WO1997016828A1 - Disc drive spindle motor having hydro bearing with optimized lubricant viscosity - Google Patents

Disc drive spindle motor having hydro bearing with optimized lubricant viscosity Download PDF

Info

Publication number
WO1997016828A1
WO1997016828A1 PCT/US1996/017131 US9617131W WO9716828A1 WO 1997016828 A1 WO1997016828 A1 WO 1997016828A1 US 9617131 W US9617131 W US 9617131W WO 9716828 A1 WO9716828 A1 WO 9716828A1
Authority
WO
WIPO (PCT)
Prior art keywords
blend
viscosity
disc drive
base fluids
data storage
Prior art date
Application number
PCT/US1996/017131
Other languages
French (fr)
Inventor
Raquib U. Khan
Hans Leuthold
David J. Jennings
Gregory I. Rudd
Gunter K. Heine
Original Assignee
Seagate Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seagate Technology, Inc. filed Critical Seagate Technology, Inc.
Priority to US08/737,437 priority Critical patent/US5930075A/en
Priority to JP9517425A priority patent/JPH11514779A/en
Priority to DE19681634T priority patent/DE19681634T1/en
Priority to GB9809176A priority patent/GB2322728B/en
Publication of WO1997016828A1 publication Critical patent/WO1997016828A1/en
Priority to HK99100770A priority patent/HK1015932A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/20Driving; Starting; Stopping; Control thereof
    • G11B19/26Speed-changing arrangements; Reversing arrangements; Drive-transfer means therefor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/36Esters of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/38Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/38Lubricating compositions characterised by the base-material being a macromolecular compound containing halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/22Compounds containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/04Hydroxy compounds
    • C10M129/10Hydroxy compounds having hydroxy groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/12Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/38Heterocyclic nitrogen compounds
    • C10M133/44Five-membered ring containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/08Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium containing a sulfur-to-oxygen bond
    • C10M135/10Sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/12Thio-acids; Thiocyanates; Derivatives thereof
    • C10M135/14Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond
    • C10M135/18Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond thiocarbamic type, e.g. containing the groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/20Thiols; Sulfides; Polysulfides
    • C10M135/22Thiols; Sulfides; Polysulfides containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/20Thiols; Sulfides; Polysulfides
    • C10M135/28Thiols; Sulfides; Polysulfides containing sulfur atoms bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/32Heterocyclic sulfur, selenium or tellurium compounds
    • C10M135/36Heterocyclic sulfur, selenium or tellurium compounds the ring containing sulfur and carbon with nitrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/08Ammonium or amine salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • C10M137/105Thio derivatives not containing metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/109Lubricant compositions or properties, e.g. viscosity
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/20Driving; Starting; Stopping; Control thereof
    • G11B19/2009Turntables, hubs and motors for disk drives; Mounting of motors in the drive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/20Driving; Starting; Stopping; Control thereof
    • G11B19/2009Turntables, hubs and motors for disk drives; Mounting of motors in the drive
    • G11B19/2036Motors characterized by fluid-dynamic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/167Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
    • H02K5/1677Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/084Inorganic acids or salts thereof containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/104Aromatic fractions
    • C10M2203/1045Aromatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • C10M2203/1065Naphthenic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/108Residual fractions, e.g. bright stocks
    • C10M2203/1085Residual fractions, e.g. bright stocks used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/0206Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • C10M2207/2825Esters of (cyclo)aliphatic oolycarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/285Esters of aromatic polycarboxylic acids
    • C10M2207/2855Esters of aromatic polycarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/288Partial esters containing free carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/02Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen and halogen only
    • C10M2213/023Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen and halogen only used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/04Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen, halogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/04Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen, halogen and oxygen
    • C10M2213/043Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen, halogen and oxygen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/0606Perfluoro polymers used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/062Polytetrafluoroethylene [PTFE]
    • C10M2213/0623Polytetrafluoroethylene [PTFE] used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/066Arylene diamines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/067Polyaryl amine alkanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/068Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings having amino groups bound to polycyclic aromatic ring systems, i.e. systems with three or more condensed rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/083Dibenzyl sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/086Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing sulfur atoms bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/102Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon only in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/106Thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/108Phenothiazine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/043Ammonium or amine salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/06Groups 3 or 13
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/32Wires, ropes or cables lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/34Lubricating-sealants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/36Release agents or mold release agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/38Conveyors or chain belts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/40Generators or electric motors in oil or gas winning field
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/42Flashing oils or marking oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/44Super vacuum or supercritical use
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/50Medical uses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Definitions

  • the present invention relates to spindle motors for disc drive data storage devices and, more particularly, to optimized lubricating fluids for a hydrodynamic bearing within the spindle motor.
  • Winchester type disc drives are well-known in the industry.
  • digital data is written to and read from a thin layer of magnetizable material on the surface of rotating discs.
  • Write and read operations are performed through a transducer which is carried in a slider body.
  • the slider and transducer are sometimes collectively referred to as a head, and typically a single head is associated with each disc surface.
  • the heads are selectively moved under the control of electronic circuitry to any one of a plurality of circular, concentric data tracks on the disc surface by an actuator device.
  • Each slider body includes a self-acting air bearing surface. As the disc rotates, the disc drags air beneath the air bearing surface, which develops a lifting force that causes the slider to lift and fly several microinches above the disc surface.
  • the most commonly used type of actuator is a rotary moving coil actuator.
  • the discs themselves are typically mounted in a "stack" on the hub structure of 5 brushless DC spindle motor.
  • the rotational speed of the spindle motor is precisely controlled by motor drive circuitry which controls both the timing and the power of commutation signals directed to the stator windings of the motor.
  • Typical spindle motor speeds have been in the range of 3600 RPM. Current technology has increased spindle motor speeds to 7200 RPM, 10,000 RPM and above.
  • a hydro bearing relies on a fluid film which separates the bearing surfaces and is therefore much quieter and in general has lower vibrations than conventional ball bearings.
  • a hydrodynamic bearing is a self-pumping bearing which generates a pressure internally to maintain the fluid film separation.
  • a hydrostatic bearing requires an external pressurized fluid source to maintain the fluid separation. Relative motion between the bearing surfaces in a hydro bearing causes a shear element which occurs entirely within the fluid film such that no contact between the bearing surfaces occurs.
  • hydro bearings In hydro bearing applications, entirely different fluid properties are of importance to the function of the bearing.
  • the boundary properties are important only during the starting and stopping of the disc rotation. During normal operation, the most important properties are bulk properties.
  • the hydro bearings that are being considered for use in disc drive applications are miniature units which require small power dissipation and a limited oil supply that must be adequate for a long life without escaping from the bearing.
  • Commercially available lubricants are mostly unsuitable in some way for application in miniature hydro bearings in a disc drive.
  • the lubricant properties that must be controlled and the degree of control that must be obtained are unique to miniature hydro bearings for disc drives. These properties include power dissipation, viscosity and it's temperature dependence, migration, vapor pressure and evaporation rate, resistance to oxidation and corrosion, rheology, boundary properties and system compatibility. Viscosity determines power dissipation and bearing stiffness, which should be relatively constant over various operating conditions.
  • the lubricant should have low migration so the lubricant does not creep out of the bearing.
  • the lubricant should have a high resistance to oxidation and reactivity to provide a long life for the bearing. Rheology is the deformation and flow response to sheer.
  • the lubricant should also be compatible with the other materials of the disc drive. For example, migration or outgassing of the lubricant should not impair the interface between the head and the disc, such as by causing an increase in the sticking friction between the head and the disc or a degradation of the head structure or operation. Formulation of fluids for appropriate hydro bearing properties therefore requires different considerations than for fluids intended as general purpose lubricants. Another disadvantage of commercially available lubricants is that the exact composition of the lubricants is often not provided by the manufacturer and may include one or more additives that are incompatible with the sensitive operation of the disc drive.
  • the disc drive data storage system of the present invention includes a housing, a central axis, a stationary member which is fixed with respect to the housing and coaxial with the central axis, and a rotatable member which is rotatable about the central axis with respect to the stationary member.
  • a stator is fixed with respect to the housing.
  • a rotor is supported by the rotatable member and is magnetically coupled to the stator.
  • At least one data storage disc is attached to and is coaxial with the rotatable member.
  • a hydro bearing interconnects the stationary member and the rotatable member and includes a blend of base fluids having a viscosity that is within a selected range of a desired viscosity such that the blend of base fluids provides the hydro bearing with a desired power dissipation and stiffness.
  • the blend of base fluids includes a first base fluid having a first viscosity that is greater than the desired viscosity and a second base fluid having a second viscosity that is less than the desired viscosity.
  • the desired viscosity is a precise viscosity between 4-10 centipoise
  • the base fluids are blended to achieve an overall viscosity that is within 10 percent, and most preferably 2-5 percent, of the desired viscosity.
  • the blend of base fluids has a viscosity index of at least 110 and an evaporation range of less than 1.0 x 10 "3 mg/day-mm 2 , based on a volume to surface area (V/A) ratio of about 1.9-2.0 mm.
  • Preferred base fluids include perfluoropolyethers, esters, synthetic hydrocarbons and highly refined mineral hydrocarbons. Most preferred base fluids include diesters, polyol esters and polyalphaolefins.
  • base fluids can be mixed in a variety of combinations, such as a combination of esters only, a combination of polyalphaolefins only or a combination of at least one ester and at least one polyalphaolefin only.
  • the preferred base fluids have been found to offer several advantages over ordinary petroleum-based hydrocarbons that are standard fluid lubricants, such as an improved viscosity-temperature relationship, lower evaporation and vapor pressure, low migration, improved oxidation resistance, similar boundary performance which is easily enhanced with additives, better compatibility with other materials in the disc drive and a better control of all properties due to a known chemical pure composition.
  • Figure 1 is a top plan view of a disc drive data storage device, in accordance with the present invention.
  • Figure 2 is a sectional view of a hydrodynamic spindle motor in accordance with the present invention.
  • FIG 3 is a diagrammatic sectional view of the hydrodynamic spindle motor taken along line 3-3 of Figure 2, with portions removed for clarity.
  • the present invention is a disc drive data storage device having a hydrodynamic or hydrostatic bearing spindle motor with a lubricating fluid composition which is optimized for the unique requirements of a disc drive.
  • Figure 1 is a top plan view of a typical disc drive 10 in which the present invention is useful.
  • Disc drive 10 includes a housing base 12 and a top cover 14. The housing base 12 is combined with top cover 14 to form a sealed environment to protect the internal components from contamination by elements from outside the sealed environment .
  • Disc drive 10 further includes a disc pack 16 which is mounted for rotation on a spindle motor (not shown) by a disc clamp 18.
  • Disc pack 16 includes a plurality of individual discs which are mounted for co-rotation about a central axis. Each disc surface has an associated head 20 which is mounted to disc drive 10 for communicating with the disc surface.
  • heads 20 are supported by flexures 22 which are in turn attached to head mounting arms 24 of an actuator body 26.
  • the actuator shown in Figure 1 is of the type known as a rotary moving coil actuator and includes a voice coil motor (VCM) , shown generally at 28.
  • Voice coil motor 28 rotates actuator body 26 with its attached heads 20 about a pivot shaft 30 to position heads 20 over a desired data track along an arcuate path 32.
  • VCM voice coil motor
  • FIG 2 is a sectional view of a hydrodynamic bearing spindle motor 32 in accordance with the present invention.
  • Spindle motor 32 includes a stationary member 34, a hub 36 and a stator 38.
  • the stationary member is a shaft which is fixed and attached to base 12 through a nut 40 and a washer 42.
  • Hub 36 is interconnected with shaft 34 through a hydrodynamic bearing 37 for rotation about shaft 34.
  • Bearing 37 includes radial working surfaces 44 and 46 and axial working surfaces 48 and 50.
  • Shaft 34 includes fluid ports 54, 56 and 58 which supply lubricating fluid 60 and assist in circulating the fluid along the working surfaces of the bearing.
  • Lubricating fluid 60 is supplied to shaft 34 by a fluid source (not shown) which is coupled to the interior of shaft 34 in a known manner.
  • Spindle motor 32 further includes a thrust bearing 45 which forms the axial working surfaces 48 and 50 of hydrodynamic bearing 37.
  • a counterplate 62 bears against working surface 48 to provide axial stability for the hydrodynamic bearing and to position hub 36 within spindle motor 32.
  • An O-ring 64 is provided between counterplate 62 and hub 36 to seal the hydrodynamic bearing. The seal prevents hydrodynamic fluid 60 from escaping between counterplate 62 and hub 36.
  • Hub 36 includes a central core 65 and a disc carrier member 66 which supports disc pack 16 (shown in Figure 1) for rotation about shaft 34.
  • Disc pack 16 is held on disc carrier member 66 by disc clamp 18 (also shown in Figure 1) .
  • a permanent magnet 70 is attached to the outer diameter of hub 36, which acts as a rotor for spindle motor 32.
  • Core 65 is formed of a magnetic material and acts as a back-iron for magnet 70.
  • Rotor magnet 70 can be formed as a unitary, annular ring or can be formed of a plurality of individual magnets which are spaced about the periphery of hub 36. Rotor magnet 70 is magnetized to form one or more magnetic poles.
  • Stator 38 is attached to base 12 and includes stator laminations 72 and a stator windings 74. Stator windings 74 are attached to laminations 72. Stator windings 74 is spaced radially from rotor magnet 70 to allow rotor magnet 70 and hub 36 to rotate about a central axis 80. Stator 38 is attached to base 12 through a known method such as one or more C-clamps 76 which are secured to the base through bolts 78.
  • Commutation pulses applied to stator windings 74 generate a rotating magnetic field which communicates with rotor magnet 70 and causes hub 36 to rotate about central axis 80 on bearing 37.
  • the commutation pulses are timed, polarization-selected DC current pulses which are directed to sequentially selected stator windings to drive the rotor magnet and control its speed.
  • spindle motor 32 is a "below-hub" type motor in which stator 38 has an axial position that is below hub 36.
  • Stator 38 also has a radial position that is external to hub 36, such that stator windings 74 are secured to an inner diameter surface 82 of laminations 72.
  • stator is positioned within the hub, as opposed to below the hub.
  • the stator can have a radial position which is either internal to the hub or external to the hub.
  • the spindle motor of can have a fixed shaft, as shown in Figure 2 or a rotating shaft.
  • the bearing is located between the rotating shaft and an outer stationary sleeve which is coaxial with the rotating shaft.
  • Figure 3 is a diagrammatic sectional view of hydrodynamic spindle motor 32 taken along line 3-3 of Figure 2, with portions removed for clarity.
  • Stator 38 includes laminations 72 and stator windings 74, which are coaxial with rotor magnet 70 and central core 65.
  • Stator windings 74 include phase windings Wl, Vl, Ul , W2, V2 and U2 which are wound around teeth in laminations 72.
  • the phase windings are formed of coils which have a coil axis that is normal to and intersects central axis 80.
  • phase winding Wl has a coil axis 83 which is normal to central axis 80.
  • Radial working surfaces 44 and 46 of hydrodynamic bearing 37 are formed by the outer diameter surface of shaft 34 and the inner diameter surface of central core 65. Radial working surfaces 44 and 46 are separated by a lubrication fluid 84, which maintains a clearance c during normal operation.
  • the lubrication fluid includes a blend of base fluids which are selected to optimizes power dissipation and bearing load capacity (i.e. bearing stiffness) for the particular hydrodynamic bearing design in which the fluid is used by precisely defining the fluid viscosity.
  • ⁇ B is the absolute viscosity of the blend of fluids
  • is the rotational velocity of the hub
  • c is the gap or clearance between radial working surfaces 44 and 46 (or at axial working surfaces 48 and 50)
  • R is the characteristic length of the radial and/or axial working surfaces.
  • the lubrication fluid of the present invention includes a blend of base fluids, with each base fluid having a similar chemical composition but a different viscosity.
  • the base fluids are precisely blended to obtain an overall viscosity which is preferably within 10%, and most preferably within 2-5%, of the desired viscosity.
  • the base fluids are blended according to the following relation,
  • ⁇ B the absolute viscosity of the blend of base fluids at temperature T c ;
  • T c the temperature at which the viscosity is desired;
  • v n the kinematic viscosity of base fluid n;
  • n an integer greater than one;
  • p n the density of base fluid n;
  • ⁇ n the weight percent fraction of base fluid n;
  • Preferred base fluids iclude perfluoropolyethers, esters, synthetic hydrocarbons and highly refined (highly purified) mineral hydrocarbons.
  • Most preferred base fluids include diesters, polyol- esters and polyalphaolefins (PAO's) .
  • PAO's polyalphaolefins
  • These base fluids can be blended in a variety of combinations, but preferred blends include a combination of esters only, a combination of polyalphaolefins only and a combination of at least one ester and at least one polyalphaolefin only.
  • a single ester or polyalphaolephin can be used in alternative embodiments of the present invention if the fluid has the desired viscosity and satisfies the other desired properties.
  • base fluids have been found to offer several advantages in disc drive applications over conventional petroleum-based hydrocarbons that are in standard fluid lubricants. These base fluids have a viscosity which is less dependent on temperature, a lower evaporation, a lower vapor pressure, a low migration, an improved oxidation resistance, a similar boundary performance which can be enhanced easily with additives, a better compatibility with other materials in the disc drive and a better control of all properties due to a known pure chemical composition. These fluids therefore minimize degradation of the head and disc interface and provide a long life for the bearing and the disc drive.
  • the base fluids are blended to obtain a precise absolute viscosity between 4 and 10 centipoise (cP) at 70 degrees Celsius, a viscosity index of at least 110 and an evaporation range of less than 1.0 x 10 "3 mg/day-mm 2 , based on a volume to surface area ratio (V/A) of about 1.9-2.0 mm.
  • cP centipoise
  • V/A volume to surface area ratio
  • the base fluids are selected such that the contribution of the base fluids to the sticking friction ("stiction") between the head and the disc, due to outgassing of the fluid from the bearing to the disc, is preferably similar to or less than the contribution of the existing chemicals or lubricants used in the disc drive under various conditions such as a hot or humid conditions.
  • These chemicals and lubricants include grease and ferrofluidic seals, for example.
  • the lubrication fluid includes a mixture of a high viscosity index base fluid (or a blend of base fluids) and additives which are selected such that the blend is effective for resisting catalytic degradation while being compatible with the head-disc interface.
  • Viscosity index (VI) is an arbitrary method of expressing the viscosity-temperature sensitivity of a lubricant, and is often interpreted as the temperature dependency of the viscosity. A higher viscosity index for a fluid having a given viscosity indicates that the viscosity of the fluid varies less with temperature. Because power consumption is a critical parameter for miniature hydrodynamic bearings in disc drives, a high VI index is desirable. Typical viscosity indices for several classes of fluids are shown in Table 1, below:
  • Ester fluids contain oxygen as well as hydrogen and carbon, and some ester fluids offer unique advantages in disc drive applications over natural and synthetic hydrocarbon fluids. These advantages include a higher viscosity index, a higher resistance to oxidation, improved boundary lubrication properties, lower migration compared to synthetic hydrocarbons and lower evaporation.
  • the lubrication fluid of the present invention includes a blend of a high VI index base fluid, such as a diester fluid or a polyalphaolefin, and a combination of additives which are selected to provide the fluid with anti-oxidation, anti-corrosion and metal- deactivating properties such that the fluid is markedly more resistant to catalytic degradation than commercially available ester and/or synthetic hydrocarbon blends while being compatible with the head- disc interface.
  • a high VI index base fluid such as a diester fluid or a polyalphaolefin
  • antioxidants include nitrogen and oxygen containing inhibitors, such as an amine (arylamine) , a phenol or a mixture of both. Most preferred types of antioxidants include butylated hydroxytoluene (liquid hindered phenol) , alkylated diphenyl amine, phenyl alpha naphthylamine or combination of two or more of these antioxidants. Preferred treatment levels of these additives in the lubrication base fluid are 0.25% to 3% by mass.
  • Preferred types of rust and corrosion inhibitors, or metal passivators include metallic sulfonate, long chain amines, carboxylic acid derivatives, thiadiazole and triazole derivatives and amine phosphates. Most preferred types include synthetic or petroleum calcium sulphonate, synthetic or petroleum barium sulphonate, alkenyl succenic acid derivatives and triazole derivatives. Preferred treatment levels of these additives in the lubrication base fluid are 0.02% to 0.5% by mass.
  • the lubrication fluid of the present invention further includes an additive for improving antiwear properties, high pressure metal contact properties and friction properties.
  • Preferred additives of this type include, dialkyl dithiophosphates, alkyl and aryl disulphides and polysulphides, dithiocarbamates, salts of alkylphosphoric acid, molybdenum complex, neutral phosphate ester (triaryl and trialykl) such as triphenyl phosphate, or combination of two or more of these additives.
  • Most preferred antiwear additives include, zinc dialkyl dithiophosphate, molybdenum disulphide, liquid amine phosphate and propylated and butylated triphenyl phosphates.
  • Preferred treatment levels of these additives in the lubrication base fluid are 0.1% to 4% by mass.
  • a blend of a high VI index diester base oil and/or a synthetic hydrocarbon with a selection of the above-additives obtains a hydrodynamic fluid that is markedly more resistant to catalytic degradation than commercially available ester or synthetic hydrocarbon blends.
  • Various blends were tested and were found to be compatible with the head-disc interface. These blends did not cause any significant increase in the sticking friction between the head and the disc and did not cause other interference with the head-disc interface. The blends also proved to be superior to refined paraffinic petroleum fluids in power consumption and lifetime under heavy loads and at elevated temperatures.
  • the lubrication fluid includes a mixture of a base fluid and high shear-resistant viscosity modifiers ("VI improvers") .
  • VI improvers reduce the temperature dependence of the viscosity of the base fluid.
  • the temperature dependence of viscosity is extremely important, and a high temperature dependence is usually undesirable to the function of miniature bearings for spindle motors.
  • selected commercially available polymers were blended with a base fluid according to the present invention, which resulted in a measured improvement in the temperature-power consumption curves in the spindle motor. Power consumption was observed to be less dependent upon temperature.
  • a high molecular weight soluble polymer is added to the base fluid at a concentration of 5-50% by weight.
  • the molecular weight of the polymer is preferably 10,000- 1,000,000 Daltons.
  • Preferred polymer VI improvers include, but are not limited to, polyacrylate, polyisoprene and polystyrene.
  • the shear rate is more than IO 6 per second.
  • the shear rate is defined as the rate of velocity change of the bearing working surface with respect to the width of the gap in the bearing (clearance C shown in Figure 3) .
  • the shear conditions between bearing surfaces limit the life of VI improvers by breaking down the polymers. Because the VI effect depends upon, among other factors, the length of the polymer chain, the effectiveness of the VI improver is reduced by shear breakdown.
  • the selected polymer VI improver belongs to a class of polymers that are highly resistant to shear breakdown, with a tensile strength of the solid polymer being at least 10,000 PSI and a resistance to thermal degredation of at least 250 degrees F.
  • the polymer thus has a shear strength.
  • This class of polymers includes, but is not limited to, soluble forms of such materials as polyphenylene sulfide, polyetheretherketone, and polyetherimide .
  • the solid polymer has a tensile strength of at least 14,000 PSI and a resistance to thermal degredation above 500 degrees F.
  • This class of polymers includes, but is not limited to, polyamide - imide , polyimide, polybenzimidazole, and liquid crystal polymer.
  • the solid polymer has a tensile strength of at least 20,000 PSI and a resistance to thermal degredation above 700 degrees F.
  • This class of polymers includes, but is not limited to, buckytubes and other buckminsterfullerene carbon forms.
  • the polymer VI improver has the properties of the previous groups and is functionalized or chemically modified to provide anti-oxidant and metal deactivation protection to the fluid, as discussed above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Lubricants (AREA)
  • Motor Or Generator Frames (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

A disc drive (10) includes a housing (12), a central axis (80), a stationary member (34) fixed to the housing and coaxial with the central axis, and a rotatable member (36) rotatable about the central axis with respect to the stationary member. A stator (38) is fixed to the housing. A rotor (70) is supported by the rotatable member and is magnetically coupled to the stator. A data storage disc (16) is attached to and is coaxial with the rotatable member. A hydro bearing (37) interconnects the stationary member and the rotatable member and includes a blend of base fluids (84). The base fluids are selected such that one has a viscosity that is greater than a desired viscosity for the drive, another has a viscosity that is less than the desired viscosity and the blend has a viscosity that is within a selected range of the desired viscosity.

Description

DISC DRIVE SPINDLE MOTOR HAVING HYDRO BEARING WITH OPTIMIZED LUBRICANT VISCOSITY
BACKGROUND OF THE INVENTION The present invention relates to spindle motors for disc drive data storage devices and, more particularly, to optimized lubricating fluids for a hydrodynamic bearing within the spindle motor.
Disc drive data storage devices, known as "Winchester" type disc drives, are well-known in the industry. In a Winchester disc drive, digital data is written to and read from a thin layer of magnetizable material on the surface of rotating discs. Write and read operations are performed through a transducer which is carried in a slider body. The slider and transducer are sometimes collectively referred to as a head, and typically a single head is associated with each disc surface. The heads are selectively moved under the control of electronic circuitry to any one of a plurality of circular, concentric data tracks on the disc surface by an actuator device. Each slider body includes a self-acting air bearing surface. As the disc rotates, the disc drags air beneath the air bearing surface, which develops a lifting force that causes the slider to lift and fly several microinches above the disc surface.
In the current generation of disc drive products, the most commonly used type of actuator is a rotary moving coil actuator. The discs themselves are typically mounted in a "stack" on the hub structure of 5 brushless DC spindle motor. The rotational speed of the spindle motor is precisely controlled by motor drive circuitry which controls both the timing and the power of commutation signals directed to the stator windings of the motor. Typical spindle motor speeds have been in the range of 3600 RPM. Current technology has increased spindle motor speeds to 7200 RPM, 10,000 RPM and above.
One of the principal sources of noise in disc drive data storage devices is the spindle motor. Disc drive manufacturers have recently begun looking at replacing conventional ball or roller bearings in spindle motors with "hydro" bearings, such as hydrodynamic or hydrostatic bearings. A hydro bearing relies on a fluid film which separates the bearing surfaces and is therefore much quieter and in general has lower vibrations than conventional ball bearings. A hydrodynamic bearing is a self-pumping bearing which generates a pressure internally to maintain the fluid film separation. A hydrostatic bearing requires an external pressurized fluid source to maintain the fluid separation. Relative motion between the bearing surfaces in a hydro bearing causes a shear element which occurs entirely within the fluid film such that no contact between the bearing surfaces occurs. This situation is unlike typical boundary or elastohydrodynamic lubrication applications such as roller, ball and sliding bearings, where the solid bearing surfaces are often in contact with one another and sheer stress occurs at the interface. In these boundary applications, the primary purpose of the lubricant is to modify the interface to reduce wear and friction. The interfacial chemical properties of the lubricant are the most important .
In hydro bearing applications, entirely different fluid properties are of importance to the function of the bearing. The boundary properties are important only during the starting and stopping of the disc rotation. During normal operation, the most important properties are bulk properties. The hydro bearings that are being considered for use in disc drive applications are miniature units which require small power dissipation and a limited oil supply that must be adequate for a long life without escaping from the bearing. Commercially available lubricants are mostly unsuitable in some way for application in miniature hydro bearings in a disc drive.
The lubricant properties that must be controlled and the degree of control that must be obtained are unique to miniature hydro bearings for disc drives. These properties include power dissipation, viscosity and it's temperature dependence, migration, vapor pressure and evaporation rate, resistance to oxidation and corrosion, rheology, boundary properties and system compatibility. Viscosity determines power dissipation and bearing stiffness, which should be relatively constant over various operating conditions. The lubricant should have low migration so the lubricant does not creep out of the bearing. The lubricant should have a high resistance to oxidation and reactivity to provide a long life for the bearing. Rheology is the deformation and flow response to sheer.
The lubricant should also be compatible with the other materials of the disc drive. For example, migration or outgassing of the lubricant should not impair the interface between the head and the disc, such as by causing an increase in the sticking friction between the head and the disc or a degradation of the head structure or operation. Formulation of fluids for appropriate hydro bearing properties therefore requires different considerations than for fluids intended as general purpose lubricants. Another disadvantage of commercially available lubricants is that the exact composition of the lubricants is often not provided by the manufacturer and may include one or more additives that are incompatible with the sensitive operation of the disc drive.
SUMMARY OF THE INVENTION The disc drive data storage system of the present invention includes a housing, a central axis, a stationary member which is fixed with respect to the housing and coaxial with the central axis, and a rotatable member which is rotatable about the central axis with respect to the stationary member. A stator is fixed with respect to the housing. A rotor is supported by the rotatable member and is magnetically coupled to the stator. At least one data storage disc is attached to and is coaxial with the rotatable member. A hydro bearing interconnects the stationary member and the rotatable member and includes a blend of base fluids having a viscosity that is within a selected range of a desired viscosity such that the blend of base fluids provides the hydro bearing with a desired power dissipation and stiffness. The blend of base fluids includes a first base fluid having a first viscosity that is greater than the desired viscosity and a second base fluid having a second viscosity that is less than the desired viscosity. In a preferred embodiment, the desired viscosity is a precise viscosity between 4-10 centipoise
(cP) at 70 degrees Celsius. The base fluids are blended to achieve an overall viscosity that is within 10 percent, and most preferably 2-5 percent, of the desired viscosity. In addition, the blend of base fluids has a viscosity index of at least 110 and an evaporation range of less than 1.0 x 10"3 mg/day-mm2, based on a volume to surface area (V/A) ratio of about 1.9-2.0 mm. Preferred base fluids include perfluoropolyethers, esters, synthetic hydrocarbons and highly refined mineral hydrocarbons. Most preferred base fluids include diesters, polyol esters and polyalphaolefins. These base fluids can be mixed in a variety of combinations, such as a combination of esters only, a combination of polyalphaolefins only or a combination of at least one ester and at least one polyalphaolefin only. The preferred base fluids have been found to offer several advantages over ordinary petroleum-based hydrocarbons that are standard fluid lubricants, such as an improved viscosity-temperature relationship, lower evaporation and vapor pressure, low migration, improved oxidation resistance, similar boundary performance which is easily enhanced with additives, better compatibility with other materials in the disc drive and a better control of all properties due to a known chemical pure composition. BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a top plan view of a disc drive data storage device, in accordance with the present invention.
Figure 2 is a sectional view of a hydrodynamic spindle motor in accordance with the present invention.
Figure 3 is a diagrammatic sectional view of the hydrodynamic spindle motor taken along line 3-3 of Figure 2, with portions removed for clarity.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is a disc drive data storage device having a hydrodynamic or hydrostatic bearing spindle motor with a lubricating fluid composition which is optimized for the unique requirements of a disc drive. Figure 1 is a top plan view of a typical disc drive 10 in which the present invention is useful. Disc drive 10 includes a housing base 12 and a top cover 14. The housing base 12 is combined with top cover 14 to form a sealed environment to protect the internal components from contamination by elements from outside the sealed environment .
Disc drive 10 further includes a disc pack 16 which is mounted for rotation on a spindle motor (not shown) by a disc clamp 18. Disc pack 16 includes a plurality of individual discs which are mounted for co-rotation about a central axis. Each disc surface has an associated head 20 which is mounted to disc drive 10 for communicating with the disc surface. In the example shown in Figure 1, heads 20 are supported by flexures 22 which are in turn attached to head mounting arms 24 of an actuator body 26. The actuator shown in Figure 1 is of the type known as a rotary moving coil actuator and includes a voice coil motor (VCM) , shown generally at 28. Voice coil motor 28 rotates actuator body 26 with its attached heads 20 about a pivot shaft 30 to position heads 20 over a desired data track along an arcuate path 32. While a rotary actuator is shown in Figure 1, the present invention is also useful in disc drives having other types of actuators, such as linear actuators. Figure 2 is a sectional view of a hydrodynamic bearing spindle motor 32 in accordance with the present invention. Spindle motor 32 includes a stationary member 34, a hub 36 and a stator 38. In the embodiment shown in Figure 2, the stationary member is a shaft which is fixed and attached to base 12 through a nut 40 and a washer 42. Hub 36 is interconnected with shaft 34 through a hydrodynamic bearing 37 for rotation about shaft 34. Bearing 37 includes radial working surfaces 44 and 46 and axial working surfaces 48 and 50. Shaft 34 includes fluid ports 54, 56 and 58 which supply lubricating fluid 60 and assist in circulating the fluid along the working surfaces of the bearing. Lubricating fluid 60 is supplied to shaft 34 by a fluid source (not shown) which is coupled to the interior of shaft 34 in a known manner.
Spindle motor 32 further includes a thrust bearing 45 which forms the axial working surfaces 48 and 50 of hydrodynamic bearing 37. A counterplate 62 bears against working surface 48 to provide axial stability for the hydrodynamic bearing and to position hub 36 within spindle motor 32. An O-ring 64 is provided between counterplate 62 and hub 36 to seal the hydrodynamic bearing. The seal prevents hydrodynamic fluid 60 from escaping between counterplate 62 and hub 36.
Hub 36 includes a central core 65 and a disc carrier member 66 which supports disc pack 16 (shown in Figure 1) for rotation about shaft 34. Disc pack 16 is held on disc carrier member 66 by disc clamp 18 (also shown in Figure 1) . A permanent magnet 70 is attached to the outer diameter of hub 36, which acts as a rotor for spindle motor 32. Core 65 is formed of a magnetic material and acts as a back-iron for magnet 70. Rotor magnet 70 can be formed as a unitary, annular ring or can be formed of a plurality of individual magnets which are spaced about the periphery of hub 36. Rotor magnet 70 is magnetized to form one or more magnetic poles.
Stator 38 is attached to base 12 and includes stator laminations 72 and a stator windings 74. Stator windings 74 are attached to laminations 72. Stator windings 74 is spaced radially from rotor magnet 70 to allow rotor magnet 70 and hub 36 to rotate about a central axis 80. Stator 38 is attached to base 12 through a known method such as one or more C-clamps 76 which are secured to the base through bolts 78.
Commutation pulses applied to stator windings 74 generate a rotating magnetic field which communicates with rotor magnet 70 and causes hub 36 to rotate about central axis 80 on bearing 37. The commutation pulses are timed, polarization-selected DC current pulses which are directed to sequentially selected stator windings to drive the rotor magnet and control its speed. In the embodir.ient shown in Figure 2, spindle motor 32 is a "below-hub" type motor in which stator 38 has an axial position that is below hub 36. Stator 38 also has a radial position that is external to hub 36, such that stator windings 74 are secured to an inner diameter surface 82 of laminations 72. In an alternative embodiment, the stator is positioned within the hub, as opposed to below the hub. The stator can have a radial position which is either internal to the hub or external to the hub. In addition, the spindle motor of can have a fixed shaft, as shown in Figure 2 or a rotating shaft. In a rotating shaft spindle motor, the bearing is located between the rotating shaft and an outer stationary sleeve which is coaxial with the rotating shaft. Figure 3 is a diagrammatic sectional view of hydrodynamic spindle motor 32 taken along line 3-3 of Figure 2, with portions removed for clarity. Stator 38 includes laminations 72 and stator windings 74, which are coaxial with rotor magnet 70 and central core 65. Stator windings 74 include phase windings Wl, Vl, Ul , W2, V2 and U2 which are wound around teeth in laminations 72. The phase windings are formed of coils which have a coil axis that is normal to and intersects central axis 80. For example, phase winding Wl has a coil axis 83 which is normal to central axis 80. Radial working surfaces 44 and 46 of hydrodynamic bearing 37 are formed by the outer diameter surface of shaft 34 and the inner diameter surface of central core 65. Radial working surfaces 44 and 46 are separated by a lubrication fluid 84, which maintains a clearance c during normal operation.
1. Optimization Of Lubricant Viscosity
In accordance with one aspect of the present invention, the lubrication fluid includes a blend of base fluids which are selected to optimizes power dissipation and bearing load capacity (i.e. bearing stiffness) for the particular hydrodynamic bearing design in which the fluid is used by precisely defining the fluid viscosity.
Power consumption (P) and bearing stiffness (K) are proportional fluid viscosity according to the relations,
p« _--
Figure imgf000011_0001
where μB is the absolute viscosity of the blend of fluids, ω is the rotational velocity of the hub, c is the gap or clearance between radial working surfaces 44 and 46 (or at axial working surfaces 48 and 50) and R is the characteristic length of the radial and/or axial working surfaces.
In disc drive applications having miniature hydrodynamic bearings, power and load capacity are critical. Therefore it is desirable to specify an exact viscosity at any particular temperature for the lubrication fluid, and the desired viscosity varies with the size and structure of the spindle motor. Commercial lubricants are not available with arbitrary viscosity values. The lubrication fluid of the present invention includes a blend of base fluids, with each base fluid having a similar chemical composition but a different viscosity. The base fluids are precisely blended to obtain an overall viscosity which is preferably within 10%, and most preferably within 2-5%, of the desired viscosity. The base fluids are blended according to the following relation,
μB-.cr-r- " Vl PlXXl + V2XP2 XX2 • • • + • • • ^n x P nXXn
where, μB = the absolute viscosity of the blend of base fluids at temperature Tc;
Tc = the temperature at which the viscosity is desired; vn = the kinematic viscosity of base fluid n; n = an integer greater than one; pn = the density of base fluid n; χn = the weight percent fraction of base fluid n; and
Figure imgf000012_0001
For example, if n=2 and the desired kinematic viscosity of the blend is v , then a proper selection of v1 and v2 , with v1> v > v2 , results in a lubrication fluid of the desired viscosity.
Preferred base fluids i clude perfluoropolyethers, esters, synthetic hydrocarbons and highly refined (highly purified) mineral hydrocarbons. Most preferred base fluids include diesters, polyol- esters and polyalphaolefins (PAO's) . These base fluids can be blended in a variety of combinations, but preferred blends include a combination of esters only, a combination of polyalphaolefins only and a combination of at least one ester and at least one polyalphaolefin only. A single ester or polyalphaolephin can be used in alternative embodiments of the present invention if the fluid has the desired viscosity and satisfies the other desired properties.
These most preferred base fluids have been found to offer several advantages in disc drive applications over conventional petroleum-based hydrocarbons that are in standard fluid lubricants. These base fluids have a viscosity which is less dependent on temperature, a lower evaporation, a lower vapor pressure, a low migration, an improved oxidation resistance, a similar boundary performance which can be enhanced easily with additives, a better compatibility with other materials in the disc drive and a better control of all properties due to a known pure chemical composition. These fluids therefore minimize degradation of the head and disc interface and provide a long life for the bearing and the disc drive.
In a preferred embodiment, the base fluids are blended to obtain a precise absolute viscosity between 4 and 10 centipoise (cP) at 70 degrees Celsius, a viscosity index of at least 110 and an evaporation range of less than 1.0 x 10"3 mg/day-mm2, based on a volume to surface area ratio (V/A) of about 1.9-2.0 mm.
In addition, the base fluids are selected such that the contribution of the base fluids to the sticking friction ("stiction") between the head and the disc, due to outgassing of the fluid from the bearing to the disc, is preferably similar to or less than the contribution of the existing chemicals or lubricants used in the disc drive under various conditions such as a hot or humid conditions. These chemicals and lubricants include grease and ferrofluidic seals, for example.
2. Blending The Lubrication Fluid With Selected Additives
In another aspect of the present invention, the lubrication fluid includes a mixture of a high viscosity index base fluid (or a blend of base fluids) and additives which are selected such that the blend is effective for resisting catalytic degradation while being compatible with the head-disc interface.
The viscosity of the lubrication fluid in a hydrodynamic bearing drops with an increase in temperature. This causes a drop in the power dissipation and the bearing load capacity for a fluid having a given thickness. In disc drive applications having miniature hydrodynamic bearings, large variations in power dissipation and bearing load capacity are unacceptable. Viscosity index (VI) is an arbitrary method of expressing the viscosity-temperature sensitivity of a lubricant, and is often interpreted as the temperature dependency of the viscosity. A higher viscosity index for a fluid having a given viscosity indicates that the viscosity of the fluid varies less with temperature. Because power consumption is a critical parameter for miniature hydrodynamic bearings in disc drives, a high VI index is desirable. Typical viscosity indices for several classes of fluids are shown in Table 1, below:
Fluid Chemical Class Available VI Range
Refined Paraffinic 90-110 Petroleum Synthetic Hydrocarbon 120-170 (Polyalpholefin)
Synthetic Ester 120-200 (Diester)
Synthetic Ester (Polyol) 115-200
Perfluoropolyether 90-320
Ester fluids contain oxygen as well as hydrogen and carbon, and some ester fluids offer unique advantages in disc drive applications over natural and synthetic hydrocarbon fluids. These advantages include a higher viscosity index, a higher resistance to oxidation, improved boundary lubrication properties, lower migration compared to synthetic hydrocarbons and lower evaporation.
For example, commercially available diester fluids have a high VI index and good resistance to oxidation, but have poor resistance to catalytic degradation in metal-to-metal contact. This limits the use of commercially available diester fluids in miniature hydrodynamic bearings where the oil volume is so small that even a slight break down adversely effects the bearing properties.
Commercially available fluids do not have adequate metal deactivating additives to last the lifetime of the bearing. In addition, most commercially available fluids have components that are not compatible with the head-disc interface. Often, the exact composition of commercially available fluids is not controlled by the manufacturer. Use of these fluids can cause unintended degradation of the disc drive performance.
The lubrication fluid of the present invention includes a blend of a high VI index base fluid, such as a diester fluid or a polyalphaolefin, and a combination of additives which are selected to provide the fluid with anti-oxidation, anti-corrosion and metal- deactivating properties such that the fluid is markedly more resistant to catalytic degradation than commercially available ester and/or synthetic hydrocarbon blends while being compatible with the head- disc interface.
Preferred types of antioxidants include nitrogen and oxygen containing inhibitors, such as an amine (arylamine) , a phenol or a mixture of both. Most preferred types of antioxidants include butylated hydroxytoluene (liquid hindered phenol) , alkylated diphenyl amine, phenyl alpha naphthylamine or combination of two or more of these antioxidants. Preferred treatment levels of these additives in the lubrication base fluid are 0.25% to 3% by mass.
Preferred types of rust and corrosion inhibitors, or metal passivators, include metallic sulfonate, long chain amines, carboxylic acid derivatives, thiadiazole and triazole derivatives and amine phosphates. Most preferred types include synthetic or petroleum calcium sulphonate, synthetic or petroleum barium sulphonate, alkenyl succenic acid derivatives and triazole derivatives. Preferred treatment levels of these additives in the lubrication base fluid are 0.02% to 0.5% by mass.
The lubrication fluid of the present invention further includes an additive for improving antiwear properties, high pressure metal contact properties and friction properties. Preferred additives of this type include, dialkyl dithiophosphates, alkyl and aryl disulphides and polysulphides, dithiocarbamates, salts of alkylphosphoric acid, molybdenum complex, neutral phosphate ester (triaryl and trialykl) such as triphenyl phosphate, or combination of two or more of these additives. Most preferred antiwear additives include, zinc dialkyl dithiophosphate, molybdenum disulphide, liquid amine phosphate and propylated and butylated triphenyl phosphates. Preferred treatment levels of these additives in the lubrication base fluid are 0.1% to 4% by mass.
A blend of a high VI index diester base oil and/or a synthetic hydrocarbon with a selection of the above-additives obtains a hydrodynamic fluid that is markedly more resistant to catalytic degradation than commercially available ester or synthetic hydrocarbon blends. Various blends were tested and were found to be compatible with the head-disc interface. These blends did not cause any significant increase in the sticking friction between the head and the disc and did not cause other interference with the head-disc interface. The blends also proved to be superior to refined paraffinic petroleum fluids in power consumption and lifetime under heavy loads and at elevated temperatures.
3. Application of High Shear Strength Viscosity Index Improved Fluids
In another aspect of the present invention, the lubrication fluid includes a mixture of a base fluid and high shear-resistant viscosity modifiers ("VI improvers") . VI improvers reduce the temperature dependence of the viscosity of the base fluid. The temperature dependence of viscosity is extremely important, and a high temperature dependence is usually undesirable to the function of miniature bearings for spindle motors. In order to minimize this effect, selected commercially available polymers were blended with a base fluid according to the present invention, which resulted in a measured improvement in the temperature-power consumption curves in the spindle motor. Power consumption was observed to be less dependent upon temperature. In a preferred embodiment of the present invention, given an otherwise suitable base fluid having an inadequate temperature-viscosity behavior, a high molecular weight soluble polymer is added to the base fluid at a concentration of 5-50% by weight. The molecular weight of the polymer is preferably 10,000- 1,000,000 Daltons. Preferred polymer VI improvers include, but are not limited to, polyacrylate, polyisoprene and polystyrene.
Under conditions encountered in miniature hydrodynamic bearings according to the present invention, the shear rate is more than IO6 per second. The shear rate is defined as the rate of velocity change of the bearing working surface with respect to the width of the gap in the bearing (clearance C shown in Figure 3) . The shear conditions between bearing surfaces limit the life of VI improvers by breaking down the polymers. Because the VI effect depends upon, among other factors, the length of the polymer chain, the effectiveness of the VI improver is reduced by shear breakdown. In a more preferred embodiment of the present invention, the selected polymer VI improver belongs to a class of polymers that are highly resistant to shear breakdown, with a tensile strength of the solid polymer being at least 10,000 PSI and a resistance to thermal degredation of at least 250 degrees F. The polymer thus has a shear strength. This class of polymers includes, but is not limited to, soluble forms of such materials as polyphenylene sulfide, polyetheretherketone, and polyetherimide . In a still more preferred embodiment, the solid polymer has a tensile strength of at least 14,000 PSI and a resistance to thermal degredation above 500 degrees F. This class of polymers includes, but is not limited to, polyamide - imide , polyimide, polybenzimidazole, and liquid crystal polymer. In yet a more preferred embodiment, the solid polymer has a tensile strength of at least 20,000 PSI and a resistance to thermal degredation above 700 degrees F. This class of polymers includes, but is not limited to, buckytubes and other buckminsterfullerene carbon forms.
In a most preferred embodiment, the polymer VI improver has the properties of the previous groups and is functionalized or chemically modified to provide anti-oxidant and metal deactivation protection to the fluid, as discussed above.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims

WHAT IS CLAIMED IS:
1. A disc drive data storage system, comprising: a housing; a central axis; a stationary member which is fixed with respect to the housing and coaxial with the central axis; a stator which is fixed with respect to the housing; a rotatabl a member which is rotatable about the central axis with respect to the stationary member; a rotor supported by the rotatable member and magnetically coupled to the stator; at least one data storage disc attached to and coaxial with the rotatable member,- and a hydro bearing interconnecting the stationary member and the rotatable member and comprising a blend of base fluids, wherein the base fluids in the blend are selected such that one of the base fluids has a viscosity that is greater than a desired viscosity selected for the disc drive data storage system, another of the base fluids has a viscosity that is less than the desired viscosity and the blend of base fluids has a viscosity that is within a selected range of the desired viscosity.
2. The disc drive data storage system of claim 1 wherein the selected range is effective for providing the hydro bearing with a desired power consumption and stiffness.
3. The disc drive data storage system of claim 1 wherein the viscosity of the blend of base fluids is within 10 percent of the desired viscosity.
4. The disc drive data storage system of claim 1 wherein the viscosity of the blend of base fluids is within 2-5 percent of the desired viscosity.
5. The disc drive data storage system of claim 1 wherein the viscosity of the blend of base fluids is an absolute viscosity which is 4-10 centipoise (cP) at 70 degrees Celsius.
6. The disc drive data storage system of claim 1 wherein the blend of base fluids has a viscosity index of at least 110.
7. The disc drive data storage system of claim 1 wherein the blend of base fluids has an evaporation range of less than 1.0 x IO"3 mg/day-mm2, based on a volume to surface area (V/A) ratio of about 1.9-2.0 mm.
8. The disc drive data storage system of claim 1 wherein the blend of base fluids comprises base fluids selected from the group consisting of perfluoropolyethers, esters, synthetic hydrocarbons and mineral hydrocarbons .
9. The disc drive data storage system of claim 8 wherein the blend of base fluids comprises base fluids selected from the group consisting of diesters, polyol esters and polyalphaolefins.
10. The disc drive data storage system of claim 1 wherein the blend of base fluids comprises a blend of at least two esters only, which have different kinematic viscosities .
11. The disc drive data storage system of claim 1 wherein the blend of base fluids comprises a blend of at least two polyalphaolefins only, which have different kinematic viscosities.
12. The disc drive data storage system of claim 1 wherein the blend of base fluids comprises a blend of at least one ester and at least one polyalphaolefin only, which have different kinematic viscosities.
13. The disc drive data storage system of claim 1 and further comprising: an actuator; and a head which is supported by the actuator proximate to the data storage disc for communicating with the disc, wherein the head and disc have an interface and the blend of fluids is compatible with the interface.
14. A disc drive comprising: a housing; a central axis; a stationary member which is fixed with respect to the housing and coaxial with the central axis; a stator which is fixed with respect to the housing; a rotatable member which is rotatable about the central axis with respect to the stationary member; a rotor supported by the rotatable member and magnetically coupled to the stator; at least one data storage disc attached to and coaxial with the rotatable member; and a hydro bearing interconnecting the stationary member and the rotatable member and comprising a blend of n base fluids which has an absolute viscosity μB that is within a selected range of a desired viscosity selected for the disc drive, wherein n is an integer greater than one and wherein the base fluids are blended according to the following relation,
" vι> ιXXι + v2xp22... + ...vnxpnxχ_1
where T is temperature, Tc is the temperature at which the viscosity is desired, vn is the kinematic viscosity of base fluid n, pn is the density of base fluid n, χn is the weight percent fraction of base fluid n, χ1 + χ2 ... + ... χn = 1, and v1> v > v2 , where v is the kinematic viscosity of the blend of base fluids.
15. The disc drive of claim 14 wherein the selected range is effective for providing the hydro bearing with a desired power consumption and stiffness.
16. The disc drive of claim 14 wherein the absolute viscosity μB of the blend of base fluids is within 10 percent of the desired viscosity.
17. The disc drive of claim 14 wherein the absolute viscosity μB of the blend of base fluids is within 2-5 percent of the desired viscosity.
18. The disc drive of claim 14 wherein the absolute viscosity of the blend of base fluids μB is 4- 10 centipoise (cP) at 70 degrees Celsius.
19. The disc drive of claim 14 wherein the olend of base fluids has a viscosity index of at least 110.
20. The disc drive of claim 14 wherein the blend of base fluids has an evaporation range of less than 1.0 x IO"3 mg/day-mm2, based on a volume to surface area (V/A) ratio of about 1.9-2.0 mm.
21. The disc drive of claim 14 wherein the blend of base fluids comprises base fluids selected from the group consisting of perfluoropolyethers, esters, synthetic hydrocarbons and mineral hydrocarbons.
22. The disc drive of claim 21 wherein the blend of base fluids comprises base fluids selected from the group consisting of diesters, polyol esters and polyalphaolefins.
23. The disc drive of claim 14 wherein the blend of base fluids comprises a blend of at least two esters only, which have different kinematic viscosities.
24. The disc drive of claim 14 wherein the blend of base fluids comprises a blend of at least two polyalphaolefins only, which have different kinematic viscosities.
25. The disc drive of claim 14 wherein the blend of base fluids comprises a blend of at least one ester and at least one polyalphaolefin only, which have different kinematic viscosities.
26. A hydro bearing disc drive lubrication fluid for lubricating a hydro bearing in a disc drive, the fluid comprising: a blend of base fluids which has a viscosity that is within two to five percent of a desired viscosity for providing the hydro bearing with a desired power dissipation and stiffness; and wherein the blend of base fluids includes a first base fluid having a first viscosity that is greater than the desired viscosity and a second base fluid having a second viscosity that is less than the desired viscosity.
PCT/US1996/017131 1995-10-30 1996-10-25 Disc drive spindle motor having hydro bearing with optimized lubricant viscosity WO1997016828A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US08/737,437 US5930075A (en) 1995-10-30 1996-10-25 Disc drive spindle motor having hydro bearing with optimized lubricant viscosity
JP9517425A JPH11514779A (en) 1995-10-30 1996-10-25 Spindle motor for disk drive with hydrodynamic bearing containing viscosity-optimized lubricant
DE19681634T DE19681634T1 (en) 1995-10-30 1996-10-25 Disk drive spindle motor with hydraulic bearing with optimized lubricant viscosity
GB9809176A GB2322728B (en) 1995-10-30 1996-10-25 Disc drive spindle motor having hydro bearing with optimized lubricant viscosity
HK99100770A HK1015932A1 (en) 1995-10-30 1999-02-25 Disc drive spindle motor having hydro bearing with optimized lubricant viscosity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US812495P 1995-10-30 1995-10-30
US60/008,124 1995-10-30

Publications (1)

Publication Number Publication Date
WO1997016828A1 true WO1997016828A1 (en) 1997-05-09

Family

ID=21729916

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/US1996/017025 WO1997016827A1 (en) 1995-10-30 1996-10-25 Disc drive spindle motor having hydro bearing with lubricant optimized with disc drive compatible additives
PCT/US1996/017229 WO1997016829A1 (en) 1995-10-30 1996-10-25 Miniature disc drive spindle motor having hydro bearing with high shear-strength viscosity index improved lubricant
PCT/US1996/017131 WO1997016828A1 (en) 1995-10-30 1996-10-25 Disc drive spindle motor having hydro bearing with optimized lubricant viscosity

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/US1996/017025 WO1997016827A1 (en) 1995-10-30 1996-10-25 Disc drive spindle motor having hydro bearing with lubricant optimized with disc drive compatible additives
PCT/US1996/017229 WO1997016829A1 (en) 1995-10-30 1996-10-25 Miniature disc drive spindle motor having hydro bearing with high shear-strength viscosity index improved lubricant

Country Status (7)

Country Link
JP (2) JPH11514779A (en)
KR (2) KR100420061B1 (en)
CN (2) CN1147849C (en)
DE (2) DE19681633T1 (en)
GB (2) GB2322728B (en)
HK (2) HK1015931A1 (en)
WO (3) WO1997016827A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1012170C2 (en) * 1998-05-28 2001-03-20 Ntn Toyo Bearing Co Ltd Dynamic pressure type impregnatedly-sintered grease bearing used in e.g. laser printer, tape recorder, facsimile machine
US7988361B1 (en) 1999-05-27 2011-08-02 Ntn Corporation Hydrodynamic type oil-impregnated sintered bearing
US9663741B2 (en) 2012-06-07 2017-05-30 New Japan Chemical Co., Ltd. Lubricant base oil for fluid bearing

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955403A (en) * 1998-03-24 1999-09-21 Exxon Research And Engineering Company Sulphur-free, PAO-base lubricants with excellent anti-wear properties and superior thermal/oxidation stability
JP4029533B2 (en) 1999-10-21 2008-01-09 株式会社ジェイテクト Conductive lubricant for hydrodynamic bearings
US20040176261A1 (en) * 2001-05-15 2004-09-09 Fumiyo Tojou Lubricant composition and analysis method for same
US6952324B2 (en) * 2001-10-18 2005-10-04 Seagate Technology, Llc Hydrodynamic fluid bearing containing lubricants with reduced temperature sensitivity for disk drive application
US6678115B2 (en) * 2001-11-08 2004-01-13 Seagate Technology Llc Hydrodynamic fluid bearing containing lubricants with reduced bubble forming tendency for disk drive application
US7005768B2 (en) * 2002-11-26 2006-02-28 Nidec Corporation Dynamic bearing device, producing method thereof, and motor using the same
JP5827782B2 (en) 2009-05-08 2015-12-02 出光興産株式会社 Biodegradable lubricating oil composition
WO2011017629A1 (en) * 2009-08-06 2011-02-10 Seagate Technology Llc Hydrodynamic disc drive spindle motors having hydro bearing with lubricant including conductivity inducing agent
US20120050916A1 (en) * 2010-08-31 2012-03-01 Seagate Technology Llc Hydrodynamic disc drive spindle motor having hydro bearing with lubricant
JP5422610B2 (en) * 2011-06-24 2014-02-19 株式会社日立ハイテクノロジーズ Charged particle beam equipment
US8980053B2 (en) 2012-03-30 2015-03-17 Sabic Innovative Plastics Ip B.V. Transformer paper and other non-conductive transformer components
CN113195446B (en) 2018-12-20 2024-05-31 新日本理化株式会社 Lubricating oil base oil for hydrodynamic bearing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673997A (en) * 1985-03-20 1987-06-16 Ferrofluidics Corporation Electrically conductive ferrofluid bearing and seal apparatus and low-viscosity electrically conductive ferrofluid used therein
US5022492A (en) * 1988-04-20 1991-06-11 Matsushita Electric Industrial Co., Ltd. Fluid-bearing apparatus
US5457588A (en) * 1992-09-22 1995-10-10 Nippon Densan Corporation Low profile hydrodynamic motor having minimum leakage properties

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068047A (en) * 1989-10-12 1991-11-26 Exxon Chemical Patents, Inc. Visosity index improver
WO1997018562A1 (en) * 1995-11-16 1997-05-22 Seagate Technology, Inc. Disc drive hydro bearing lubricant with electrically conductive, non-metallic additive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673997A (en) * 1985-03-20 1987-06-16 Ferrofluidics Corporation Electrically conductive ferrofluid bearing and seal apparatus and low-viscosity electrically conductive ferrofluid used therein
US5022492A (en) * 1988-04-20 1991-06-11 Matsushita Electric Industrial Co., Ltd. Fluid-bearing apparatus
US5457588A (en) * 1992-09-22 1995-10-10 Nippon Densan Corporation Low profile hydrodynamic motor having minimum leakage properties

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1012170C2 (en) * 1998-05-28 2001-03-20 Ntn Toyo Bearing Co Ltd Dynamic pressure type impregnatedly-sintered grease bearing used in e.g. laser printer, tape recorder, facsimile machine
US8132965B2 (en) 1998-05-28 2012-03-13 Ntn Corporation Hydrodynamic type oil-impregnated sintered bearing
US7988361B1 (en) 1999-05-27 2011-08-02 Ntn Corporation Hydrodynamic type oil-impregnated sintered bearing
US9663741B2 (en) 2012-06-07 2017-05-30 New Japan Chemical Co., Ltd. Lubricant base oil for fluid bearing

Also Published As

Publication number Publication date
CN1147849C (en) 2004-04-28
GB2322728A (en) 1998-09-02
CN1200834A (en) 1998-12-02
KR100342340B1 (en) 2002-09-18
GB9809176D0 (en) 1998-07-01
CN1148739C (en) 2004-05-05
KR19990067215A (en) 1999-08-16
HK1015931A1 (en) 1999-10-22
WO1997016827A1 (en) 1997-05-09
CN1200833A (en) 1998-12-02
WO1997016829A1 (en) 1997-05-09
GB2322729B (en) 2000-05-17
DE19681633T1 (en) 1998-10-29
JPH11514778A (en) 1999-12-14
GB9809177D0 (en) 1998-07-01
GB2322728B (en) 1999-09-01
KR100420061B1 (en) 2004-07-16
DE19681634T1 (en) 1998-12-03
KR19990067213A (en) 1999-08-16
HK1015932A1 (en) 1999-10-22
GB2322729A (en) 1998-09-02
JPH11514779A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
US5907456A (en) Disc drive spindle motor having hydro bearing with lubricant optimized with disc drive compatible additives
US5930075A (en) Disc drive spindle motor having hydro bearing with optimized lubricant viscosity
US5940246A (en) Disc drive hydro bearing lubricant with electrically conductive, non-metallic additive
KR100342340B1 (en) Disc drive spindle motor having hydro bearing with lubricant optimized with disc drive compatible additives
JP5202830B2 (en) Lubricating oil for fluid bearing, fluid bearing using the same, and lubrication method for fluid bearing
KR20130091715A (en) Fluid dynamic bearing motor for use with a range of rotational speed rated disc drive memory device products
US6678115B2 (en) Hydrodynamic fluid bearing containing lubricants with reduced bubble forming tendency for disk drive application
US7820601B2 (en) System and method for improving lubrication in a fluid dynamic bearing
KR101171701B1 (en) Hydrodynamic disc drive spindle motor having hydro bearing with lubricant
US6952324B2 (en) Hydrodynamic fluid bearing containing lubricants with reduced temperature sensitivity for disk drive application
GB2344598A (en) Disc drive spindle motor bearing lubricant optimized with compatible additives
JP4162507B2 (en) Lubricating oil for fluid bearing and fluid bearing using the same
US20060252659A1 (en) Lubricating oil for dynamic fluid-pressure bearing, dynamic-fluid-pressure bearing, motor, and information recording/reproducing apparatus
JP5305314B2 (en) Lubricating fluid for fluid bearing, fluid bearing and motor using the fluid, and fluid bearing lubrication method
EP0912976A1 (en) Disc drive motor having bearings lubricated with non-spreading lubricant
JP4318502B2 (en) Fluid bearing and spindle motor using the same
Karis et al. Lubricant additives for magnetic recording disk drives
JPH09257043A (en) Rolling bearing
JP2000144162A (en) Rolling bearing
KR20000016741A (en) Disc drive motor having bearings lubricated with non-spreading lubricant
JP2000105983A (en) Rolling bearing for revolving shaft of information equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96197948.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE GB JP KR SG US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 08737437

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1997 517425

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019980703172

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 19681634

Country of ref document: DE

Date of ref document: 19981203

WWE Wipo information: entry into national phase

Ref document number: 19681634

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1019980703172

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980703172

Country of ref document: KR