗 6 3 6の両端電圧を VR2とすると、 第 2 8図に示すように、 電圧 E i の 2倍を斜辺とし、 インダク夕 6 3 7の f山 j端電圧 VL2と抵抗 6 3 6の両端電圧 VR2 とが直交する 2辺を構成する直角三角形を形成することになる。 インダク夕 6 3 7と抵抗 6 3 6の接続点とグランドレベルとの電位差を出力電圧 E o として取り 出すものとすると、 この出力電圧 E o は第 2 8図に示した半円においてその中心 点を始点とし、 電圧 VL2と電圧 VR2とが交差する円周上の -点を終点とするべク トルで表すことができ、 出力信号の振幅は周波数に関係なく一定であって、 位相 シフ ト虽は第 2 8図に示す 8 で表されることがわかる。 FIG. 27 is a circuit diagram showing a configuration of a phase shift circuit 630L which can be replaced with a subsequent phase shift circuit 630C included in the oscillator 5E shown in FIG. The phase shift circuit 630 L shown in FIG. 27 is different from the phase shift circuit 630 C shown in FIG. 21 in that a CR circuit comprising a resistor 636 and a capacitor 634 is replaced by an LR comprising an inductor 637 and a resistor 636. It has a configuration replaced with a circuit. V across inductor 637 Assuming that the voltage across L2 and the resistor 636 is VR2, as shown in Fig. 28, twice the voltage Ei is the hypotenuse, and the f-side j-terminal voltage VL2 of the inductor 637 and the resistor 636 Will form a right-angled triangle that forms two sides that are orthogonal to the voltage VR2 between the two terminals. Assuming that the potential difference between the connection point of the inductor 637 and the resistor 636 and the ground level is taken out as the output voltage Eo, this output voltage Eo is the center point of the semicircle shown in Fig. 28. Is the starting point, and the vector whose ending point is the-point on the circumference where the voltage VL2 and the voltage VR2 intersect, the amplitude of the output signal is constant regardless of the frequency, and the phase shift Is represented by 8 shown in Fig. 28.
ところで、 第 2 1図に示した移相回路 6 3 0 C内の C R回路の時定数と第 2 7 図に示した移相回路 6 3 0 L内の L R回路の時定数をともに Tとすると、 これら の移相回路 6 3 0 C、 6 3 0 Lの伝達関数はともに— a ( 1 - T s ) / ( 1 + T s ) となる。 By the way, assuming that the time constant of the CR circuit in the phase shift circuit 63 0 C shown in Fig. 21 and the time constant of the LR circuit in the phase shift circuit 63 0 L shown in Fig. 27 are both T. The transfer functions of these phase shift circuits 63 0 C and 63 0 L are both-a (1-T s) / (1 + T s).
このように、 移相回路 6 3 0 Lは移相回路 6 3 0 Cと等価であり、 移相回路 6 3 0 Cを移相回路 6 3 0 Lに置き換えることが可能となる。 したがって、 第 2 1 図に示した発振器 5 Eにおいて、 後段の移相回路 6 3 0 Cを第 2 7図に示した移 相回路 6 3 0 Lに置き換えるとともに、 前段の移相回路 6 1 0 Cを第 2 4図 (B ) に示した移相回路 7 1 0 Cに置き換えることにより、 2つの移相回路のそれそれ が L R回路あるいは C R回路を含んだ F M変調装置を構成することができる。 また、 上述した各種の F M変調装置では、 C R回路を含む移相回路に外部から の信号を入力したが、 L R回路を含む移相回路に対して外部からの信号を入力す るようにしてもよい。 As described above, the phase shift circuit 630L is equivalent to the phase shift circuit 630C, and the phase shift circuit 630C can be replaced with the phase shift circuit 630L. Therefore, in the oscillator 5E shown in FIG. 21, the subsequent phase shift circuit 63 0 C is replaced with the phase shift circuit 63 0 L shown in FIG. By replacing C with the phase shift circuit 710C shown in Fig. 24 (B), each of the two phase shift circuits can constitute an FM modulator including an LR circuit or a CR circuit . Also, in the various FM modulators described above, an external signal is input to the phase shift circuit including the CR circuit, but an external signal may be input to the phase shift circuit including the LR circuit. Good.
第 2 9図は、 L R回路の -部に F E Tを含む移相回路の構成を示す回路図であ る。 第 2 9冈 ( A ) は、 第 2 5図に示した移相回路 6 1 0 L内の抵抗 6 1 6の代 わりに、 F E T 6 1 5とバイアス印加用の抵抗 6 2 2および直流電流阻止用のキ ャパシ夕 6 2 4を用いた移相回路 7 1 0 Lの構成を示している。 笫 2 1図に示し た発振器 5 Eにおいて、 前段の移相回路 6 1 0 Cを第 2 9図 (A ) に示した移相 回路 7 1 0 Lに置き換えて F M変調装置を構成することができる。 あるいは、 第 2 1図に示した発振器 5 Eにおいて、 前段の移相回路 6 1 0 Cを第 2 9図 (A ) に示した移相回路 7 1 0 Lに置き換えるとともに、 後段の移相回路 6 3 0 Cを第
27図に示した移相回路 630 Lに^き換えて FM変調装置を構成することがで きる。 FIG. 29 is a circuit diagram showing a configuration of a phase shift circuit including an FET in a minus portion of the LR circuit. The 29th (A) is replaced with the FET 615, biasing resistor 622 and DC current blocking instead of the resistor 616 in the phase shift circuit 610L shown in Fig. 25. The figure shows a configuration of a phase shift circuit 7110 L using a capacitor 624 for use.笫 In the oscillator 5E shown in Fig. 21, it is possible to configure the FM modulator by replacing the phase shift circuit 6100C in the preceding stage with the phase shift circuit 7 10L shown in Fig. 29 (A). it can. Alternatively, in the oscillator 5E shown in FIG. 21, the preceding phase shift circuit 6100C is replaced with the phase shift circuit 7100L shown in FIG. 6 3 0 C An FM modulator can be configured by replacing the phase shift circuit 630 L shown in FIG.
第 29図 (B) は、 第 27図に示した移相回路 630 L内の抵抗 636の代わ りに、 FET 635とバイアス印加用の抵抗 642および直流電流阻止用のキヤ パシ夕 644を用いた移相回路 730 Lの構成を示している。 第 2 1図に示した 発振器 5 Eにおいて、 後段の移相回路 630 Cを第 29図 (B) に示した移相回 路 730 Lに置き換えて FM変調装置を構成することができる。 あるいは、 第 2 1図に示した発振器 5 Eにおいて、 後段の移相回路 630 Cを第 29図 (B) に 示した移相し口:!路 730 Lに置き換えるとともに、 前段の移相回路 6 1 0 Cを第 2 5図に示した移相回路 6 1 0 Lに置き換えて FM変調装置を構成することができ る。 In Fig. 29 (B), instead of the resistor 636 in the phase shift circuit 630L shown in Fig. 27, a FET 635, a resistor 642 for applying a bias, and a capacitor 644 for blocking a DC current are used. The configuration of the phase shift circuit 730L is shown. In the oscillator 5E shown in FIG. 21, the subsequent phase shift circuit 630C can be replaced with the phase shift circuit 730L shown in FIG. 29 (B) to constitute an FM modulator. Alternatively, in the oscillator 5E shown in FIG. 21, the subsequent phase shift circuit 630C is replaced by the phase shifter 730L shown in FIG. The FM modulator can be constructed by replacing 10 C with the phase shift circuit 6 10 L shown in FIG.
また、 ヒ述した各種の FM変調装置では、 FE Tによって形成した抵抗の抵抗 値を外部から入力される信号によって変化させたが、 CR回路を構成するキャパ シ夕を外部から人力される信号によって変化させるようにしてもよい。 Also, in the various FM modulators described above, the resistance of the resistor formed by FET is changed by a signal input from the outside, but the capacity of the CR circuit is changed by a signal input from the outside. You may make it change.
第 30図は、 CR回路に可変容量素子を含ませた移相回路の構成を示す回路図 である。 第 30図 (A) は、 第 24図 (A) に示した移相回路 730 C内の FE T 635を抵抗値が固定の抵抗 636に、 キャパシ夕 634を可変容量ダイォ一 ド 634— 1および直流電流阻止用のキャパシ夕 634— 2にそれそれ置き換え た移相回路 730 C' の構成を示している。 また、 2つの抵抗 642、 643に よってバイアス回路が形成されており、 人力される信号の交流成分のみがキャパ シ夕 644を介すことにより分離され、 この交流成分が所定のバイァス電圧に重 畳されて可変容量ダイオード 634— 1に印加される逆バイアス電圧となる。 外 部から入力される信号に応じて可変容 Mダイォ一ド 634— 1が有する静電容量 が微小変化するため、 上述した移相回路 730 C' を第 24図 (A) に示した移 相回路 730 Cの代わりに用いることにより、 FM変調装置を構成することが可 能となる。 FIG. 30 is a circuit diagram showing a configuration of a phase shift circuit in which a variable capacitance element is included in a CR circuit. Fig. 30 (A) shows the FET 635 in the phase shift circuit 730C shown in Fig. 24 (A) as the fixed resistor 636, and the capacity 634 as the variable capacitance diode 634-1 and The configuration of the phase shift circuit 730 C 'is shown in Fig. 64-2, which is a DC current blocking capacitor. Also, a bias circuit is formed by the two resistors 642 and 643, and only the AC component of the signal to be input is separated by passing through the capacitor 644, and this AC component is superimposed on a predetermined bias voltage. As a result, a reverse bias voltage is applied to the variable capacitance diode 634-1. Since the capacitance of the variable capacitance M-diode 634-1 changes slightly according to the signal input from the outside, the above-described phase shift circuit 730C 'is connected to the phase shift circuit shown in FIG. 24 (A). By using the circuit instead of the circuit 730C, an FM modulator can be configured.
第 30図 (B) は、 第 24図 (B) に示した移相回路 7 1 0 C内の FET 6 1 5を抵抗値が固定の抵抗 6 1 6に、 キャパシタ 6 14を可変容量ダイオード 6 1 4一 1および直流電流阻止用のキャパシ夕 6 14 - にそれぞれ置き換えた移相
[o]路 7 1 0 C ' の構成を示している。 また、 2つの抵抗 6 2 2、 6 2 3によって バイァス回路が形成されており、 入力される信号の交流成分のみがキャパシ夕 6 2 4を介すことにより分離され、 この交流成分が所定のバイァス電圧に重畳され て可変容量ダイォ一ド 6 1 4— 1に印加される逆バイァス電圧となる。 外部から 入力される信号に応じて可変容量ダイォ一ド 6 1 4— 1が有する静電容量が微小 変化するため、 上述した移相冋路 7 1 0 C を第 2 4図 (B ) に示した移相回路 7 1 0 Cの代わりに用いることにより、 F M変調装置を構成することが可能とな る。 Fig. 30 (B) shows the FET 615 in the phase shift circuit 710 shown in Fig. 24 (B) as the fixed resistor 616, and the capacitor 614 as the variable capacitance diode 6 1 4 1 1 and phase shifter replaced by DC current blocking capacitor 6 14- [o] shows the configuration of the path 7110C '. Also, a bias circuit is formed by the two resistors 6 2 2 and 6 2 3, and only the AC component of the input signal is separated by passing through the capacitor 6 24, and this AC component is The reverse bias voltage is superimposed on the voltage and applied to the variable capacitance diode 6 14-4-1. Since the capacitance of the variable capacitance diode 6 14-1 changes slightly according to the signal input from the outside, the above-described phase shift circuit 7 110 C is shown in FIG. 24 (B). By using the phase shift circuit 7100C instead, the FM modulator can be configured.
〔第 8の実施形態〕 (Eighth embodiment)
上述した第 7の実施形態で説明した各種の F M変調装置においては、 2つの移 相回路による位相シフ ト fiの合計が 3 6 0 ° となる周波数の発振動作を行ってい るが、 閉ループ内に位相反転回路を接続することにより、 2つの移相回路による 位相シフ ト量の合計が 1 8 0 ° となる周波数で発振動作を行わせるようにしても よい。 In the various FM modulators described in the above-described seventh embodiment, the oscillation operation is performed at a frequency at which the sum of the phase shifts fi by the two phase shift circuits is 360 °, but within the closed loop. By connecting a phase inversion circuit, the oscillation operation may be performed at a frequency at which the total phase shift amount of the two phase shift circuits is 180 °.
第 3 1図は、 2つの移相回路と位相反転回路とを用いて構成した発振器の回路 図である。 図に示す発振器 5 Fは、 第 2 1 Iに示した発振器 5 E内の前段の移 相回路 6 1 0 Cを 2段縱続接続するとともに、 その後段に F E T 6 8 2と抵抗 6 8 4および 6 8 6からなる位相反転回路 6 8 0を接続し、 この位相反転回路 6 8 0の出力を抵抗 6 7 0を介して前段の移相回路 6 1 0 Cの入力側に帰還させてい る。 FIG. 31 is a circuit diagram of an oscillator configured using two phase shift circuits and a phase inversion circuit. The oscillator 5F shown in the figure is composed of a two-stage cascade connection of the preceding phase-shift circuit 6100C in the oscillator 5E shown in FIG. 21I, and a FET 682 and a resistor 684 And a phase inverting circuit 680 composed of the phase inverting circuit 686 and the output of the phase inverting circuit 680 is fed back to the input side of the preceding phase shift circuit 610C via the resistor 670. .
位相反転回路 6 8 0によって信号が反転するため、 2つの移相回路 6 1 0 Cに よる位相シフ ト: :の合計が 1 8 0。 となるときに、 閉ル一プを一巡したときの位 相シフ ト量が 3 6 0 ° となり、 このときの帰還ループのループゲインを 1以上に 設定することにより所定の発振動作が行われる。 Since the signal is inverted by the phase inverting circuit 680, the sum of the phase shifts:: by the two phase shifting circuits 610C is 1800. , The phase shift amount when the circuit goes through the closed loop becomes 360 °, and a predetermined oscillation operation is performed by setting the loop gain of the feedback loop at this time to 1 or more.
したがって、 発振器 5 Fに含まれる 2つの移相回路 6 1 0 Cのいずれか一方を 第 2 4図 (B ) に示した移相回路 7 1 0 Cに置き換えることにより、 外部から入 力される信 ¾·を F M変調信 に用いた F M変調装置を構成することができる。 あ るいは、 上述した移相回路 7 1 0 Cの代わりに、 第 2 9図 (A ) に示した移相回 路 7 1 0 Lあるいは第 3 0図 (B ) に示した移相回路 7 1 0 C を用いたり、 他
方の移相回路 (外部からの信号が入力されない移相回路) として第 2 5図に示し た移相回路 6 1 0 Lを用いるようにしてもよい。 Therefore, by replacing one of the two phase shift circuits 6 10 C included in the oscillator 5 F with the phase shift circuit 7 10 C shown in FIG. An FM modulator using the signal for the FM modulation signal can be configured. Alternatively, instead of the above-described phase shift circuit 7110C, the phase shift circuit 7110L shown in FIG. 29 (A) or the phase shift circuit 7 shown in FIG. 30 (B) may be used. Use 10 C or other The phase shift circuit 610 L shown in FIG. 25 may be used as the other phase shift circuit (a phase shift circuit to which no external signal is input).
〔第 9の実施形態〕 (Ninth embodiment)
第 3 2図は、 2つの移相回路と位相反転回路とを縦続接続して構成した他の発 振器の回路図である。 同図に示す発振器 5 Gは、 第 2 1図に示した発振器 5 E内 の後段の移相回路 6 3 0 Cを 2段縦続接続するとともに、 その後段に位相反転回 路 6 8 0を接続し、 この位相反転回路 6 8 0の出力を抵抗 6 7 0を介して前段の 移相回路 6 3 0 Cの入力側に帰還させている。 FIG. 32 is a circuit diagram of another oscillator configured by cascading two phase shift circuits and a phase inversion circuit. The oscillator 5G shown in the figure has a two-stage cascade connection of the subsequent phase shift circuit 630C in the oscillator 5E shown in FIG. 21 and a phase inversion circuit 680 connected to the subsequent stage. Then, the output of the phase inversion circuit 680 is fed back to the input side of the preceding phase shift circuit 630 C via the resistor 670.
位相反転回路 6 8 0によって信号が反転するため、 2つの移相回路 6 3 0 Cに よる位相シフ ト量の合計が 1 8 0 ° となるときに、 閉ループを一巡したときの位 相シフ ト ffiが 3 6 0 ° となり、 このときの¾還ループのループゲインを 1以上に 設定することにより所定の発 ¾動作が行われる。 Since the signal is inverted by the phase inverting circuit 680, when the total phase shift amount by the two phase shifting circuits 630C is 180 °, the phase shift when the circuit goes through a closed loop ffi becomes 360 °, and a predetermined generating operation is performed by setting the loop gain of the feedback loop at this time to 1 or more.
したがって、 発振器 5 Gに含まれる 2つの移相回路 6 3 0 Cのいずれか一方を 第 2 4図 (A ) に示した移相回路 7 3 0 Cに置き換えることにより、 外部から入 力される信号を F M変調信号に川いた F M変調装置を構成することができる。 あ るいは、 上述した移相冋路 7 3 0 Cの代わりに、 第 2 9図 (B ) に示した移相回 路 7 3 0 Lあるいは第 3 0図 (A ) に示した移相回路 7 3 0 C を用いたり、 他 方の移相回路 (外部からの信号が入力されない移相回路) として第 2 7図に示し た移相冋路 6 3 0 Lを用いるようにしてもよい。 Therefore, by replacing one of the two phase shift circuits 630C included in the oscillator 5G with the phase shift circuit 730C shown in FIG. An FM modulator that converts signals into FM modulation signals can be configured. Alternatively, instead of the above-described phase shift circuit 730 C, the phase shift circuit 730 L shown in FIG. 29 (B) or the phase shift circuit shown in FIG. 30 (A) 730C may be used, or the phase shift circuit 630L shown in FIG. 27 may be used as the other phase shift circuit (a phase shift circuit to which no external signal is input).
〔第 1 0の実施形態〕 [10th embodiment]
第 3 3図は、 第 1 0の突施形態の F M変調装^の詳細構成を示す回路図である c 同図に示す F M変調装置 1 Cは、 入力される交流信号の位相を変えずに出力する 非反転回路 8 5 0と、 所定の周波数において台 31·で 3 6 0 ° の位相シフ トを行う 2つの移相回路 9 1 0 C、 8 3 0 Cと、 帰還抵抗 8 7 0とを含んで構成されてい る。 FIG. 33 is a circuit diagram showing the detailed configuration of the FM modulator of the tenth embodiment c . The FM modulator 1C shown in FIG. 33 does not change the phase of the input AC signal. The output non-inverting circuit 850, two phase shift circuits 910C and 830C that perform a phase shift of 360 ° on the base 31 at a predetermined frequency, and the feedback resistor 870 It is comprised including.
非反転回路 8 5 0は、 バッファ回路として機能するものであり、 例えばェミツ 夕ホロヮ冋路やソースホロワ回路等により構成されている。 なお、 直接接続した 場合の損失等を最小限に抑えるように帰還抵抗 8 7 0等の各素子の案子定数を選 定した場合には、 この非反転回路 8 5 0を省略して F M変調装置 1 Cを構成して
もよい。 The non-inverting circuit 850 functions as a buffer circuit, and includes, for example, an emitter follower circuit, a source follower circuit, and the like. In addition, when the design factor of each element such as the feedback resistor 870 is selected so as to minimize the loss and the like when directly connected, the non-inverting circuit 850 is omitted and the FM modulator is omitted. Make up 1 C Is also good.
第 3 3図に示す F M変調装置 1 Cは外部入力端子 9 0を有しており、 この外部 入力端子 9 0から入力される信号を F M変調して出力する。 The FM modulator 1C shown in FIG. 33 has an external input terminal 90. The signal input from the external input terminal 90 is FM-modulated and output.
例えば、 第 3 3図に示すように、 F M変調装置 1 Cの後段に増幅器 2およびァ ンテナ 3を接続し、 F M変調装置 1の出力を増幅器 2によって増幅してアンテナ 3から空中に送出すれば F Mワイヤレス送信機となる。 また、 アンテナ 3から空 中に送出する場合の他、 第 2図に示すように送信ドライバ 4を介して伝送路 4 0 0に送出してもよい。 For example, as shown in Fig. 33, if an amplifier 2 and an antenna 3 are connected after the FM modulator 1C, the output of the FM modulator 1 is amplified by the amplifier 2 and transmitted from the antenna 3 to the air. Becomes an FM wireless transmitter. In addition to transmitting the signal from the antenna 3 to the air, the signal may be transmitted to the transmission line 400 via the transmitting driver 4 as shown in FIG.
第 3 3図に示した F M変調装置 1 Cの詳細について説明する前に、 その基本と なる発振器の動作について説明する。 Before describing the details of the FM modulator 1C shown in FIG. 33, the basic operation of the oscillator will be described.
第 3 4図は、 第 3 3図に示した F M変調装置 1 Cに含まれる F E T 8 3 5とそ の周辺回路を、 抵抗値が固定の抵抗 8 3 6に置き換えた場合の発振器の構成を示 す回路図である。 Fig. 34 shows the configuration of the oscillator when the FET 835 and its peripheral circuit included in the FM modulator 1C shown in Fig. 33 are replaced with a fixed resistor 836. FIG.
同図に示す前段の移相回路 8 1 0 Cは、 2入力の差分電圧を所定の増幅度で増 幅して出力する差動増幅器 8 1 2と、 入力された交流信号の位相を所定量シフ ト させて差動増幅器 8 1 2の非反転人力端子に入力するキャパシ夕 8 1 4および抵 抗 8 1 6と、 入力された交流信号の位相を変えずにその電圧レベルを約 1 / 2に 分圧して差動増幅器 8 1 2の反転人力端了-に入力する抵抗 8 1 8および 8 2 0と を含んで構成されている。 The preceding phase shift circuit 810C shown in the figure is a differential amplifier 812 that amplifies the differential voltage of the two inputs with a predetermined amplification and outputs the amplified signal, and a phase difference of the input AC signal by a predetermined amount. The capacitance and the resistance input to the non-inverting human input terminal of the differential amplifier 812 are shifted to about 1/2 of the voltage level without changing the phase of the input AC signal. And the resistors 818 and 820 to be input to the inverting input terminal of the differential amplifier 812.
第 3 5図は、 第 3 4図に示す移相回路 8 1 0 Cの人出力電圧とキャパシ夕等に 現れる電圧との関係を示すべク トル闵である。 FIG. 35 is a vector を showing the relationship between the human output voltage of the phase shift circuit 8100 C shown in FIG. 34 and the voltage appearing in the capacity and the like.
同図に示すように、 抵抗 8 1 6の両端に現れる電圧 VR1とキャパシ夕 8 1 4の 両端に現れる電圧 VC1は互いに位相が 9 0 ° ずれており、 これらをベク トル的に 加算したものが移相回路 8 1 0 Cの人力電圧 E i に相当する。 したがって、 入力 電圧 E i の振幅が一定で周波数のみが変化した場合には、 第 3 5図に示す半円の 円周に沿って抵抗 8 1 6の両端電圧 VR1とキャパシ夕 8 1 4の両端電圧 VC1とが 変化する。 As shown in the figure, the voltage VR1 appearing at both ends of the resistor 816 and the voltage VC1 appearing at both ends of the capacitor 814 are 90 ° out of phase with each other. The phase shift circuit is equivalent to a human input voltage Ei of 8100C. Therefore, when the amplitude of the input voltage E i is constant and only the frequency changes, the voltage VR1 across the resistor 8 16 and the voltage across the capacitor 8 14 along the circumference of the semicircle shown in FIG. The voltage VC1 changes.
また、 差動増幅器 8 1 2の非反転入力端子に印加される電 H (キャパシ夕 8 1 4の両端電圧 VC1 ) から反転人力端子に印加される電圧 (抵抗 8 2 0の両端 ' 圧
E i / 2 ) をべク トル的に減算したものが差分電圧 E o ' となる。 この差分電圧 E o ' は、 第 3 5図に示した半円において、 その中心点を始点とし、 電圧 VC1と 電圧 VR1とが交差する円周上の一点を終点とするべク トルで表すことができ、 そ の大きさは半円の半径 E i / 2に等しくなる。 In addition, the voltage H applied to the non-inverting input terminal of the differential amplifier 812 (the voltage VC1 across the capacitor 814) is applied to the voltage applied to the inverting human terminal (the voltage across the resistor 8200). The vector obtained by subtracting E i / 2) is the difference voltage E o '. This difference voltage E o 'is expressed as a vector with the center point as the starting point and the end point at one point on the circumference where voltage VC1 and voltage VR1 intersect in the semicircle shown in Fig. 35. And its size is equal to the radius of the semicircle E i / 2.
差動増幅器 8 1 2の出力電圧 E o はこの差分電圧 E o ' を所定の増幅度で増幅 したものとなる。 したがって、 上述した移相回路 8 1 0 Cは、 出力電圧 E o が入 力電圧 E i の周波数によらず- -定であって、 全域通過回路として動作する。 また、 第 3 5図から明らかなように、 電圧 VC1と電圧 VR1とは円周上で直角に 交わるため、 入力電圧 E i と電圧 VC1との位相差は、 周波数 ωが 0から∞まで変 化するに従って、 人力電圧 E i を基準として時計回り方向 (位相遅れ方向) に 0 ° から 9 0 ° まで変化する。 そして、 移相回路 8 1 0 C全体の位相シフ ト量 09 は、 周波数に応じて 0 ° から 1 8 0 ° まで変化する。 The output voltage Eo of the differential amplifier 812 is obtained by amplifying the differential voltage Eo 'with a predetermined amplification factor. Therefore, the above-described phase shift circuit 8100C operates as an all-pass circuit because the output voltage E o is constant irrespective of the frequency of the input voltage E i. Further, as is apparent from FIG. 35, since the voltage VC1 and the voltage VR1 intersect at right angles on the circumference, the phase difference between the input voltage Ei and the voltage VC1 varies from a frequency ω of 0 to ∞. Then, it changes from 0 ° to 90 ° in the clockwise direction (phase lag direction) based on the human-power voltage E i. Then, the phase shift amount 09 of the entire phase shift circuit 8110C changes from 0 ° to 180 ° according to the frequency.
同様に、 第 3 4図に示す後段の移相回路 8 3 0 Cは、 2入力の差分電圧を所定 の増幅度で増幅して出力する差動増幅器 8 3 2と、 入力された交流信号の位相を 所定量シフ トさせて差動増幅器 8 3 2の非反転入力端子に入力するキャパシ夕 8 3 4および抵抗 8 3 6と、 入力された交流信号の位相を変えずにその電圧レベル を約 1 / 2に分圧して差動増幅器 8 1 2の反転入力端子に入力する抵抗 8 3 8お よび 8 4 0とを含んで構成されている。 Similarly, the subsequent phase shift circuit 8330C shown in FIG. 34 includes a differential amplifier 832 that amplifies the differential voltage of the two inputs at a predetermined amplification degree and outputs the amplified signal, and a differential amplifier 832 of the input AC signal. After shifting the phase by a predetermined amount, the voltage level of the capacitor 834 and the resistor 836 input to the non-inverting input terminal of the differential amplifier 832, and the voltage level of the input AC signal are changed without changing the phase. It is configured to include resistors 838 and 840 which divide the voltage by 1/2 and input to the inverting input terminal of the differential amplifier 812.
第 3 6図は、 第 3 4図に示す移相回路 8 3 0 Cの人出力電圧とキャパシ夕等に 現れる ¾圧との関係を示すべク トル図である。 FIG. 36 is a vector diagram showing a relationship between the human output voltage of the phase shift circuit 830 C shown in FIG. 34 and the overpressure appearing in the capacity and the like.
同図に示すように、 キャパシ夕 8 3 4の両端に現れる電圧 VC2と抵抗 8 3 6の 両端に現れる電圧 VR2は、 互いに位相が 9 0 ° ずれており、 これらをベク トル的 に加算したものが入力電圧 E i となる。 したがって、 入力信号の振幅が 定で周 波数のみが変化した場合には、 第 3 6図に示す半円の円周に沿ってキャパシ夕 8 3 4の両端電圧 V C2と抵抗 8 3 6の両端電圧 VR2とが変化する。 As shown in the figure, the voltage VC2 appearing at both ends of the capacitor 834 and the voltage VR2 appearing at both ends of the resistor 836 are 90 ° out of phase with each other, and are vector-wise added. Becomes the input voltage E i. Therefore, when the amplitude of the input signal is constant and only the frequency changes, the voltage V C2 across the capacitor 834 and the voltage across the resistor 836 along the circumference of the semicircle shown in Fig. 36 The voltage VR2 changes.
また、 差動増幅器 8 3 2の非反転入力端子に印加される電圧 (抵抗 8 3 6の両 端電圧 VR2) から反転入力端子に印加される電圧 (抵抗 8 4 0の両端電圧 E i / 2 ) をベク トル的に減算したものが差分電圧 E o ' となる。 この差分電圧 E o ' は、 第 3 6図に示した卒円において、 その中心点を始点とし、 ' VR2と電圧 V
C2とが交差する円周上の一点を終点とするべク トルで表すことができ、 その大き さは半円の半径 Ei /2に等しくなる。 Also, the voltage applied to the non-inverting input terminal of the differential amplifier 832 (the voltage VR2 across the resistor 836) and the voltage applied to the inverting input terminal (the voltage E i / 2 ) Is the difference voltage E o '. The difference voltage E o ′ is calculated from the center point of the graduation circle shown in FIG. It can be represented by a vector ending at a point on the circumference where C2 intersects, and its size is equal to the radius Ei / 2 of the semicircle.
差動増幅器 832の出力電圧 Eo はこの差分電圧 Eo ' を所定の増幅度で増幅 したものとなる。 したがって、 上述した移相回路 830 Cは、 出力電圧 Eo が入 力信号の周波数によらず一定であって、 全域通過回路として動作する。 The output voltage Eo of the differential amplifier 832 is obtained by amplifying the differential voltage Eo ′ with a predetermined amplification factor. Therefore, the above-described phase shift circuit 830C operates as an all-pass circuit in which the output voltage Eo is constant regardless of the frequency of the input signal.
また、 第 36図から明らかなように、 電圧 VR2と電圧 VC2とは円周上で直角に 交わるため、 入力電圧 Ei と電圧 VR2との位相差は、 周波数 ωが 0から∞まで変 化するに従って 1 80° から 270。 まで変化する。 そして、 移相回路 830 C 全体の位相シフ ト量 010は周波数に応じて 1 80° から 360 ° まで変化する。 このようにして、 2つの移相问路 8 1 0 C、 830 Cのそれそれにおいて位相 が所定量シフ 卜され、 所定の周波数において 2つの移相回路 8 10 C、 830 C の全体により位相シフ ト量の合計が 360 ° となる信号が出力される。 Also, as is clear from FIG. 36, since the voltage VR2 and the voltage VC2 intersect at right angles on the circumference, the phase difference between the input voltage Ei and the voltage VR2 increases as the frequency ω changes from 0 to ∞. 1 80 ° to 270. To change. Then, the phase shift amount 010 of the entire phase shift circuit 830C changes from 180 ° to 360 ° according to the frequency. In this way, the phase of each of the two phase shift circuits 810C and 830C is shifted by a predetermined amount, and the phase shift circuit 810C and 830C as a whole is shifted at a predetermined frequency. A signal with a total of 360 ° is output.
ところで、 第 33図に示した FM変調装置 1 Cは、 第 34図に示す発振器 5H に含まれる後段の移相回路 830 Cを、 外部から入力される交流信号の電圧レべ ルに応じて抵抗値が変化する FET 835を含む移相回路 930 Cに置き換えた 構成を有しており、 次にこのような構成を有する FM変調装置 1 Cについて説明 する。 By the way, the FM modulator 1C shown in FIG. 33 has a phase shifter 830C included in the oscillator 5H shown in FIG. 34 which is connected to a resistor in accordance with the voltage level of an externally input AC signal. It has a configuration in which the phase shift circuit 930C including the FET 835 whose value changes is replaced with a phase shift circuit 930C. Next, an FM modulator 1C having such a configuration will be described.
第 37図は、 上述した FETを含む移相回路の構成を示す回路図であり、 同図 (A) には FM変調装置 1 Cに含まれる後段の移相回路 930 Cの構成が示され ている。 この移相回路 930 Cは、 第 34図に示した発振器 5Hに含まれる後段 の移相 路 830 Cにおいて、 抵抗 836とキャパシ夕 834からなる CR回路 を、 ソース ' ドレイン間のチャネルを抵抗として利用した FE T 835とキャパ シ夕 834からなる CR回路に置き換えるとともに、 この FET 835に所定の バイアスを印加する抵抗 842と、 FE T 835のゲー卜に外部から入力される 信号の交流成分のみを印加するために設けられた直流電流阻止用のキャパシ夕 8 44を有している。 FIG. 37 is a circuit diagram showing a configuration of a phase shift circuit including the above-described FET. FIG. 37A shows a configuration of a subsequent phase shift circuit 930C included in the FM modulator 1C. I have. This phase shift circuit 930C uses a CR circuit composed of a resistor 836 and a capacitor 834 as a resistor between a source and a drain in the subsequent phase shift circuit 830C included in the oscillator 5H shown in FIG. In addition to the CR circuit consisting of the FET 835 and the capacitor 834, the resistor 842 for applying a predetermined bias to the FET 835 and the AC component of the signal input from the outside to the FET 835 gate are applied. To prevent DC current from being provided.
このように、 FET 835を抵抗として用いるとともに、 この FET 835の ゲートに外部から信号を人力することにより、 FE T 835のソース · ドレイン 間のチャネル抵抗が微小変化する。 FE T 835のチャネル抵抗が変化すると、
キャパシ夕 834と F E T 835からなる CR回路の時定数 T (= CR) も変わ ることから発振出力の周波数も変化する。 すなわち、 外部入力によって抵抗値が 変化する FE T 835を用いることにより、 簡単に FM変調された信号を得るこ とができる。 したがって、 FM変調装置 1 Cの回路構成自体を簡略化することが できる。 As described above, by using the FET 835 as a resistor and applying an external signal to the gate of the FET 835, the channel resistance between the source and the drain of the FET 835 slightly changes. When the channel resistance of FET 835 changes, Since the time constant T (= CR) of the CR circuit consisting of the capacitor 834 and the FET 835 also changes, the frequency of the oscillation output also changes. In other words, by using FET 835, whose resistance value changes according to the external input, it is possible to easily obtain an FM-modulated signal. Therefore, the circuit configuration itself of the FM modulator 1C can be simplified.
また、 FM変調装置 1 Cを構成する 2つの移相回路 8 1 0 C、 930 Cのそれ それは全域通過型回路であって、 FM変調されたキヤリァの周波数を変更した場 合であっても振幅がほぼ一^であり、 振幅変動を防止するための付加回路が不要 となる。 In addition, the two phase-shift circuits 8100C and 930C that make up the FM modulator 1C are all-pass circuits, and even if the frequency of the FM-modulated carrier is changed, Is almost equal to one, and an additional circuit for preventing amplitude fluctuation is not required.
なお、 第 3 に示した FM変調装置 1 Cでは、 後段の移相回路 930 Cに外 部からの信号を入力するようにしたが、 前段の移相回路 8 1 0 Cに外部からの信 号を入力するようにしてもよい。 すなわち、 第 33図に示した前段の移相回路 8 1 0 Cを、 第 37図 (B) に示す移相回路 9 10 C (移相回路 8 1 0 C内の抵抗 8 1 6の代わりに、 FET 8 1 5とバイアス印加用の抵抗 822および直流電流 阻止用のキャパシタ 824を用いたもの) に蹬き換えてもよい。 In the FM modulator 1C shown in FIG. 3, an external signal is input to the subsequent phase shift circuit 930C, but an external signal is input to the preceding phase shift circuit 8100C. May be input. That is, the phase shift circuit 8100C in the preceding stage shown in FIG. 33 is replaced with the phase shift circuit 910C shown in FIG. 37 (B) (in place of the resistor 816 in the phase shift circuit 8100C). , FET 815, resistor 822 for applying bias and capacitor 824 for blocking DC current).
また、 ヒ述した FM変調装置 1 Cは、 2つの移相回路をともに CR回路を含ん で構成したが、 少なくとも -方の移相回路を LR问路を含む移相回路に置き換え ることもできる。 In the FM modulator 1C described above, both of the two phase shift circuits include a CR circuit, but at least the-phase shift circuit can be replaced with a phase shift circuit including an LR circuit. .
第 38図は、 第 34図に示した発振器 5 Hに含まれる前段の移相回路 8 1 0 C と置き換え可能な移相回路 8 1 0 Lの構成を示す回路図である。 第 38図に示す 移相 路 8 1 0 Lは、 第 34図に示した移相回路 8 1 0 Cに対して、 キャパシ夕 8 14と抵抗 8 1 6からなる CR回路を、 抵抗 8 1 6とインダク夕 8 1 7からな る L R回路に置き換えた構成を有している。 FIG. 38 is a circuit diagram showing a configuration of a phase shift circuit 8110L which can be replaced with the preceding phase shift circuit 8100C included in the oscillator 5H shown in FIG. The phase shift circuit 8 10 L shown in FIG. 38 is different from the phase shift circuit 8 10 C shown in FIG. 34 in that a CR circuit consisting of a capacitor 814 and a resistor 8 16 is connected to the resistor 8 16 C. It has a configuration in which it is replaced with an LR circuit consisting of
ところで、 第 34図に示した移相 路 8 1 0 C内の CR回路の時定数と第 38 E¾]に示した移相回路 8 10 L内の LR回路の時定数をともに Tとすると、 これら の移相回路 8 1 0 C、 8 1 0 Lのム违関数はともに a ( 1— T s) / ( 1 +T s: となる。 ここで、 s二 であり、 aは各移相回路の利得である。 By the way, assuming that the time constant of the CR circuit in the phase shift circuit 8100 C shown in FIG. 34 and the time constant of the LR circuit in the phase shift circuit 810 L shown in FIG. The phase shift circuits of 8 10 C and 8 10 L are both a (1 — T s) / (1 + T s: where s 2, where a is each phase shift circuit Is the gain.
このように、 移相回路 8 1 0 Lは移相^路 8 1 0 Cと等価であり、 移相回路 8 1 0 Cを移相回路 8 1 0 Lに置き換えることが 能となる。 したがって、 第 34
図に示した発振器 5 Hにおいて、 前段の移相回路 8 1 0 Cを第 38図に示した移 相问路 8 10 Lに置き換えるとともに、 後段の移相回路 830 Cを第 37図 (A) に^した移相回路 930 Cに置き換えることにより、 2つの移相回路のそれぞれ が LR回路あるいは CR回路を含んだ FM変調装置を構成することができる。 また、 第 39図は第 34図に示した発振器 5 Hに含まれる後段の移相回路 83 0 Cと置き換え可能な移相回路 830 Lの構成を示す回路図である。 第 39図に 示す移相回路 830 Lは、 第 34図に示した移相回路 830 Cに対して、 抵抗 8 36とキャパシ夕 834からなる CR回路をインダクタ 837と抵抗 836から なる LRfyl路に匿き換えた構成を有している。 As described above, the phase shift circuit 8100L is equivalent to the phase shift circuit 8110C, and the phase shift circuit 8110C can be replaced with the phase shift circuit 8110L. Therefore, the 34th In the oscillator 5H shown in the figure, the former phase shift circuit 8100C is replaced with the phase shift circuit 810L shown in FIG. 38, and the latter phase shift circuit 830C is replaced in FIG. By replacing the phase shifter 930 C with the one described above, each of the two phase shifters can constitute an FM modulator including an LR circuit or a CR circuit. FIG. 39 is a circuit diagram showing a configuration of a phase shift circuit 830L which can be replaced with a subsequent phase shift circuit 830C included in the oscillator 5H shown in FIG. The phase shift circuit 830L shown in Fig. 39 is different from the phase shift circuit 830C shown in Fig. 34 in that a CR circuit consisting of a resistor 835 and a capacitor 834 is hidden in an LRfyl path consisting of an inductor 837 and a resistor 836. It has a changed configuration.
ところで、 第 34図に示した移相回路 830 C内の CR回路の時定数と第 39 図に示した移相回路 830 L内の LR回路の時定数をともに Tとすると、 これら の移相回路 830 C、 830 Lの伝達関数はともに— a ( 1— T s) / ( 1 +T s ) となる。 By the way, assuming that the time constant of the CR circuit in the phase shift circuit 830C shown in Fig. 34 and the time constant of the LR circuit in the phase shift circuit 830L shown in Fig. 39 are both T, these phase shift circuits The transfer functions of 830 C and 830 L are both — a (1 — T s) / (1 + T s).
このように、 移相回路 830 Lは移相回路 830 Cと等価であり、 移相回路 8 30 Cを移相回路 830 Lに置き換えることが可能となる。 したがって、 第 34 図に示した発振器 5 Hにおいて、 後段の移相回路 830 Cを第 39図に示した移 相回路 830 Lに置き換えるとともに、 ¾段の移相回路 8 10 Cを第 37図 (B) に示した移相回路 9 1 0 Cに置き換えることにより、 LR回路を含む移相「"〕路と CR回路を含む移相回路とを縦続接続した FM変調装置を構成することができる。 あるいは、 前段の移相回路 8 1 0 Cに含まれる CR回路内のキャパシ夕を可変容 量ダイォードとバイアス印加用の抵抗を用いて構成してもよい。 As described above, the phase shift circuit 830L is equivalent to the phase shift circuit 830C, and the phase shift circuit 830C can be replaced with the phase shift circuit 830L. Therefore, in the oscillator 5H shown in FIG. 34, the subsequent phase shift circuit 830C is replaced with the phase shift circuit 830L shown in FIG. By replacing the phase shift circuit 910C shown in B) with the phase shift circuit including the LR circuit and the phase shift circuit including the CR circuit, an FM modulator can be configured. Alternatively, the capacity in the CR circuit included in the preceding phase shift circuit 8100C may be configured using a variable capacitance diode and a bias application resistor.
〔第 1 1の実施形態〕 [Eleventh embodiment]
上述した第 33図に示した FM変調装置 1 Cにおいては、 2つの移相回路によ る位相シフ ト量の合計が 360 ° となる周波数の発振動作を行っているが、 閉ル ープ内に位相反転回路を接続することにより、 2つの移相回路による位相シフ ト 量の合計が 1 80° となる周波数で発振動作を行わせるようにしてもよい。 In the FM modulator 1C shown in FIG. 33 described above, the oscillation operation is performed at a frequency at which the sum of the phase shift amounts by the two phase shift circuits becomes 360 °. By connecting a phase inversion circuit to the circuit, the oscillation operation may be performed at a frequency at which the total phase shift amount of the two phase shift circuits is 180 °.
第 40図は、 2つの移相回路と位相反転回路とを用いて構成した発振器の回路 図である。 同図に示す発振器 5 Jは、 第 34図に示した発振器 5 J内の移相回路 8 1 0 Cを 2段縦続接続するとともに、 前段の移相回路 8 1 0 Cの入力側に位相
反転回路を接続し、 後段の移相回路 8 3 0 Cの出力を帰還抵抗 8 7 0を介して位 相反転回路 8 8 0の入力側に帰還させている。 FIG. 40 is a circuit diagram of an oscillator configured using two phase shift circuits and a phase inversion circuit. The oscillator 5J shown in the figure is connected to the phase shift circuit 8100C in the oscillator 5J shown in FIG. An inverting circuit is connected, and the output of the subsequent phase shift circuit 830C is fed back to the input side of the phase inverting circuit 880 via a feedback resistor 870.
位相反転回路 8 8 0は、 入力される交流信号の位相を反転するものであり、 例 えば、 ェミッタ接地回路やソース接地回路、 あるいはオペアンプと抵抗を組み合 わせた回路によって実現される。 The phase inverting circuit 880 inverts the phase of an input AC signal, and is realized by, for example, an emitter grounding circuit, a source grounding circuit, or a circuit combining an operational amplifier and a resistor.
位相反 fc回路 8 8 0によって信号が反転するため、 2つの移相回路 8 1 0 Cに よる位相シフ ト Sの合計が 1 8 0 ° となるときに、 閉ループを一巡したときの位 相シフ ト量が 3 6 0。 となり、 このときの帰還ループのループゲインを 1以卜.に 設定することにより所定の発振動作が行われる。 Since the signal is inverted by the phase reversal fc circuit 880, when the sum of the phase shift S by the two phase shift circuits 810C becomes 180 °, the phase shift when the circuit goes through a closed loop is completed. 3600. A predetermined oscillation operation is performed by setting the loop gain of the feedback loop at this time to 1 or less.
このように、 位相反転回路 8 8 0によって 号の位相が反転するため、 2つの 移相回路 8 1 0 Cによる位相シフ ト量の合計が 1 8 0 ° となるときに、 閉ループ を一巡したときの位相シフ ト量が 3 6 0 ° となり、 このときの帰還ループのルー ブゲインを 1以上に設定することにより所定の発振動作が行われる。 As described above, since the phase of the signal is inverted by the phase inverting circuit 880, when the total phase shift amount of the two phase shifting circuits 810C becomes 180 °, when the circuit goes through a closed loop, The phase shift amount becomes 360 °, and a predetermined oscillation operation is performed by setting the loop gain of the feedback loop at this time to 1 or more.
したがって、 発振器 5 Jに含まれる 2つの移相回路 8 1 0 Cのいずれか一方を 第 3 7図 (B ) に示した移相回路 9 1 0 Cに置き換えることにより F M変調装置 を構成することができる。 あるいは、 発振器 5 Jに含まれる 2つの移相回路 8 1 0 Cのいずれか一方を第 3 7図 (B ) に示した移相回路 9 1 0 Cに置き換えると ともに、 他方を第 3 8図に示した移相回路 8 1 0 Lに置き換えて F M変調装置を 構成してもよい。 Therefore, an FM modulator can be constructed by replacing one of the two phase shift circuits 810C included in the oscillator 5J with the phase shift circuit 910C shown in FIG. 37 (B). Can be. Alternatively, one of the two phase-shift circuits 8100C included in the oscillator 5J is replaced with the phase-shift circuit 9110C shown in FIG. 37 (B), and the other is replaced with the phase shifter shown in FIG. The FM modulator may be configured by replacing the phase shift circuit 8101L shown in FIG.
〔第 1 2の実施形態〕 [First and second embodiments]
第 4 1図は、 2つの移相回路と位相反転回路とを用いて構成した他の発振器の 回路図である。 同図に示す発振器 5 Kは、 第 3 4図に示した発振器 5 H内の後段 の移相回路 8 3 0 Cを 2段縦続接続するとともに、 i 段の移相回路 8 3 0 Cの入 力側に位相反転回路 8 8 0を接続し、 後段の移相回路 8 3 0 Cの出力を帰還抵抗 8 7 0を介して位相反転回路 8 8 0の入力側に ¾還させている。 FIG. 41 is a circuit diagram of another oscillator configured using two phase shift circuits and a phase inversion circuit. The oscillator 5K shown in the figure is connected in cascade with two stages of the phase shift circuit 830C at the subsequent stage in the oscillator 5H shown in FIG. A phase inversion circuit 880 is connected to the input side, and the output of the subsequent phase shift circuit 830C is returned to the input side of the phase inversion circuit 880 via a feedback resistor 870.
位相反転回路 8 8 0によって信号が反転するため、 2つの移相回路 8 3 0 Cに よる位相シフ ト量の合計が 1 8 0 ° となるときに、 閉ループを一巡したときの位 相シフ ト量が 3 6 0 ° となり、 このときの帰還ループのループゲインを 1以上に 設定することにより所定の允振動作が行われる。
したがって、 発 ¾i器 5 Kに含まれる 2つの移相回路 8 3 0 Cのいずれか一方を 第 3 7図 (Α ) に示した移相回路 9 3 0 Cに置き換えることにより F M変調装置 を構成することができる。 あるいは、 発振器 5 Κに含まれる 2つの移相回路 8 3 0 Cのいずれか一方を第 3 7図 (Α ) に示した移相回路 9 3 0 Cに置き換えると ともに、 他方を第 3 9図に示した移相回路 8 3 0 Lに置き換えて F M変調装置を 構成してもよい。 Since the signal is inverted by the phase inversion circuit 880, the phase shift when the circuit goes through a closed loop when the total phase shift amount of the two phase shift circuits 830C is 180 °. The amount becomes 360 °, and a predetermined swing operation is performed by setting the loop gain of the feedback loop at this time to 1 or more. Therefore, an FM modulator is constructed by replacing one of the two phase shifters 830C included in the generator 5K with the phase shifter 930C shown in Fig. 37 (Α). can do. Alternatively, one of the two phase shifters 830C included in the oscillator 5Κ is replaced with the phase shifter 930C shown in FIG. 37 (Α), and the other is replaced with the phase shifter shown in FIG. The FM modulator may be configured by replacing the phase shift circuit 830 L shown in FIG.
ところで、 上述した発振器 5 C、 5 D、 5 E、 5 F、 5 G、 5 H、 5 J、 5 K 等は、 非反転回路と 2つの移相回路、 あるいは位相反転回路と 2つの移相回路を 含んで構成されており、 接続された 3つの回路の全体によつて所定の周波数にお いて合計の位相シフ ト量を 3 6 0 ° にすることにより所定の同調動作を行うよう になっている。 したがって、 位相シフ ト量だけに着目すると、 2つの移相回路の どちらを前段に用いるか、 あるいはヒ述した 3つの回路をどのような順番で接続 するかはある程度の自由度があり、 必要に応じて接続順番を決めることができる By the way, the above-mentioned oscillators 5C, 5D, 5E, 5F, 5G, 5H, 5J, 5K, etc. are composed of a non-inverting circuit and two phase shifting circuits or a phase inverting circuit and two phase shifting circuits. The circuit is configured to include a circuit, and a predetermined tuning operation is performed by setting the total phase shift amount to 360 ° at a predetermined frequency by a total of three connected circuits. ing. Therefore, focusing only on the amount of phase shift, there is a certain degree of freedom as to which of the two phase shift circuits is used in the preceding stage or in what order the three circuits described above are connected. Connection order can be determined according to
〔その他の実施形態〕 [Other embodiments]
なお、 本発明は上記実施形態に限定されるものではなく、 本発明の要旨の範囲 内で種々の変形実施が可能である。 Note that the present invention is not limited to the above embodiment, and various modifications can be made within the scope of the present invention.
例えば、 上述した各実施形態においては、 外部から信号が入力される F E Tや 可変容量ダイォ一ド以外の各素子の素子定数を固定して、 キヤリア周波数が固定 の F M変調装^を実現したが、 各尜子定数を可変して周波数を任意に変更できる ようにしてもよい。 例えば第 1 1¾1に示した F M変調装 E 1を例にとって説明する と、 移相回路 1 0 C内の抵抗 1 6を可変抵抗に置き換えてこの抵抗値を可変する ことにより、 あるいは移相回路 1 0 C内のキャパシ夕 1 4を可変容量素子に置き 換えてこの静電容量を口 J変することにより、 移相回路 1 0 Cによる位相シフ ト量 を変化させて、 F M変調装 IS 1から出力する信号のキヤリア周波数を変更するこ とができる。 For example, in each of the embodiments described above, the element constant of each element other than the FET or the variable capacitance diode to which a signal is input from the outside is fixed, and the FM modulation apparatus in which the carrier frequency is fixed is realized. The frequency may be arbitrarily changed by changing each element constant. Taking the example of the FM modulator E1 shown in the 1st-1 例 1 as an example, by replacing the resistor 16 in the phase shift circuit 10 C with a variable resistor and changing the resistance value, or by changing the phase shift circuit 1 By replacing the capacitance 14 in 0 C with a variable capacitance element and changing this capacitance, the amount of phase shift by the phase shift circuit 10 C is changed, and the FM modulator IS 1 The carrier frequency of the output signal can be changed.
また、 第 1 2図および第 3 0 では可変容量素子の一例として可変容量ダイォ 一ドを用いたが、 印加するゲート電王を可変したときにゲート容 :が変更可能な F E Tを可変容量素子として川いるようにしてもよい。 In FIGS. 12 and 30, a variable capacitance diode is used as an example of a variable capacitance element. However, a FET whose gate capacitance can be changed when the gate voltage to be applied is varied is used as a variable capacitance element. It may be.
また、 上述した F M変調装^ 1 ^においては、 外部から入力される信 を接合
型の F E Tに入力したが、 M O S型の F Ε Τを使うようにしてもよい。 In addition, in the above-mentioned FM modulator ^ 1 ^, signals input from the outside are joined. Although it is input to the FET of the MOS type, a MOS type F Ε F may be used.
また、 上述した第 1〜^ 6の実施形態においては、 オペアンプを用いた移相回 路 1 0 C、 1 3 0 C等を用いて F M変調装置を構成することにより高い安定度を 実現することができるが、 本突施形態の移相冋路 1 0 C、 1 3 0 C等のような使 い方をする場合にはオフセッ ト電圧や電圧利得はそれほど a性能なものが要求さ れないため所定のゲインを有する差動入力増幅器を各移相回路内のオペアンプの 代わりに使用するようにしてもよい。 Further, in the above-described first to sixth embodiments, high stability is realized by configuring an FM modulator using a phase shift circuit 10 C, 130 C, etc. using an operational amplifier. However, in the case of using the phase shift circuit 10 C, 130 C, etc. of the present embodiment, the offset voltage and the voltage gain are not required to have a high performance. Therefore, a differential input amplifier having a predetermined gain may be used instead of the operational amplifier in each phase shift circuit.
第 4 2闵は、 オペアンプの構成の中で移相回路の動作に必要な部分を抽出した 回路図であり、 全体が所定のゲインを有する差動入力増幅器として動作する。 同 図に示す差動入力増幅器は、 F E Tにより構成された差動人力段 1 0 0と、 この 差動人 段 1 0 0に定電流を与える 電流回路 1 0 2と、 定電流回路 1 0 2に所 定のバイアス電王を与えるバイァス回路 1 0 4と、 差動入力段 1 0 0に接続され た出力アンプ 1 0 6とによって構成されている。 同図に示すように、 実際のオペ アンプに含まれている電圧利得を稼ぐための多段増幅回路を省略して、 差動入力 増幅器の構成を簡略化し、 広帯域化を図ることができる。 このように、 回路の簡 略化を行うことにより、 動作周波数の上限を くすることができるため、 その分 この差動入力増幅器を用いて構成した F M変調装置の出力周波数の上限を髙くす ることができる。 産業上の利用可能性 FIG. 42 闵 is a circuit diagram in which portions necessary for the operation of the phase shift circuit in the configuration of the operational amplifier are extracted, and the whole operates as a differential input amplifier having a predetermined gain. The differential input amplifier shown in the figure includes a differential human power stage 100 composed of FETs, a current circuit 102 for supplying a constant current to the differential human power stage 100, and a constant current circuit 102 A bias circuit 104 for applying a predetermined bias voltage to the input terminal and an output amplifier 106 connected to the differential input stage 100 are provided. As shown in the figure, the multistage amplifier circuit for gaining the voltage gain included in the actual operational amplifier is omitted, and the configuration of the differential input amplifier can be simplified, and the bandwidth can be widened. As described above, since the upper limit of the operating frequency can be reduced by simplifying the circuit, the upper limit of the output frequency of the FM modulator configured using the differential input amplifier is increased accordingly. be able to. Industrial applicability
本発明によれば、 外部から入力される信号に応じて抵抗やキャパシ夕の素了-定 数を変化させることにより直接 F M変調することができ、 F M変調装置全体の回 路構成を簡略化することができる。 また、 全域通過 ¾回路を用いているため、 出 力周波数にかかわらず常に安定した出力振幅を得ることができる。
According to the present invention, it is possible to directly perform FM modulation by changing the resistance and capacitance of a capacitor according to a signal input from the outside, thereby simplifying the circuit configuration of the entire FM modulator. be able to. Also, since an all-pass ¾ circuit is used, a stable output amplitude can always be obtained regardless of the output frequency.
Claims
1 . 差動増幅器と C R回路とを含む全域通過型の 2つの移相回路を備え、 これら 2つの移相回路を縦続接続して後段の前記移相回路の出力を前段の前記移相回路 の入力側に帰還させるとともに、 前記 2つの移相冋路のいずれか 方に含まれる 前記 C R回路内の抵抗として F E Tを用い、 前記 F E Tのゲートに印加される所 定のバイアス電圧に外部から入力される { 号の交流成分を重畳させることにより、 前記 2つの移相回路のいずれかから F M変調された信号を出力することを特徴と する F M変調装置。 1. Two all-pass type phase shift circuits including a differential amplifier and a CR circuit are provided, and these two phase shift circuits are cascaded to output the output of the subsequent phase shift circuit to the phase shift circuit of the previous stage. A feedback is made to the input side, and a FET is used as a resistor in the CR circuit included in one of the two phase shift circuits, and a predetermined bias voltage applied to the gate of the FET is input from the outside. An FM modulation device characterized by outputting an FM-modulated signal from one of the two phase shift circuits by superimposing an AC component of the signal.
2 . 前記 2つの移相回路の少なくとも一方は、 (¾記差動増幅器の反転入力端子に 一方端が接^され他方端が前記 C R回路に接続された第 1の抵抗と、 前記差動增 幅器の出力端子と反転入力端子との間に接続された第 2の抵抗とを有しており、 前記第 1の抵抗を介して前記差動増幅器の反転入力端子に交流信号を入力し、 前 記 C R回路内のキャパシタと抵抗との接続部を前記差動増幅器の非反転入力端子 に接続したことを特徴とする請求の範囲第 1項記載の F M変調装置。 2. At least one of the two phase shift circuits includes: (a) a first resistor having one end connected to the inverting input terminal of the differential amplifier and the other end connected to the CR circuit; A second resistor connected between the output terminal and the inverting input terminal of the width unit; and inputting an AC signal to the inverting input terminal of the differential amplifier through the first resistor, 2. The FM modulator according to claim 1, wherein a connection between the capacitor and the resistor in the CR circuit is connected to a non-inverting input terminal of the differential amplifier.
3 . 前記 2つの移相回路の少なくとも -方は、 前記差動増幅器の反転入力端子に - -方端が接続され他方端が前 C R回路に接続された第 1の抵抗と、 前記差動増 幅器の出力端子に接続された分圧问路と、 前記分圧回路の出力端子と前 ¾差動增 幅器の反転入力端子との問に接続された第 2の抵抗とを有しており、 前^第 1の 抵抗を介して前 ¾差動増幅器の反転入力端子に交流信号を入力し、 前記 C R回路 内のキャパシ夕と抵抗との接続部を前記差動増幅器の非反転入力端了-に接続した ことを特徴とする請求の範囲第 1項記載の F M変調装置。 3. At least one of the two phase shift circuits is connected to the inverting input terminal of the differential amplifier at one end, and the other end is connected to the front CR circuit. A voltage divider connected to the output terminal of the band divider; and a second resistor connected between the output terminal of the voltage divider and the inverting input terminal of the differential amplifier. An AC signal is input to the inverting input terminal of the differential amplifier via the first resistor, and the connection between the capacitor and the resistor in the CR circuit is connected to the non-inverting input terminal of the differential amplifier. 2. The FM modulator according to claim 1, wherein the FM modulator is connected to a terminal.
4 . 前記 2つの移相回路の少なくとも一方は、 前記差動増幅器の反転入力端子に 方端が接続され他方端が前記 C R冋路に接続された第 1の抵抗と、 前記差動增 幅器の出力端子と反転入力端子との問に接続された第 2の抵抗と、 一方端が前記 差動増幅器の反転入力端子に接続され他方端が接地された第 3の抵抗とを有して おり、 前記第 1の抵抗を介して前記差動増幅器の反転入力端子に交流信号を入力 し、 前記 C R回路内のキャパシ夕と抵抗との接続部を前記差動増幅器の非反転入 力端子に接続したことを特徴とする請求の範囲第 1 i kl載の F M変調装置。 4. At least one of the two phase shift circuits includes a first resistor having one end connected to an inverting input terminal of the differential amplifier and the other end connected to the CR circuit, and the differential amplifier. A second resistor connected between the output terminal and the inverting input terminal of the differential amplifier, and a third resistor having one end connected to the inverting input terminal of the differential amplifier and the other end grounded. An AC signal is input to the inverting input terminal of the differential amplifier via the first resistor, and the connection between the capacitor and the resistor in the CR circuit is connected to the non-inverting input terminal of the differential amplifier. The FM modulator according to claim 1, characterized in that:
5 . 前記 2つの移相回路の少なくとも一方は、 抵抗値がほぼ等しい第 1および第
2の抵抗により構成される分圧回路を冇しており、 前記分圧回路の出力端子の電 位と前記 C R回路内のキャパシ夕および抵抗の接続点の電位との電位差を前記差 動増幅器により所定の増幅度で増幅して出力することを特徴とする請求の範囲第5. At least one of the two phase shift circuits has first and second resistance values that are substantially equal. And a potential difference between the potential of the output terminal of the voltage divider circuit and the potential of the connection point between the capacitor and the resistor in the CR circuit is determined by the differential amplifier. Amplifying at a predetermined amplification degree and outputting the amplified signal.
1項記載の F M変調装置。 2. The FM modulator according to claim 1.
6 . 前記 2つの移相回路を縦続接続して形成される帰還ループの一部に信号の位 相を変えずに出力する非反転回路を接続し、 6. A non-inverting circuit that outputs a signal without changing its phase is connected to a part of a feedback loop formed by cascading the two phase shift circuits,
前記 C R问路内のキャパシ夕と抵抗との接続順序を前記 2つの移相回路のそれ それで反対にしたことを特徴とする請求の範囲第 1項記載の F M変調装置。 2. The FM modulator according to claim 1, wherein the order of connection between the capacitor and the resistor in the CR path is opposite to that of the two phase shift circuits.
7 . 前記 2つの移相回路を縦続接続して形成される^還ループの一部に信号の位 相を反転して出力する位相反転回路を接続し、 7. Connect a phase inversion circuit that inverts the phase of the signal and outputs it to a part of the return loop formed by cascading the two phase shift circuits,
前 Hd C R问路内のキャパシ夕と抵抗との接続順序を前記 2つの移相回路のそれ それで同じにしたことを特徴とする請求の範囲第 1項記載の F M変調装置。 2. The FM modulator according to claim 1, wherein the order of connection between the capacitor and the resistor in the HdCR line is the same as that of the two phase shift circuits.
8 . 差動増幅器と C R回路とを含む全域通過型の 2つの移相回路を備え、 これら 2つの移相回路を縦続接続して後段の前記移相回路の出力を前段の前記移相回路 の入力側に帰還させるとともに、 前記 2つの移相回路のいずれか一方に含まれる 前記 C R冋路内のキャパシ夕としてバイァス電圧によって静電容量が変更可能な 可変容 S素了-を用い、 前記バイアス'^:圧に外部から入力される信号の交流成分を 重畳させることにより、 前記 2つの移札 I回路のいずれかから F M変調された信号 を出力することを特徴とする F M変調装置。 8. Equipped with two all-pass type phase shift circuits including a differential amplifier and a CR circuit, and cascade-connecting these two phase shift circuits to output the output of the subsequent phase shift circuit to that of the previous stage. A variable capacitance S element whose capacitance can be changed by a bias voltage is used as a capacitance in the CR circuit included in either one of the two phase shift circuits while being fed back to the input side, and the bias is used. '^: An FM modulator characterized in that an FM component is output from one of the two bidding I circuits by superimposing an AC component of an externally input signal on the pressure.
9 . 前記 2つの移相回路の少なくとも一方は、 前記差動増幅器の反転入力端了-に 一方端が接続され他方端が前記 C R回路に接続された第 1の抵抗と、 前記差動増 幅器の出力端子と反転入力端子との間に接続された第 2の抵抗とを布しており、 前記第 1の抵抗を介して前記差動増幅器の反転入力端子に交流信号を入力し、 前 記 C R回路内の前記キャパシ夕と抵抗との接続部を前記差動増幅器の非反転入力 端子に接続したことを特徴とする^求の範囲第 8項記載の F M変調装置。 9. At least one of the two phase shift circuits includes a first resistor having one end connected to the inverting input terminal of the differential amplifier and the other end connected to the CR circuit, and the differential amplifier. A second resistor connected between the output terminal and the inverting input terminal of the amplifier, and inputting an AC signal to the inverting input terminal of the differential amplifier through the first resistor, 9. The FM modulator according to claim 8, wherein a connection between the capacitor and the resistor in the CR circuit is connected to a non-inverting input terminal of the differential amplifier.
1 0 . 前記 2つの移相回路の少なく とも一方は、 前^差動増幅器の反転入力端子 に一方端が接続され他方端が前記 C R回路に接続された第 1の抵抗と、 前記差動 増幅器の出力端子に接続された分圧问路と、 前記分圧回路の出力端子と前記差動 増幅器の反転入力端孑との問に接^された第 2の抵抗とを有しており、 前記第 1
の抵抗を介して前記差動増幅器の反転入力端子に交流信号を入力し、 前記 C R回 路内の前記キャパシ夕と抵抗との接続部を前記差動増幅器の非反転入力端子に接 続したことを特徴とする請求の範囲第 8 ¾記載の F M変調装置。 10. At least one of the two phase shift circuits includes a first resistor having one end connected to the inverting input terminal of the differential amplifier and the other end connected to the CR circuit, and the differential amplifier. A voltage dividing circuit connected to an output terminal of the differential amplifier; and a second resistor connected to an output terminal of the voltage dividing circuit and an inverting input terminal of the differential amplifier. First An AC signal is input to the inverting input terminal of the differential amplifier via the resistor, and the connection between the capacitor and the resistor in the CR circuit is connected to the non-inverting input terminal of the differential amplifier. The FM modulator according to claim 8, wherein the FM modulator is characterized in that:
1 1 . 前記 2つの移相回路の少なくとも一方は、 前記差動増幅器の反転入力端子 に一方端が接続され他方端が前記 C R回路に接続された第 1の抵抗と、 前記差動 増幅器の出力端子と反転入力端子との間に接続された第 2の抵抗と、 -方端が前 記差動増幅器の反転入力端子に接続され他方端が接地された第 3の抵抗とを有し ており、 前記第 1の抵抗を介して前記差動増幅器の反転入力端子に交流信号を入 力し、 前記 C R回路内の前記キャパシ夕と抵抗との接続部を前記差動増幅器の非 反転入力端了-に接続したことを特徴とする ^求の範囲第 8項記載の F M変調装置。 At least one of the two phase shift circuits includes a first resistor having one end connected to the inverting input terminal of the differential amplifier and the other end connected to the CR circuit, and an output of the differential amplifier. A second resistor connected between the negative input terminal and the inverting input terminal, and a third resistor connected at one end to the inverting input terminal of the differential amplifier and grounded at the other end. An AC signal is input to the inverting input terminal of the differential amplifier via the first resistor, and a connection between the capacitor and the resistor in the CR circuit is connected to a non-inverting input terminal of the differential amplifier. The FM modulator according to claim 8, wherein the FM modulator is connected to-.
1 2 . 前記 2つの移相回路の少なくとも一方は、 抵抗値がほぼ等しい第 1および 第 2の抵抗により構成される分圧回路を有しており、 前記分圧回路の出力端子の 電位と前記 C R回路内の前記キャパシ夕および抵抗の接続点の電位との電位差を 前記差動増幅器により所定の増幅度で増幅して出力することを特徴とする請求の 範囲第 8項記載の F M変調装置。 12. At least one of the two phase shift circuits has a voltage dividing circuit composed of first and second resistors having substantially equal resistance values, and the potential of the output terminal of the voltage dividing circuit and the potential 9. The FM modulator according to claim 8, wherein a potential difference between a potential of the connection point of the capacitor and the resistor in the CR circuit is amplified by a predetermined amplification degree by the differential amplifier and output.
1 3 . 前^ 2つの移相回路を縦 接続して形成される帰還ループの一部に信号の 位相を変えずに出力する非反転回路を接続し、 1 3. Connect a non-inverting circuit that outputs the signal without changing its phase to a part of the feedback loop formed by connecting the previous ^
前 C R回路内の前記キャパシ夕と抵抗との接続順序を前記 2つの移相回路の それそれで反対にしたことを特徴とする請求の範囲第 8項記載の F M変調装置。 9. The FM modulator according to claim 8, wherein the order of connection between the capacitor and the resistor in the previous CR circuit is reversed for each of the two phase shift circuits.
1 4 . 前記 2つの移相回路を縱 接続して形成される帰還ループの一部に信号の 位相を反転して出力する位相反転回路を接続し、 14. A phase inversion circuit that inverts the phase of the signal and outputs it is connected to a part of a feedback loop formed by connecting the two phase shift circuits in cascade,
前記 C R回路内の前記キャパシ夕と抵抗との接続順序を前記 2つの移相回路の それそれで同じにしたことを特徴とする請求の範囲第 8項記載の: F M変調装置。 9. The FM modulator according to claim 8, wherein the connection order of the capacitor and the resistor in the CR circuit is the same in each of the two phase shift circuits.
1 5 . 差動増幅器と L R回路とを含む^域通過型の 2つの移相回路を備え、 これ ら 2つの移相回路を縦続接続して後段の前 ΰ移相回路の出力を前段の前記移相回 路の入力側に帰還させるとともに、 前記 2つの移相回路のいずれか一方に含まれ る前 回路内の抵抗として F Ε Τを用い、 前記 F Ε Τのゲ一トに印加される 所定のバイアス電圧に外部から入力される信号の交流成分を重畳させることによ り、 前記 2つの移相回路のいずれかから F M変調された信号を出力することを特
徴とする F M変調装置。 15 5. Equipped with two ^ pass-pass type phase shift circuits including a differential amplifier and an LR circuit, and cascade-connecting these two phase shift circuits to connect the output of the phase shift circuit to the output of the previous stage. The signal is fed back to the input side of the phase shift circuit, and is applied to the gate of the F Ε 用 い by using F Τ 抵抗 as a resistance in a previous circuit included in one of the two phase shift circuits. By superimposing an AC component of an externally input signal on a predetermined bias voltage, it is possible to output an FM-modulated signal from one of the two phase shift circuits. FM modulator.
1 6 . 差動増幅器と C R回路とを含む全域通過型の第 1の移相回路と、 差動増幅 器と L R回路とを含む全域通過型の第 2の移相回路とを備え、 これら第 1および 第 2の移相回路を縦続接続して後段の前記移相回路の出力を前段の前記移相回路 の入力側に帰還させるとともに、 前記 C R回路内あるいは前記 L R回路内の抵抗 として F E Tを用い、 前記 F E Tのゲ一トに印加される所定のバイァス電圧に外 部から人力される信 の交流成分を重畳させることにより、 前記 2つの移相回路 のいずれかから F M変調された β号を出力することを特徴とする F M変調装置。 16. An all-pass type first phase shift circuit including a differential amplifier and a CR circuit, and an all-pass type second phase shift circuit including a differential amplifier and an LR circuit are provided. The first and second phase shift circuits are connected in cascade, the output of the subsequent phase shift circuit is fed back to the input side of the previous phase shift circuit, and an FET is used as a resistor in the CR circuit or the LR circuit. By superimposing an AC component of a signal that is manually input from the outside onto a predetermined bias voltage applied to the gate of the FET, the β signal that is FM-modulated from one of the two phase shift circuits is used. An FM modulator characterized by output.
1 7 . ¾動増幅器と C R回路とを含む全域通過型の第 1の移相回路と、 差動増幅 器と L R I口 1路とを含む全域通過^の第 2の移相问路とを備え、 これら第 1および 第 2の移相回路を縦続接続して後段の前 ¾移相回路の出力を前段の前記移相回路 の入力側に帰還させるとともに、 前記 C R回路内のキャパシ夕としてバイアス電 圧によって静電容量が変更可能な可変容量素子を用い、 前記バイアス電圧に外部 から入力される信号の交流成分を重畳させることにより、 前記 2つの移相回路の いずれかから F M変調された信号を出力することを特徴とする F M変調装置。17. An all-pass type first phase shift circuit including an automatic amplifier and a CR circuit, and an all-pass second phase shift circuit including a differential amplifier and one LRI port are provided. The first and second phase shift circuits are connected in cascade, so that the output of the previous phase shift circuit is fed back to the input side of the previous phase shift circuit, and the bias voltage is used as a capacity in the CR circuit. By using a variable capacitance element whose capacitance can be changed by pressure and superimposing an AC component of an externally input signal on the bias voltage, an FM-modulated signal from one of the two phase shift circuits can be obtained. An FM modulator characterized by output.
1 8 . 人力された交流信号を同相および逆相の交流信号に変換する変換手段と C R回路とを含む全域通過型の 2つの移相回路と、 入力された交流信号の位相を変 えずに出力する非反転冋路とを備え、 前記 2つの移相回路と前記非反転回路とを 所定の順序で縦続接続し、 最終段の回路の出力を初段の回路の人力側に帰還させ るとともに、 前記 2つの移相回路のいずれか -方に含まれる前記 C R回路内の抵 抗として F Ε Τを用い、 前記 F Ε Τのゲートに印加される所定のバイアス電圧に 外部から入力される信号の交流成分を重畳させることにより、 前記 2つの移相回 路のいずれかから F M変調された信号を出力することを特徴とする F M変調装置 c 1 9 . 前記 2つの移相回路のそれぞれに まれる前記変換手段は、 ソースおよび ドレインのそれそれに、 あるいはエミッ夕およびコレクタのそれぞれに抵抗値が ほぼ等しい抵抗が接続されているとともに、 ゲートあるいはベースに交流信号が 入力されるトランジスタによって構成されており、 1 8. Two all-pass type phase shift circuits including a conversion circuit for converting a manually input AC signal into an in-phase and an out-of-phase AC signal and a CR circuit, without changing the phase of the input AC signal A non-inverting circuit for outputting, the two phase-shift circuits and the non-inverting circuit are cascaded in a predetermined order, and the output of the last-stage circuit is fed back to the human-powered side of the first-stage circuit. F Ε Ε is used as a resistance in the CR circuit included in one of the two phase shift circuits, and a predetermined bias voltage applied to the gate of the F Τ のAn FM modulator c19, which outputs an FM-modulated signal from one of the two phase shift circuits by superimposing an AC component. Each of the two phase shift circuits is included. The conversion means includes a source and a drain, and Rui the resistance value is connected is substantially equal resistance to each emitter evening and collector, is constituted by a transistor AC signal is input to the gate or base,
前記トランジスタのソース ' ドレイン間あるいはエミ ッタ · コレクタ間に前記 C R回路を接続するとともに、 前 ¾ C R回路を構成する抵抗およびキャパシタの
接続順序を前記 2つの移相回路のそれそれで反対にしたことを特徴とする請求の 範囲第 1 8項 ^載の F M変調装置。 The CR circuit is connected between the source and the drain of the transistor or between the emitter and the collector. 19. The FM modulator according to claim 18, wherein the connection order is reversed for each of the two phase shift circuits.
2 0 . 入力された交流信号を同相および逆相の交流信号に変換する変換手段と C R回路とを含む全域通過型の 2つの移相回路と、 人力された交流信号の位相を変 えずに出力する非反転回路とを備え、 前記 2つの移相回路と前記非反転回路とを 所定の順序で縦続接続し、 最終段の回路の出力を初段の回路の入力側に帰還させ るとともに、 前記 2つの移相回路のいずれか一方に含まれる前記 C R回路内のキ ャパシ夕としてバイアス電圧によって静電容量が変更可能な可変容量素子を用い、 前記バイァス電圧に外部から入力される信号の交流成分を重畳させることにより、 前記 2つの移相回路のいずれかから F M変調された信号を出力することを特徴と する F M変調装置。 20. Two all-pass type phase shift circuits including a conversion circuit for converting an input AC signal into an in-phase and an in-phase AC signal and a CR circuit, and without changing the phase of the input AC signal A non-inverting circuit for outputting, the two phase-shifting circuits and the non-inverting circuit are cascaded in a predetermined order, and the output of the last-stage circuit is fed back to the input side of the first-stage circuit. A variable capacitance element whose capacitance can be changed by a bias voltage is used as a capacitor in the CR circuit included in one of the two phase shift circuits, and an AC component of a signal input from the outside to the bias voltage is used. An FM modulation signal output from one of the two phase shift circuits by superimposing the signals.
2 1 . ^1 2つの移相回路のそれそれに含まれる前記変換手段は、 ソースおよび ドレインのそれぞれに、 あるいはェミッ夕およびコレク夕のそれそれに抵抗値が ほぼ等しい抵抗が接続されているとともに、 ゲートあるいはベースに交流信号が 入力されるトランジスタによって構成されており、 2 1. ^ 1 The conversion means included in each of the two phase shift circuits is connected to each of the source and the drain, or to a resistor whose resistance is substantially equal to that of the emitter and collector, and to the gate. Or it is composed of a transistor to which an AC signal is input to the base,
前記トランジスタのソース ' ドレイン問あるいはエミッ夕 ' コレクタ間に前記 C R回路を接続するとともに、 前記 C R回路を構成する抵抗およびキャパシ夕の 接続順序を前記 2つの移相回路のそれそれで反対にしたことを特徴とする請求の 範囲第 2 O iHild載の F M変調装置。 The CR circuit is connected between the source and drain of the transistor or between the collector and the collector, and the connection order of the resistor and the capacitor constituting the CR circuit is reversed in each of the two phase shift circuits. A FM modulator according to claim 2, wherein the FM modulator is mounted on an iHild.
2 2 . 入力された交流信号を同相および逆相の交流信号に変換する変換手段と L R回路とを含む全域通過型の 2つの移相回路と、 入力された交流 ί ·号の位相を変 えずに出力する非反転回路とを備え、 前記 2つの移相回路と前記非反転回路とを 所定の順序で縦続接続し、 ¾終段の冋路の出力を初段の回路の入力側に帰還させ るとともに、 前記 2つの移相回路のいずれか -方に含まれる前記 L R回路内の抵 抗として F Ε Τを用い、 前記 F Ε Τのゲ一トに印加される所定のバイアス電圧に 外部から入力される信 ^の交流成分を重畳させることにより、 前記 2つの移相回 路のいずれかから F M変調された β号を出力することを特徴とする F M変,御装置 c 2 3 . 入力された交流信号を同相および逆相の交流信^に変換する第 1の変換手 段と C R回路とを含む全域通過型の第 1の移相回路と、 入力された交流信号を同
相および逆相の交流信 に変換する第 2の変換手段と L R回路とを含む全域通過 型の第 2の移相回路と、 入力された交流信号の位相を変えずに出力する非反転问 路とを備え、 前 第 1および第 2の移相回路と前記非反転回路とを所定の順序で 縦続接続し、 最終段の冋路の出力を初段の回路の入力側に帰還させるとともに、 前記 C R回路内あるいは前記 L R回路内の抵抗として F E Tを用い、 前記 F E T のゲートに印加される所定のバイアス電圧に外部から入力される信号の交流成分 を重畳させることにより、 前記第 1および第 2の移相回路のいずれかから F M変 調された信号を出力することを特徴とする F M変調装置。 2 2. Two all-pass type phase shift circuits including a conversion means for converting an input AC signal into an in-phase and an in-phase AC signal and an LR circuit, and change the phase of the input AC signal. A non-inverting circuit that outputs the first and second phase shift circuits and the non-inverting circuit in cascade in a predetermined order, and outputs the output of the last circuit to the input side of the first circuit. In addition, F Ε is used as a resistance in the LR circuit included in one of the two phase shift circuits, and a predetermined bias voltage applied to the gate of the F F is externally applied. An FM converter c 2 3. Characterized in that it outputs an FM-modulated β signal from one of the two phase shift circuits by superimposing the AC component of the input signal. A first conversion means for converting the AC signal into an in-phase and an in-phase AC signal and a CR circuit. A first phase shift circuit type, the input AC signal the An all-pass second phase-shift circuit including a second conversion means for converting into a phase and an opposite-phase AC signal and an LR circuit; and a non-inverting circuit for outputting the input AC signal without changing the phase. The first and second phase shift circuits and the non-inverting circuit are cascaded in a predetermined order, and the output of the circuit at the last stage is fed back to the input side of the circuit at the first stage, and the CR The first and second shifts are performed by using an FET as a resistor in the circuit or the LR circuit and superimposing an AC component of an externally input signal on a predetermined bias voltage applied to the gate of the FET. An FM modulator that outputs an FM-modulated signal from one of the phase circuits.
2 4 . 入力された交流信号を同相および逆相の交流信号に変換する第 1の変換手 段と C R回路とを含む全域通過型の第 1の移相回路と、 入力された交流信号を同 相および逆相の交流信号に変換する第 2の変換手段と L R回路とを含む全域通過 型の第 2の移相回路と、 入力された交流信号の位相を変えずに出力する非反転回 路とを備え、 前記第 1および第 2の移相回路と前記非反転回路とを所定の順序で 縦続接続し、 最終段の回路の出力を初段の回路の入力側に帰還させるとともに、 前記 C R回路内のキャパシ夕としてバイアス電圧によって静電容量が変更可能な 可変容最素子を用い、 前記バイァス電圧に外部から入力される信 の交流成分を 重畳させることにより、 前記 2つの移相回路のいずれかから F M変調された信 を出力することを特徴とする F M変調装置。 24. The all-pass type first phase shift circuit including the first conversion means for converting the input AC signal into in-phase and anti-phase AC signals and a CR circuit, and the input AC signal An all-pass second phase-shift circuit including a second conversion means for converting into an AC signal of opposite phase and an LR circuit, and a non-inverting circuit for outputting the input AC signal without changing the phase thereof The first and second phase shift circuits and the non-inverting circuit are cascaded in a predetermined order, and the output of the last-stage circuit is fed back to the input side of the first-stage circuit. A variable capacitance element whose capacitance can be changed by a bias voltage is used as the internal capacity, and an AC component of a signal input from the outside is superimposed on the bias voltage, whereby any one of the two phase shift circuits is used. Output FM modulated signal from FM modulator.
2 5 . 入力された交流信号を同相および逆相の交流信号に変換する変換手段と C R回路とを《む全域通過型の 2つの移相回路と、 入力された交流信号の位相を反 転して出力する位相反転回路とを備え、 前記 2つの移相回路と前記位相反転回路 とを所定の順序で縦続接続し、 最終段の回路の出力を初段の回路の入力側に帰還 させるとともに、 前記 2つの移相回路のいずれか一力に含まれる前^ C R回路の 抵抗として F E Tを用い、 前記 F E Tのゲートに印加される所定のバイアス電 L十: に外部から入力される信号の交流成分を重 させることにより、 前記 2つの移相 问路のいずれかから F M変調された信- -を出力することを特徴とする F M変調装 2 5. Two all-pass type phase shift circuits including a conversion circuit for converting the input AC signal into an in-phase and an in-phase AC signal and a CR circuit, and inverting the phase of the input AC signal. A phase inversion circuit that outputs the output of the first stage circuit.The two phase shift circuits and the phase inversion circuit are cascaded in a predetermined order, and the output of the last stage circuit is fed back to the input side of the first stage circuit. An FET is used as a resistor of the CR circuit included in one of the two phase shift circuits, and an AC component of a signal input from the outside to a predetermined bias voltage L10 applied to the gate of the FET is used. And outputs an FM-modulated signal from one of the two phase shift circuits.
2 6 . 前記 2つの移相回路のそれそれに含まれる前記変換手段は、 ソースおよび ドレインのそれぞれに、 あるいはエミッタおよびコレクタのそれぞれに抵抗値が
ほぼ等しい抵抗が接続されているとともに、 ゲ一卜あるいはベースに交流信 -が 入力されるトランジスタによって構成されており、 26. The conversion means included in each of the two phase shift circuits has a resistance value at each of the source and the drain, or at each of the emitter and the collector. Almost equal resistance is connected, and the gate or base is composed of a transistor to which AC signal is input.
¾記トランジスタのソース ' ドレイン間あるいはェミヅ夕 ' コレクタ間に前記 C R回路を接続するとともに、 前記 C R回路を構成する抵抗およびキャパシ夕の 接続順序を前記 2つの移相回路のそれそれで同じにしたことを特徴とする請求の 範囲第 2 5項記載の F M変調装置。 The CR circuit is connected between the source and the drain of the transistor or between the collector and the collector of the transistor, and the connection order of the resistor and the capacitor constituting the CR circuit is the same as that of the two phase shift circuits. The FM modulator according to claim 25, wherein:
2 7 . 人力された交流信号を同相および逆相の交流信号に変換する変換手段と C R回路とを む全域通過型の 2つの移相回路と、 入力された交流信号の位相を反 転して出力する位相反転回路とを備え、 前記 2つの移相回路と前記位相反転回路 とを所定の順序で縦続接続し、 最終段の回路の出力を初段の回路の入力側に帰還 させるとともに、 前記 2つの移相回路のいずれか一方に含まれる前記 C R回路内 のキャパシ夕としてバイアス電圧によって静電容量が変更可能な可変容量素子を 用い、 前記バイアス電圧に外部から入力される信 の交流成分を重畳させること により、 前記 2つの移相回路のいずれかから F M変調された信号を出力すること を特徴とする F M変調装置。 2 7. Two all-pass type phase shift circuits including a conversion circuit for converting a human-powered AC signal into an in-phase and an out-of-phase AC signal, and a CR circuit, and by inverting the phase of the input AC signal. A phase inverting circuit for outputting, the two phase shifting circuits and the phase inverting circuit are cascaded in a predetermined order, and the output of the last stage circuit is fed back to the input side of the first stage circuit. A variable capacitance element whose capacitance can be changed by a bias voltage is used as a capacity in the CR circuit included in one of the two phase shift circuits, and an AC component of an externally input signal is superimposed on the bias voltage. Thereby outputting an FM-modulated signal from one of the two phase shift circuits.
2 8 . 記 2つの移相回路のそれそれに含まれる前記変換手段は、 ソースおよび ドレインのそれそれに、 あるいはェミッ夕およびコレクタのそれそれに抵抗値が ほぼ等しい抵抗が接続されているとともに、 ゲートあるいはベースに交流信号が 人力されるトランジスタによって構成されており、 2 8. The conversion means included in each of the two phase shift circuits is connected to a source and a drain, or to a resistor whose resistance is substantially equal to that of the emitter and the collector, and to a gate or a base. It is composed of a transistor whose AC signal is input manually.
トランジスタのソース · ドレイン間あるいはエミ ッ夕 · コレクタ問に前記 C R回路を接続するとともに、 前記 C R回路を構成する抵抗およびキャパシ夕の 接続順序を前記 2つの移相回路のそれそれで同じにしたことを特徴とする請求の 範囲第 2 7項記載の F M変調装置。 The CR circuit is connected between the source and drain of the transistor or between the emitter and the collector, and the connection order of the resistor and the capacitor constituting the CR circuit is the same for each of the two phase shift circuits. 28. The FM modulator according to claim 27, wherein:
2 9 . 人力された交流信号を^相および逆相の交流信号に変換する変換手段と L R回路とを含む全域通過型の 2つの移相回路と、 入力された交流信 の位相を反 転して出力する位相反転回路とを備え、 '己 2つの移相回路と前記位相反転回路 とを所定の順序で縦続接続し、 最終段の问路の出力を初段の回路の入力側に帰還 させるとともに、 前記 つの移 ffl M路のいずれか一方に含まれる前記 L R回路内 の抵抗として F E Tを用い、 前 ¾! F E Tのゲ一卜に印加される所定のバイアス i
圧に外部から入力される信 の交流成分を重畳させることにより、 前記 2つの移 相回路のいずれかから F M変調された信号を出力することを特徴とする F M変調 2 9. Two all-pass type phase shift circuits including a LR circuit and a conversion means for converting a manually input AC signal into a negative-phase and negative-phase AC signal, and inverting the phase of the input AC signal A phase inverting circuit that outputs the output signal of the last stage circuit. A FET is used as a resistor in the LR circuit included in one of the two paths, and a predetermined bias applied to the gate of the FET is used. FM modulation by outputting an FM-modulated signal from one of the two phase shift circuits by superimposing an AC component of a signal input from the outside on the voltage.
3 0 . 入力された交流信号を同相および逆相の交流信号に変換する第 1の変換手 段と C R回路とを含む全域通過型の第 1の移相回路と、 人力された交流信号を同 相および逆相の交流信号に変換する第 2の変換手段と L R回路とを含む全域通過 の第 2の移相问路と、 入力された交流信号の位相を反転して出力する位相反転 回路とを備え、 前記 2つの移相 ίπΐ路と前記位相反転回路とを所定の順序で縦続接 続し、 最終段の问路の出力を初段の回路の入力側に帰還させるとともに、 前記 C R回路内あるいは前記 L R |'_'」路内の抵抗として F E Tを用い、 前記 F E Tのゲ一 トに印加される所定のバイァス電圧に外部から入力される信号の交流成分を重畳 させることにより、 前記 2つの移相回路のいずれかから F M変調された信^を出 力することを特徴とする F M変調装置。 30. An all-pass type first phase shift circuit including a first conversion means for converting an input AC signal into an in-phase and an opposite-phase AC signal and a CR circuit, and a manually-operated AC signal. An all-pass second phase shift circuit including a second conversion means for converting into a phase and a negative phase AC signal, and an LR circuit; a phase inversion circuit for inverting the phase of the input AC signal and outputting the inverted signal; The two phase-shifting circuits and the phase inverting circuit are cascade-connected in a predetermined order, and the output of the last-stage circuit is fed back to the input side of the first-stage circuit. By using an FET as a resistor in the LR | '_' path and superimposing an AC component of an externally input signal on a predetermined bias voltage applied to the gate of the FET, the two shifts are performed. Output FM-modulated signal from one of the phase circuits FM modulator.
3 1 . 入力された交流信号を同相および逆相の交流信号に変換する第 1の変換手 段と C R回路とを含む全域通過型の第 1の移相回路と、 入力された交流信号を同 相および逆相の交流 号に変換する第 2の変換手段と L R回路とを含む全域通過 型の第 2の移相回路と、 入力された交流信号の位相を反転して出力する位相反転 回路とを備え、 前記第 1および第 2の移相回路と前記位相反転回路とを所定の順 序で縦続接続し、 最終段の回路の出力を初段の回路の入力側に帰還させるととも に、 前記 C R回路内のキャパシ夕としてバイァス電圧によって静電容量が変更可 能な可変容罱素子を用い、 前記バイアス電圧に外部から入力される信号の交流成 分を重畳させることにより、 前記 2つの移相回路のいずれかから F M変調された ^号を出力することを特徴とする F M変調装置。
3 1. The all-pass type first phase shift circuit including the first conversion means for converting the input AC signal into in-phase and opposite-phase AC signals and a CR circuit, and the input AC signal An all-pass type second phase shift circuit including a second conversion means for converting into a phase and a negative phase AC signal and an LR circuit; a phase inversion circuit for inverting the phase of an input AC signal and outputting the inverted signal; The first and second phase shift circuits and the phase inverting circuit are cascaded in a predetermined order, and the output of the last-stage circuit is fed back to the input side of the first-stage circuit. By using a variable capacitance element whose capacitance can be changed by a bias voltage as a capacity in the CR circuit, and superimposing an AC component of an externally input signal on the bias voltage, the two phase shifts are performed. Output FM modulated ^ sign from one of the circuits. F M modulation device to.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU61378/96A AU6137896A (en) | 1995-11-16 | 1996-06-20 | Fm modulator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7/322222 | 1995-11-16 | ||
JP32222295 | 1995-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997018625A1 true WO1997018625A1 (en) | 1997-05-22 |
Family
ID=18141313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1996/001706 WO1997018625A1 (en) | 1995-11-16 | 1996-06-20 | Fm modulator |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU6137896A (en) |
TW (1) | TW297980B (en) |
WO (1) | WO1997018625A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5029024A (en) * | 1973-07-18 | 1975-03-24 | ||
JPS52120657A (en) * | 1976-04-02 | 1977-10-11 | Fujitsu Ltd | Voltage control oscillator |
JPS5331947A (en) * | 1976-09-04 | 1978-03-25 | Nippon Gakki Seizo Kk | Phase modulator circuit |
JPS54959A (en) * | 1977-06-06 | 1979-01-06 | Mitsubishi Electric Corp | Phase modulation circuit |
JPS5427306A (en) * | 1977-08-02 | 1979-03-01 | Nec Corp | Instantaneous frequency deviation control circuit |
JPS5947483B2 (en) * | 1974-07-10 | 1984-11-19 | エヌ・ベー・フイリツプス・フルーイランペンフアブリケン | Circuit arrangement that converts bridge unbalance into frequency change |
JPH0575387A (en) * | 1991-09-17 | 1993-03-26 | Sanyo Electric Co Ltd | Variable delay circuit |
JPH05183406A (en) * | 1991-12-27 | 1993-07-23 | Nec Eng Ltd | Automatic phase correction circuit |
-
1996
- 1996-06-20 WO PCT/JP1996/001706 patent/WO1997018625A1/en active Application Filing
- 1996-06-20 AU AU61378/96A patent/AU6137896A/en not_active Abandoned
- 1996-07-11 TW TW85108398A patent/TW297980B/en active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5029024A (en) * | 1973-07-18 | 1975-03-24 | ||
JPS5947483B2 (en) * | 1974-07-10 | 1984-11-19 | エヌ・ベー・フイリツプス・フルーイランペンフアブリケン | Circuit arrangement that converts bridge unbalance into frequency change |
JPS52120657A (en) * | 1976-04-02 | 1977-10-11 | Fujitsu Ltd | Voltage control oscillator |
JPS5331947A (en) * | 1976-09-04 | 1978-03-25 | Nippon Gakki Seizo Kk | Phase modulator circuit |
JPS54959A (en) * | 1977-06-06 | 1979-01-06 | Mitsubishi Electric Corp | Phase modulation circuit |
JPS5427306A (en) * | 1977-08-02 | 1979-03-01 | Nec Corp | Instantaneous frequency deviation control circuit |
JPH0575387A (en) * | 1991-09-17 | 1993-03-26 | Sanyo Electric Co Ltd | Variable delay circuit |
JPH05183406A (en) * | 1991-12-27 | 1993-07-23 | Nec Eng Ltd | Automatic phase correction circuit |
Also Published As
Publication number | Publication date |
---|---|
TW297980B (en) | 1997-02-11 |
AU6137896A (en) | 1997-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1547237B1 (en) | Integrated, digitally-controlled crystal oscillator | |
JP3575898B2 (en) | Amplifier circuit | |
US6560297B1 (en) | Image rejection downconverter for a translation loop modulator | |
WO1991002404A1 (en) | Modulator circuit | |
US7627303B2 (en) | Signal downconverter | |
US6801585B1 (en) | Multi-phase mixer | |
JP4705041B2 (en) | Mixer with feedback | |
WO2003030350A1 (en) | Oscillator, transmission circuit, and radio apparatus | |
US5736840A (en) | Phase shifter and communication system using the phase shifter | |
JP4415088B2 (en) | Voltage controlled oscillator and quadrature modulator | |
WO1997018625A1 (en) | Fm modulator | |
JP4083840B2 (en) | Transconductance amplifier and voltage controlled oscillator | |
US6297706B1 (en) | Single stage voltage controlled ring oscillator | |
JPS6096001A (en) | Voltage controlled oscillator | |
WO1997018624A1 (en) | Fm modulator | |
GB2181913A (en) | Balanced oscillator and heterodyne circuit incorporating same | |
US6864754B2 (en) | Integral mixer and oscillator device | |
US7519335B2 (en) | Digital modulation signal mixer | |
JPH0253304A (en) | Phase shift type oscillation circuit | |
KR20010042590A (en) | Quadrature oscillator network for transmitter | |
JPH03192904A (en) | Variable frequency oscillator circuit | |
JP3142857B2 (en) | Voltage controlled oscillator | |
JP3798077B2 (en) | Tuning control method | |
JP2600479B2 (en) | Voltage controlled oscillator | |
JP2006352376A (en) | Orthogonal modulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CN JP KR RU US VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |