WO1997006424A1 - Procede de mesure a distance de polluants atmospheriques - Google Patents

Procede de mesure a distance de polluants atmospheriques Download PDF

Info

Publication number
WO1997006424A1
WO1997006424A1 PCT/EP1996/003428 EP9603428W WO9706424A1 WO 1997006424 A1 WO1997006424 A1 WO 1997006424A1 EP 9603428 W EP9603428 W EP 9603428W WO 9706424 A1 WO9706424 A1 WO 9706424A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
measurement
wavelength
pollutant
spectral
Prior art date
Application number
PCT/EP1996/003428
Other languages
German (de)
English (en)
Inventor
Wolf BÜCHTEMANN
Maurus Tacke
Elmar Wagner
Original Assignee
Zeo Zeiss-Eltro Optronic Gmbh
Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeo Zeiss-Eltro Optronic Gmbh, Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung filed Critical Zeo Zeiss-Eltro Optronic Gmbh
Priority to EP96927672A priority Critical patent/EP0843812A1/fr
Publication of WO1997006424A1 publication Critical patent/WO1997006424A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Definitions

  • the invention relates to a remote measurement method for air pollutants according to the preamble of claim 1.
  • gaseous or vaporous pollutants or toxic gases can be released, which are dangerous to humans.
  • Most of these are infrared-active gases that selectively absorb or emit infrared radiation in the range of approx. 2 ⁇ m to 14 ⁇ m in wavelengths, so that the measurement of absorption or emission is used for qualitative detection (eg as a warning) and for ge suitable arrangement can also be used for quantitative measurement of the concentration.
  • a commercially available device is, for example, the MLRAN device from Ansyco.
  • a cuvette containing the gas mixture to be measured is irradiated by the radiation from an IR radiation source, see FIG. 4. This radiation is detected by an ER detector.
  • a wavelength-selective element is introduced into the beam path, for example an interference filter in which a wavelength is selected, or a device is provided with which beams of different wavelengths can be successively selected, for example a grating or a prism Interferometer or a so-called interference curve filter.
  • Laser methods have been and are being developed to carry out remote measurements.
  • DIAL method used for a selective concentration measurement see FIG. 5, two or more lasers or two tunable lasers are emitted by two or more lasers, one line of which - ( ⁇ on ) in FIG absorbed gas to be measured, the other - ( ⁇ 0 ff) - is not absorbed.
  • the concentration of the gas to be measured can be deduced from the ratio of the signals.
  • 5 shows a lidar with a "topographic" reflector (house wall).
  • spectrometers are used. It is known e.g. the Fourier Transform IR spectrometer (FTIR) K 300 from Kayser-Threde, with which hot gases can be measured in emission. However, gases can also be measured in transmission at ambient temperature, see FIG. 6, with calibrated emitters (temperature Tg) having to be used here for the quantitative measurement.
  • FTIR Fourier Transform IR spectrometer
  • the present invention has for its object to provide a method of the type mentioned and a device for its implementation, which enables a quantitative remote measurement of the concentration of an IR-active gas at ambient temperatures without external radiation sources and different spectral channels can be measured in parallel .
  • This object is achieved by the measures indicated in claim 1 and claim 6.
  • Refinements and developments are specified in the subclaims and exemplary embodiments are explained in the following description. The figures in the drawing supplement these explanations. Show it :
  • FIG. 1 is a schematic representation of a measuring process with regard to its device setup and measuring situation
  • FIG. 2 shows a diagram to illustrate a measuring process in an exemplary embodiment with only one pollutant and its absorption at a wavelength ⁇
  • FIG. 3 shows a schematic image of a further exemplary embodiment in which multiple spectral values are used
  • Fig. 4 is a schematic image according to an embodiment according to the prior art
  • Fig. 5 is a schematic image of another embodiment according to the prior art.
  • Fig. 6 is a schematic image of a third embodiment according to the prior art.
  • the method according to the invention allows a quantitative remote measurement of the concentration of an IR-active gas at ambient temperature - with certain error limits.
  • Existing methods are replaced by the fact that by using a linear, cooled detector array and a grating, a very compact, portable device can be made available which works purely passively, ie without external radiation sources.
  • Another property is that by using the detector line or a two-dimensional Order a parallel measurement of different spectral channels is carried out. This makes it possible to measure quickly changing processes (fires, smoke clouds) in milliseconds to seconds.
  • a special method microscan
  • FIG. 1 An exemplary embodiment of a measurement carried out according to the proposed method is outlined in FIG. 1.
  • the sensor is aimed at a fixed background target (in the example a house) with the temperature Tj4.
  • the (suspected) pollutant cloud is located between the background and the sensor.
  • the distance R between the background and the sensor can be up to several 100 m.
  • the temperature of the pollutants has assumed the temperature of the surrounding atmosphere TA, which is often not identical to the temperature in the vicinity of the sensor (T $).
  • the concentration length product the integral of the pollutant concentration along the connecting line “R” according to FIG. 1
  • the concentration length product the so-called column density, gives a measure of the total pollutant load of the Diameter R given space.
  • the mass absorption coefficient a is known. A measurement of the absorption / transmission therefore primarily provides the concentration length product.
  • ⁇ T TH - T / ⁇ be the temperature difference from the background to the temperature of the pollutant cloud. It is shown (see Fig. 2) that the relevant signal approximates ⁇ T for small temperature differences
  • the constant Sfc is to be determined by measurements and calculations from the basic apparatus conditions.
  • the necessary determination of the temperature difference ⁇ T is carried out by radiometric measurement:
  • the radiation of the surfaces occurring in the natural and industrial environment is very similar in infrared to the black body (Planckian body).
  • the background temperature is therefore defined by the spectral course of the radiance, which is measured outside the absorption line (s), i.e. by the absolute amount of radiation and the relative spectral course. The latter alone is sufficient to determine the temperature.
  • aerosols cause an extinction which varies only slowly with the wavelength, so that the temperature can be inferred from the shape of the spectrum alone.
  • the temperature of the pollutant cloud is determined by choosing a spectral channel in which the radiation at the location of the measuring device essentially originates from the distance sought. The following is considered:
  • the composition of the atmosphere is known.
  • the CO 2 content is known, and consequently also the spectral course of the absorption, which, for example at 4.2 ⁇ m, has an absorption band with the extinction coefficient ⁇ ( ⁇ ).
  • extinction coefficient
  • the corresponding spectral channel receives radiation essentially from this distance. This can be used to determine the temperature.
  • a refinement is to work with a range of spectral values, so that the temperature profile is determined iteratively, starting from the sensor ambient temperature. This principle is implemented, for example, in FIG. 6.
  • Another method is to specify the pollutant column density relative to that of another gas.
  • the spectral signature of an atmospheric gas such as H 2 0 or C0 2 is recorded as a reference, so that ⁇ T • a ref • C ref is known for preselected wavelengths.
  • the signal of the substance to be detected accordingly gives the value ⁇ T- a x • C x .
  • a x and a ref are known. If the reference gas is selected sensibly, its concentration is known, for example at C0 2 , if there are no fires.
  • the distance R can be determined using suitable range finders. This means that c ref is also known and c x can be easily calculated from x ref .
  • a further evaluation possibility is the calculation of the relative concentration of pollutants for the detection of the composition of emitted gases.
  • the relative concentration of pollutants for the detection of the composition of emitted gases.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Ce procédé permet de mesurer à distance les polluants atmosphériques et les traces de gaz, notamment toxiques, qui se dégagent lors d'incendies ou de catastrophes. A cet effet, on utilise au moins une longueur d'onde qui est absorbée par le polluant et au moins une autre longueur d'onde qui n'est pas absorbée par le polluant. Afin de déterminer la concentration absolue de polluants dans l'air, parallèlement aux mesures de la distance, on procède également à des mesures radiométriques passives de n canaux spectraux et on détermine la température de l'arrière-plan en évaluant les valeurs radiométriques absolues dans un canal et en évaluant la variation spectrale relative dans le temps dans plusieurs canaux. On détermine la température du nuage de polluants à une distance (R) en évaluant le ou les signaux à une longueur d'onde μ, à laquelle le coefficient d'absorption atmosphérique σ(μ) a une valeur proche de l/r. Tous les signaux sont visuellement affichés.
PCT/EP1996/003428 1995-08-08 1996-08-03 Procede de mesure a distance de polluants atmospheriques WO1997006424A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP96927672A EP0843812A1 (fr) 1995-08-08 1996-08-03 Procede de mesure a distance de polluants atmospheriques

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19528960.9 1995-08-08
DE19528960A DE19528960C2 (de) 1995-08-08 1995-08-08 Verfahren und Einrichtung zur Fernmessung von Luftschadstoffen

Publications (1)

Publication Number Publication Date
WO1997006424A1 true WO1997006424A1 (fr) 1997-02-20

Family

ID=7768879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/003428 WO1997006424A1 (fr) 1995-08-08 1996-08-03 Procede de mesure a distance de polluants atmospheriques

Country Status (3)

Country Link
EP (1) EP0843812A1 (fr)
DE (1) DE19528960C2 (fr)
WO (1) WO1997006424A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11460407B2 (en) 2017-08-04 2022-10-04 Carl Zeiss Jena Gmbh Sample-based gas quality control by means of raman spectroscopy

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19730504C2 (de) * 1997-07-16 1999-09-02 Fraunhofer Ges Forschung Verfahren und Meßanordnung zur Erfassung der Partikelemission einer diffusen Quelle
DE19744164A1 (de) * 1997-10-07 1999-04-08 Zae Bayern Bildgebendes Verfahren zur Detektion von Gasverteilungen in Echtheit
DE19755360B4 (de) * 1997-12-12 2006-01-12 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zur Temperaturmessung in einem wasserführenden Haushaltsgerät und wasserführendes Haushaltsgerät
DE102005023160B4 (de) * 2005-05-19 2007-04-05 Beltz, Robert, Dipl.-Math. Vorrichtung zur Erfassung und Bewertung von hygroskopischen Materialien
DE102005033782A1 (de) * 2005-07-20 2007-03-29 Eads Deutschland Gmbh Verfahren und System zur Erkennung und Unterscheidung des Vorliegens einer Bedrohung durch A-, B- oder C-Kampfstoffe
DE102006048839B4 (de) * 2006-10-16 2010-01-07 Eads Deutschland Gmbh Photoakustische Gassensor-Vorrichtung mit mehreren Messzellen
DE102016121517A1 (de) 2016-11-10 2018-05-17 Deutsches Zentrum für Luft- und Raumfahrt e.V. Detektionsverfahren für chemische Stoffe, Detektionsvorrichtung, Durchgangsvorrichtung
CN107764765B (zh) * 2017-10-16 2021-02-12 江苏中美环境监测股份有限公司 用于大气污染的监测系统及用于大气污染的监测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0153139A2 (fr) * 1984-02-17 1985-08-28 Texas Instruments Incorporated Spectromètre à large bande avec un variateur de forme à fibres optiques
US4725733A (en) * 1983-07-18 1988-02-16 The United States Of America As Represented By The Secretary Of The Navy Apparatus and method for remotely detecting the presence of chemical warfare nerve agents in an air-released thermal cloud
EP0287929A2 (fr) * 1987-04-24 1988-10-26 Miles Inc. Analyseur de gaz avec télédétection
EP0456412A2 (fr) * 1990-05-11 1991-11-13 Texas Instruments Incorporated Procédé pour mesurer la température utilisant des détecteurs infrarouges et processeur
EP0536586A1 (fr) * 1991-10-08 1993-04-14 Osaka Gas Co., Ltd. Procédé et dispositif pour visualiser des gaz
WO1993019357A1 (fr) * 1992-03-20 1993-09-30 Aerojet-General Corporation Systeme de mesure a distance d'une concentration d'emanation gazeuse
US5373160A (en) * 1993-05-04 1994-12-13 Westinghouse Electric Corporation Remote hazardous air pullutants monitor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450356A (en) * 1982-06-07 1984-05-22 Sri International Frequency-mixed CO2 laser radar for remote detection of gases in the atmosphere
DE3741026A1 (de) * 1987-12-03 1989-06-15 Muetek Laser Und Opto Elektron Verfahren und system zur (spuren-) gasanalyse
EP0489546A3 (en) * 1990-12-06 1993-08-04 The British Petroleum Company P.L.C. Remote sensing system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725733A (en) * 1983-07-18 1988-02-16 The United States Of America As Represented By The Secretary Of The Navy Apparatus and method for remotely detecting the presence of chemical warfare nerve agents in an air-released thermal cloud
EP0153139A2 (fr) * 1984-02-17 1985-08-28 Texas Instruments Incorporated Spectromètre à large bande avec un variateur de forme à fibres optiques
EP0287929A2 (fr) * 1987-04-24 1988-10-26 Miles Inc. Analyseur de gaz avec télédétection
EP0456412A2 (fr) * 1990-05-11 1991-11-13 Texas Instruments Incorporated Procédé pour mesurer la température utilisant des détecteurs infrarouges et processeur
EP0536586A1 (fr) * 1991-10-08 1993-04-14 Osaka Gas Co., Ltd. Procédé et dispositif pour visualiser des gaz
WO1993019357A1 (fr) * 1992-03-20 1993-09-30 Aerojet-General Corporation Systeme de mesure a distance d'une concentration d'emanation gazeuse
US5373160A (en) * 1993-05-04 1994-12-13 Westinghouse Electric Corporation Remote hazardous air pullutants monitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11460407B2 (en) 2017-08-04 2022-10-04 Carl Zeiss Jena Gmbh Sample-based gas quality control by means of raman spectroscopy

Also Published As

Publication number Publication date
DE19528960C2 (de) 1997-07-17
EP0843812A1 (fr) 1998-05-27
DE19528960A1 (de) 1997-02-13

Similar Documents

Publication Publication Date Title
DE60122904T2 (de) Verfahren zur gasemissions- und/oder flussmessung
EP0959341B1 (fr) Méthode d'analyse quantitative de volume de gaz, notamment d'un dispositif de combustion, et dispositif pour sa mise en oeuvre
DE1026555B (de) Verfahren und Vorrichtung fuer die spektrochemische Analyse
KR101479702B1 (ko) 대기 분석 장치
DE3741026A1 (de) Verfahren und system zur (spuren-) gasanalyse
DE2202969A1 (de) Vorrichtung fuer die Fernanalyse von Gasen
WO2013004664A1 (fr) Dispositif comprenant un système de mesure optique de gaz et de mélanges gazeux compensant les influences de l'environnement
EP2986970A1 (fr) Procédé et dispositif de détection et d'identification de substances très volatiles présentes dans une phase gazeuse, par spectroscopie vibrationnelle exaltée par effet de surface
DE19900129C2 (de) Gasqualitätsbestimmung
EP0520322A1 (fr) Procédé et appareil de contrôle de la teneur en gaz des bouteilles consignées
EP0283047A2 (fr) Procédé et dispositif pour l'obtention sans contact de données pour déterminer la résolution spatiale de la densité et de la température dans un volume de mesure
WO2014128161A2 (fr) Dispositif et procédé de détection sans contact d'un gaz cible dépourvu d'activité infrarouge
EP1183523A1 (fr) Appareil d'analyse
DE19528960C2 (de) Verfahren und Einrichtung zur Fernmessung von Luftschadstoffen
DE102012004977B3 (de) Vorrichtung und Verfahren zum Messen eines Zielgases
EP3329251B1 (fr) Spectroscopie optique d'absorption à grande largeur de bande amélioré à cavité
DE3116344C2 (fr)
DE102004031643A1 (de) Nichtdispersiver Infrarot-Gasanalysator
DE3208737A1 (de) Optisches mehrstrahl-gasmessgeraet
DE4324154A1 (de) Vorrichtung und Verfahren zur räumlich hochauflösenden Analyse mindestens einer Gaskomponente in einem Gasgemisch
DE102008050046B3 (de) Verfahren zum Bestimmen von Konzentrations-, Druck- und Temperaturprofilen in beliebigen, vorzugsweise gasförmigen Medien
EP0952441A1 (fr) Procédé et dispositif pour déterminer la fluorescence induite par le soleil
DE19647632C1 (de) Infrarot-Gasanalysator
EP3771900A1 (fr) Procédé de détermination d'une concentration en gaz et appareil de mesure
DE3307132A1 (de) Infrarot-gasanalyseverfahren und gasanalysator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996927672

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996927672

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996927672

Country of ref document: EP