WO1997011382A1 - Mr-anordnung zur bestimmung der kernmagnetisierungsverteilung mit einer oberlflächenspulen-anordnung - Google Patents

Mr-anordnung zur bestimmung der kernmagnetisierungsverteilung mit einer oberlflächenspulen-anordnung Download PDF

Info

Publication number
WO1997011382A1
WO1997011382A1 PCT/IB1996/000963 IB9600963W WO9711382A1 WO 1997011382 A1 WO1997011382 A1 WO 1997011382A1 IB 9600963 W IB9600963 W IB 9600963W WO 9711382 A1 WO9711382 A1 WO 9711382A1
Authority
WO
WIPO (PCT)
Prior art keywords
coils
arrangement
coil arrangement
coil
loop
Prior art date
Application number
PCT/IB1996/000963
Other languages
English (en)
French (fr)
Inventor
Jan Schommer
Christoph Leussler
Original Assignee
Philips Electronics N.V.
Philips Patentverwaltung Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Electronics N.V., Philips Patentverwaltung Gmbh filed Critical Philips Electronics N.V.
Priority to US08/836,866 priority Critical patent/US5933007A/en
Priority to JP9512527A priority patent/JPH10509370A/ja
Priority to EP96929471A priority patent/EP0793809A1/de
Publication of WO1997011382A1 publication Critical patent/WO1997011382A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/341Constructional details, e.g. resonators, specially adapted to MR comprising surface coils

Definitions

  • the invention relates to an MR arrangement for determining the nuclear magnetization distribution in an examination area with a cylindrical surface coil arrangement comprising at least two coils, the coils each being designed as a loop.
  • the invention also relates to a head coil arrangement with a surface coil arrangement comprising at least two coils, the coils each being designed as a loop.
  • the determination of the nuclear magnetization distribution in an examination area by means of a surface coil arrangement consisting of at least two surface coils has the advantage that the signal-to-noise ratio is significantly better than in the case of coils which receive nuclear magnetic resonance signals from the entire examination area.
  • a surface coil arrangement is known from Magnetic Resonance in Medicine 16, P. 192-225, 1990. The images of the individual surface coils are put together to form an overall image using a suitable method.
  • the disadvantage of a surface coil arrangement is that the sensitivity is locally inhomogeneous, i.e. depends on where the MR signal occurs in the examination area.
  • a head coil arrangement is known.
  • a coil arrangement consisting of six elements that can be wound around the head is supplemented by a butterfly coil consisting of two elements, which is arranged above the skull of the patient.
  • MR signals are also received from the area of the head end, the sensitivity of the two butterfly elements is not very homogeneous, so that problems arise when combining the individual images to form an overall image.
  • two additional reception channels are required for the two butterfly elements.
  • the present invention has for its object with little Effort to improve an MR arrangement described in the introduction with regard to sensitivity and resolution.
  • the invention has for its object to improve a head coil arrangement mentioned.
  • the first-mentioned object is achieved according to the invention in that the coils are angle coils in which part of the loop is angled toward the inner region of the surface coil arrangement.
  • the invention is based on the finding that larger MR signals can be received from an examination area if the receiving coils are as close as possible to the examination object and extend over as large a part of the surface of the examination object as possible.
  • the angle coils are angled in such a way that they are as close as possible to the surface of the examination subject.
  • the angled parts of the loops are located directly above the skull roof. This ensures that, compared to the known arrangements, significantly stronger MR signals can also be received from the upper region of the head. It is particularly advantageous in the MR arrangement according to the invention that no additional reception channels are required, since the number of coils of the surface coil arrangement can remain the same. Only the coils are designed as angle coils. According to a development of the invention, it is provided that the angled part of the loop is angled by a maximum of 90 ° to the inner region of the surface coil arrangement.
  • the MR arrangement is particularly suitable for use as a head coil arrangement. Based on this, it is provided according to the invention that the angled parts of the loops lie in a common plane, whereby the homogeneity of the reception profile of the MR arrangement is significantly improved.
  • the angle coils are applied to a coil carrier designed as a straight circular cylinder. This also results in a particularly homogeneous reception profile within the cylinder, which is why the MR arrangement is particularly suitable for examining the head.
  • an embodiment according to the invention provides that adjacent coils of the surface coil arrangement partially overlap.
  • An overlap width can be found in which the Coupling two adjacent coils is minimal.
  • the loops of the coils are designed so that the loops cross at right angles at the crossing points of two coils, the loops at the crossing points being separated from one another by insulating plates. To further improve the signal-to-noise ratio, is in one
  • At least one capacitor is connected in the loop of a coil of the surface coil arrangement.
  • the capacitor and the coil form an oscillating circuit which can be matched to the Larmor frequency by selecting the size of the capacitor.
  • a particularly advantageous embodiment of the invention provides that a gradient coil and / or transmitter coil arrangement is integrated in the surface coil arrangement. This enables significantly higher transmission field strengths to be generated in the object to be examined, for example the head, which is particularly advantageous for angiography methods. Compared to an arrangement with conventional body coils that are significantly further away from the head, a much better resolution can be achieved.
  • the object of improving a head coil arrangement with at least two coils, each designed as a loop, is achieved according to the invention in that the coils are angle coils in which part of the loop is angled toward the inner region of the surface coil arrangement.
  • a first part of the loop then surrounds a surface lying in a first plane and a second part of the loop surrounds a surface lying in a second plane which is at an angle to the first plane.
  • a particularly homogeneous reception profile and a large signal-to-noise ratio result with configurations in which the first and second planes intersect at an angle of 90 ° and in which the coils are arranged in a cylinder shape in such a way that the second planes form a common plane .
  • FIG. 1 is a block diagram of an MRI device that may include the invention
  • FIG. 2 is an illustration of a head coil arrangement with eight angle coils
  • Fig. 3 shows an angle coil according to the invention with intermediate capacitors
  • Fig. 4 is an illustration of a head coil arrangement with an integrated transmitter coil arrangement.
  • 1 denotes a preferably superconducting magnet, which generates a stationary, homogeneous magnetic field in an examination area in which a patient can be located.
  • the electricity required for this is supplied by a unit 2.
  • 3 is one
  • Designated gradient coil arrangement with which a magnetic gradient field can be generated, which runs in the direction of the stationary magnetic field and whose gradient runs either in the same direction or in two directions perpendicular to and to each other.
  • the currents for this are supplied by a driver circuit 4, the course of the currents over time being controlled by a control unit 5, which can be implemented by means of a suitably programmed processor.
  • a high-frequency generator 6 which can generate pulsed oscillations with the Larmor frequency of the atomic type whose nuclear magnetization distribution is to be determined.
  • the high-frequency generator 6 is connected to a usually cylindrical body coil arrangement 7, which encloses the patient's body over a certain length during the MR examination and generates an essentially homogeneous high-frequency magnetic field therein.
  • a surface coil arrangement 8 consisting of a plurality of surface coils is provided.
  • the surface coil arrangement 8 is connected to a receiver unit 9, the receiver unit 9 for each coil
  • Surface coil arrangement 8 each contains a channel in which the MR signal received by the respective coil is amplified, transposed into a lower frequency range and digitized and in which an MR image can be reconstructed from the digitized MR signals.
  • the MR images generated in the receiver and processing unit 9 can be displayed on a monitor 10.
  • the units 4, 6, 8, 9 are controlled by the control unit 5.
  • transmission mode the vibrations generated by the high-frequency generator 6 are fed to the body coil arrangement 7, which generates a high-frequency magnetic field in the examination area.
  • the surface coil arrangement is 8 ineffective, for example in that each individual coil of this arrangement is out of tune during transmission.
  • the receiving mode the MR signals arising in the examination area are received with the surface coil arrangement 8.
  • the body coil arrangement 7 is out of tune. As a result, these coil arrangements are inductively decoupled from one another.
  • FIG. 2 shows a surface coil arrangement 20 with eight angle coils 21 to 28.
  • the angle coils 21 to 28 are on a cylindrical coil support 19 made of non-conductive material, such as plexiglass, applied.
  • the angle coils 21 to 28 and the coil support 19 are dimensioned such that this surface coil arrangement 20 is suitable for use as a head coil arrangement.
  • a patient's head is inside the cylindrical coil support 19 during the examination.
  • Each of the eight angle coils 21 to 28 is designed as a closed loop made of conductive material.
  • the upper part of each loop in the figure is angled by 90 ° to the cylinder axis 29, that is to say to the inner region of the surface coil arrangement 20.
  • the parts of the loops of the angle coils 21 to 28 which are angled in this way are all in the same plane 30 which corresponds to the upper end plane of the cylindrical coil carrier 19.
  • This arrangement is significantly more sensitive to signals that are to be measured in the upper region of the cylindrical arrangement 20.
  • the coils are applied as closed loops only on the outer surface 31 of the cylinder and have no angled part, a significant increase in the signal-to-noise ratio is also achieved.
  • the individual images measured by individual angle coils 21 to 28 are combined into a total image using a known method, for example the method of adding up the squares, which shows a significantly improved resolution.
  • Each of the angle coils 21 to 28 partially overlaps with the loops of the two adjacent angle coils. As a result, the magnetic coupling of two adjacent angle coils can be minimized, and an ideal overlap width can be found in which the magnetic coupling is minimal.
  • a single angle coil 32 according to the invention is shown. It can be seen that the plane in which the surface 33 enclosed by a first loop part or the surface 34 enclosed by the second loop part lies, intersect at an angle of 90 ° along the dashed line 41. The angle is there measured between the line 42, ie an imaginary continuation of the loop part enclosing the surface 33, and the surface 34.
  • Four capacitors 35 to 38 are connected in the loop 32.
  • the coil which forms an oscillating circuit together with the capacitors, can be matched to the Larmor frequency of the atoms to be measured, and thus an increase in the signal-to-noise ratio can be achieved.
  • the coil can be made of metal or another conductive material, such as conductive plastic or conductor paint.
  • the coils can be designed as tubular conductors or can be applied directly to the coil carrier from single-layer or multi-layer etched multilayer material. In a practical version, the coils consist of 10 mm wide and 0.2 mm thick copper strips that are glued directly onto a plexiglass cylinder.
  • FIG. 4 shows the surface coil arrangement 20 shown in FIG. 2 with only three angle coils 21, 22, 23 for the sake of clarity.
  • a transmitter coil arrangement which consists of two saddle coils 39, 40, is integrated into the surface coil arrangement 20.
  • the saddle coils 39, 40 likewise run on the outer surface 31 of the cylindrical coil bobbin 19, but could also be arranged at a somewhat greater distance from the cylinder axis 29.
  • a significantly higher transmission field and thus a higher resolution can be achieved compared to a whole-body transmission coil arrangement.
  • An embodiment is not shown in which
  • a gradient coil arrangement is integrated. This integration could take place in the same way as the integration of the transmitter coil arrangement shown in FIG. 4. This also enables an improved resolution to be achieved compared to an MR arrangement with a conventional gradient coil arrangement.
  • the angle coils used can also have a shape other than that shown in FIGS. 2 to 4, for example an elliptical shape.
  • the size of the angle coils used in a surface coil arrangement can also be different.
  • the coils located in front of the face are designed somewhat larger and are located further away from the surface of the head than the coils located at the back of the head.
  • the coil carrier has a slot directly in front of the patient's field of vision, where a coil is also not applied, in order to reduce the tightness of the patient in the head coil arrangement.
  • the head coil arrangement can be designed in this way, for example, to allow the doctor free access for operations from the top of the head 7 be that the upper part with the angled loop parts is removable, so that a remaining part of the head coil assembly with non-angled coils remains. In order to still be able to take measurements, a ring attachment without angled loop parts is placed on the remaining part instead.
  • the outputs of the individual angle coils are each with a
  • Transforming circuit connected, which transforms the resistance of the coil to the optimal noise resistance of the input transistor of the preamplifier.
  • the outputs of two preamplifiers, each belonging to a coil can be combined, whereby a phase shifter connected downstream of one of the two preamplifier outputs can be used to focus on a certain tissue depth in the examination object.
  • angle coils used is irrelevant to the invention.
  • the angled part does not have to be angled by 90 °, another angle would also be conceivable, for example 60 ° or 45 °.
  • a surface coil arrangement with alternating an angle coil and a coil without an angled part is also conceivable.
  • MR images of the entire head can be produced with a consistently high resolution in the entire examination area. If the head coil arrangement is expanded to include a breast and / or neck coil arrangement, the individual images of which are also taken into account when creating the overall image, then images from the skull to the 5th thoracic vertebra can be created.

Abstract

Die Erfindung betrifft eine MR-Anordnung zur Bestimmung der Kernmagnetisierungsverteilung in einem Untersuchungsbereich mit einer Oberflächenspulen-Anordnung. Die Oberflächenspulen-Anordnung (20) umfasst mindestens zwei jeweils als Schleife ausgebildete Spulen (21, ..., 28), wobei ein Teil der Schleife zum Innenbereich der Oberflächenspulen-Anordnung hin abgewinkelt ist. Mit einer MR-Anordnung mit derartigen Winkelspulen können aus einem Untersuchungsbereich deutlich grössere MR-Signale empfangen werden. Besonders geeignet ist diese MR-Anordnung als Kopfspulen-Anordnung zur Untersuchung des Kopfes.

Description

MR-Anordnung zur Bestimmung der Kernmagnetisierungsverteilung mit einer Oberflächenspulen- Anordnung
Die Erfindung betrifft eine MR-Anordnung zur Bestimmung der Kernmagnetisierungsverteilung in einem Untersuchungsbereich mit einer mindestens zwei Spulen umfassenden, zylinderförmigen Oberflächenspulen- Anordnung, wobei die Spulen jeweils als Schleife ausgestaltet sind. Die Erfindung betrifft außerdem eine Kopfspulen-Anordnung mit einer mindestens zwei Spulen umfassenden Oberflächenspulen- Anordnung, wobei die Spulen jeweils als Schleife ausgestaltet sind.
Die Bestimmung der Kernmagnetisierungsverteilung in einem Untersuchungsbereich mittels einer aus mindestens zwei Oberflächenspulen bestehenden Oberflächenspulen-Anordnung hat den Vorteil, daß das Signal-zu-Rauschverhältnis wesentlich besser ist als bei Spulen, die Kernresonanzsignale aus dem gesamten Untersuchungsbereich empfangen. Eine Oberflächenspulen-Anordnung ist aus Magnetic Resonance in Medicine 16, P. 192-225, 1990, bekannt. Die Bilder der einzelnen Oberflächenspulen werden dabei nach einem geeigneten Verfahren zu einem Gesamtbild zusammengesetzt. Der Nachteil einer Oberflächenspulen-Anordnung besteht darin, daß die Empfindlichkeit örtlich inhomogen ist, d.h. davon abhängt, wo im Untersuchungsbereich das MR-Signal auftritt.
Aus 2nd SMR, Book of Abstracts, p. 1103, 1994, ist eine Kopfspulen- Anordnung bekannt. Eine aus sechs Elementen bestehende, um den Kopf wickelbare Spulenanordnung ist dabei ergänzt um eine aus zwei Elementen bestehende Butterfly-Spule, die über dem Schädeldach des Patienten angeordnet ist. Dadurch wird zwar erreicht, daß auch MR-Signale aus dem Bereich des Kopfendes empfangen werden, jedoch ist die Empfindlichkeit der beiden Butterfly-Elemente nicht sehr homogen, so daß sich Probleme bei der Kombination der einzelnen Bilder zu einem Gesamtbild ergeben. Außerdem sind für die zwei Butterfly-Elemente zwei weitere Empfangskanäle erforderlich.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, mit geringem Aufwand eine eingangs beschriebene MR-Anordnung im Hinblick auf Empfindlichkeit und Auflösung zu verbessern. Außerdem liegt der Erfindung die Aufgabe zugrunde, eine eingangs genannte Kopfspulen- Anordnung zu verbessern.
Die erstgenannte Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Spulen Winkelspulen sind, bei denen ein Teil der Schleife zum Innenbereich der Oberflächenspulen-Anordnung hin abgewinkelt ist.
Der Erfindung liegt die Erkenntnis zugrunde, daß aus einem Untersuchungsbereich größere MR-Signale empfangen werden können, wenn sich die Empfangsspulen möglichst nahe an dem Untersuchungsobjekt befinden und sich über einen möglichst großen Teil der Oberfläche des Untersuchungsobjekts erstrecken.
Bei der erfindungsgemäßen MR-Anordnung sind die Winkelspulen derart abgewinkelt, daß sie sich möglichst nahe an der Oberfläche des Untersuchungsobjekts befinden. Insbesondere bei einer MR-Anordnung zur Untersuchung des Kopfes befinden sich die abgewinkelten Teile der Schleifen direkt oberhalb des Schädeldaches. Dadurch wird erreicht, daß gegenüber den bekannten Anordnungen auch aus dem oberen Bereich des Kopfes deutlich stärkere MR-Signale empfangen werden können. Vorteilhaft ist bei der erfindungsgemaßen MR-Anordnung insbesondere, daß keine zusätzlichen Empfangskanäle erforderlich sind, da die Anzahl der Spulen der Oberflächenspulen-Anordnung gleich bleiben kann. Es werden lediglich die Spulen als Winkelspulen ausgestaltet. Nach einer Weiterbildung der Erfindung ist vorgesehen, daß der abgewinkelte Teil der Schleife um maximal 90° zum Innenbereich der Oberflächenspulen- Anordnung hin abgewinkelt ist. Bei genau um 90° abgewinkelten Schleifenteilen eignet sich die MR-Anordnung besonders gut zur Verwendung als Kopfspulen- Anordnung. Davon ausgehend ist erfindungsgemäß vorgesehen, daß die abgewinkelten Teile der Schleifen in einer gemeinsamen Ebene liegen, wodurch die Homogenität des Empfangsprofils der MR-Anordnung deutlich verbessert wird.
In einer Ausgestaltung der Erfindung ist vorgesehen, daß die Winkelspulen auf einem als geradem Kreiszylinder ausgestalteten Spulenträger aufgebracht sind. Auch dadurch wird ein besonders homogenes Empfangsprofil innerhalb des Zylinders erreicht, weshalb sich die MR-Anordnung besonders zur Untersuchung des Kopfes eignet.
Um die gegenseitige Kopplung der Spulen der Oberflächenspulen-Anordnung möglichst gering zu halten, sieht eine Ausgestaltung erfindungsgemäß vor, daß sich benachbarte Spulen der Oberflächenspulen-Anordnung teilweise überlappen. Dabei kann eine Überlappungsbreite gefunden werden, bei der die Kopplung zweier benachbarter Spulen minimal ist. Die Schleifen der Spulen sind dabei so ausgestaltet, daß sich an den Kreuzungspunkten zweier Spulen die Schleifen im rechten Winkel kreuzen, wobei die Schleifen an den Kreuzungspunkten durch Isolierplättchen voneinander getrennt sind. Um das Signal-zu-Rauschverhältnis weiter zu verbessern, ist in einer
Weiterbildung der Erfindung vorgesehen, daß in die Schleife einer Spule der Oberflächen¬ spulen-Anordnung mindestens ein Kondensator geschaltet ist. Der Kondensator und die Spule bilden dabei einen Schwingkreis, der durch Wahl der Größe des Kondensators auf die Larmor-Frequenz abgestimmt werden kann. Eine besonders vorteilhafte Ausgestaltung der Erfindung sieht vor, daß in die Oberflächenspulen-Anordnung eine Gradientenspulen- und/oder Sendespulen-Anordnung integriert ist. Damit können deutlich höhere Sendefeldstärken in dem zu untersuchenden Objekt, beispielsweise dem Kopf, erzeugt werden, was insbesondere für Angiographiemethoden sehr von Vorteil ist. Gegenüber einer Anordnung mit herkömmlichen Körperspulen, die deutlich weiter vom Kopf entfernt sind, kann damit eine wesentlich bessere Auflösung erzielt werden.
Die Aufgabe, eine Kopfspulen-Anordnung mit mindestens zwei, jeweils als Schleife ausgestalteten Spulen zu verbessern, wird erfindungsgemäß dadurch gelöst, daß die Spulen Winkelspulen sind, bei denen ein Teil der Schleife zum Innenbereich der Oberflächenspulen-Anordnung hin abgewinkelt ist. Ein erster Teil der Schleife umschließt dann eine in einer ersten Ebene liegende Fläche und ein zweiter Teil der Schleife umschließt eine in einer zweiten, zur ersten Ebene unter einem Winkel verlaufenden Ebene liegende Fläche.
Ein besonders homogenes Empfangsprofil und ein großes Signal-zu-Rauschverhältnis ergibt sich mit Ausgestaltungen, bei denen die erste und zweite Ebene sich unter einem Winkel von 90° schneiden und bei denen die Spulen zylinderförmig derart angeordnet sind, daß die zweiten Ebenen eine gemeinsame Ebene bilden.
Die Erfindung wird nachstehend anhand der Zeichnung näher erläutert. Es zeigen:
Fig. 1 ein Blockschaltbild eines MR-Untersuchungsgerätes, das die Erfindung beinhalten kann,
Fig. 2 eine Darstellung einer Kopfspulen-Anordnung mit acht Winkelspulen, Fig. 3 eine erfindungsgemäße Winkelspule mit zwischengeschalteten Kondensatoren und
Fig. 4 eine Darstellung einer Kopfspulen- Anordnung mit integrierter Sendespulen- Anordnung .
In dem in Fig. 1 schematisch dargestellten Blockschaltbild ist mit 1 ein vorzugsweise supraleitender Magnet bezeichnet, der in einem Untersuchungsbereich, in dem sich ein Patient befinden kann, ein stationäres homogenes Magnetfeld erzeugt. Der dafür erforderliche Strom wird von einer Einheit 2 geliefert. Mit 3 ist eine
Gradientenspulen-Anordnung bezeichnet, mit der ein magnetisches Gradientenfeld erzeugt werden kann, das in Richtung des stationären Magnetfeldes verläuft und dessen Gradienten entweder in der gleichen Richtung oder in zwei dazu und zueinander senkrechten Richtungen verläuft. Die Ströme hierfür werden von einer Treiberschaltung 4 geliefert, wobei der zeitliche Verlauf der Ströme von einer Steuereinheit 5 gesteuert wird, die mittels eines geeignet programmierten Prozessors realisiert werden kann.
Außerdem ist ein Hochfrequenzgenerator 6 vorgesehen, der impulsweise Schwingungen mit der Larmorfrequenz der Atomart, deren Kernmagnetisierungsverteilung bestimmt werden soll, erzeugen kann. Der Hochfrequenzgenerator 6 ist mit einer üblicherweise zylinderförmig ausgestalteten Körperspulen-Anordnung 7 verbunden, die bei der MR-Untersuchung den Körper des Patienten auf einer bestimmten Länge umschließt und in diesem ein im wesentlichen homogenes Hochfrequenz-Magnetfeld erzeugt.
Darüber hinaus ist eine aus mehreren Oberflächenspulen bestehende Oberflächenspulen-Anordnung 8 vorgesehen. Die Oberflächenspulen-Anordnung 8 ist mit einer Empfängereinheit 9 verbunden, wobei die Empfängereinheit 9 für jede Spule der
Oberflächenspulen-Anordnung 8 je einen Kanal enthält, in dem das von der jeweiligen Spule empfangene MR-Signal verstärkt, in einen niedrigeren Frequenzbereich transponiert und digitalisiert wird und in dem aus den digitalisierten MR-Signalen jeweils ein MR-Bild rekonstruiert werden kann. Die in der Empfanger- und Verarbeitungseinheit 9 erzeugten MR-Bilder sind auf einem Monitor 10 darstellbar.
Die Einheiten 4, 6, 8, 9 werden von der Steuereinheit 5 gesteuert. Im Sendebetrieb werden die vom Hochfrequenzgenerator 6 erzeugten Schwingungen der Körperspulen-Anordnung 7 zugeführt, die im Untersuchungsbereich ein Hochfrequenz¬ magnetfeld erzeugt. Während des Sendebetriebs ist die Oberflächenspulen-Anordnung 8 unwirksam, beispielsweise dadurch, daß jede einzelne Spule dieser Anordnung während des Sendebetriebes verstimmt ist. Im Empfangsbetrieb werden die im Untersuchungsbereich entstehenden MR-Signale mit der Oberflächenspulen-Anordnung 8 empfangen. Dabei ist die Körperspulen-Anordnung 7 verstimmt. Dadurch sind diese Spulen-Anordnungen induktiv voneinander entkoppelt.
In Fig. 2 ist eine Oberflächenspulen-Anordnung 20 mit acht Winkelspulen 21 bis 28 dargestellt. Die Winkelspulen 21 bis 28 sind auf einem zylinderförmig ausgestalteten Spulen träger 19 aus nichtleitendem Material, beispielsweise Plexiglas, aufgebracht. Die Winkelspulen 21 bis 28 und der Spulenträger 19 sind derart bemessen, daß sich diese Oberflächenspulen-Anordnung 20 zur Verwendung als Kopf spulen- Anordnung eignet. Der Kopf eines Patienten befindet sich während der Untersuchung im Inneren des zylinderförmigen Spulen trägers 19.
Jede der acht Winkelspulen 21 bis 28 ist als geschlossene Schleife aus leitendem Material ausgestaltet. Der in der Figur obere Teil jeder Schleife ist um 90° zur Zylinderachse 29 hin, also zum Innenbereich der Oberflächenspulen-Anordnung 20 hin, abgewinkelt. Die derart abgewinkelten Teile der Schleifen der Winkelspulen 21 bis 28 liegen alle in derselben Ebene 30, die der oberen Abschlußebene des zylinderförmigen Spulenträgers 19 entspricht.
Diese Anordnung ist deutlich empfindlicher für Signale, die im oberen Bereich der zylinderförmigen Anordnung 20 gemessen werden sollen. Gegenüber der bekannten Anordnung, bei der die Spulen als geschlosssene Schleifen nur auf der Außenfläche 31 des Zylinders aufgebracht sind und keinen abgewinkelten Teil aufweisen, wird auch eine deutliche Erhöhung des Signal-zu-Rauschverhältnisses erreicht. Die von einzelnen Winkelspulen 21 bis 28 gemessenen Einzelbilder werden nach einem bekannten Verfahren, beispielsweise dem Verfahren der Summe der Quadrate zu einem Gesamtbild zusammengesetzt, das eine deutlich verbesserte Auflösung zeigt.
Jede der Winkelspulen 21 bis 28 überlappt sich teilweise mit den Schleifen der beiden benachbarten Winkelspulen. Dadurch kann die magnetische Kopplung zweier benachbarter Winkelspulen minimiert werden, wobei eine ideale Überlappungsbreite gefunden werden kann, bei der die magnetische Kopplung minimal ist.
In Fig. 3 ist eine einzelne erfindungsgemäße Winkelspule 32 gezeigt. Zu erkennen ist, daß sich die Ebene, in der die von einem ersten Schleifenteil umschlossene Fläche 33 bzw. die von dem zweiten Schleifenteil umschlossene Fläche 34 liegen, unter einem Winkel von 90° entlang der gestrichelten Linie 41 schneiden. Der Winkel ist dabei gemessen zwischen der Linie 42, also einer gedachten Fortsetzung des die Fläche 33 umschließenden Schleifenteils, und der Fläche 34. In die Schleife 32 sind vier Kondensatoren 35 bis 38 geschaltet. Dadurch kann die Spule, die zusammen mit den Kondensatoren einen Schwingkreis bildet, auf die Larmorfrequenz der zu messenden Atome abgestimmt und somit eine Erhöhung des Signal-zu-Rauschverhältnisses erreicht werden.
Die Spule kann aus Metall oder aus einem anderen leitfähigen Material, wie beispielsweise leitfähigem Kunststoff oder Leiterfarbe, bestehen. Die Spulen können als rohrförmige Leiter ausgestaltet sein oder aus ein- oder mehrlagigem geätztem Multilayermaterial direkt auf den Spulenträger aufgebracht sein. In einer praktischen Ausführung bestehen die Spulen aus 10 mm breiten und 0,2 mm dicken Kupferstreifen, die direkt auf einem Plexiglaszylinder aufgeklebt sind.
In Fig. 4 ist die in Fig. 2 gezeigte Oberflächenspulen-Anordnung 20 mit der Übersichtlichkeit halber nur drei Winkelspulen 21, 22, 23 dargestellt. In die Oberflächenspulen-Anordnung 20 ist eine Sendespulen- Anordnung, die aus zwei Sattelspulen 39, 40 besteht, integriert. Die Sattelspulen 39, 40 verlaufen ebenfalls auf der Außenfläche 31 des zylinderförmigen Spulenträgers 19, könnten aber auch in etwas größerem Abstand von der Zylinderachse 29 angeordnet sein. Mit einer derartigen Sendespulen-Anordnung kann gegenüber einer Ganzkörpersendespulen-Anordnung ein deutlich höheres Sendefeld und damit eine höhere Auflösung erreicht werden. Nicht dargestellt ist eine Ausführung, bei der in die
Oberflächenspulen-Anordnung 20 eine Gradientenspulen-Anordnung integriert ist. Diese Integration könnte in gleicher Weise wie die in der Fig. 4 gezeigte Integration der Sendespulen- Anordnung erfolgen. Auch dadurch kann eine verbesserte Auflösung erreicht werden gegenüber einer MR-Anordnung mit herkömmlicher Gradientenspulen-Anordnung. Die verwendeten Winkelspulen können auch eine andere als in den Fig. 2 bis 4 gezeigte Form, beispielsweise eine elliptische Form aufweisen. Auch kann die Größe der verwendeten Winkelspulen in einer Oberflächenspulen-Anordnung unterschiedlich sein. In der praktischen Ausführung einer Kopfspulen-Anordnung sind die vor dem Gesicht befindlichen Spulen etwas größer ausgestaltet und weiter von der Kopfoberfläche entfernt angeordnet als die am Hinterkopf befindlichen Spulen. Außerdem weist der Spulenträger direkt vor dem Gesichtsfeld des Patienten einen Schlitz auf, wo auch keine Spule aufgebracht ist, um das Engegefühl des Patienten in der Kopfspulen-Anordnung zu verringern.
Um beispielsweise dem Arzt für Operationen von der Oberseite des Kopfes her freien Zugang zu ermöglichen, kann die Kopf spulen- Anordnung derart gestaltet 7 sein, daß der obere Teil mit den abgewinkelten Schleifenteilen abnehmbar ist, so daß ein restlicher Teil der Kopfspulen-Anordnung mit nicht abgewinkelen Spulen verbleibt. Um auch dann noch Messungen vornehmen zu können, wird stattdessen ein Ringaufsatz ohne abgewinkelte Schleifenteile auf den restlichen Teil aufgesetzt. Die Ausgänge der einzelnen Winkelspulen sind jeweils mit einer
Transformationsschaltung verbunden, die den Widerstand der Spule auf den optimalen Rauschwiderstand des Eingangstransistors des Vorverstärkers transformiert. Um die Anzahl der Empfangskanäle der MR-Anordnung zu reduzieren, können die Ausgänge zweier zu jeweils einer Spule gehöriger Vorverstärker kombiniert werden, wobei mittels eines einem der beiden Vorverstärkerausgänge nachgeschalteten Phasenschiebers eine Fokussierung auf eine bestimmte Gewebetiefe im Untersuchungsobjekt erreicht werden kann.
Für die Erfindung spielt die Anzahl der verwendeten Winkelspulen keine Rolle. Auch muß der abgewinkelte Teil nicht um 90° abgewinkelt sein, denkbar wäre auch ein anderer Winkel, beispielsweise 60° oder 45°. Vorstellbar ist auch eine Oberflächenspulen-Anordnung mit abwechselnd einer Winkelspule und einer Spule ohne abgewinkelten Teil.
Mit der erfindungsgemäßen MR-Anordnung wird gegenüber der bekannten Anordnung eine deutlich bessere Auflösung und homogenere Empfindlichkeit über einen größeren Bereich erreicht. Insbesondere mit der erfindungsgemäßen Kopfspulen-Anordnung können MR-Bilder des gesamten Kopfes mit gleichbleibend hoher Auflösung im gesamten Untersuchungsbereich erstellt werden. Wird die Kopf spulen- Anordnung noch erweitert um eine Brust- und/oder Nackenspulen- Anordnung, deren Einzelbilder auch bei der Erstellung des Gesamtbildes berücksichtigt werden, so können Bilder vom Schädeldach bis zum 5. Brustwirbel erstellt werden.

Claims

PATENTANSPRÜCHE
1. MR-Anordnung zur Bestimmung der Kernmagnetisierungsverteilung in einem Untersuchungsbereich mit einer mindestens zwei Spulen (21...28) umfassenden, zylinderförmigen Oberflächenspulen-Anordnung (8, 20), wobei die Spulen (21...28) jeweils als Schleife ausgestaltet sind, dadurch gekennzeichnet, daß die Spulen (21...28) Winkelspulen sind, bei denen ein Teil der Schleife zum Innenbereich der Oberflächenspulen-Anordnung (8, 20) hin abgewinkelt ist.
2. MR-Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß der abgewinkelte Teil der Schleife um maximal 90° zum Innenbereich der Oberflächenspulen-Anordnung (8,20) hin abgewinkelt ist.
3. MR-Anordnung nach Anspruch 2, dadurch gekennzeichnet, daß die abgewinkelten Teile der Schleifen in einer gemeinsamen Ebene (30) liegen.
4. MR-Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Winkelspulen (21...28) auf einem als geradem Kreiszylinder ausgestalteten Spulenträger (19) aufgebracht sind.
5. MR-Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Oberflächenspulen-Anordnung (8, 20) sechs bis vierundzwanzig Winkelspulen (21...28) aufweist.
6. MR-Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sich benachbarte Spulen der Oberflächenspulen-Anordnung (8, 20) teilweise überlappen.
7. MR-Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in die Schleife einer Spule (21...28) der Oberflächenspulen- Anordnung (8, 20) mindestens ein Kondensator (35...38) geschaltet ist.
8. MR-Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in die Oberflächenspulen-Anordnung (8, 20) eine Gradientenspulen- und/oder Sendespulen-Anordnung (39, 40) integriert ist.
9. Kopfspulen-Anordnung (20) mit einer mindestens zwei Spulen (21...28) umfassenden Oberflächenspulen-Anordnung (8,20), wobei die Spulen (21...28) jeweils als Schleife ausgestaltet sind, dadurch gekennzeichnet, daß die Spulen (21...28) Winkelspulen sind, bei denen ein Teil der
Schleife zum Innenbereich der Oberflächenspulen-Anordnung (8,20) hin abgewinkelt ist.
PCT/IB1996/000963 1995-09-22 1996-09-19 Mr-anordnung zur bestimmung der kernmagnetisierungsverteilung mit einer oberlflächenspulen-anordnung WO1997011382A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/836,866 US5933007A (en) 1995-09-22 1996-09-19 MR device for determining a nuclear magnetization distribution by means of a surface coil system
JP9512527A JPH10509370A (ja) 1995-09-22 1996-09-19 表面コイルアレーを用いて核磁化分布を測定するmr装置
EP96929471A EP0793809A1 (de) 1995-09-22 1996-09-19 Mr-anordnung zur bestimmung der kernmagnetisierungsverteilung mit einer oberlflächenspulen-anordnung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19535257A DE19535257A1 (de) 1995-09-22 1995-09-22 MR-Anordnung zur Bestimmung der Kernmagnetisierungsverteilung mit einer Oberflächenspulen-Anordnung
DE19535257.2 1995-09-22

Publications (1)

Publication Number Publication Date
WO1997011382A1 true WO1997011382A1 (de) 1997-03-27

Family

ID=7772887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB1996/000963 WO1997011382A1 (de) 1995-09-22 1996-09-19 Mr-anordnung zur bestimmung der kernmagnetisierungsverteilung mit einer oberlflächenspulen-anordnung

Country Status (5)

Country Link
US (1) US5933007A (de)
EP (1) EP0793809A1 (de)
JP (1) JPH10509370A (de)
DE (1) DE19535257A1 (de)
WO (1) WO1997011382A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19844762B4 (de) * 1998-09-29 2005-02-24 Siemens Ag Vorrichtung zur induktiven Einkopplung eines Kernspinresonanzsignals in eine Empfangsantenne sowie medizinisches Interventionsinstrument
US6313633B1 (en) * 1999-12-27 2001-11-06 General Electric Company Magnetic resonance imaging head coil
US6668184B1 (en) 2000-12-19 2003-12-23 Ge Medical Systems Global Technology Company, Llc System for and method of synchronizing an image data receiver and an MR imaging acquisition slice
US6930480B1 (en) * 2001-06-08 2005-08-16 General Electric Company Head coil arrays for parallel imaging in magnetic resonance imaging
JP4091521B2 (ja) 2003-10-22 2008-05-28 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Rfコイルおよびmri装置
US7084630B2 (en) * 2004-01-28 2006-08-01 Worcester Polytechnic Institute Multi-modal RF coil for magnetic resonance imaging
DE102006017438B4 (de) * 2006-04-13 2008-09-18 Siemens Ag Resonator für Magnetresonanzanwendungen
WO2008135943A1 (en) * 2007-05-03 2008-11-13 Philips Intellectual Property & Standards Gmbh Transverse electromagnetic radio-frequency coil
KR102324731B1 (ko) * 2014-09-19 2021-11-10 삼성전자주식회사 자기 공명 영상 장치용 수신 코일

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171972A2 (de) * 1984-08-16 1986-02-19 Picker International, Inc. Hochfrequenz-Antenne für magnetischen Kernresonanzapparat
DE4430646A1 (de) * 1993-08-30 1995-03-02 Hitachi Medical Corp HF-Sonde

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5564421A (en) * 1991-04-04 1996-10-15 Instrumentarium Corporation VHF applicator for magnetic resonance imaging
US5309104A (en) * 1992-05-22 1994-05-03 General Electric Company Asymmetric radio frequency coil for magnetic resonance imaging
DE4434948C2 (de) * 1994-09-29 1998-05-20 Siemens Ag Mammographie-Antennenanordnung für Magnetresonanzuntersuchungen einer weiblichen Brust
US5602479A (en) * 1995-08-08 1997-02-11 Picker International, Inc. Quadrature radio frequency coil for magnetic resonance imaging

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171972A2 (de) * 1984-08-16 1986-02-19 Picker International, Inc. Hochfrequenz-Antenne für magnetischen Kernresonanzapparat
DE4430646A1 (de) * 1993-08-30 1995-03-02 Hitachi Medical Corp HF-Sonde

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C. LEUSSLER: "An 8-Element Cortical Top Head Coil Array", SOCIETY OF MAGNETIC RESONANCE, 2ND MEETING, 1994, pages 1103, XP000605916 *
J.R. FITZSIMMONS ET AL.: "Design and Evaluation of Conformal Phased Array Head Coils for FMRI", SOCIETY OF MAGNETIC RESONANCE, 3RD MEETING, August 1995 (1995-08-01), pages 976, XP002019374 *

Also Published As

Publication number Publication date
US5933007A (en) 1999-08-03
DE19535257A1 (de) 1997-03-27
EP0793809A1 (de) 1997-09-10
JPH10509370A (ja) 1998-09-14

Similar Documents

Publication Publication Date Title
DE69736826T2 (de) Radiofrequenzspulen für Kernresonanz
EP0803736B1 (de) MR-Gerät mit einer Zylinderspulenanordnung und einer Oberflächenspulenanordnung
DE60035829T2 (de) RF-Körperspule für ein offenes System zur Bilderzeugung mittels magnetischer Resonanz
EP0930509B1 (de) MR-Anordnung mit einem medizinischen Instrument und Verfahren zur Positionsbestimmung des medizinischen Instruments
EP0583824B1 (de) Quadraturspulenanordnung für MR-Untersuchungen der Mamma
DE69631008T2 (de) Verfahren und Gerät für die magnetische Resonanz
EP3324198B1 (de) Hf-spulenanordnung umfassend eine flexible lokalspule und eine starre lokalspule
DE19854924C2 (de) Antennenarray für Magnetresonanzuntersuchungen
DE60127382T2 (de) Verfahren zum erhalt von bildern magnetischer resonanz durch unterabtastung in einem mri-gerät mit vertikalem feld
EP0142077B1 (de) Hochfrequenz-Einrichtung einer Kernspinresonanz-Apparatur mit einer Oberflächenspule
DE10157039A1 (de) HF-Spulenanordnung für Magnetresonanz-Bildgerät
DE19629890A1 (de) Sowohl zur Nachführung als auch zur Abbildung geeignete Magnetresonanzeinrichtungen
DE4408761A1 (de) Eingriffs-Magnetresonanz-Abbildungssystem und Hochfrequenzspulen für dieses System
DE3705314A1 (de) Hybridresonator
DE10056807A1 (de) HF-Flächenresonator für Magnetresonanz-Bildgerät
EP1275972A2 (de) Hochfrequenz-Spulenanordnung für ein MR-Gerät
DE3621107A1 (de) Magnetresonanz-abbildungsgeraet
EP0826976A2 (de) MR-Anordnung mit einer Referenzspulen-Anordnung zur Rekonstruktion von MR-Bildern eines Spulen-Arrays
DE3635006A1 (de) Sonde fuer ein magnetresonanzabbildungsgeraet
DE60320376T2 (de) Spulensystem für eine mr-vorrichtung und mit einem solchen spulensystem ausgestattete mr-vorrichtung
WO1997011382A1 (de) Mr-anordnung zur bestimmung der kernmagnetisierungsverteilung mit einer oberlflächenspulen-anordnung
EP0142079B1 (de) Hochfrequenz-Einrichtung einer Kernspinresonanz-Apparatur
DE102004024098B4 (de) Erzeuger zeitvariabler Magnetfelder für ein Magnetresonanzgerät und Magnetresonanzgerät mit einem derartigen Erzeuger zeitvariabler Magnetfelder
DE112004002117T5 (de) Phased-Array Wirbelsäulenspule mit räumlich verschobenen Spulenelementen
DE69726097T2 (de) Gerät zur Bilderzeugung durch kernmagnetische Resonanz

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1996929471

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08836866

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996929471

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996929471

Country of ref document: EP