WO1997015355A1 - Procede de traitement de dechets contenant des contaminants metalliques au moyen d'un reducteur - Google Patents

Procede de traitement de dechets contenant des contaminants metalliques au moyen d'un reducteur Download PDF

Info

Publication number
WO1997015355A1
WO1997015355A1 PCT/FR1996/001662 FR9601662W WO9715355A1 WO 1997015355 A1 WO1997015355 A1 WO 1997015355A1 FR 9601662 W FR9601662 W FR 9601662W WO 9715355 A1 WO9715355 A1 WO 9715355A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
reducing agent
phase
nitride
mixture
Prior art date
Application number
PCT/FR1996/001662
Other languages
English (en)
Inventor
Jean-Michel Turmel
Jean Rocherulle
Paul Grange
John Razafindrakoto
Patrick Verdier
Yves Laurent
Original Assignee
Cernix
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cernix filed Critical Cernix
Priority to JP51636296A priority Critical patent/JPH11513750A/ja
Priority to US09/065,029 priority patent/US6080224A/en
Priority to EP96934963A priority patent/EP0871520A1/fr
Priority to CA 2236142 priority patent/CA2236142A1/fr
Publication of WO1997015355A1 publication Critical patent/WO1997015355A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/37Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • C22B7/004Dry processes separating two or more metals by melting out (liquation), i.e. heating above the temperature of the lower melting metal component(s); by fractional crystallisation (controlled freezing)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/009General processes for recovering metals or metallic compounds from spent catalysts
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/08Toxic combustion residues, e.g. toxic substances contained in fly ash from waste incineration
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/24Organic substances containing heavy metals
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/40Inorganic substances
    • A62D2101/43Inorganic substances containing heavy metals, in the bonded or free state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S75/00Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures
    • Y10S75/961Treating flue dust to obtain metal other than by consolidation

Definitions

  • the subject of the invention is a method for treating waste containing metallic contaminants. It also relates to applications of this process, in particular in the steel, automobile industry or in the field of household waste recovery.
  • the metallic contaminants in question in the context of the present invention are in particular metals modified with carbon, oxygen, phosphorus or sulfur, with a view to their inerting and to their recovery for their recovery.
  • the object of the invention is to provide a process for treating waste containing metallic contaminants, which combines the above-mentioned advantages and by which it is also possible to recover most of the recoverable metals.
  • the waste is mixed in the pulverulent state with a reducing agent having a percentage of ionic character of between 20 and 50%.
  • the percentage of ionic character of the reducing agent is calculated according to the Pauling method.
  • Pauling proposed an evaluation of the percentage of the ionic character in the compounds starting from the difference of electronegativity between the elements.
  • the difference in electronegativity between nitrogen and boron is:
  • ⁇ N - ⁇ B
  • ⁇ N and ⁇ B are the electronegativities of nitrogen and boron respectively.
  • the process according to the invention reveals the metal or the metallic phase by reaction in the liquid phase between metal cations present in the waste and the reducing ions.
  • the metal cations are represented below by Me * +, x being between 1 and 8.
  • the reducing ions are, for their part, symbolized by En-, n being between 1 and 4.
  • the reaction scheme is as follows:
  • the reducing agent E n ⁇ it is necessary for the reducing agent E n ⁇ to have a sufficiently high percentage of ionic character. However, it is good that this percentage still does not exceed a certain value. Indeed, from a certain threshold, the reaction leads to the formation of compounds very sensitive to air humidity. These compounds are therefore difficult to handle since they decompose quickly, giving rise to bodies which are sometimes explosive and at the very least dangerous.
  • the reaction having The process according to the invention is illustrated below for different types of metal oxides and reducing agents. When sulfides or carbides are chosen as reducing agents, these give rise to the formation of sulfur or carbon:
  • the sulfur or carbon formed by this reaction migrates essentially towards the interior of the vitreous phase. However, it is also likely that a small proportion of sulfur or carbon migrates into the metallic phase. In other words, the method according to the invention can lead to the introduction of sulfur or carbon into the metal network.
  • nitrogen appears in the form of bubbles in the molten mixture. Naturally, such bubbles have for effect, if not to prevent, at least to slow down the rate of agglomeration of the particles of the metallic phase.
  • alumina AI2O 3 In reality, the reaction of aluminum nitride with a metallic contaminant generally results in the formation of alumina AI2O 3 .
  • This compound has the drawback of reacting with certain metal oxides to form very stable aluminates. In most cases, these aluminates retain the metals concerned and thereby prevent their recovery.
  • zinc oxide (ZrO) reacts in situ with AI 2 O 3 , to lead to the spinel phase ZnAl 2 ⁇ _ ⁇ , which remains in the glass-ceramic phase.
  • the theory therefore provides for the appearance of the metal by reaction of a carbide or other type of reducing agent and metal oxide in a temperature range. Furthermore, the calculation of the standard free energy variation ⁇ G 0 of the reaction as a function of temperature has shown that the values of ⁇ G 0 are always negative over a wide range of temperatures between 1000 and 2000 K. The values of ⁇ G 0 for these two temperatures are respectively close to -50 and -100 kcal.mole-1. The values used for these determinations are indicated for example by Elliot and Gleiser (Thermochemistry for Steelmaking-Massachussetts Institute of Technology - Addison Wesley publishing-London 1960). The main sources for these tables are the National Bureau of Standards and the US Bureau of Mines.
  • the waste is mixed in the pulverulent state with a reducing agent chosen from the group comprising nitrides, sulfides, hydrides and carbides, carbides being preferred.
  • a carbide as a reducing agent, has the advantage of giving rise to the formation of graphitic carbon, that is to say of a solid, thermodynamically stable compound, which will be present essentially in the glassy phase, and easy to handle.
  • nitride of a nitride chosen from the group comprising calcium nitride, magnesium nitride, beryllium nitride, lanthanide nitrides, silicon nitride and boron nitride.
  • sulfide a sulfide chosen from the group comprising sodium sulfide, iron sulfide, calcium sulfide and zinc sulfide.
  • hydride a hydride chosen from the group comprising lithium hydride, calcium hydride or double lithium aluminum hydride.
  • carbide a carbide chosen from the group comprising aluminum carbide and calcium carbide, calcium carbide being preferred.
  • calcium carbide is particularly preferred for carrying out the process according to the invention, it is because it intrinsically has a certain number of physicochemical properties capable of being exploited within the framework of this process. First of all, it has a percentage of ionic character equal to 45%. This value is practically ideal for obtaining an optimal reaction yield.
  • the products formed during the reduction reaction of metal oxides are essentially calcium oxide and carbon.
  • Calcium oxide has the advantage of being present in the liquid phase, which increases its quality.
  • Carbon for its part, is also mainly present in the liquid phase.
  • the result is the production of a black ceramic glass with a shiny appearance.
  • Such a glass ceramic can be of potential interest from an industrial point of view.
  • the use of calcium carbide only leads to liquid or solid compounds. Again, these compounds are easier to handle than gaseous compounds.
  • the oxidation-reduction reaction of metal ions with carbide ions is given below:
  • the method according to the invention can give rise either to obtaining a vitreous substrate on the surface of which a metallic layer Me migrates, or to obtaining a true two-phase material comprising a metallic phase and an amorphous phase.
  • the waste contains several metals, it can give rise, depending on the value of the free energy relating to each of the metals, to the formation of one or more more or less complex metallic phases.
  • the reducing agent is added to said mixture in stoichiometric excess relative to the metallic contaminants.
  • the probability of reducing all of the metal oxides involved is thus increased.
  • the formation of the second phase is thus facilitated.
  • it is not necessarily useful to provide a mineral load of vitrification. Indeed, if the waste itself contains enough Si ⁇ 2 and AI 2 O 3 , the implementation of such a load is absolutely superfluous.
  • the melting of said mixture is obtained by bringing said mixture to a temperature of the order of 1200 to 1600 ° C. This heating is maintained for a period of the order of 15 minutes. This temperature is accessible with most ovens available in the industry. It is therefore not necessary, for the implementation of this process, to use special means.
  • the pulverulent mixture of waste is used with a particle size between 0.5 and 200 ⁇ m.
  • the process according to the invention can be carried out in an atmosphere free of oxygen and water, in order to avoid any parasitic oxidation reaction.
  • This neutral atmosphere can for example be constituted by an inert gas, such as argon, or even by nitrogen.
  • the mixture of reaction products can be deposited in a molybdenum basket.
  • the heating of the reaction products can obviously be carried out by any suitable means, for example in a high-frequency oven.
  • the second metallic phase is recovered by flotation, in the form of an alloy, in particular based on chromium and nickel.
  • the additional mineral charge for vitrification based on silica and alumina is constituted by another waste such as a clinker of incineration of household refuse or other glass waste such as discarded glass cullet.
  • a combination of these wastes can also be used.
  • a combination based on Household Waste Incineration Fumes (REFIOM) containing calcium and ashes from thermal power plants can be used.
  • This waste is mixed with an alloy based on Si ⁇ 2 and AI 2 O 3 .
  • This method can still be advantageously used for the purpose of treating dust comprising transition elements.
  • the process according to the invention can be used preferentially for the treatment of steel waste such as dust from electric or thermal power stations. It can also be used more preferably for the treatment of exhaust catalysts of motor vehicles or other catalysts based on metals such as: v, Cr, Co, Ni, Cu, Ag, Mo, W in the state of oxides or sulfides on supports such as Si ⁇ 2 , AI 2 O 3 and Zr ⁇ 2-
  • metal oxides or sulfides of type M 1 M2PONH in which Mi and M2 are metals, such as in particular Cr, Zr, Al, Ga.
  • This process can also be used to separate, for example, vanadium, in AlVONH .
  • the process according to the invention can be used either with the sole objective of treating waste, or else with the dual objective of treating waste and recovering metallic substances.
  • the method according to the invention can advantageously be used for the treatment of cathode ray tubes with a view to their inerting, by separation of a metallic phase based on lead and of a glassy phase. It can also be used advantageously for the treatment of Household Waste Incineration Smoke Residues (REFIOM) for inerting.
  • REFIOM Household Waste Incineration Smoke Residues
  • the process according to the invention can be used to treat waste from the steel industry.
  • wastes which are steelworks dust, include contaminating metal oxides as well as oxides normally used in the composition of a glass.
  • the relative composition by weight of the dust is indicated below: i) contaminating metal oxides
  • a mixture is produced, the mass composition of which is as follows: i) 15 to 30% of the dust from steelworks smoke of the composition indicated above, ii) 45 to 70% of calcium silicate, iii) 5 to 25% of Si0 2 , iv) 10 to 20% of reducing agent, in particular CaC 2 -
  • This mixture can be brought to a melting point between 1200 and 1600 ° C. for 15 minutes to 1 hour.
  • a solid is thus obtained, which examination under a scanning microscope reveals that it consists of two distinct phases, namely a first apparently glassy phase and a second metallic phase. These two phases are separated from each other, the metallic phase being found at the bottom of the reactor.
  • the method according to the invention was implemented by carrying out the mixture of approximate mass composition indicated below: i) 20% of steelworks dust of composition indicated above, ii) 55% of CaSi ⁇ 3 , iii) 10% of Si ⁇ 2 and iv) 15% CaC 2 • The mixture was heated to 1550 ° C for 15 to 30 minutes until the expected phases appeared.
  • the method according to the invention gives rise to the transformation of the metallic elements in the form of oxides, into metallic elements. We can therefore take advantage of this not only for the simple treatment of waste, but also to recover or recycle metals.
  • nitride type reducers gives rise to the formation of a nitrogenous glass.
  • the one- this has the advantage of having a very low tendency to leach.
  • traces of contaminants which have not passed through the metallic phase separated from the glass will remain trapped in the mass of the nitrogenous glass. Excellent inerting is thus obtained, which constitutes one of the major objectives of the present invention.
  • the method according to the invention has also been implemented on glasses originating from lead-based cathode-ray tubes. It is a CORNING glass type 0138 with relative composition by weight: sio 2 54%
  • the CORNING glass was used for the process according to the invention. For this, a mixture was produced comprising approximately by weight: i) 90% CORNING glass and ii) 10% CaC 2
  • the mixture was heated at 1300 ° C for 10 to 30 minutes, until there again appeared phases according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Health & Medical Sciences (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

L'invention concerne un procédé de traitement de déchets contenant des contaminant métalliques, sous forme de métaux modifiés par du carbone, de l'oxygène, du phosphore ou du soufre. Ce procédé consiste à: mélanger lesdits déchets à l'état pulvérulent avec un réducteur ionique en milieu liquide inerte, le réducteur étant autre que du nitrure d'aluminium; porter à fusion le mélange jusqu'à obtention d'une première phase liquide et d'une seconde phase métallique, et séparer et solidifier les deux phases en vue de la mise en décharge ou du stockage temporaire de la première et du recyclage de la seconde. Il est utilisé pour l'inertage ou la valorisation des déchets contenant des contaminants métalliques.

Description

" Procédé de traitement de déchets contenant des contaminants métalliques au moyen d'un réducteur"
L'invention a pour objet un procédé de traitement de déchets contenant des contaminants métalliques. Elle vise également des applications de ce procédé, notamment dans l'industrie sidérurgique, automobile ou dans le domaine de la récupération des ordures ménagères.
Les contaminants métalliques dont il est question dans le cadre de la présente invention sont notamment les métaux modifiés par du carbone, de l'oxygène, du phosphore ou du soufre, en vue de leur inertage et de leur récupération pour leur valorisation.
On connaît déjà des procédés destinés à traiter les déchets contenant des contaminants métalliques. A titre d'exemple, on peut citer les procédés de traitements pyrométallurgiques basés sur une réduction des contaminants métalliques par le carbone à haute température, tels que les procédés IMS - Tetronics ou Waelz. Cependant, ces procédés ne donnent pas entière satisfaction dans la mesure où ils sont essentiellement coûteux, difficiles à mettre en oeuvre et ne permettent pas toujours de récupérer tous les métaux valorisables.
Il existe donc un besoin de fournir un procédé de traitement de tels déchets qui soit plus économique, plus simple à exploiter et plus rentable que ceux qui existent déjà, ce procédé garantissant en outre de manière sûre
1'inertage des contaminants métalliques.
L'invention a pour but de fournir un procédé de traitement de déchets contenant des contaminants métalliques, qui cumule les avantages précités et par lequel il est possible en outre de récupérer la plupart des métaux valorisables.
On y parvient, selon l'invention, en réalisant les opérations suivantes :
. le mélange desdits déchets à l'état pulvérulent avec un réducteur ionique en milieu liquide inerte, en particulier du verre fondu, le réducteur étant moins électronégatif que l'oxygène et, le cas échéant, un complément de charge minérale de vitrification à base de silice (Siθ2) et/ou d'alumine (AI2O3), . la fusion du mélange jusqu'à obtention d'une première phase liquide et d'une seconde phase métallique, et . la séparation et solidification des deux phases en vue de la mise en décharge ou du stockage temporaire de la première et du recyclage de la seconde. Selon l'invention, on exclut la mise en oeuvre de nitrure d'aluminium comme réducteur.
De préférence, on mélange les déchets à l'état pulvérulent avec un réducteur présentant un pourcentage de caractère ionique compris entre 20 et 50 %. Selon l'invention, le pourcentage de caractère ionique du réducteur est calculé selon la méthode de Pauling. En effet, Pauling a proposé une évaluation du pourcentage du caractère ionique dans les composés à partir de la différence d'électronégativité entre les éléments. Ainsi, par exemple dans le cas du nitrure de bore BN, la différence d'électronégativité entre l'azote et le bore est :
Δ = χNB où χ N et χ B sont respectivement les électronégativités de l'azote et du bore.
Dans le présent cas de BN,
Δ = 3,04 - 2,04
Δ = 1.
Il en résulte un pourcentage de caractère ionique de 22 %, et par voie de conséquence un pourcentage de caractère covalent de 78 %. Le tableau I ci-dessous donne la dif férence d ' électronégativité de dif férents composés et le pourcentage de caractère ionique :
Tableau I
Figure imgf000005_0001
On rappelle dans le tableau II ci-après les électronégativités χ de divers éléments . Tableau I I
Figure imgf000006_0001
Le procédé conforme à l'invention fait apparaître le métal ou la phase métallique par réaction en phase liquide entre des cations métalliques présents dans les déchets et les ions réducteurs. Les cations métalliques sont représentés ci-après par Me*+, x étant compris entre 1 et 8. Les ions réducteurs sont, quant à eux, symbolisés par En-, n étant compris entre 1 et 4. Le schéma reactionnel est le suivant :
x En- + n Me*+ x Eo + nM° (1)
Pour que cette réaction se produise, il est nécessaire que le réducteur En~ présente un pourcentage de caractère ionique suffisamment élevé. Toutefois, il est bon que ce pourcentage ne dépasse tout de même pas une certaine valeur. En effet, à partir d'un certain seuil, la réaction conduit à la formation de composés très sensibles à l'humidité de l'air. Il s'agit donc de composés difficiles à manipuler puisqu'ils se décomposent rapidement en donnant naissance à des corps parfois explosifs et pour le moins dangereux. La réaction ayant lieu lors du procédé selon l'invention est illustrée ci- après pour différents types d'oxydes métalliques et de réducteurs. Lorsqu'on choisit des sulfures ou des carbures comme réducteurs, ceux-ci donnent lieu à la formation de soufre ou de carbone :
Cr2Û3 + 3 Na2S → 3 Na2Û + 3S + 2Cr
NiO + CaC2 CaO + 2C + Ni
FeO + CaC2 -* CaO + 2C + Fe
CT203 + 3 CaC2 → 3 CaO + 6C + 2Cr CoO + CaC2 -→ CaO + 2C + Co
NiO + CaC2 → CaO + 2C + Ni
Le soufre ou le carbone formé par cette réaction migre essentiellement vers l'intérieur de la phase vitreuse. Toutefois, il est également vraisemblable qu'une faible proportion de soufre ou de carbone migre dans la phase métallique. En d'autres termes, le procédé selon l'invention peut conduire à l'introduction de soufre ou de carbone dans le réseau métallique.
Lorsque l'on choisit, en tant que réducteur, un composé de type hydrure, on obtient par exemple la réaction suivante :
CoO + CaH2 → CaO + Co + H2-
On observe que cette réaction conduit à un dégagement d'hydrogène. A l'évidence, un tel dégagement gazeux est indésirable, compte-tenu du nombre important de précautions à prendre pour la manipulation de ce gaz.
Lorsque l'on choisit, en tant que réducteur, un composé de type nitrure, la réaction entre ce nitrure et l'oxyde métallique conduit, entre autres, à la formation d'azote. Lors de la mise en oeuvre du procédé selon l'invention, l'azote apparaît sous forme de bulles dans le mélange en fusion. Naturellement, de telle bulles ont pour effet, sinon d'empêcher, au moins de ralentir la vitesse d'agglomération des particules de la phase métallique.
On notera que l'utilisation de nitrure d'aluminium comme réducteur conduit, par exemple avec l'oxyde de fer, à la réaction
3 FeO + 2 AIN → AI2O3 + 3 Fe + N2
En réalité, la réaction du nitrure d'aluminium avec un contaminant métallique engendre généralement la formation d'alumine AI2O3. Ce composé présente l'inconvénient de réagir avec certains oxydes métalliques pour former des aluminates très stables. Dans la plupart des cas, ces aluminates retiennent les métaux concernés et empêchent de ce fait leur récupération. Ainsi, par exemple, l'oxyde de zinc (ZrO) réagit in situ avec AI2O3, pour conduire à la phase spinelle ZnAl2θ_ι, qui subsiste dans la phase vitrocéramique.
A ce propos, on remarque d'ailleurs que la mise en oeuvre de composés réducteur comprenant de l'aluminium, notamment de AIN ou de AI4C3, pourra avantageusement être évitée lorsque les déchets contiennent du zinc. En effet, ces réducteurs conduisent justement aussi, de manière générale, avec ces déchets à la formation de la phase spinelle ZnAl2Û4 à l'intérieur même de la phase vitrocéramique. La notation utilisée ci-dessus pour les réactions chimiques présente l'avantage de faciliter la détermination de l'énergie libre de la réaction ΔG. En effet, on se réfère aux grandeurs thermodynamiques déjà calculées pour des composés définis. La variation d'énergie libre standard ΔG0 des réactions du type précédent est négative dans une large plage de température pour de nombreux métaux tels que V, Cr, Mn, Fe, Co, Ni, Cu et Ag. La théorie prévoit donc l'apparition du métal par réaction d'un réducteur de type carbure ou autre et d'oxyde métallique dans une plage de température. Par ailleurs, le calcul de la variation d'énergie libre standard ΔG0 de la réaction en fonction de la température a montré que les valeurs de ΔG0 sont toujours négatives dans une large gamme de températures comprises entre 1000 et 2000 K. Les valeurs de ΔG0 pour ces deux températures sont respectivement voisines de -50 et de -100 kcal.mole-1. Les valeurs utilisées pour ces déterminations sont indiquées par exemple par Elliot et Gleiser (Thermochemistry for Steelmaking-Massachussetts Institute of Technology - Addison Wesley publishing-London 1960). Les principales sources de ces tables sont le National Bureau of Standards et l'US Bureau of Mines.
Selon un mode de mise en oeuvre préférentiel du procédé selon l'invention, on mélange les déchets à l'état pulvérulent avec un réducteur choisi dans le groupe comprenant les nitrures, les sulfures, les hydrures et les carbures, les carbures étant préférés.
La mise en oeuvre d'un carbure, en tant que réducteur, présente l'intérêt de donner lieu à la formation de carbone graphitique, c'est-à-dire d'un composé solide, thermodynamiquement stable, qui sera présent essentiellement dans la phase vitreuse, et facile à manipuler.
En revanche, la mise en oeuvre de nitrures, de sulfures ou d'hydrures conduit à des dégagements gazeux, d'azote, de soufre ou d'hydrogène. De tels composés gazeux sont naturellement plus délicats à manipuler que des composés solides de type carbone graphitique.
Plus préférentiellement, on met en oeuvre, en tant que nitrure, un nitrure choisi dans le groupe comprenant le nitrure de calcium, le nitrure de magnésium, le nitrure de béryllium, les nitrures de lanthanides, le nitrure de silicium et le nitrure de bore. On peut mettre en oeuvre, avantageusement en tant que sulfure, un sulfure choisi dans le groupe comprenant le sulfure de sodium, le sulfure de fer, le sulfure de calcium et le sulfure de zinc. On peut également mettre en oeuvre, avantageusement en tant qu'hydrure, un hydrure choisi dans le groupe comprenant 1'hydrure de lithium, l'hydrure de calcium ou l'hydrure double de lithium et d'aluminium. De même, on peut mettre en oeuvre, avantageusement en tant que carbure, un carbure choisi dans le groupe comprenant le carbure d'aluminium et le carbure de calcium, le carbure de calcium étant préféré. Si le carbure de calcium est particulièrement préféré pour réaliser le procédé conforme à l'invention, c'est parce qu'il présente intrinsèquement un certain nombre de propriétés physico-chimiques susceptibles d'être exploitées dans le cadre de ce procédé. Tout d'abord, il possède un pourcentage de caractère ionique égal à 45 %. Cette valeur est pratiquement idéale pour l'obtention d'un rendement de réaction optimal.
Ensuite, les produits formés lors de la réaction de réduction des oxydes métalliques sont essentiellement de l'oxyde de calcium et du carbone. L'oxyde de calcium présente l'avantage d'être présent dans la phase liquide, ce qui en augmente la qualité.
Le carbone, quant à lui, est également majoritairement présent dans la phase liquide. De ce fait, après l'étape de refroidissement conforme au procédé, on aboutit à la réalisation d'une vitrocéramique de couleur noire et d'aspect brillant. Une telle vitrocéramique peut présenter un intérêt potentiel d'un point de vue industriel. Enfin, la mise en oeuvre de carbure de calcium conduit uniquement à des composés liquides ou solides. Là encore, ces composés sont plus faciles à manipuler que des composés gazeux. On donne ci-après la réaction d'oxydo-réduction d'ions métalliques par des ions carbures :
x C2 2- + 2 Me*+ → 2x Co + 2 Meo
Le procédé selon l'invention peut donner lieu, soit à l'obtention d'un substrat vitreux à la surface duquel migre une couche métallique Me, ou à l'obtention d'un véritable matériau biphasé comportant une phase métallique et une phase amorphe. Dans l'éventualité où les déchets comportent plusieurs métaux, ils peuvent donner lieu, selon la valeur de l'énergie libre relative à chacun des métaux, à la formation d'une ou plusieurs phases métalliques plus ou moins complexes.
Par ailleurs, il est possible que toutes ces phases métalliques soient produites à la surface de la substance vitreuse. Il est également envisageable qu'elles soient toutes contenues ou bien piégées dans le réseau vitreux. Au bout d'un certain temps, en raison des différences de densité entre la phase métallique et la phase vitreuse, on observera généralement l'apparition de la phase métallique au fond du réacteur. Ces phases seront séparées par des moyens connus de l'homme du métier, tels qu'une flottation, une centrifugation ou tout autre procédé approprié.
Selon un mode de mise en oeuvre préférentiel du procédé selon l'invention, le réducteur est ajouté audit mélange en excès stoechiometrique par rapport aux contaminants métalliques. D'une part, on augmente ainsi la probabilité de réduire l'ensemble des oxydes métalliques mis en jeu. D'autre part, on facilite de cette manière la formation de la deuxième phase. Selon le procédé conforme à l'invention, il n'est pas forcément utile d'apporter une charge minérale de vitrification. En effet, si les déchets comportent eux- mêmes suffisamment de Siθ2 et de AI2O3, la mise en oeuvre d'une telle charge est absolument superflue.
De préférence, la fusion dudit mélange est obtenue en portant ledit mélange à une température de l'ordre de 1200 à 1600°C. Ce chauffage est maintenu pendant une durée de l'ordre de 15 minutes. Cette température est accessible avec la plupart des fours disponibles dans l'industrie. Il n'est donc pas nécessaire, pour la mise en oeuvre de ce procédé, de faire appel à des moyens particuliers.
Cela étant, on peut aussi faire appel à un mode de chauffage localisé. En général, ces modes sont plus complexes à mettre en oeuvre. Par exemple on chauffe à l'aide d'un LASER ou d'un canon à électrons le mélange de déchets et de réducteur.
Plus préférentiellement, le mélange pulvérulent des déchets est mis en oeuvre avec une granulométrie comprise entre 0,5 et 200 μm.
De cette manière, la surface de contact entre les déchets et la charge minérale est optimale et le rendement de la réaction est optimisé.
Le procédé selon l'invention peut être réalisé sous atmosphère exempte d'oxygène et d'eau, afin d'éviter toute réaction parasite d'oxydation. Cette atmosphère neutre peut être par exemple constituée par un gaz inerte, tel que l'argon, ou encore par de l'azote.
Par ailleurs, toujours en vue d'éviter des phénomènes parasites résultant de réactions d'oxydation, on peut déposer le mélange de produits reactionnels dans une nacelle en molybdène. Le chauffage des produits reactionnels peut bien évidemment être effectué par tout moyen approprié, par exemple dans un four à haute fréquence. Avantageusement, la seconde phase métallique est récupérée par flottation, sous la forme d'un alliage, notamment à base de chrome et de nickel.
De préférence, le complément de charge minérale de vitrification à base de silice et d'alumine est constitué par un autre déchet tel qu'un mâchefer d'incinération d'ordures ménagères ou d'autres déchets verriers tels que les calcins verriers rebutés.
On peut également utiliser une combinaison de ces déchets. Par exemple, on peut mettre en oeuvre une combinaison à base de Résidus des Fumées d'Incinération d'Ordures Ménagères (REFIOM) comportant du calcium et des cendres de centrales thermiques. On mélange ces déchets avec un alliage à base de Siθ2 et de AI2O3. On peut encore utiliser avantageusement ce procédé dans le but de traiter des poussières comportant des éléments de transition.
Le procédé conforme à l'invention peut être utilisé préférentiellement pour le traitement de déchets sidérurgiques tels que des poussières de centrales électriques ou thermiques. Il peut aussi être utilisé plus préférentiellement pour le traitement des catalyseurs de pot d'échappement de véhicules automobiles ou autres catalyseurs à base de métaux comme : v, Cr, Co, Ni, Cu, Ag, Mo, W à l'état d'oxydes ou de sulfures sur des supports tels que Siθ2, AI2O3 et Zrθ2-
On peut également traiter des oxydes ou sulfures métalliques de type M1M2PONH, dans lesquels Mi et M2 sont des métaux, tels que notamment Cr, Zr, Al, Ga. On peut encore utiliser ce procédé pour séparer par exemple le vanadium, dans AlVONH. En somme, le procédé conforme à l'invention peut être utilisé soit avec le seul objectif d'un traitement des déchets, soit encore avec le double objectif de traiter les déchets et de valoriser des substances métalliques. Le procédé selon l'invention peut avantageusement servir pour le traitement des tubes cathodiques en vue de leur inertage, par séparation d'une phase métallique à base de plomb et d'une phase vitreuse. II peut encore être mis en oeuvre de façon avantageuse pour le traitement de Résidus des Fumées d'Incinération d'Ordures Ménagères (REFIOM) en vue de leur inertage.
L'invention pourra être mieux comprise à l'aide de l'exemple non limitatif qui suit et qui constitue un mode de réalisation avantageux du procédé selon l'invention.
Exemple
A titre d'illustration, on peut mettre en oeuvre le procédé conforme à l'invention pour traiter des déchets provenant de l'industrie sidérurgique. Ces déchets qui sont des poussières d'aciérie, comprennent des oxydes de métaux contaminants ainsi que des oxydes entrant normalement dans la composition d'un verre. La composition relative en poids des poussières est indiquée ci-après : i) oxydes de métaux contaminants
Cr203 15 à 20%
FeO 30 à 55%
NiO 1 à 5%
MnO 3 à 5%
ZnO 5 à 10%
PbO 0,5 à 2% ii) le reste de la composition étant constitué par des oxydes entrant normalement dans la composition d'un verre, notamment les oxydes de sodium, de potassium, de calcium, de magnésium, de silicium et d'aluminium, correspondant à une teneur globale comprise entre 10 et 30 %. Pour traiter ces déchets, on réalise un mélange dont la composition massique est la suivante : i) 15 à 30% des poussières de fumée d'aciérie de composition indiquée précédemment, ii) 45 à 70% de silicate de calcium, iii) 5 à 25% de Si02, iv) 10 à 20% de réducteur, en particulier CaC2-
Ce mélange peut être porté à fusion à une température comprise entre 1200 et 1600°C pendant 15 minutes à 1 heure. On obtient ainsi un solide, dont l'examen au microscope à balayage révèle qu'il est constitué par deux phases distinctes, à savoir une première phase apparemment vitreuse et une deuxième phase métallique. Ces deux phases sont séparées l'une de l'autre, la phase métallique se retrouvant au fond du réacteur.
On a mis en oeuvre le procédé selon l'invention en réalisant le mélange de composition massique approximative indiquée ci-après : i) 20% de poussières d'aciérie de composition indiquée précédemment, ii) 55% de CaSiθ3, iii) 10% de Siθ2 et iv) 15% de CaC2• On a chauffé le mélange à 1550°C pendant 15 à 30 minutes jusqu'à apparition des phases attendues.
Par conséquent, le procédé selon l'invention donne lieu à la transformation des éléments métalliques sous forme d'oxydes, en éléments métalliques. On peut donc en tirer profit non seulement en vue d'un simple traitement de déchets, mais aussi pour récupérer ou recycler des métaux.
De plus, la mise en oeuvre de réducteurs de type nitrure donne lieu à la formation d'un verre azoté. Celui- ci présente l'avantage d'avoir une très faible tendance à la lixiviation. Ainsi, les traces de contaminants qui ne sont pas passés dans la phase métallique séparée du verre resteront piégées dans la masse du verre azoté. On obtient ainsi un excellent inertage, ce qui constitue l'un des objectifs majeurs de la présente invention.
On peut envisager de réaliser un premier traitement avec un réducteur ionique précité, en particulier un réducteur autre qu'un nitrure, pour obtenir un verre comprenant des traces de contaminants. On peut réaliser ensuite, un deuxième traitement additionnel avec un nitrure.
Le procédé selon l'invention a également été mis en oeuvre sur des verres provenant de tubes cathodiques à base de plomb. Il s'agit d'un verre CORNING type 0138 de composition relative en poids : sio2 54%
A1203 2%
Na20 6%
K20 8%
CaO 3,5%
MgO 2,5%
PbO 23%
Ti02 1-2%
Sb203 0,1%
On a mis en oeuvre, avec ce verre CORNING, le procédé conforme à l'invention. Pour cela, on a réalisé un mélange comprenant approximativement en poids : i) 90% de verre CORNING et ii) 10% de CaC2
On a chauffé le mélange à 1300°C pendant 10 à 30 minutes, jusqu'à apparition, là encore, des phases prévues selon l'invention.

Claims

REVENDICATIONS 1. Procédé de traitement de déchets contenant des contaminants métalliques, sous forme de métaux modifiés par du carbone, de l'oxygène, du phosphore ou du soufre, en vue de leur inertage et de leur récupération pour leur valorisation, caractérisé par le fait qu'il implique les opérations suivantes : . mélange lesdits déchets à l'état pulvérulent avec un réducteur ionique en milieu liquide inerte, en particulier du verre fondu, le réducteur étant moins électronégatif que l'oxygène et, le cas échéant, un complément de charge minérale de vitrification à base de silice (Si02) et/ou d'alumine (Al203),
. fusion du mélange jusqu'à obtention d'une première phase liquide et d'une seconde phase métallique,
. séparation et solidification des deux phases en vue de la mise en décharge ou du stockage temporaire de la première et du recyclage de la seconde, le nitrure d'aluminium étant exclu en tant que réducteur ionique lors de l'opération de mélange.
2. Procédé selon la revendication 1, caractérisé par le fait que lors de l'opération de mélange, on mélange les déchets à l'état pulvérulent avec un réducteur présentant un pourcentage de caractère ionique compris entre 20 et 50 %.
3. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que, lors de l'opération de mélange, on utilise un réducteur choisi dans le groupe comprenant les nitrures, les sulfures, les hydrures et les carbures, les carbures étant préférés.
4. Procédé selon la revendication 3, caractérisé par le fait que l'on utilise un nitrure choisi dans le groupe comprenant le nitrure de calcium, le nitrure de magnésium, le nitrure de béryllium, les nitrures de lanthanides, le nitrure de silicium, le nitrure de bore ou un sulfure choisi dans le groupe comprenant le sulfure de sodium, le sulfure de fer, le sulfure de calcium et le sulfure de zinc ou un hydrure choisi dans le groupe comprenant l' hydrure de lithium, l' hydrure de calcium ou 1' hydrure double de lithium et d'aluminium ou un carbure choisi dans le groupe comprenant le carbure d'aluminium et le carbure de calcium, le carbure de calcium étant préféré.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que le réducteur est ajouté audit mélange en excès stoechiometrique par rapport aux contaminants métalliques .
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que la fusion dudit mélange est obtenue en portant ledit mélange à une température de l'ordre de 1200 à 1600 'C.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que le mélange pulvérulent des déchets est mis en oeuvre avec une granulométrie comprise entre 0,5 et 200 μm.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que la seconde phase métallique est récupérée par flottation, sous la forme d'un alliage, notamment à base de chrome et de nickel.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que le complément de charge minérale de vitrification à base de silice et d'alumine est constitué par un autre déchet tel qu'un mâchefer d'incinération d'ordures ménagères ou d'autres déchets verriers tel les calcins verriers rebutés .
10. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que ledit mélange, soumis à la fusion, est obtenu à partir de la composition massique suivante : i) 15 à 30% d'une poussière de fumée d'aciérie ii) 45 à 70% de silicate de calcium iii) 5 à 25% de Si02 iv) 10 à 20% de réducteur, en particulier de CaC2-
11. Procédé selon la revendication 10, caractérisé par le fait que la poussière de fumée d'aciérie répond à la composition relative en poids suivante : i) oxydes de métaux contaminants Cr203 15 à 20% FeO 30 à 55% NiO 1 à 5% MnO 3 à 5% ZnO 5 à 10%
PbO 0,5 à 2% ii) le reste de la composition étant constitué par des oxydes entrant normalement dans la composition d'un verre, notamment les oxydes de sodium, de potassium, de calcium, de magnésium, de silicium et d'aluminium, correspondant à une teneur globale comprise entre 10 et 30 %.
12. Application du procédé selon l'une quelconque des revendications précédentes au traitement de déchets sidérurgiques tels que des poussières de centrales électriques ou thermiques.
13. Application du procédé selon l'une des revendications 1 à 11 au traitement des catalyseurs de pot d'échappement de véhicules automobiles ou autres catalyseurs à base de métaux comme : V, Cr, Co, Ni, Cu, Ag, Mo, W à l'état d'oxydes ou de sulfures sur des supports tels que Si02, Al203, et Zr02.
14. Application du procédé selon l'une des revendications 1 à 11 au traitement des tubes cathodiques en vue de leur inertage, par séparation d'une phase métallique à base de plomb et d'une phase vitreuse.
15. Application du procédé selon l'une des revendications 1 à 11 au traitement de Résidus des Fumées d'Incinération d'Ordures Ménagères (REFIOM) en vue de leur inertage.
PCT/FR1996/001662 1995-10-24 1996-10-24 Procede de traitement de dechets contenant des contaminants metalliques au moyen d'un reducteur WO1997015355A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP51636296A JPH11513750A (ja) 1995-10-24 1996-10-24 還元剤を用いた金属汚染物を含有する廃棄物の処理方法
US09/065,029 US6080224A (en) 1995-10-24 1996-10-24 Method for processing waste containing metal contaminants using a reducing agent
EP96934963A EP0871520A1 (fr) 1995-10-24 1996-10-24 Procede de traitement de dechets contenant des contaminants metalliques au moyen d'un reducteur
CA 2236142 CA2236142A1 (fr) 1995-10-24 1996-10-24 Procede de traitement de dechets contenant des contaminants metalliques au moyen d'un reducteur

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR95/12505 1995-10-24
FR9512505A FR2740058B1 (fr) 1995-10-24 1995-10-24 Procede de traitement de dechets contenant des contaminants metalliques au moyen d'un reducteur

Publications (1)

Publication Number Publication Date
WO1997015355A1 true WO1997015355A1 (fr) 1997-05-01

Family

ID=9483846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1996/001662 WO1997015355A1 (fr) 1995-10-24 1996-10-24 Procede de traitement de dechets contenant des contaminants metalliques au moyen d'un reducteur

Country Status (6)

Country Link
US (1) US6080224A (fr)
EP (1) EP0871520A1 (fr)
JP (1) JPH11513750A (fr)
CZ (1) CZ123698A3 (fr)
FR (1) FR2740058B1 (fr)
WO (1) WO1997015355A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2888576B1 (fr) * 2005-07-15 2007-09-28 Commissariat Energie Atomique Procede de confinement d'une matiere par vitrification
CA2867065C (fr) 2012-03-14 2017-03-07 Mercutek Llc Systeme et procede de traitement de charbon actif et de residus de combustion de charbon
JP7106776B1 (ja) * 2021-03-05 2022-07-26 Jx金属株式会社 廃太陽光発電パネル由来のカバーガラスの処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395367A (en) * 1981-11-17 1983-07-26 Rohrmann Charles A Process for treating fission waste
DE4124101A1 (de) * 1991-07-18 1993-01-21 Peter Dr Koecher Verfahren zur inertisierung fester rueckstaende, insbesondere aus abfallverbrennung und rauchgasreinigung
EP0551056A1 (fr) * 1992-01-07 1993-07-14 Sulzer Chemtech AG Procédé et dispositif pour la fusion en continu de déchets
WO1993022001A1 (fr) * 1992-05-05 1993-11-11 Molten Metal Technology, Inc. Procede de reduction chimique indirecte de metaux contenus dans des dechets

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094809A (en) * 1977-02-23 1978-06-13 The United States Of America As Represented By The United States Department Of Energy Process for solidifying high-level nuclear waste
US5104494A (en) * 1991-07-02 1992-04-14 Rockwell International Corp. Method of restoring solderability
US5662579A (en) * 1995-03-21 1997-09-02 The United States Of America As Represented By The United States Department Of Energy Vitrification of organics-containing wastes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395367A (en) * 1981-11-17 1983-07-26 Rohrmann Charles A Process for treating fission waste
DE4124101A1 (de) * 1991-07-18 1993-01-21 Peter Dr Koecher Verfahren zur inertisierung fester rueckstaende, insbesondere aus abfallverbrennung und rauchgasreinigung
EP0551056A1 (fr) * 1992-01-07 1993-07-14 Sulzer Chemtech AG Procédé et dispositif pour la fusion en continu de déchets
WO1993022001A1 (fr) * 1992-05-05 1993-11-11 Molten Metal Technology, Inc. Procede de reduction chimique indirecte de metaux contenus dans des dechets

Also Published As

Publication number Publication date
US6080224A (en) 2000-06-27
EP0871520A1 (fr) 1998-10-21
FR2740058A1 (fr) 1997-04-25
JPH11513750A (ja) 1999-11-24
CZ123698A3 (cs) 1998-11-11
FR2740058B1 (fr) 1998-01-09

Similar Documents

Publication Publication Date Title
CN100341780C (zh) 提纯硅的方法、用于提纯硅的矿渣和提纯的硅
US20080031799A1 (en) Method For Refining Silicon And Silicon Refined Thereby
FR2612797A1 (fr) Procede pour la recuperation de poussiere de fours, notamment de fours a arc electrique
JPS62502319A (ja) 固体材料の精製方法
KR100935959B1 (ko) 고순도 실리콘 제작 방법
CA3004616C (fr) Procede de production de laine de roche et de fonte valorisable
US20080247936A1 (en) Method For Producing High Purity Silicon
WO2011040988A1 (fr) Traitement de résidus de bauxite et de brasques usées
WO1997015355A1 (fr) Procede de traitement de dechets contenant des contaminants metalliques au moyen d'un reducteur
JP4835867B2 (ja) シリコンの精製方法
FR2587367A1 (fr) Procede pour la production d'un alliage a base de fer, de cobalt et de nickel, a faible teneur en soufre, en oxygene et en azote
EP0485399A1 (fr) Procede de fabrication de fibres minerales incorporant un residu a teneur en alumine provenant d'un processus de fusion de metal, et fibres ainsi produites
JP2003300750A (ja) ガラス組成物
WO1996007621A1 (fr) Materiaux volatils de composition du verre incorpores dans des frittes
EP1751069B1 (fr) Procede permettant la combustion et l'oxydation complete de la fraction minerale d'un dechet traite dans un appareil de combustion-vitrification directe
BE1003523A4 (fr) Procede de soudure ceramique et melange destine a un tel procede.
JPH09202611A (ja) 金属シリコン中のボロン除去方法
CA2236142A1 (fr) Procede de traitement de dechets contenant des contaminants metalliques au moyen d'un reducteur
US7789936B2 (en) Methods and systems for removing copper from ferrous scrap
FR2737428A1 (fr) Procede de traitement de dechets contenant des contaminants metalliques
JP2012020920A (ja) シリコン回収方法
FR2638733A1 (fr) Procede de production de carbure de silicium micr onique
EP1383137A1 (fr) Procédé d'immobilisation de sodium métallique sous forme de verre
JP2010208862A (ja) シリコン精製方法
Mubaiwa et al. Silicon Kerf recycling via single-acid leaching and flux melting

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CZ JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PV1998-1236

Country of ref document: CZ

Ref document number: 09065029

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1997 516362

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2236142

Country of ref document: CA

Kind code of ref document: A

Ref document number: 2236142

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1996934963

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996934963

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1998-1236

Country of ref document: CZ

WWW Wipo information: withdrawn in national office

Ref document number: 1996934963

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: PV1998-1236

Country of ref document: CZ