WO1997007878A1 - Drive device for disintegrating mixer - Google Patents

Drive device for disintegrating mixer Download PDF

Info

Publication number
WO1997007878A1
WO1997007878A1 PCT/JP1996/002459 JP9602459W WO9707878A1 WO 1997007878 A1 WO1997007878 A1 WO 1997007878A1 JP 9602459 W JP9602459 W JP 9602459W WO 9707878 A1 WO9707878 A1 WO 9707878A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
hydraulic motor
hydraulic
switching valve
bypass
Prior art date
Application number
PCT/JP1996/002459
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Shimizu
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to DE19681540T priority Critical patent/DE19681540T1/en
Publication of WO1997007878A1 publication Critical patent/WO1997007878A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/16Details
    • B02C18/24Drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • B01F35/32Driving arrangements
    • B01F35/32005Type of drive
    • B01F35/32045Hydraulically driven

Definitions

  • the present invention relates to a driving device of a crushing and mixing machine that crushes and mixes soil and soil with a soil improving material to form soil with improved soil.
  • a disintegrating mixer there is known a disintegrating mixer in which a plurality of rotors are rotatably provided in a housing and each rotor is driven by a hydraulic motor.
  • each hydraulic motor is connected in series, and the hydraulic pressure discharged from one hydraulic pump is sequentially supplied to those hydraulic motors to drive each hydraulic motor.
  • Each hydraulic motor can be driven even if the rotor load is different.
  • the hydraulic pressure discharged from one hydraulic pump is separately supplied to multiple hydraulic motors and driven, the hydraulic pressure is supplied only to the hydraulic motor with the smallest load, and the other hydraulic motors are driven. Since it is not possible to do so, the discharge pressure oil of the hydraulic pump is supplied to the inlet port of the first hydraulic motor, and the outlet port of the first hydraulic motor is connected to the inlet port of the second hydraulic motor.
  • the hydraulic motors are connected to a series, and these hydraulic motors are connected to a series, and even if the load of each hydraulic motor is different, each hydraulic motor is driven by the discharge hydraulic oil of one hydraulic pump. I am trying to do it.
  • the differential pressure between the inlet pressure and the outlet pressure of each hydraulic motor must be set to a pressure Pa that matches the required driving torque.
  • the inlet pressure of the motor is Pa
  • the outlet pressure of the next hydraulic motor is Pa
  • the inlet pressure of that hydraulic motor is 2 x Pa
  • the outlet pressure of the next hydraulic motor is 2 XP and the inlet pressure of the hydraulic motor is 3 x Pa. Therefore, the normally required maximum discharge pressure of the hydraulic pump is the value of (pressure Pa corresponding to the normally required drive torque) X (the number of hydraulic motors).
  • the torque of the hydraulic motor when the rotor is driven in a steady state is small, but the torque of the hydraulic motor required when starting the rotor is large, so that the hydraulic pump is started.
  • the maximum discharge pressure required at the time is (pressure corresponding to the torque required at startup)
  • the present invention provides a drive device for a crushing and mixing machine in which the maximum discharge pressure of a hydraulic pump required at the time of startup is reduced as compared with the conventional case, so that the drive device is inexpensive.
  • the purpose is to provide Disclosure of the invention
  • the driving device of the crushing and mixing machine according to the present invention comprises:
  • a disintegration mixer in which a plurality of rotors are rotatably provided in a housing, and each of the rotors is driven by each hydraulic motor,
  • the hydraulic motor is connected in series by connecting the outlet port and the inlet port of the adjacent hydraulic motor with the main circuit, and the inlet port of the hydraulic motor located at one end is connected to the other port.
  • the hydraulic pump and the tank are connected via the main switching valve to the outlet port of the hydraulic motor located at the end, respectively.
  • a bypass path is provided to connect each of the main circuits and the motor side circuit of the main switching valve, and each of the bypasses is provided with at least one of a switching valve for communicating and blocking the bypass and at least one of the throttles. is there.
  • the switching valve and the throttle may be provided in each of the bypasses.
  • each of the bypasses is provided with the switching valve and a pressure sensor for detecting the pressure of each of the bypass passages, and shuts off the switching valve of the corresponding bypass passage when the pressure detected by the pressure sensor reaches a predetermined pressure. It may be equipped with a controller for positioning.
  • the throttle may be provided in each of the bypasses. According to the above configuration,
  • the hydraulic motor is connected in series by connecting the outlet port and the inlet port of the adjacent hydraulic motor with a main circuit, and the inlet port of the hydraulic motor located at one end is connected to the inlet port.
  • the hydraulic pump and the tank are connected to the outlet port of the hydraulic motor located at the other end via the main switching valve 11, respectively.
  • a bypass path is provided for connecting each of the main circuits and the motor side circuit of the main switching valve, and each of the bypass paths is connected to each of the bypass paths.
  • the maximum discharge pressure of the hydraulic pump can be set to the starting pressure + the steady pressure X (the number of hydraulic motors-1). It will be cheaper. Also, since the starting pressure supplied to the hydraulic motor is smaller than when all hydraulic motors are started simultaneously, the hydraulic motor can be made smaller.
  • FIG. 1 is an explanatory diagram of a crushing and mixing machine including a first embodiment of a driving device according to the present invention.
  • FIG. 2 is a hydraulic circuit diagram of the first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram at the start of startup in the first embodiment.
  • FIG. 4 is an explanatory diagram at the time of steady driving in the first embodiment.
  • FIG. 5 is a hydraulic circuit according to a second embodiment of the present invention.
  • FIG. 6 is a hydraulic circuit diagram of a third embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the disintegration mixer includes a first rotor 3 rotated by a first hydraulic motor 2, a second rotor 5 rotated by a second hydraulic motor 4, and a third hydraulic motor 6 in a housing 1.
  • a third rotor 7 is provided, which is rotated by a rotary shaft.
  • Each rotor has a crushing mixer 8 radially attached to a rotating shaft.
  • the discharge pressure oil of the hydraulic pump 10 is supplied and controlled to the first main circuit 12 and the auxiliary circuit 13 via the main switching valve 11.
  • the first main circuit 12 is connected to the inlet port 6a of the third hydraulic motor 6, and the outlet port 6b is connected to the inlet port 2a of the first hydraulic motor 2 in the second main circuit 14.
  • the outlet port 2 b is connected to the inlet port 4 a of the second hydraulic motor 4 in the third main circuit 15, and the outlet port 4 b is connected to the drain path 16.
  • the auxiliary circuit 13 is connected to a first bypass passage 18 by a first switching valve 17. Communication ⁇ It is cut off.
  • the first bypass passage 18 is connected to the third main circuit 15 and has a throttle 19. Further, the auxiliary circuit 13 is communicated with the second bypass passage 21 by the second switching valve 20 and is shut off.
  • the second bypass path 21 is connected to the second main circuit 14, and the throttle 22 is provided.
  • the main switching valve 11 is set to the shut-off position a by the panel force, and is set to the supply position b when the solenoid 11 a is energized.
  • the first and second switching valves 17 and 20 are brought into the shut-off position c by spring force, and become the communication positions d when the solenoids 17 a and 20 a are energized, respectively. .
  • the second and third main circuits 14 and 15 are connected to a tank 25 via a suction valve 23 and a relief valve 24, respectively.
  • the first, second, and third hydraulic motors 2, 4, and 6 are configured such that the pressures (inlet pressures) of the inlet ports 2a, 4a, and 6a are equal to the pressures (outlet pressures) of the outlet ports 2b, 4b, and 6b.
  • P1> P2 steady pressure
  • the solenoid 11a of the main switching valve 11 is energized to the supply position b, and the solenoids of the first and second switching valves 17 and 20 are turned on. Energize the nodes 17a and 20a, respectively, to set the communication position d.
  • the discharge pressure oil of the hydraulic pump 10 is supplied to the inlet port 6a of the third hydraulic motor 6 in the first main circuit 12 and to the inlet port of the first hydraulic motor 4 in the first bypass passage 18. 4a to the outlet port 2b of the first hydraulic motor 2 and the second bypass path 21 to the inlet port 2a of the first hydraulic motor 2 and the outlet port 6b of the third hydraulic motor 6, respectively. Is performed.
  • the outlet pressure of the first hydraulic motor 2 becomes the steady pressure P2 and the inlet pressure becomes the starting pressure P1, so that the discharge pressure of the hydraulic pump 10 becomes the normal pressure P2 + the starting pressure P1.
  • the motor 2 starts to start, and then the pressure of the first hydraulic motor 2 becomes twice the steady-state pressure P2, but the pressure of the auxiliary circuit 13 is maintained at the above-mentioned pressure P3 by the restriction 22 of the first bypass passage 21 Is done.
  • the inlet pressure of the third hydraulic motor 6 becomes P3 and the outlet pressure becomes (2 XP 2), so that the discharge pressure of the hydraulic pump 10 becomes the steady pressure (P2 X 2) + the starting pressure P 1 (3)
  • the first, second, and third hydraulic motors 2, 4, and 6 need only have the pressure difference between the inlet pressure and the outlet pressure equal to the starting pressure P1 at which the starting torque is generated.
  • Each hydraulic motor can be a small hydraulic motor, and the maximum discharge pressure of the hydraulic pump 10 is equal to the starting pressure P1 + the steady pressure (P2 X 2).
  • the discharge pressure oil of the hydraulic pump 10 flows sequentially through the third hydraulic motor 6, the first hydraulic motor 2, and the second hydraulic motor 4, and flows through the first and second bypass passages 18, 21. Does not flow, so that each hydraulic motor can be reliably driven without malfunction.
  • the controller 30 controls the energization of the solenoids 11a and 20a of the first and second switching valves 17 and 20.
  • 1, 1st, 2nd pressure sensors 31, 32 that detect the pressure in the second bypass passages 18, 21, and the start switch 3 connected to the controller 30 3 is provided.
  • the controller 30 When a start signal is input from the start switch 33, the controller 30 energizes the solenoids 17a and 20a of the first and second switching valves 17 and 20. The communication position d.
  • the first pressure sensor 31 detects the pressure P1
  • the power supply to the solenoid 17a is stopped
  • the first switching valve 17 is set to the shut-off position d
  • the second pressure sensor 32 is set to the pressure P1.
  • P3 the power supply to the solenoid 20a is stopped, and the second switching valve 20 is set to the shut-off position d.
  • the auxiliary circuit 13 is connected to the first and second bypass paths 18 and 21, and the first and second bypass paths 18 and 19 are respectively throttled 19 and 19. 22 is provided.
  • the second, first, and third hydraulic motors 4, 2, and 6 are sequentially activated based on the same principle as in the first embodiment.
  • the hydraulic motors 6, 2, and 4 are connected in series by connecting the outlet port and the inlet port of the adjacent hydraulic motor with the main circuits 14 and 15, and located at one end.
  • a hydraulic pump 10 and a tank are in contact with the hydraulic motor inlet port 6a and the hydraulic motor outlet port 4b located at the other end via the main switching valve 11 respectively.
  • Bypass paths 18 and 21 are provided for connecting the main circuits 15 and 14 with the motor side circuit of the main switching valve 11 respectively.
  • the bypass paths 18 and 21 are provided in the respective bypass paths 18 and 21. Since at least one of the switching valves 17 and 20 and the throttles 19 and 22 are provided respectively, the switching valves 17 and 20 are connected to each other, and then the throttles 19 and 20 are connected.
  • By the action of 22 or by sequentially closing the switching valves 17 and 20 or by the action of the throttles 19 and 22 only Since starting can be started sequentially from the hydraulic motor 4 farthest from the hydraulic pump 10, the maximum discharge pressure of the hydraulic pump 10 can be set to the starting pressure + the steady pressure X (the number of hydraulic motors-1). And the driving device becomes inexpensive. Also, since the starting pressure supplied to the hydraulic motor is smaller than when all hydraulic motors are started simultaneously, the hydraulic motor can be downsized.
  • bypass valves 18 and 21 are provided with switching valves 17 and 20 for connecting and disconnecting the bypass passages

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

A disintegrating mixer comprises a plurality of rotors (3, 5, 7) rotatably provided in a housing (1), and respective oil hydraulic motors (2, 4, 6) for driving the respective rotors. Outlet ports (6b, 2b) and inlet ports (2a, 4a) of adjacent oil hydraulic motors are connected to each other by main circuits (14, 15) to connect the oil hydraulic motors in series, an oil hydraulic pump (10) and a tank, respectively, are connected to the inlet port (6a) of the oil hydraulic motor located at one end and the outlet port (4b) of the oil hydraulic motor located at the other end via a main changeover valve (11), bypass passages (18, 21) are provided which connect the respective main circuits (15, 14) and motor-side circuits of the main changeover valve together, and at least one of changeover valves (17, 20) and throttles (19, 22), respectively, is provided in the respective bypass passages to provide communication and cutoff of the bypass passages.

Description

明細書 解砕混合機の駆動装置 技術分野  Description Drive device for crushing mixer
本発明は、 土砂と土質改良材を解砕混合撹拌して土質改良され た土砂にする解砕混合機の駆動装置に関するものである。 背景技術  The present invention relates to a driving device of a crushing and mixing machine that crushes and mixes soil and soil with a soil improving material to form soil with improved soil. Background art
解砕混合機と しては、 ハウジング内に複数のロータを回転自在 に設け、 その各ロータを油圧モータで駆動する ものが知られてい る。  As a disintegrating mixer, there is known a disintegrating mixer in which a plurality of rotors are rotatably provided in a housing and each rotor is driven by a hydraulic motor.
前述の駆動装置においては、 各油圧モータをシ リ ーズに接続し て 1つの油圧ポンプの吐出圧油をそれらの油圧モータに順次供給 して各油圧モータを駆動する よ う に して、 各ロータの負荷が異 なっても各油圧モータを駆動できるようにしている。  In the drive device described above, each hydraulic motor is connected in series, and the hydraulic pressure discharged from one hydraulic pump is sequentially supplied to those hydraulic motors to drive each hydraulic motor. Each hydraulic motor can be driven even if the rotor load is different.
つま り、 1 つの油圧ポ ンプの吐出圧油を複数の油圧モータに 別々に供給して駆動する と、 最も負荷の小さな油圧モータにのみ 吐出圧油が供給されてそれ以外の油圧モータを駆動する こ とがで きないので、 油圧ポ ンプの吐出圧油を第 1 の油圧モータの入口 ポー 卜に供給し、 その第 1 の油圧モータの出口ポ一 卜よ り第 2 の 油圧モータの入口ポー トに圧油を供給するよう に して、 即ちそれ らの油圧モータをシ リーズに接続して、 各油圧モータの負荷が異 なっても 1 つの油圧ポンプの吐出圧油で各油圧モータを駆動でき るようにしている。 ところで、 前述のように各油圧モータをシ リーズに接続すると 各油圧モータの入口圧力と出口圧力の差圧を必要駆動 トルクに見 合う圧力 P a と しなければならないので、 油圧ポンプに最も遠い 油圧モータの入口圧力は P a となり、 次の油圧モータの出口圧力 が P a となって、 その油圧モータの入口圧力は 2 x P a とな り さ らに次の油圧モータの出口圧力は 2 X P a となって、 その油圧 モータの入口圧力は 3 x P a となる。 従って、 油圧ポンプの通常 の必要な最大吐出圧力は (通常必要な駆動 トルク に見合う圧力 P a ) X (油圧モータの数) の値となる。 In other words, when the hydraulic pressure discharged from one hydraulic pump is separately supplied to multiple hydraulic motors and driven, the hydraulic pressure is supplied only to the hydraulic motor with the smallest load, and the other hydraulic motors are driven. Since it is not possible to do so, the discharge pressure oil of the hydraulic pump is supplied to the inlet port of the first hydraulic motor, and the outlet port of the first hydraulic motor is connected to the inlet port of the second hydraulic motor. The hydraulic motors are connected to a series, and these hydraulic motors are connected to a series, and even if the load of each hydraulic motor is different, each hydraulic motor is driven by the discharge hydraulic oil of one hydraulic pump. I am trying to do it. By the way, when each hydraulic motor is connected to the series as described above, the differential pressure between the inlet pressure and the outlet pressure of each hydraulic motor must be set to a pressure Pa that matches the required driving torque. The inlet pressure of the motor is Pa, the outlet pressure of the next hydraulic motor is Pa, the inlet pressure of that hydraulic motor is 2 x Pa, and the outlet pressure of the next hydraulic motor is 2 XP and the inlet pressure of the hydraulic motor is 3 x Pa. Therefore, the normally required maximum discharge pressure of the hydraulic pump is the value of (pressure Pa corresponding to the normally required drive torque) X (the number of hydraulic motors).
さ らに、 前述の解砕混合機は、 ロータが定常駆動されている時 の油圧モータの トルクは小さいが、 ロータの起動を開始する時に 必要な油圧モータの トルクが大きいため、 油圧ポンプの起動時に 必要な最大吐出圧力は (起動時に必要な トルクに見合う圧力) X In addition, in the above-mentioned disintegrating mixer, the torque of the hydraulic motor when the rotor is driven in a steady state is small, but the torque of the hydraulic motor required when starting the rotor is large, so that the hydraulic pump is started. The maximum discharge pressure required at the time is (pressure corresponding to the torque required at startup) X
(油圧モータの数) の値となる。 そのため、 エンジン等の駆動源 の必要な馬力もさ らに大き くなる。 (The number of hydraulic motors). Therefore, the required horsepower of the driving source such as the engine is further increased.
このために、 駆動装置が高価となる。  This makes the drive expensive.
そこで、 本発明は前述の問題点に鑑み、 起動時に必要な油圧ポ ンプの最大吐出圧が従来に比べて低く なるようにして、 駆動装置 が安価になるようにした解砕混合機の駆動装置を提供するこ とを 目的とする。 発明の開示  In view of the above problems, the present invention provides a drive device for a crushing and mixing machine in which the maximum discharge pressure of a hydraulic pump required at the time of startup is reduced as compared with the conventional case, so that the drive device is inexpensive. The purpose is to provide Disclosure of the invention
本発明による解砕混合機の駆動装置は、  The driving device of the crushing and mixing machine according to the present invention comprises:
ハウジング内に複数のロータを回転自在に設け、 該各ロータを 各油圧モータでそれぞれ駆動するようにした解砕混合機において、 隣接する前記油圧モータの出口ポー ト と入口ポー トを主回路で 接続するこ とによ り前記油圧モータをシ リ ーズに接続し、 一端に 位置する前記油圧モータの入口ポ一 ト と他端に位置する前記油圧 モータの出口ポー 卜に主切換弁を介して油圧ポンプとタ ンクをそ れぞれ接続し、 In a disintegration mixer in which a plurality of rotors are rotatably provided in a housing, and each of the rotors is driven by each hydraulic motor, The hydraulic motor is connected in series by connecting the outlet port and the inlet port of the adjacent hydraulic motor with the main circuit, and the inlet port of the hydraulic motor located at one end is connected to the other port. The hydraulic pump and the tank are connected via the main switching valve to the outlet port of the hydraulic motor located at the end, respectively.
前記各主回路と前記主切換弁のモータ側回路とをそれぞれ接続 するバイパス路を設け、 該各バイパスに該バイパスを連通 · 遮断 する切換弁及び絞りの少な く と も一方をそれぞれ設けたものであ る。  A bypass path is provided to connect each of the main circuits and the motor side circuit of the main switching valve, and each of the bypasses is provided with at least one of a switching valve for communicating and blocking the bypass and at least one of the throttles. is there.
そして、 上記構成において、  And in the above configuration,
前記各バイパスに前記切換弁と前記絞りをそれぞれ設けても良 い。  The switching valve and the throttle may be provided in each of the bypasses.
また、 前記各バイパスに前記切換弁と前記各バイパス路の圧力 を検出する圧力センサとをそれぞれ設け、 前記圧力セ ンサの検出 圧力が所定圧力となった時に該当するバイパス路の前記切換弁を 遮断位置にするコン トローラを備えていても良い。  In addition, each of the bypasses is provided with the switching valve and a pressure sensor for detecting the pressure of each of the bypass passages, and shuts off the switching valve of the corresponding bypass passage when the pressure detected by the pressure sensor reaches a predetermined pressure. It may be equipped with a controller for positioning.
また、 前記各バイパスに前記絞りをそれぞれ設けても良い。 上記構成によれば、  Further, the throttle may be provided in each of the bypasses. According to the above configuration,
隣接する前記油圧モータの出口ポー 卜 と入口ポー トを主回路で 接続するこ とによ り前記油圧モータをシ リ ーズに接続し、 一端に 位置する前記油圧モータの入日ポ一 卜 と他端に位置する前記油圧 モータの出口ポー 卜に主切換弁 1 1 を介して油圧ポンプとタ ンク をそれぞれ接続し、  The hydraulic motor is connected in series by connecting the outlet port and the inlet port of the adjacent hydraulic motor with a main circuit, and the inlet port of the hydraulic motor located at one end is connected to the inlet port. The hydraulic pump and the tank are connected to the outlet port of the hydraulic motor located at the other end via the main switching valve 11, respectively.
前記各主回路と前記主切換弁のモータ側回路とをそれぞれ接続 するバイパス路を設け、 該各バイパス路に該各バイパス路を連通 • 遮断する切換弁及び絞りの少な く と一方をそれぞれ設けている から、 切換弁を連通状態にした後、 絞りの作用によ り、 また切換 弁を順次遮断状態にする こ とによ り、 或いは絞りだけの作用によ り、 A bypass path is provided for connecting each of the main circuits and the motor side circuit of the main switching valve, and each of the bypass paths is connected to each of the bypass paths. • Since at least one of the switching valve and the throttle to be shut off is provided respectively, after the switching valve is brought into the communicating state, by the action of the throttle, and by sequentially turning the switching valve into the shutting state, Or, by the action of the aperture only,
油圧ポンプより最も遠い油圧モータから順次起動を開始できる から、 油圧ポンプの最大吐出圧力を起動圧力 +定常圧力 X (油圧 モータの数一 1 ) の圧力とするこ とができ、 油圧ポンプが小型で 安価となる。 また、 全油圧モータを同時起動する場合よ り も油圧 モータに供給される起動圧力が小さ く なるから、 油圧モータを小 型にできる。  Since the start can be started sequentially from the hydraulic motor farthest from the hydraulic pump, the maximum discharge pressure of the hydraulic pump can be set to the starting pressure + the steady pressure X (the number of hydraulic motors-1). It will be cheaper. Also, since the starting pressure supplied to the hydraulic motor is smaller than when all hydraulic motors are started simultaneously, the hydraulic motor can be made smaller.
また、 各バイパス路に該バイパス路を連通 · 遮断する切換弁を 設けている場合、  In addition, in the case where a switching valve for communicating / cutting off the bypass path is provided in each bypass path,
起動を開始して定常駆動となった時には切換弁を遮断位置にす るこ とにより、 油圧ポンプの吐出圧油が各油圧モータを順次流れ るようになるから、 誤動作するこ とな く 各ロータを確実に定常駆 動できる。 図面の簡単な説明  By setting the switching valve to the shut-off position when the engine is started and steady drive is started, the hydraulic oil discharged from the hydraulic pump flows sequentially through each hydraulic motor, so that each rotor does not malfunction. Can be driven reliably. BRIEF DESCRIPTION OF THE FIGURES
本発明は、 以下の詳細な説明及び本発明の実施例を示す添付図 面によ り、 よ り良く理解される ものとなろう。 なお、 添付図面に 示す実施例は、 発明を特定するこ とを意図する ものではな く 、 単 に説明及び理解を容易とするものである。  The invention will be better understood from the following detailed description and the accompanying drawings illustrating an embodiment of the invention. The embodiments shown in the accompanying drawings are not intended to specify the invention, but merely to facilitate explanation and understanding.
図中、  In the figure,
図 1 は、 本発明による駆動装置の第 1 実施例を含む解砕混合機 の説明図である。 図 2 は、 本発明の第 1実施例の油圧回路図である。 FIG. 1 is an explanatory diagram of a crushing and mixing machine including a first embodiment of a driving device according to the present invention. FIG. 2 is a hydraulic circuit diagram of the first embodiment of the present invention.
図 3は、 上記第 1実施例における起動開始時の説明図である 図 4 は、 上記第 1実施例における定常駆動時の説明図である 図 5は、 本発明の第 2実施例の油圧回路図である。  FIG. 3 is an explanatory diagram at the start of startup in the first embodiment. FIG. 4 is an explanatory diagram at the time of steady driving in the first embodiment. FIG. 5 is a hydraulic circuit according to a second embodiment of the present invention. FIG.
図 6は、 本発明の第 3実施例の油圧回路図である。 発明を実施するための好適な態様  FIG. 6 is a hydraulic circuit diagram of a third embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の好適実施例による解砕混合機の駆動装置を添 付図面を参照しながら説明する。  Hereinafter, a drive device of a crushing and mixing machine according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
図 1 に示すように、 解砕混合機は、 ハウジング 1 内に第 1 油圧 モータ 2で回転される第 1 ロータ 3、 第 2油圧モータ 4で回転さ れる第 2 ロータ 5、 第 3油圧モータ 6 で回転される第 3 ロータ 7 を設けたものであり、 各ロータは、 回転軸に解砕混合子 8を放射 状に取付けて成る ものである。 そ して、 これは、 ノヽウジング 1 の 開口部 9 よ り土砂と土質改良材を投入して解砕混合撹拌して土質 改良した土砂をつく るようにしている。  As shown in FIG. 1, the disintegration mixer includes a first rotor 3 rotated by a first hydraulic motor 2, a second rotor 5 rotated by a second hydraulic motor 4, and a third hydraulic motor 6 in a housing 1. A third rotor 7 is provided, which is rotated by a rotary shaft. Each rotor has a crushing mixer 8 radially attached to a rotating shaft. In this method, earth and sand and soil improvement material are introduced from the opening 9 of the nozzle 1 to disintegrate, mix, and stir to produce soil with improved soil quality.
次に、 解砕混合機の駆動装置の第 1実施例について説明する。 図 2 に示すように、 油圧ポンプ 1 0 の吐出圧油は主切換弁 1 1 を介して第 1主回路 1 2 と補助回路 1 3 に供給制御される。 第 1 主回路 1 2 は第 3油圧モータ 6 の入口ポー ト 6 a に接続され、 そ の出口ポー ト 6 b は第 2主回路 1 4 で第 1 油圧モータ 2 の入口 ポー ト 2 a に接続され、 その出口ポー ト 2 b は第 3主回路 1 5 で 第 2油圧モータ 4 の入口ポ一 ト 4 a に接続され、 その出口ポー ト 4 bは ドレーン路 1 6 に接続されている。  Next, a description will be given of a first embodiment of the driving device for the crushing and mixing machine. As shown in FIG. 2, the discharge pressure oil of the hydraulic pump 10 is supplied and controlled to the first main circuit 12 and the auxiliary circuit 13 via the main switching valve 11. The first main circuit 12 is connected to the inlet port 6a of the third hydraulic motor 6, and the outlet port 6b is connected to the inlet port 2a of the first hydraulic motor 2 in the second main circuit 14. The outlet port 2 b is connected to the inlet port 4 a of the second hydraulic motor 4 in the third main circuit 15, and the outlet port 4 b is connected to the drain path 16.
前記補助回路 1 3 は、 第 1 切換弁 1 7で第 1バイパス路 1 8 に 連通 · 遮断されるようになっている。 その第 1バイパス路 1 8は 第 3主回路 1 5に接続され、 且つ絞り 1 9が設けてある。 さ らに 前記補助回路 1 3は、 第 2切換弁 2 0で第 2バイパス路 2 1 に連 通 ' 遮断されるよ う になっている。 その第 2バイパス路 2 1 は 第 2主回路 1 4に接続され、 かつ絞り 2 2が設けてある。 The auxiliary circuit 13 is connected to a first bypass passage 18 by a first switching valve 17. Communication · It is cut off. The first bypass passage 18 is connected to the third main circuit 15 and has a throttle 19. Further, the auxiliary circuit 13 is communicated with the second bypass passage 21 by the second switching valve 20 and is shut off. The second bypass path 21 is connected to the second main circuit 14, and the throttle 22 is provided.
前記主切換弁 1 1 は、 パネ力で遮断位置 a となり、 ソ レノ ィ ド 1 1 aに通電される と供給位置 b となるようになつている。 前記 第 1 · 第 2切換弁 1 7 , 2 0は、 ばね力で遮断位置 c となり、 ソ レノイ ド 1 7 a , 2 0 aに通電される とそれぞれ連通位置 d とな るようになっている。  The main switching valve 11 is set to the shut-off position a by the panel force, and is set to the supply position b when the solenoid 11 a is energized. The first and second switching valves 17 and 20 are brought into the shut-off position c by spring force, and become the communication positions d when the solenoids 17 a and 20 a are energized, respectively. .
前記第 2 , 第 3主回路 1 4 , 1 5 は、 それぞれ吸込弁 2 3 と リ リーフ弁 2 4を経てタンク 2 5にそれぞれ接続されている。  The second and third main circuits 14 and 15 are connected to a tank 25 via a suction valve 23 and a relief valve 24, respectively.
前記第 1 , 第 2 , 第 3油圧モータ 2, 4 , 6 は、 入口ポー ト 2 a , 4 a , 6 aの圧力 (入口圧力) が出口ポー ト 2 b , 4 b . 6 bの圧力 (出口圧力) より もそれぞれ起動圧力 P 1だけ高圧の時 に矢印方向に起動を開始し、 定常駆動状態となる と入口圧力と出 口圧力の差圧は定常圧力 P2 ( P 1 > P 2 ) となるようになつてい る  The first, second, and third hydraulic motors 2, 4, and 6 are configured such that the pressures (inlet pressures) of the inlet ports 2a, 4a, and 6a are equal to the pressures (outlet pressures) of the outlet ports 2b, 4b, and 6b. Start pressure in the direction of the arrow when the starting pressure is higher by P1 than the outlet pressure), and the differential pressure between the inlet pressure and the outlet pressure becomes steady pressure P2 (P1> P2) when in the steady driving state. It is becoming
つま り、 油圧モータ駆動開始時には高 トルクが必要であるから 起動圧力 P 1は高圧となり、 定常駆動状態では トルクが小さ く なる ので定常圧力 P2は低圧となる。  In other words, when the hydraulic motor is started to drive, a high torque is required, so that the starting pressure P1 becomes high. In a steady driving state, the torque becomes small, so that the steady pressure P2 becomes low.
次に、 本第 1実施例の作動を説明する。  Next, the operation of the first embodiment will be described.
(起動開始時)  (At the start of startup)
図 3に示すように、 主切換弁 1 1 のソ レノ ィ ド 1 1 aに通電し て供給位置 b とすると共に、 第 1 · 第 2切換弁 1 7 , 2 0のソ レ ノイ ド 1 7 a, 2 0 aにそれぞれ通電して連通位置 dとする。 As shown in FIG. 3, the solenoid 11a of the main switching valve 11 is energized to the supply position b, and the solenoids of the first and second switching valves 17 and 20 are turned on. Energize the nodes 17a and 20a, respectively, to set the communication position d.
する と、 油圧ポンプ 1 0の吐出圧油は、 第 1主回路 1 2で第 3 油圧モータ 6の入口ポー ト 6 aに、 第 1バイパス路 1 8で第 1油 圧モータ 4の入口ポー ト 4 a と第 1 油圧モータ 2 の出口ポー ト 2 b に、 第 2バイパス路 2 1 で第 1 油圧モータ 2 の入口ポー ト 2 a と第 3油圧モータ 6の出口ポー ト 6 bに、 それぞれ供給され る。  Then, the discharge pressure oil of the hydraulic pump 10 is supplied to the inlet port 6a of the third hydraulic motor 6 in the first main circuit 12 and to the inlet port of the first hydraulic motor 4 in the first bypass passage 18. 4a to the outlet port 2b of the first hydraulic motor 2 and the second bypass path 21 to the inlet port 2a of the first hydraulic motor 2 and the outlet port 6b of the third hydraulic motor 6, respectively. Is performed.
これによ り、 第 1油圧モータ 2の入口ポー ト 2 aの圧力 (入口 圧力) と出口ポー ト 2 bの圧力 (出口圧力) がほぼ等し く な り . 第 3油圧モータ 6 の入口ポー ト 6 aの圧力 (入口圧力) と出口 ポー ト 6 bの圧力 (出口圧力) がほぼ等しく なり、 第 2油圧モー タ 4の入口ポー ト 4 aの圧力 (入口圧力) と出口ポー ト 4 bの圧 力 (出口圧力) の差は出口ポー ト 4 bの圧力がゼロであるから入 口圧力そのものとなる。  As a result, the pressure (inlet pressure) at the inlet port 2a of the first hydraulic motor 2 and the pressure (outlet pressure) at the outlet port 2b become substantially equal. The pressure at 6a (inlet pressure) and the pressure at outlet port 6b (outlet pressure) are almost equal, and the pressure at inlet port 4a of the second hydraulic motor 4 (inlet pressure) and the outlet port 4b The pressure (outlet pressure) difference is the inlet pressure itself because the pressure at outlet port 4b is zero.
前述の状態で油圧ポンプ 1 0 の吐出圧力が上昇して第 2油圧 モータ 4の入口圧力が該第 2油圧モータ 4に起動 トルクを発生さ せる起動圧力 P 1 となると第 2油圧モータ 4が起動を開始し、 その 後第 2油圧モータ 4の入口圧力が定常圧力 P2となるが、 第 1バイ パス路 1 8の絞り 1 9によ り補助回路 1 3の圧力は起動圧力 P i に維持される。  In the state described above, when the discharge pressure of the hydraulic pump 10 rises and the inlet pressure of the second hydraulic motor 4 becomes the starting pressure P1 at which the second hydraulic motor 4 generates a starting torque, the second hydraulic motor 4 starts. After that, the inlet pressure of the second hydraulic motor 4 becomes the steady pressure P2, but the pressure of the auxiliary circuit 13 is maintained at the starting pressure P i by the throttle 19 of the first bypass path 18. You.
これにより、 第 1油圧モ一夕 2の出口圧力は定常圧力 P2で、 入 口圧力は起動圧力 P 1 となるので、 油圧ポンプ 1 0の吐出圧力が定 常圧力 P2 +起動圧力 P 1 の第 1油圧モータ 2に起動 トルクを発生 させる圧力 P 3まで上昇すると、 第 1油圧モータ 2の入口圧力と出 口圧力の差圧が P3 (= P2 + P l ) — P2 = P l となって第 1油圧 モータ 2が起動を開始し、 その後第 1油圧モータ 2の圧力は定常 圧力 P2の 2倍となるが、 第 バイパス路 2 1の絞り 2 2によって 補助回路 1 3の圧力は前述の圧力 P3に維持される。 As a result, the outlet pressure of the first hydraulic motor 2 becomes the steady pressure P2 and the inlet pressure becomes the starting pressure P1, so that the discharge pressure of the hydraulic pump 10 becomes the normal pressure P2 + the starting pressure P1. (1) When the pressure that generates the starting torque in the hydraulic motor 2 rises to P3, the differential pressure between the inlet pressure and the outlet pressure of the first hydraulic motor 2 becomes P3 (= P2 + Pl) — P2 = Pl. 1 hydraulic The motor 2 starts to start, and then the pressure of the first hydraulic motor 2 becomes twice the steady-state pressure P2, but the pressure of the auxiliary circuit 13 is maintained at the above-mentioned pressure P3 by the restriction 22 of the first bypass passage 21 Is done.
これによ り、 第 3油圧モータ 6の入口圧力が P3 で出口圧力が ( 2 X P 2 ) となるので、 油圧ポンプ 1 0の吐出圧力が定常圧力 ( P2 X 2 ) +起動圧力 P 1 の第 3油圧モータ 6に起動時 トルクを 発生させる圧力 P4まで上昇すると、 第 3油圧モータ 6の入口圧力 と出口圧力の圧力差が P4 (= P2 + P2 + P 1 ) — ( P2 + P2 ) = P l となり、 第 3油圧モータ 6が起動を開始する。  As a result, the inlet pressure of the third hydraulic motor 6 becomes P3 and the outlet pressure becomes (2 XP 2), so that the discharge pressure of the hydraulic pump 10 becomes the steady pressure (P2 X 2) + the starting pressure P 1 (3) When the pressure that generates torque at the start of the hydraulic motor 6 rises to P4, the pressure difference between the inlet pressure and the outlet pressure of the third hydraulic motor 6 becomes P4 (= P2 + P2 + P 1) — (P2 + P2) = P l, and the third hydraulic motor 6 starts to start.
以上の様に、 第 1 , 第 2, 第 3油圧モータ 2, 4 , 6は、 それ ぞれ入口圧力と出口圧力の圧力差が起動時 トルクを発生する起動 圧力 P 1 となれば良いので、 各油圧モータを小型の油圧モータとす ることができるし、 油圧ポンプ 1 0の最大吐出圧力は起動圧力 P 1 + 定常圧力 ( P2 X 2 ) の圧力となる。  As described above, the first, second, and third hydraulic motors 2, 4, and 6 need only have the pressure difference between the inlet pressure and the outlet pressure equal to the starting pressure P1 at which the starting torque is generated. Each hydraulic motor can be a small hydraulic motor, and the maximum discharge pressure of the hydraulic pump 10 is equal to the starting pressure P1 + the steady pressure (P2 X 2).
例えば、 起動圧力 P 1 が 1 3 O k g / c m2 で定常圧力 P 2 が 3 0 k g / c m2 の場合には、 油圧ポンプ 1 0の必要な最大吐出圧 力 は 1 3 0 k g / c m 2 + 3 0 k g / c m 2 x 2 ) = 1 9 0 k g/ c m2となる。 For example, if the starting pressure P 1 is 13 O kg / cm 2 and the steady pressure P 2 is 30 kg / cm 2 , the required maximum discharge pressure of the hydraulic pump 10 is 1 30 kg / cm 2 + 3 0 kg / cm 2 x 2) = 1 9 0 becomes kg / cm 2.
これに対して、 第 1, 第 2バイパス路 1 8 , 2 1 と第 1 · 第 2 切換弁 1 7 , 2 0を用いない場合には、 油圧ポンプ 1 0の最大吐 出圧力は 1 3 0 k g/ c m2 x 3 = 3 9 0 k g/ c m2となる。 (定常駆動時) On the other hand, when the first and second bypass passages 18 and 21 and the first and second switching valves 17 and 20 are not used, the maximum discharge pressure of the hydraulic pump 10 is 130 kg / cm 2 x 3 = 390 kg / cm 2 . (During steady drive)
前述のように第 1 , 第 2 , 第 3油圧モータ 2 , 4, 6が起動を 開始したら、 図 4に示すよ う に、 第 1, 第 2切換弁 1 7 , 2 0の ソレノイ ド 1 7 a , 2 0 aへの通電を止めて遮断位置 c と し、 第 3, 第 1 , 第 2油圧モータ 6 , 2 , 4 をシ リ ーズに接続した状態 にする。 As described above, when the first, second, and third hydraulic motors 2, 4, and 6 start to operate, as shown in FIG. 4, the solenoids 17 of the first and second switching valves 17 and 20 are used. a, 20a. 3, Connect the first and second hydraulic motors 6, 2, and 4 to the series.
このよう にすれば、 油圧ポンプ 1 0 の吐出圧油が第 3油圧モー タ 6 、 第 1 油圧モータ 2 、 第 2 油圧モータ 4 と順次流れ、 第 1 , 第 2バイパス路 1 8 , 2 1 には流れないから、 誤動作する こ とが なく各油圧モータを確実に駆動することができる。  In this way, the discharge pressure oil of the hydraulic pump 10 flows sequentially through the third hydraulic motor 6, the first hydraulic motor 2, and the second hydraulic motor 4, and flows through the first and second bypass passages 18, 21. Does not flow, so that each hydraulic motor can be reliably driven without malfunction.
次に、 本発明の第 2実施例を説明する。  Next, a second embodiment of the present invention will be described.
これは、 上記第 1実施例のの構成から、 絞り 1 9 , 2 1 を除き . 下記の構成を付加したものである。  This is obtained by adding the following configuration to the configuration of the first embodiment except for the apertures 19 and 21.
即ち、 図 5 に示すよ う に、 第 1 , 第 2切換弁 1 7, 2 0 のソ レ ノ ィ ド 1 1 a , 2 0 aへの通電を制御する コ ン ト ローラ 3 0 と - 第 1 , 第 2バイパス路 1 8 , 2 1 の圧力を検出する第 1 , 第 2圧 力セ ンサ 3 1 , 3 2 と、 コ ン ト ロ ー ラ 3 0 に接続された起動ス イ ッチ 3 3を設ける。  That is, as shown in FIG. 5, the controller 30 controls the energization of the solenoids 11a and 20a of the first and second switching valves 17 and 20. 1, 1st, 2nd pressure sensors 31, 32 that detect the pressure in the second bypass passages 18, 21, and the start switch 3 connected to the controller 30 3 is provided.
前記コン トローラ 3 0 は、 起動スィ ッチ 3 3から起動信号が入 力される と、 第 1 , 第 2 切換弁 1 7 , 2 0 のソ レノ イ ド 1 7 a , 2 0 a に通電して連通位置 d とする。 そ して、 第 1 圧力セ ンサ 3 1が圧力 P 1 を検出したらソレノィ ド 1 7 aへの通電を止めて第 1切換弁 1 7を遮断位置 d と し、 第 2圧力センサ 3 2が圧力 P3を 検出したらソレノィ ド 2 0 aへの通電を止めて第 2切換弁 2 0を 遮断位置 d とする。 従って、 第 2油圧モータ 4が定常駆動状態に 戻っても補助回路 1 3の圧力は P 1 に保持され、 第 1油圧モータ 2 が定常運転状態に戻っても補助回路 1 3の圧力は P 3に保持される, 従って、 上記第 1 実施例と同 じ原理で第 2 , 第 1 , 第 3 油圧 モータ 4 , 2 , 6が順次起動される と と もに、 絞り 1 9 , 2 2が 不要となる。 When a start signal is input from the start switch 33, the controller 30 energizes the solenoids 17a and 20a of the first and second switching valves 17 and 20. The communication position d. When the first pressure sensor 31 detects the pressure P1, the power supply to the solenoid 17a is stopped, the first switching valve 17 is set to the shut-off position d, and the second pressure sensor 32 is set to the pressure P1. When P3 is detected, the power supply to the solenoid 20a is stopped, and the second switching valve 20 is set to the shut-off position d. Therefore, even if the second hydraulic motor 4 returns to the steady operation state, the pressure of the auxiliary circuit 13 is maintained at P 1, and even if the first hydraulic motor 2 returns to the steady operation state, the pressure of the auxiliary circuit 13 becomes P 3. Therefore, the second, first, and third hydraulic motors 4, 2, 6 are sequentially activated according to the same principle as the first embodiment, and the throttles 19, 22 are also activated. It becomes unnecessary.
さ らに、 第 1 , 第 2切換弁 1 7 , 2 0 の ソ レノ イ ド 1 7 a 2 0 aへの通電を止めて遮断位置 c と した時、 第 3 , 第 1 , 第 2 油圧モータ 6 , 2, 4はシリーズに接続された状態となる。  Further, when the power to the solenoids 17a and 20a of the first and second switching valves 17 and 20 is stopped and the cutoff position c is reached, the third, first and second hydraulic motors 6, 2, and 4 are connected to the series.
次に、 本発明の第 3実施例を説明する。  Next, a third embodiment of the present invention will be described.
これは、 上記第 1 実施例の構成か ら第 1 , 第 2切換弁 1 7 ; 2 0を除いたものである。 This configuration or et first of the first embodiment, the second switching valve 1 7; are excluded from the 2 0.
即ち、 図 6に示すよう に、 補助回路 1 3を第 1 , 第 2バイパス 路 1 8 , 2 1 に接続して、 該第 1 , 第 2バイパス路 1 8 , 1 9に それぞれ絞り 1 9 , 2 2を設けている。  That is, as shown in FIG. 6, the auxiliary circuit 13 is connected to the first and second bypass paths 18 and 21, and the first and second bypass paths 18 and 19 are respectively throttled 19 and 19. 22 is provided.
従って、 上記第 1 実施例と同 じ原理で第 2 , 第 1 , 第 3油圧 モータ 4 , 2 , 6が順次起動される。  Therefore, the second, first, and third hydraulic motors 4, 2, and 6 are sequentially activated based on the same principle as in the first embodiment.
以上のように、 本発明によれば、  As described above, according to the present invention,
隣接する前記油圧モー タ の出口ポー 卜 と入口ポー トを主回路 1 4 , 1 5で接続するこ とによ り前記油圧モータ 6 , 2, 4をシ リ ーズに接続し、 一端に位置する前記油圧モータ の入口ポー ト 6 a と他端に位置する前記油圧モータの出口ポー ト 4 bに主切換 弁 1 1を介して油圧ポンプ 1 0 とタ ンクをそれぞれ接繞し、  The hydraulic motors 6, 2, and 4 are connected in series by connecting the outlet port and the inlet port of the adjacent hydraulic motor with the main circuits 14 and 15, and located at one end. A hydraulic pump 10 and a tank are in contact with the hydraulic motor inlet port 6a and the hydraulic motor outlet port 4b located at the other end via the main switching valve 11 respectively.
前記各主回路 1 5 , 1 4 と前記主切換弁 1 1 のモータ側回路と をそれぞれ接続するバイパス路 1 8 , 2 1 を設け、 該各バイパス 路 1 8 , 2 1 に該各バイ パス路を連通 , 遮断する切換弁 1 7 , 2 0及び絞り 1 9 , 2 2の少な く と も一方をそれぞれ設けている から、 切換弁 1 7 , 2 0を連通状態に した後、 絞り 1 9 , 2 2の 作用により、 また切換弁 1 7 , 2 0を順次遮断状態にする こ とに より、 或いは絞り 1 9, 2 2だけの作用により、 油圧ポンプ 1 0 よ り最も遠い油圧モータ 4から順次起動を開始 できるから、 油圧ポンプ 1 0の最大吐出圧力を起動圧力 +定常圧 力 X (油圧モータの数— 1 ) の圧力とする こ とができ、 駆動装置 が安価となる。 また、 全油圧モータを同時起動する場合よ り も油 圧モータに供給される起動圧力が小さ く なるから、 油圧モータを 小型にできる。 Bypass paths 18 and 21 are provided for connecting the main circuits 15 and 14 with the motor side circuit of the main switching valve 11 respectively.The bypass paths 18 and 21 are provided in the respective bypass paths 18 and 21. Since at least one of the switching valves 17 and 20 and the throttles 19 and 22 are provided respectively, the switching valves 17 and 20 are connected to each other, and then the throttles 19 and 20 are connected. By the action of 22 or by sequentially closing the switching valves 17 and 20 or by the action of the throttles 19 and 22 only, Since starting can be started sequentially from the hydraulic motor 4 farthest from the hydraulic pump 10, the maximum discharge pressure of the hydraulic pump 10 can be set to the starting pressure + the steady pressure X (the number of hydraulic motors-1). And the driving device becomes inexpensive. Also, since the starting pressure supplied to the hydraulic motor is smaller than when all hydraulic motors are started simultaneously, the hydraulic motor can be downsized.
また、 各バイパス路 1 8 , 2 1 に該バイパス路を連通 . 遮断す る切換弁 1 7 , 2 0を設けている場合、  Also, when the bypass valves 18 and 21 are provided with switching valves 17 and 20 for connecting and disconnecting the bypass passages,
起動を開始して定常駆動となった時には切換弁を遮断位置にす ることによ り、 油圧ポンプ 1 0の吐出圧油が各油圧モータを順次 流れるよう になるから、 誤動作する こ とな く 各ロータを確実に定 常駆動できる。  By setting the switching valve to the shut-off position when the drive is started and steady driving is performed, the discharge pressure oil of the hydraulic pump 10 flows through each hydraulic motor sequentially, so that malfunction does not occur. Each rotor can be driven reliably and reliably.
なお、 本発明は例示的な実施例について説明 したが、 開示した 実施例に関 して、 本発明の要旨及び範囲を逸脱する こ とな く . 種々の変更、 省略、 追加が可能であるこ とは、 当業者において自 明である。 従って、 本発明は、 上記の実施例に限定される もので はなく 、 請求の範囲に記載された要素によって規定される範囲及 びその均等範囲を包含するものとして理解されなければならない。  Although the present invention has been described with reference to illustrative embodiments, the disclosed embodiments do not depart from the spirit and scope of the present invention. Various modifications, omissions, and additions are possible. Is obvious to those skilled in the art. Therefore, the present invention should not be limited to the above-described embodiments, but should be understood to include the scope defined by the elements recited in the claims and their equivalents.

Claims

請求の範囲 The scope of the claims
1 . ハウジング内に複数のロータを回転自在に設け、 該各ロータ を各油圧モータでそれぞれ駆動するよう に した解砕混合機におい て、  1. In a crushing and mixing machine in which a plurality of rotors are rotatably provided in a housing and each of the rotors is driven by a respective hydraulic motor,
隣接する前記油圧モータの出口ポ一 ト と入口ポー トを主回路で 接続するこ とによ り前記油圧モータをシリ ーズに接続し、 一端に 位置する前記油圧モータの入口ポー ト と他端に位置する前記油圧 モータの出口ポー トに主切換弁を介して油圧ポンプとタ ンクをそ れぞれ接続し、  The hydraulic motor is connected in series by connecting the outlet port and the inlet port of the adjacent hydraulic motor with the main circuit, and the inlet port and the other end of the hydraulic motor located at one end are connected. The hydraulic pump and the tank are connected via the main switching valve to the outlet port of the hydraulic motor located at
前記各主回路と前記主切換弁のモータ側回路とをそれぞれ接続 するバイパス路を設け、 該各バイパスに該バイパスを連通 · 遮断 する切換弁及び絞りの少な く とも一方をそれぞれ設けた、 解砕混 合機の駆動装置。  Crushing, wherein bypass paths are provided for connecting the respective main circuits and the motor-side circuit of the main switching valve, and at least one of a switching valve for communicating and blocking the bypass and at least one of the throttles is provided for each bypass; Drive for mixing machine.
2 . 前記各バイパスに前記切換弁と前記絞りをそれぞれ設けた. 請求の範囲 1 に記載の解砕混合機の駆動装置。 2. The switching valve and the throttle are provided in each of the bypasses. The driving device of the crushing mixer according to claim 1.
3 . 前記各バイパスに前記切換弁と前記各バイパス路の圧力を検 出する圧力センサとをそれぞれ設け、 前記圧力センサの検出圧力 が所定圧力となった時に該当するバイパス路の前記切換弁を遮断 位置にするコン ト ロ一ラを備えている、 請求の範囲 1 に記載の解 砕混合機の駆動装置。 3. Each of the bypasses is provided with the switching valve and a pressure sensor for detecting the pressure of each of the bypass passages, and when the pressure detected by the pressure sensor reaches a predetermined pressure, the switching valve of the corresponding bypass passage is shut off. The drive device for the crushing and mixing machine according to claim 1, further comprising a controller for positioning.
4 . 前記各バイパスに前記絞りをそれぞれ設けた、 請求の範囲 1 に記載の解砕混合機の駆動装置。 4. The drive device for the crushing and mixing machine according to claim 1, wherein the throttle is provided in each of the bypasses.
PCT/JP1996/002459 1995-08-31 1996-08-30 Drive device for disintegrating mixer WO1997007878A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19681540T DE19681540T1 (en) 1995-08-31 1996-08-30 Device for driving a crushing / comminution mixing machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/223413 1995-08-31
JP22341395A JP3358774B2 (en) 1995-08-31 1995-08-31 Drive for crushing mixer

Publications (1)

Publication Number Publication Date
WO1997007878A1 true WO1997007878A1 (en) 1997-03-06

Family

ID=16797762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002459 WO1997007878A1 (en) 1995-08-31 1996-08-30 Drive device for disintegrating mixer

Country Status (4)

Country Link
JP (1) JP3358774B2 (en)
KR (1) KR100341137B1 (en)
DE (1) DE19681540T1 (en)
WO (1) WO1997007878A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102535436A (en) * 2011-12-26 2012-07-04 龙工(上海)机械制造有限公司 Fully hydraulically driven multi-stirring wheel synchronization device for stirring curer
CN105561842A (en) * 2016-01-22 2016-05-11 苏州奥然日用品有限公司 Mixed chemical raw material rapid stirring mechanism with simple clamping mechanism

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100496831B1 (en) * 2002-07-24 2005-06-22 쿄오까도엔지니어링가부시기가이샤 Ground pouring device and ground pouring method
CN105179340B (en) * 2015-09-10 2017-06-06 北汽福田汽车股份有限公司 Concrete mixer and its stirring hydraulic system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632520Y2 (en) * 1979-10-14 1988-01-22
JPH0316827Y2 (en) * 1986-08-11 1991-04-10
JPH04353403A (en) * 1991-02-19 1992-12-08 Apv Chem Mach Inc High output power continuous processing machine and its operation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632520Y2 (en) * 1979-10-14 1988-01-22
JPH0316827Y2 (en) * 1986-08-11 1991-04-10
JPH04353403A (en) * 1991-02-19 1992-12-08 Apv Chem Mach Inc High output power continuous processing machine and its operation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102535436A (en) * 2011-12-26 2012-07-04 龙工(上海)机械制造有限公司 Fully hydraulically driven multi-stirring wheel synchronization device for stirring curer
CN102535436B (en) * 2011-12-26 2014-06-18 龙工(上海)机械制造有限公司 Fully hydraulically driven multi-stirring wheel synchronization device for stirring curer
CN105561842A (en) * 2016-01-22 2016-05-11 苏州奥然日用品有限公司 Mixed chemical raw material rapid stirring mechanism with simple clamping mechanism
CN105561842B (en) * 2016-01-22 2017-09-29 苏州奥然日用品有限公司 A kind of chemical industry mixed material quick mixer structure of simple clamping device

Also Published As

Publication number Publication date
DE19681540T1 (en) 1999-03-11
KR970009892A (en) 1997-03-27
JPH0966226A (en) 1997-03-11
JP3358774B2 (en) 2002-12-24
KR100341137B1 (en) 2002-11-29

Similar Documents

Publication Publication Date Title
WO1997007878A1 (en) Drive device for disintegrating mixer
JPH10184355A (en) Drive device for cooling fan
WO1996018041A1 (en) Device for preventing the reversal of a hydraulic actuator
JP3758882B2 (en) Mixer drum drive hydraulic circuit
JP2003220884A (en) Driving control system of concrete mixing drum
JP4344712B2 (en) Hydraulic drive
JPH09119404A (en) Hydraulic drive device of cooling fan
JPH0748091A (en) Winch drive circuit
JPH0649867A (en) Safety device of working machine
JPH02298664A (en) Engine starting device
JPS5920563A (en) Engine starter
JPH0431326Y2 (en)
JPH08338405A (en) Capacity control device for variable displacement hydraulic pump
JPS5922072B2 (en) Compressor oil supply system
JP3769307B2 (en) Water wheel inlet valve controller
JPH06254934A (en) Oil quantity control device for injection molding machine
JPH07239054A (en) Operation pressure detection structure of pilot pressure operation type switching valve device
JP2593550Y2 (en) Vertical pump
JP2001241402A (en) Hydraulic drive device
JPH0868429A (en) Continuously variable transmission
JPH11218246A (en) Unloading valve
JP2003294007A (en) Hydraulic control system
JPH0550093U (en) Variable displacement vane pump device
JPS5936142B2 (en) Genatsubenhoushikinyor Enkakusousasouchi
JP2002122235A (en) Fluid transmission circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
RET De translation (de og part 6b)

Ref document number: 19681540

Country of ref document: DE

Date of ref document: 19990311

WWE Wipo information: entry into national phase

Ref document number: 19681540

Country of ref document: DE