WO1997004938A1 - Process for molding synthetic resins - Google Patents

Process for molding synthetic resins Download PDF

Info

Publication number
WO1997004938A1
WO1997004938A1 PCT/JP1996/002074 JP9602074W WO9704938A1 WO 1997004938 A1 WO1997004938 A1 WO 1997004938A1 JP 9602074 W JP9602074 W JP 9602074W WO 9704938 A1 WO9704938 A1 WO 9704938A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthetic resin
mold
temperature
seconds
molding
Prior art date
Application number
PCT/JP1996/002074
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Kataoka
Yuo Umei
Iwao Katou
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Publication of WO1997004938A1 publication Critical patent/WO1997004938A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0288Controlling heating or curing of polymers during moulding, e.g. by measuring temperatures or properties of the polymer and regulating the process

Definitions

  • the present invention relates to a method for molding a synthetic resin. More specifically, the present invention provides a molding method suitable for synthetic resin injection molding, blow molding and the like.
  • post-processing such as painting of synthetic resin injection molded products and blow molded products.
  • the present invention provides a molding method that economically satisfies these requirements. Background art
  • thermoplastic resin into the mold cavity and molding it to improve the reproducibility of imparting the shape state of the mold surface to the molded product and improve the appearance of the molded product. It can be achieved to some extent by selecting molding conditions such as increasing the injection pressure and increasing the injection pressure. Similarly, in blow molding, in order to improve the appearance of the molded product, it is usually necessary to increase the resin temperature or the mold temperature, or to increase the blow gas pressure, etc.
  • the mold temperature the higher the mold temperature, the better.
  • the cooling time required for cooling and solidifying the plasticized resin is increased, and the molding efficiency is reduced. Improves the reproducibility of the mold surface without increasing the mold temperature, and does not increase the required cooling time even if the mold temperature is increased
  • a method of repeating heating and cooling of the mold by alternately supplying a heating medium and a cooling medium to the mold and attaching holes for heating and cooling to the mold is called Plastic Technology, June, p. 1 5 1 (1 9 This method consumes a large amount of heat and requires a long cooling time.
  • the mold wall is covered with a thin heat-insulating layer, and the surface is further covered with a thin metal layer.
  • the limb becomes longer.
  • the heat insulating layer When a polymer is used as the heat insulating layer, the heat insulating layer is generally damaged during use.
  • the present invention forms a limited range of a metal layer on the outermost surface of a limited range of a heat-insulating layer-coated mold.
  • the required heat insulation layer thickness and metal layer thickness have a close relationship with the softening temperature of the synthetic resin to be molded, molding conditions such as mold temperature and resin temperature, etc. It must be firmly adhered, and the contact surface between the heat-insulating layer and the metal layer must withstand repeated cooling and heating cycles by molding the synthetic resin.
  • the surface metal layer must have durability, especially molding It is necessary to solve problems such as a need for special durability when an inorganic filler is blended with the synthetic resin to be used. Disclosure of the invention
  • the present inventors studied a mold coated with a heat insulating layer, and found that the heat insulating material covering the main mold surface and its thickness, its coating state, and the main mold material The relationship between the combination, the adhesion strength of the metal layer covering the outermost surface and its thickness, the softening temperature of the synthetic resin to be molded, the molding conditions of the synthetic resin, etc. is examined, and the mold surface reproducibility of the molded product, molding cycle
  • the present invention satisfies the three requirements of thyme and mold durability.
  • the present invention is as follows.
  • the integral value ( ⁇ ) of the value of (mold surface temperature minus the plasticization temperature of the synthetic resin) is 2 Molding conditions of seconds * ° C or more, and / or while the mold surface temperature is (synthetic resin softening temperature-10 ° C) or more, (mold surface temperature-(softening temperature of synthetic resin-10 ° C) ) ⁇ Molding conditions with integrated value (A h) of 10 seconds ⁇ ° C or more,
  • the integral value ( ⁇ ) of (the mold surface temperature minus the softening temperature of the synthetic resin) is 2 seconds while the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin.
  • a heat insulating layer of more than 0.1 mm and less than 0.5 mm made of a heat-resistant polymer adhered to the mold surface is present on the mold surface constituting the mold cavity of the main mold made of metal, Further, on the heat insulating layer, the thickness of the metal layer of the convex portion is 1/3 or less of the thickness of the heat insulating layer, and is 0.01 to 0.1 mm, and the depth of the concave portion is 0.001.
  • a heat-insulating layer-coated mold having a metal layer having a grain-like surface of about 0.09 mm and having a thickness smaller than the thickness of the convex portion
  • Molding conditions of more than ° C, and / or while the mold surface temperature is (Synthetic resin tempering temperature-10 ° C) or more (Mold surface temperature-(Synthetic resin softening temperature-10 ° C) ⁇ Molding conditions with integrated value (A h) of 10 seconds ⁇ ° C or more,
  • the thickness of the heat insulation layer is more than 0.12 mm and less than 0.3 mm, and the thickness of the metal layer is 1 Z5 or less of the heat insulation layer and 1100 or more, and 0.02 to 0. 0.6 mm and the integrated value ( ⁇ H) is 5 seconds or more and 40 seconds or less, and / or the integrated value (Ah) is 12 seconds or more.
  • the injection molding is performed under the molding conditions in which the mold surface temperature is decreased to (the softening temperature of the synthetic resin ⁇ 10 ° C.) or less 5 seconds after the synthetic resin comes into contact with the mold surface. Injection molding of synthetic resin.
  • the thickness of the heat insulation layer is more than 0.1 mm and less than 0.4 mm, and the thickness of the metal layer of the projection is 1 to 3 or less of the thickness of the heat insulation layer, and is 0.01 to 0.07 mm Yes, the depth of the grain-shaped recess is 0.005 to 0.06 mm, and the integral value ( ⁇ H) is 2 seconds ⁇ ° C or more and 50 seconds ⁇ eC or less, and / or the integral value ( ⁇ h) is at least 10 seconds ⁇ ° C and at most 100 seconds ⁇ ° C, and after 5 seconds from the contact of the synthetic resin with the mold surface, the mold surface temperature becomes (the curing temperature of the synthetic resin minus 10). ° C)
  • the thickness of the heat-insulating layer is more than 0.12 and less than 0.3 mm
  • the thickness of the metal layer of the projection is 15 or less of the thickness of the heat-insulating layer, and 0.01 to 0.06 mm.
  • the depth of the grain-shaped concave portion is 0.005 to 0.04 mm
  • the integral value ( ⁇ H) is 5 seconds ⁇ ° C to 40 seconds ⁇ ° C or less
  • / or the integral value (A h) is 12 seconds ⁇ ° C or more and 70 seconds ⁇ ° C or less, and 5 seconds after the synthetic resin comes into contact with the mold surface, the mold surface temperature becomes (curing temperature of synthetic resin-10 ° C 3.)
  • thermoelectric layer On the surface of the mold constituting the mold cavity of the main mold made of metal, there is a heat insulating layer of less than 0.5 mm, which exceeds 0.11111111 and which is made of a heat-resistant polymer adhered to the mold surface, and Using a heat-insulating layer-coated mold having a metal layer with a thickness of 13 to 13 mm or less of the heat-insulating layer and a thickness of 0.02 to 0.1 mm on the heat-insulating layer, (2) molding conditions in which the main mold temperature is set to 15 ° C or higher, 100 ° C or lower, and a temperature equal to or lower than the softening temperature of the synthetic resin minus 20.
  • the integral value ( ⁇ ) of the value of (mold surface temperature-softening temperature of the synthetic resin) is 1 0 seconds ⁇ ° C or more and 200 seconds ⁇ ° C or less, and Z or while the mold surface temperature is (synthetic resin softening temperature-10 ° C) or more (Mold surface temperature-(synthesis)
  • the softening temperature of the resin is less than 10 ° C) ⁇
  • the molding conditions are such that the integrated value ( ⁇ ) is at least 20 seconds ⁇ at least 400 seconds ⁇ ° C.
  • a blow molding method for synthetic resin in which molding is performed under molding conditions such that the mold surface temperature drops below the softening temperature of the synthetic resin 5 seconds after the synthetic resin to be molded contacts the mold surface.
  • the thickness of the heat insulation layer is 0.2 mm or more and less than 0.5 mm, and the thickness of the metal layer is 15 or less of the thickness of the heat insulation layer and 1 100 or more, and 0.04 to 0. 0.6 mm, integral value ( ⁇ ) is 20 seconds ⁇ ° C or more and 100 seconds or less ⁇ ° C, and / or yield value ( ⁇ ) is 30 seconds ⁇ ° C or more and 300 seconds' ° C.
  • integral value ( ⁇ ) is 20 seconds ⁇ ° C or more and 100 seconds or less ⁇ ° C
  • / or yield value ( ⁇ ) is 30 seconds ⁇ ° C or more and 300 seconds' ° C.
  • a heat insulating layer of more than 0.1 mm and less than 0.5 mm made of a heat-resistant polymer adhered to the mold surface is present on the mold surface constituting the mold cavity of the main mold made of metal, Further, on the heat insulating layer, the metal layer thickness of the convex portion is not more than 1 Z 3 of the heat insulating layer thickness, and is 0.01 to 0.1 mm, and the depth of the concave portion is 0.005.
  • the integral value ( ⁇ ) of the value of (mold surface temperature-softening temperature of the synthetic resin) is 10 ⁇ ° C or more and 200 s or less °° C or less, and Z or while the mold surface temperature is (the synthetic resin's aging temperature-10 ° C) or more The temperature (10 ° C))
  • the integral value ( ⁇ h) of the value is 20 seconds ⁇ more than 400 seconds ⁇ ° C
  • the mold surface temperature becomes Blow molding method for molding a synthetic resin under molding conditions lowering below the softening temperature.
  • the thickness of the heat insulating layer is 0.2 mm or more and less than 0.5 mm, and the thickness of the metal layer of the projection is 15 or less of the thickness of the heat insulating layer, 1/100 or more, and 0.0 1 to 0. 0.8 mm, the depth of the grain-shaped recess is 0.05 to 0.07 mm, and the integral ( ⁇ ) is 20 seconds or more and 100 seconds or less and ° C or less.
  • the heat insulating layer and the metal layer are in close contact with each other at the fine irregularities interface, as described in 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11, 12 or 13. Molding method for synthetic resin.
  • the heat-resistant polymer forming the heat-insulating layer is composed of linear high molecular weight polyimide.
  • the outermost layer of the heat insulating layer is subjected to chemical etching to obtain fine irregularities.
  • the metal layer is formed by subjecting the surface to a chemical plating and, if necessary, performing one or more of a chemical plating and / or an electrolytic plating.
  • the adhesion of the metal layer is 0.3.
  • the etching rate of the metal layer on the cavity side is more than twice the etching rate of the inner metal layer, and a metal mold is used in which the above metal layer has a matte surface by multi-stage etching. 22. The method for molding a synthetic resin according to 22 above.
  • Synthetic resin to be molded is styrene-based resin such as polystyrene, rubber-reinforced polystyrene, styrene-acrylonitrile copolymer, ABS resin, styrene-methyl methacrylate copolymer. And 1, 2, 3, 4, 5, 6, 7, and 8 which are non-crystalline resins selected from methacrylic resins such as methacrylic resin, rubber reinforced polymethyl methacrylate, and the like, and polycarbonate. 8, 9, 10, 11, 12, 13, 13, 14, 15, 15, 16, 17, 18, 19, 20, 21, 22, 22, or 23 Fat molding method.
  • the synthetic resin is a synthetic resin containing 5 to 65% by weight of a fibrous or powdery inorganic filler, and the hardness of the metal layer on the outermost surface of the mold is such that the inorganic filler in the synthetic resin; W 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 1, 12, 1, 3, 1, 4, 1, 5, 1 6.
  • Figure 1 is a graph showing the temperature distribution change (calculated value) of the synthetic resin near the mold surface when the heated synthetic resin comes into contact with the steel main mold.
  • FIG. 2 shows the synthetic resin and heat-resistant resin near the mold surface when the heated synthetic resin comes into contact with the mold in which 0.1 mm polyimide is coated on the mold surface of the steel main mold.
  • FIG. 4 is a graph showing a change in the temperature distribution (calculated value) of FIG.
  • Figure 3 shows the synthetic resin and the heat-resistant resin near the mold surface when the heated synthetic resin comes into contact with the mold of 0.5 mm polyimide coated on the mold surface of the steel main mold. It is a graph figure which shows a temperature distribution change (calculated value).
  • Figure 4 is a graph showing the change over time (calculated value) of the mold surface temperature when a heated synthetic resin comes into contact with a mold in which various thicknesses of polyimide are coated on the mold surface of a steel main mold.
  • Fig. 5 shows the temperature of the mold surface when the synthetic resin was brought into contact with a mold in which a 0.2 mm thick polyimide was coated on the mold surface of a steel main mold at various resin temperatures and mold temperatures. It is a graph which shows a time-dependent change (calculated value).
  • FIG. 6 shows the mold surface when synthetic resin comes in contact with a mold in which 0.2 mm thick polyimide is coated on the mold surface of a steel main mold at various mold thicknesses and mold temperatures.
  • FIG. 4 is a graph showing a change over time (calculated value) of temperature.
  • FIG. 7 shows the heated synthetic resin in a mold in which the mold surface of a steel main mold is coated with 0.3 mm of polyimide, and the surface is further coated with 0.2 mm of nickel.
  • FIG. 4 is a graph showing a temperature change (calculated value) of a mold surface (an interface between a resin surface and a mold surface) when a contact occurs.
  • FIG. 8 shows that the steel main mold was heated to a mold in which 0.3 mm of polyimide was coated on the mold surface and the surface was coated with a nickel layer of various thicknesses.
  • FIG. 4 is a graph showing the change over time (calculated value) of the temperature of the mold surface (the interface between the resin surface and the mold surface) when the synthetic resin comes into contact with the synthetic resin.
  • Figure 9 shows synthetic resin: rubber reinforced polystyrene (HIPS :), molded product thickness: 2 mm, synthetic resin temperature: 240, main mold temperature: 50 ° C, nickel layer thickness: 0.0 3 mm to change the polyimide layer thickness to 0.1 mm, 0.2 mm, 0.3 mm, and 0.5 mm
  • Graph (9-A) showing the change over time in the mold surface temperature when molding is performed in a plasticized state, and the graph (9-A) showing the relationship between the aging temperature of the synthetic resin and the mold surface temperature being higher than the softening temperature of the synthetic resin.
  • FIG. 9 is a graph (9-1B) showing the relationship between the integrated value (calculated value) of the value of one synthetic resin (softening temperature).
  • Figure 10 shows synthetic resin: HIPS, molded product thickness: 2 mm, synthetic resin temperature: 240 ° C and 270 ° C, main mold temperature: 30 and nickel layer thickness: 0.05
  • the graph (10-A) shows the change over time in the mold surface temperature when molding with the thickness of the polyimide layer changed to 0.1 mm and 0.2 mm in mm.
  • FIG. 11 is a graph (10—B) showing the relationship between the temperature and the integrated value (calculated value) of the value of (mold surface temperature-plastic resin softening temperature) while the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin. .
  • Figure 1 1 is a synthetic resin: HIPS, moldings Thickness: 2 mm, the synthetic resin temperature: 2 4 0 ° C, the main mold temperature: 7 0 e C, nickel layer thickness: at 0. 0 3 mm, Porii A graph showing the change over time of the mold surface temperature (111 A) when the mold layer thickness was changed to 0.1 mm and 0.2 mm, and the aging temperature of the synthetic resin and the mold surface
  • FIG. 11B is a graph (111B) showing a relationship between an integral value (calculated value) of (mold surface temperature-synthetic resin tempering temperature) while the temperature is equal to or higher than the softening temperature of the synthetic resin.
  • Figure 12 shows synthetic resin: HIPS, molded product thickness: 2 mm, synthetic resin temperature: 240, main mold temperature: 50 ° C, nickel layer thickness: 0.01 mm, 0.0
  • a graph (12-A) showing the change over time of the mold surface temperature when molding with a polyimide layer thickness of 0.2 mm and 0.3 mm at 2 mm, and a synthetic resin Graph showing the relationship between the aging temperature of the mold and the integral value (calculated value) of the (mold surface temperature-synthetic resin aging temperature) value while the mold surface temperature is equal to or higher than the aging temperature of the synthetic resin.
  • B shows synthetic resin: HIPS, molded product thickness: 2 mm, synthetic resin temperature: 240, main mold temperature: 50 ° C, nickel layer thickness: 0.01 mm, 0.0
  • a graph (12-A) showing the change over time of the mold surface temperature when molding with a polyimide layer thickness of 0.2 mm and 0.3 mm at 2 mm
  • a synthetic resin Graph showing the relationship between
  • Figure 13 shows that synthetic resin: HIPS, molded product thickness: 2 mm, synthetic resin temperature: 240 ° C, main mold temperature: 50 ° C, polyimide layer thickness: 0.3 mm, Graph showing the time-dependent change of the mold surface temperature when the thickness of the nickel layer is changed to 0.01 mm, 0.02 mm, 0.03 mm, 0.05 mm, and 0.1 mm. Relationship between the figure (13-A) and the integrated value (calculated value) of the value (mold surface temperature-synthetic resin softening temperature) while the softening temperature of the synthetic resin and the mold surface temperature are higher than the softening temperature of the synthetic resin.
  • Fig. 13 is a graph (13-B).
  • Figure 14 shows that synthetic resin: HIPS, molded product thickness: 2 mm, synthetic resin temperature: 240 ° C, main mold temperature: 50 ° C, polyimide layer thickness: 0.2 mm, A graph (14-A) showing the change over time of the mold surface temperature when molding with the thickness of the nickel layer changed to 0.02 mm and 0.03 mm. 0.05 m, and synthetic resin Graph showing the relationship between the mold temperature and the integral value (calculated value) of the (mold surface temperature-synthetic resin softening temperature) value while the mold surface temperature is above the softening temperature of the synthetic resin. ).
  • Fig. 15 shows that synthetic resin: HIPS, molded product thickness: 2 mm, synthetic resin temperature: 240 ° C, main mold temperature: 30 ° C, polyimide layer thickness: 0.2 mm, A graph (15-A) showing the change over time of the mold surface temperature when molding with the thickness of the nickel layer changed to 0.01 mm. 0.02 mm and 0.03 mm; Graph diagram showing the relationship between the resin softening temperature and the integral value (calculated value) of the (mold surface temperature-synthetic resin softening temperature) value while the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin (15 — B ).
  • Fig. 16 shows that synthetic resin: HIPS, molded product thickness: 2 mm, synthetic resin temperature: 240 ° C, nickel layer thickness: 0.01 mm, polyimide layer thickness 0.1 mm, A graph (16-A) showing the change over time in the mold surface temperature when the main mold temperature was changed to 30 ° C, 40 ° C, and 50 ° C, and the temperature of the synthetic resin Fig. 16 (B) shows the relationship between the mold temperature and the integral value (calculated value) of the (mold surface temperature-synthetic resin softening temperature) value while the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin. is there.
  • Fig. 17 shows synthetic resin: HIPS, molded product thickness: 2 mm, synthetic resin temperature: 240 ° C, nickel layer thickness: 0.02 mm, polyimide layer thickness 0.1 mm, A graph (17—A) showing the change over time of the mold surface temperature when the mold temperature was changed to 30 ° C, 40 ° C, 50 ° C, and 70 ° C. A graph showing the relationship between the plasticization temperature of the synthetic resin and the integrated value (calculated value) of the (mold surface temperature-plasticization temperature) while the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin. 1 7 — B).
  • Fig. 18 shows that synthetic resin: HIPS, molded product thickness: 2 mm, main mold temperature: 30 ° C, nickel layer thickness: 0.01 mm, polyimide layer thickness: 0.1 mm,
  • Fig. 18 is a graph (18-B) showing the relationship with the values (calculated values).
  • Fig. 19 shows synthetic resin: HIPS, molded product thickness: 2 mm, main mold temperature: 3 (TC, polyimide layer thickness: 0.1 mm, nickel layer thickness: 0.02 mm, synthetic) in the case of molding a resin temperature 2 1 0 ° C, 2 4 0 ° C, 2 7 0 e C to alter a graph showing the time course of the mold surface temperature - and (1 9 a), a synthetic resin Graph showing the relationship between the mold softening temperature and the integrated value (calculated value) of the (mold surface temperature-synthetic resin softening temperature) value while the mold surface temperature is equal to or higher than the plasticization temperature of the synthetic resin (1 9 — B ).
  • Fig. 20 shows that synthetic resin: HIPS, molded product thickness: 2 mm, main mold temperature: 30 ° C, polyimide layer thickness: 0.2 mm, and nickel layer thickness: 0.01 mm.
  • Synthetic resin temperature: 210 ° C, 240 ° C, 27 Tempoture change of mold surface temperature when molding by changing to TC (20-A)
  • synthetic resin Graph showing the relationship between the softening temperature of the mold and the integral value (calculated value) of the (mold surface temperature-synthetic resin tempering temperature) value while the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin (20-B) It is.
  • Fig. 21 shows synthetic resin: HIPS, molded product thickness: 2 mm, main mold temperature: 30 ° C, polyimide layer thickness: 0.2 mm, nickel layer thickness: 0.02 mm.
  • a graph (2 1 — A) showing the change over time of the mold surface temperature when molding was performed by changing the temperature of the synthetic resin to 210 ° C, 240 ° C, and 270 ° C; Graph showing the relationship between the curing temperature of the mold and the integral value (calculated value) of the (mold surface temperature-synthetic resin softening temperature) value while the mold surface temperature is equal to or higher than the plasticization temperature of the synthetic resin (2 1 — B ).
  • Figure 22 shows the synthetic resin: HIPS, the synthetic resin temperature: 240 ° C, the main mold temperature: 50, the polyimide layer thickness: 0.2 mm, and the nickel layer thickness: 0.02.
  • Figure 2 (A) shows the change over time in the mold surface temperature when molding was performed with the molded product thickness changed to 3 mm, 4 mm, and 5 mm in mm, and the softening temperature of the synthetic resin and the mold.
  • FIG. 9 is a graph (22-B) showing the relationship between the (mold surface temperature-synthetic resin softening temperature) value and the integrated value (calculated value) while the surface temperature is equal to or higher than the softening temperature of the synthetic resin.
  • Figure 23 shows synthetic resin: polyoxymethylene (POM), molded product thickness: 2 mm, synthetic resin temperature: 200 ° C, main mold temperature: 60 ° C, polyimide layer thickness: 0 Graph showing the change over time of the mold surface temperature when molding was performed with the Nigger layer thickness changed to 0.01 mm, 0.02 mm, and 0.04 mm at 2 mm. ) And the synthetic tree Graph showing the relationship between the softening temperature of the fat and the integral value (calculated value) of the (mold surface temperature-synthetic resin curing temperature) value while the mold surface temperature is equal to or higher than the curing temperature of the synthetic resin (23- B).
  • POM polyoxymethylene
  • Figure 24 shows the synthetic resin: POM, molded product thickness: 2 mm, synthetic resin temperature: 200 ° C, main mold temperature: 60 ° C, nickel layer thickness of 0.02 mm, and Polyimi Graph (24-A) showing the change over time in the mold surface temperature when molding was performed while changing the mold thickness to 0.2 mm. 0.3 mm and 0.4 mm, and the softening temperature of the synthetic resin.
  • FIG. 11 is a graph (24-B) showing the relationship between the mold surface temperature and the integral (calculated value) of the (mold surface temperature-synthetic resin softening temperature) value while the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin.
  • Fig. 25 shows synthetic resin: HIPS, molded product thickness: 3 mm, heat insulating material: epoxy resin, heat insulating layer thickness: 0.3 mm, metal layer thickness: 0.03 mm, resin temperature: 200 ° C the main mold temperature: and when molded at 4 0 ° C, the synthetic resin: HIPS, moldings thickness: 2 mm, insulation material: sera mission-box (Y 2 0 3 Z r 0 2), the heat insulating layer thickness: 0.
  • the metal layer is no, resin temperature: indicated by 2 4 0, in the case of forming the form with varying main mold temperature 3 5 ° C, 5 0 e C, the aging of the mold surface temperature
  • the graph (25-A) shows the integrated value of (mold surface temperature-synthetic resin aging temperature) while the aging temperature of the synthetic resin and the surface temperature of the mold are higher than the aging temperature of the synthetic resin. (25-B).
  • Figure 26 shows synthetic resin: HIPS, molded product thickness: 2 mm, polyimide thickness: 0.5 mm, nickel thickness: 0.03 mm, synthetic resin temperatures: 240 ° C and 270 ° C, Main mold temperature: A graph (26-A) showing the change over time of the mold surface temperature when molding at 50 ° C and 70 ° C.
  • the softening temperature of the synthetic resin and the mold surface temperature Fig. 26 is a graph (26-B) showing the relationship between the (mold surface temperature-synthetic resin softening temperature) value and the integrated value (calculated value) while the temperature is above the softening temperature of the synthetic resin.
  • FIG. 27 is a diagram showing a change in the mold surface temperature shown in FIG. 6 of the known document U.S. Pat. No. 5,388,803 of the reference and a change in the mold surface temperature of the present invention.
  • FIG. 28 is a graph showing the temperature change of the thermal conductivity of the resin used to calculate the change in the mold surface temperature in each figure shown in the present invention.
  • FIG. 29 shows the ratio of the resin used in calculating the mold surface temperature change in each figure shown in the present invention. It is a graph which shows the temperature change of heat.
  • FIG. 30 is a graph showing the heat generated by shearing in the mold during injection molding.
  • FIG. 31 is a graph showing a change in glossiness of an HIPS injection molded product depending on a resin temperature when a general mold having no heat insulating layer and a mold having a heat insulating layer are used.
  • Figure 32 shows the integration of the value of (mold surface temperature-synthetic resin aging temperature) while the gloss of the HIPS injection-molded product with the heat-insulating layer-coated mold and the mold surface temperature are higher than the aging temperature of the synthetic resin. It is a graph which shows the relationship with a value ((DELTA) *).
  • Fig. 33 shows the gloss of the HIPS injection-molded product using the heat-insulating layer-coated mold and the ⁇ mold surface temperature-(synthetic resin temperature-10 ° C) while the mold surface temperature is higher than (softening temperature of synthetic resin-10 ° C).
  • FIG. 4 is a graph showing a relationship between a resin softening temperature and an integral value ( ⁇ ).
  • Fig. 34 is a graph showing the relationship between mold temperature and gloss of molded products when HIPS (Stylon 495, trade name, manufactured by Asahi Kasei Kogyo Co., Ltd.) is injection-molded with a general metal mold. .
  • FIG. 35 is a cross section of the mold surface layer showing that the heat insulating layer and the metal layer of the present invention are in close contact with each other at the fine uneven interface.
  • FIG. 36 is a partial cross-sectional explanatory view showing a state where a conventional Fresnel lens mold is injection-molded under ordinary molding conditions.
  • FIG. 37 is a partial sectional view of a Fresnel lens mold used in the method of the present invention.
  • FIG. 38 shows a cross section of an erase-shaped molded article injection-molded by the method of the present invention and a cross-section of a mat-shaped molded article injection-molded with a conventional mold.
  • FIG. 39 is a diagram showing an injection-molded product used for describing the present invention.
  • FIG. 40 is a graph showing the change with time of the resin pressure applied to the mold wall surface during injection molding.
  • FIG. 41 is an explanatory view modelly showing how the injection-molded synthetic resin is filled into the fine irregularities on the mold surface.
  • FIG. 42 shows a sectional view of a mold for molding the molded article of the present invention.
  • FIG. 43 shows each step of etching the mold surface.
  • FIG. 44 shows each step of performing multi-stage etching on the mold surface.
  • FIG. 45 shows each step of performing multi-stage etching on the mold surface.
  • FIG. 46 is a graph showing a surface unevenness pattern of a molded article in Example 10.
  • FIG. 47 is a graph showing the surface unevenness patterns of the mold and the molded product in Comparative Example 9. BEST MODE FOR CARRYING OUT THE INVENTION
  • the synthetic resin molded by the molding method of the present invention is a thermoplastic resin that can be used for general injection molding and blow molding, and is a polyolefin such as polyethylene and polypropylene, polystyrene, styrene and acrylonitrile.
  • Resin, polyamide, polyester, polycarbonate, and vinyl chloride resin are examples of polyamide, polyamide, polyester, polycarbonate, and vinyl chloride resin.
  • the molding method of the present invention can be particularly preferably used for polystyrene, rubber-reinforced polystyrene, styrene-acrylonitrile copolymer, ABS resin, styrene-methylmethacrylate copolymer and the like.
  • Non-crystalline resin selected from methacrylic resin such as styrene resin, polymethylmethacrylate, rubber reinforced polymethylmethacrylate, and polycarbonate, and various fillers. It is the resin which was done.
  • Various synthetic resins containing 5 to 65% by weight of an inorganic filler such as glass fiber, carbon fiber, whisker and other fibers, calcium carbonate, titanium oxide, and talc are particularly preferred in the present invention. It can be used properly.
  • the surface of the mold is easily damaged by the inorganic filler.
  • the amount of the inorganic filler is more than 20% by weight, the heat insulation is easily damaged, and if the amount of the filler is more than 30% by weight, the mold surface is extremely easily damaged.
  • the presence of a metal layer having a hardness equal to or higher than that of the inorganic filler on the mold surface and an appropriate thickness can prevent damage.
  • polyamide resins, resins containing a large amount of acrylonitrile, and the like generally have poor releasability from a heat insulating layer having a polar group.
  • a metal layer is present on the surface of the heat insulating layer. By doing so, the releasability can be improved.
  • the molding method of the present invention is most preferably used for rubber-reinforced polystyrene having a glass transition temperature of 80 to 120, containing 1 to 10% by weight of rubber.
  • Good molded articles molded by the molding method of the present invention are generally used synthetic resin injection molded articles such as housings for light electric equipment, electronic equipment, office equipment, various automobile parts, various daily necessities, and various industrial parts. Particularly preferred are housings for electronic equipment, electrical equipment, and office equipment, which are injection-molded at a multipoint gate, resulting in a large number of well lines.
  • injection molding of good eraser-like molded products, good patterned grain molded products, good lenticular lenses molded using transparent synthetic resin, Fresnel lenses, etc., good high transmission, high diffusion plates, etc. Goods are also obtained.
  • These molded products molded by the method of the present invention have good reproducibility of the mold surface, less noticeable weld lines, reproducibility of sharp edges on the mold surface, and reproducibility of minute irregularities on the mold surface.
  • the above-mentioned various molded products can be obtained satisfactorily.
  • These injection molded products are molded by a general injection molding method.
  • the synthetic resin is molded during molding such as gas assist injection molding, liquid assist injection molding, oligomer assist injection molding, and injection compression molding. The effect is great when used in combination with low-pressure injection molding, in which the pressure against the wall surface is low, and / or the flow velocity of the synthetic resin in the mold is slow, and can be used favorably in the present invention.
  • good molded products molded by the method of the present invention are various blow molded products requiring appearance.
  • the main mold composed of the metal described in the present invention includes iron or steel mainly composed of iron, alloy mainly composed of aluminum or aluminum, zinc alloy such as ZAS, beryllium copper alloy, etc. And metal molds generally used for molding synthetic resins.
  • molds made of steel such as S55C and S45C can be used favorably. It is preferable that the mold surface in contact with the heat insulating layer of the main mold made of these metals is coated with hard chromium, nickel, or the like.
  • the heat-resistant polymer favorably used as the heat-insulating layer in the present invention is a polymer having a softening temperature higher than that of the synthetic resin to be molded, and preferably has a glass transition temperature of 140 ° C. or higher, more preferably. Or more preferably at least 160 ° C, most preferably at least 190 ° C, and / or a melting point of at least 200 ° C, more preferably at least 250 ° C. is there. Particularly preferably, it has a higher curing temperature than the molding temperature of the synthetic resin to be molded. Polymer.
  • the thermal conductivity of the heat-resistant polymer is generally 0.001 to 0.003 calZcm 'sec'-C, which is much smaller than that of metal.
  • a polymer having a toughness of 4% or more, preferably 5% or more, more preferably 10% or more of the heat-resistant polymer is preferred.
  • the elongation at break is measured according to ASTMD 638, and the tensile speed at the time of measurement is 5 mm / min.
  • the heat-resistant polymer that can be favorably used as the heat-insulating layer in the present invention is a heat-resistant polymer having an aromatic ring in the main chain, such as various amorphous heat-resistant polymers dissolved in an organic solvent, And various polyimides can be used favorably.
  • the non-crystalline heat-resistant polymer include polysulfone and polyethersulfone. These amorphous heat-resistant polymers can be used as the heat insulating layer of the present invention by lowering the coefficient of thermal expansion by blending fillers such as carbon fibers and various inorganic fillers.
  • the polyimide various types of polyimides, linear high molecular weight polyimides, and partially crosslinked polyimides can be used favorably.
  • the linear high molecular weight polyimide has a large breaking elongation, is tough, has excellent durability, and can be used particularly favorably.
  • the linear high molecular weight polyimide also includes polyamide imide and polyether imide.
  • an epoxy resin cured product having a small coefficient of thermal expansion that is, an epoxy resin cured product obtained by combining a curing agent having a small thermal expansion coefficient with an epoxy resin, or an epoxy resin prepared by mixing various fillers in an appropriate amount
  • a cured product can also be used (hereinafter, a cured epoxy resin is abbreviated as an epoxy resin).
  • Epoxy resins generally have a large thermal expansion coefficient, and have a large difference in thermal expansion coefficient from metal molds.
  • powders and particles such as glass, silica, talc, cres, zirconium silicate, lithium silicate, carbonic acid ruthenium, alumina, myrium, etc., which have a small coefficient of thermal expansion, glass fiber, whiskers, and carbon fiber
  • An epoxy resin blended with a filler in which an appropriate amount such as that described above is blended with the epoxy resin to reduce the difference in thermal expansion coefficient from the metal mold can be used favorably as the heat insulating layer of the present invention.
  • epoxy resin or filler-containing epoxy resin, tough thermoplastic resin such as nylon, and various compounds that provide toughness such as rubber by adding toughness can be used favorably.
  • a polymer alloy cured by mixing polyether sulfone or polyether imide with an epoxy resin has excellent toughness and can be used favorably.
  • the heat-insulating polymer forming the heat-insulating layer of the present invention is blended with fine powders such as titanium oxide, alumina, and calcium carbonate in order to improve the adhesion of the metal layer such as the plating formed on the heat-insulating layer. It is preferable. This fine powder may be blended in the entire heat insulating layer or only in the surface layer. If the amount of these fine powders is too large, the thermal conductivity of the heat insulating layer is reduced, making it difficult to achieve the object of the present invention. Generally, the fine powders are mixed in the range of 1 to 30% by weight.
  • the mold surface that comes into contact with the heated resin to be molded is subjected to severe cooling and heating cycles for each molding.
  • the metal layer formed on the surface of the heat-insulating layer by plating or the like generally has a lower coefficient of thermal expansion than the heat-insulating layer made of a polymer. , Stress is repeatedly generated at each molding, and separation occurs at the interface. By reducing the difference between the coefficient of thermal expansion of the main mold and / or metal layer in contact with the heat insulating layer and the coefficient of thermal expansion of the heat insulating layer, the stress that causes separation can be reduced.
  • the difference in the thermal expansion coefficients of the main mold and Z or metal layer thermal expansion coefficient and the heat insulating layer in contact with the heat-insulating layer is laid preferred is 4 X 1 0 _ 5 Z ° C below der Rukoto, more preferably is less than 3 X 1 0- 5 Z ° C .
  • metals have a smaller coefficient of thermal expansion than polymers, and therefore, it is preferable to select a heat-resistant polymer having a smaller coefficient of thermal expansion.
  • the coefficient of thermal expansion described here is the coefficient of linear expansion.
  • the coefficient of thermal expansion of the heat insulating layer is the coefficient of linear expansion of the heat insulating layer in the plane direction.It is measured by the method shown in JISK 7197-1991, and it is measured between 50 ° C and 250 ° C. In the case where the glass transition temperature of the heat insulating layer is 250 ° C. or less, the average value is shown between 50 ° C. and the glass transition temperature. That is, a heat insulating layer is formed on a flat metal plate, and then the heat insulating layer is separated, and the heat insulating layer is heated to a temperature between 50 ° C. and 250 ° C. or 50 ° C. and a glass transition temperature. The average coefficient of thermal expansion during the measurement is measured.
  • the cause of separation between the heat insulating layer and the main mold or between the heat insulating layer and the metal layer is not only the difference in thermal expansion coefficient.
  • the difference in the coefficient of thermal expansion is an extremely large factor. If the thermal insulation layer has a large adhesion between the main mold and / or metal layer, the thermal elastic layer has a low tensile modulus and a high elongation at break. Separation does not occur even if the difference between the coefficients is slightly large.
  • a material suitable for the heat insulation layer that is, high heat resistance, high hardness, and a mirror surface that is easily polished are satisfied.
  • the heat insulating material is generally a heat-resistant hard synthetic resin having an aromatic ring in a main chain having a large elastic modulus.
  • the heat-resistant hard synthetic resin layer is closely adhered to a main mold and / or a metal layer so that separation does not occur. To achieve this, it is preferable that the difference between the coefficients of thermal expansion be small.
  • Table 1 shows the metal of the main mold and the metal of the metal layer coated on the outermost surface that can be favorably used in the present invention.
  • the thermal expansion coefficient of the heat-resistant polymer of the heat insulating layer and the general synthetic resin are shown in Table 1.
  • Polyetherimide 4 to 5.6 Polypropylene resin 6 to 9" Polystyrene resin 3 to 12 "
  • Polyethylene resin 8 to 18 ⁇ When the thermal expansion coefficient of the main mold and the metal layer or the metal layer is increased, a heat insulating layer having a relatively large thermal expansion coefficient can be used. Steel is the most commonly used mold material, but recently aluminum alloys and zinc alloys such as ZAS have come to be used. In the present invention, the closer the coefficient of thermal expansion is, the more preferable.If steel is used for the main mold, a low thermal expansion type polyimide having an extremely small coefficient of thermal expansion can be used satisfactorily. The structure (repeating unit) and glass transition temperature (T g) of the heat-resistant polymer that can be used well are shown. Table 2
  • a method in which a solution of a polyamic acid, which is a precursor of polyimide, is applied to a mold wall surface and then cured by heating to form polyimide on the mold wall surface can be used favorably.
  • the reaction formula for forming polyimide from polyamic acid is shown below.
  • a polyimide acid solution of a polyimide precursor When a polyimide acid solution of a polyimide precursor is applied to the mold wall surface and then cured by heating to form a polyimide, the polyimide is heated at a heating cure temperature and Z or a heating cure atmosphere.
  • a heating cure temperature and Z or a heating cure atmosphere Have different glass transition temperatures and thermal expansion coefficients. Generally, the higher the heating cure temperature, the higher the glass transition temperature and the lower the coefficient of thermal expansion.
  • the temperature of the polyamic acid is raised to 250 ° C or higher, almost all imidization proceeds ⁇ 100% and polyimide is formed, but the movement of molecules after the formation of the polyimide becomes heat. It is thought to have an effect on the expansion coefficient.
  • the heat insulating layer and the main mold of the present invention and / or the heat insulating layer and the metal layer are in close contact with each other. It is preferable that the adhesion is large.
  • the heat-insulating layer closely adhered to the main mold or the metal layer closely adhered to the heat-insulating layer described in the present invention is not separated by a cooling and heating cycle caused by molding of synthetic resin more than 10,000 times. is there.
  • the adhesion is preferably 0.3 kg Z 10 mm width or more at 23 ° C, more preferably 0.5 kg 10 mm width or more, and most preferably 0.7 kg Z l O mm width or more. It is.
  • the adhesion described in the present invention is the minimum value of the adhesion of the main part of the mold.
  • the surface of the main mold can be formed into fine irregularities, the surface of the main mold can be variously plated, and primer treatment can be appropriately performed.
  • polyimide containing a large amount of CO group or SO 2 group easily adheres to the metal surface, and a thin layer of polyimide having excellent adhesion is used as the primer layer.
  • the method of coating a general polyimide on this can be used favorably.
  • the adhesion between the heat insulating layer and the metal layer is also large, and it is preferable that both are in close contact with each other at the fine uneven surface interface. That is, it is preferable that the heat insulating layer and the metal layer alternately enter each other at the interface, so that the adhesion is increased by the anchor effect.
  • the size of the fine irregularities at the interface between the heat insulating layer and the metal layer is such that the distance between the alternating irregularities is about 0.5 to 10 ⁇ m, and a part of the irregularities enters the complex and anchors. Irregularities that work well are preferred.
  • the degree of fine irregularities is measured by observing the cross section of the interface between the heat insulating layer and the metal layer with a microscope.
  • the preferred degree of fine unevenness is a reference length of 80 m, which is the average of the height of the top five peaks and the mean of the deepest valley bottom at the interface between the metal layer and the heat insulating layer. The difference is 0.5-10 / m. Since the irregularities described here are intricately and alternately complicated and the anchor effect works, and are not simple irregularities, the altitude should be set to the position where each irregularity is deepest.
  • the biggest advantage of injection molding and blow molding is that a mold with a complicated shape can be formed in one shot, and therefore, mold cavities generally have complex shapes. Power, power, It is extremely difficult to apply a coating substance to the surface of the mold cavity having such a complicated shape in a mirror-like manner. Therefore, the applied coating layer is polished later, or the coating layer is subjected to a numerical control milling machine.
  • the best method is to grind the surface with a machine tool and then polish the surface to a mirror finish.
  • the total thickness of the heat insulating layer is selected within a range that satisfies the integral value and the change in mold surface temperature specified in the present invention, and is selected within an extremely narrow range of more than 0.1 mm and less than 0.5 mm.
  • With a thin heat-insulating layer of 0.1 mm or less sufficient appearance improvement effect cannot be obtained. If the thickness of the heat insulating layer is too large, the required cooling time in the mold during molding becomes long, which is not preferable from an economic viewpoint.
  • T c Heated resin temperature during molding (° C)
  • the cooling time (0) is proportional to the square of the part thickness (D) and is a function of (T x-T d) Z (T c - ⁇ d).
  • Coating the main mold with a heat-insulating layer works in the same way as increasing the thickness of the molded product and increasing the cooling time, but on the other hand, decreasing the mold temperature reduces the cooling time. Work in the direction. It is economically preferable that the thickness of the heat insulating layer is thin and the appearance can be improved from the viewpoint of the molding cycle time. In the present invention, particularly preferably, the thickness of the heat insulating layer is set to the above-mentioned narrow range. Setting within this range will improve the appearance and improve the molding cycle time.
  • the relationship between the thickness of the heat insulating layer and the molding cycle time will be described with specific numerical values.
  • synthetic resin injected And the thermal conductivity of the insulation material are generally almost the same level, so the ratio of the required cooling time in the mold is almost the same as the ratio of the cooling time required to form a 2.6 mm thick and 2.2 mm thick molded product.
  • Be equivalent. 2. 6 mm thick and 2. cooling time required for molding 2 mm thick ratio, as shown in the formula, 2. become 6 2 / 2.2 2 1.4.
  • the difference of 1.4 times in the required cooling time is an extremely large difference from the economical point of view of industrially molding synthetic resins.
  • the preferred metal used for the metal layer coated on the surface of the heat insulating layer of the mold used in the present invention is a metal generally used for plating, and one or more of chromium, nickel, copper, and the like. It is. Suitable for use are chemical nickel plating, electrolytic nickel plating, chemical copper plating, electrolytic copper plating, and electrolytic chrome plating.
  • the metal layer is coated on the surface of the heat insulating layer.
  • the heat insulation layer and the metal layer must be in close contact with each other, and the adhesion is preferably at least 0.3 k10 mm, more preferably at least 0.5 kg10 mm, and most preferably. Is 0.7 kg / 10 mm or more. It is particularly preferred that the layer directly in contact with the thermal insulation layer be a chemical mech layer.
  • the surface of the metal layer may be any of a mirror surface, a matte surface with a fine uneven surface, a lens shape with a fine lens uneven surface, and a grain shape such as a grain of grain or a grain of wood, etc., and is selected as necessary.
  • the grain-shaped reliefs that can be favorably used in the present invention are patterned grain such as bark grain, grain grain, and hairline grain. In order to make the grain-shaped surface stand out, it is preferable to make one of the irregularities on the grain-shaped mold surface a mirror surface and the other a matte surface.
  • Lenticular is a flat plate such as a fine Fresnel lens or a fine lenticular lens. Lens.
  • the thickness of the thin portion of the metal layer is defined as the metal layer thickness described in the present invention.
  • the thickness of the thin portion of the heat insulating layer is defined as the heat insulating layer thickness described in the present invention.
  • the thickness of the heat insulating layer and the preferred thickness of the metal layer differ depending on whether the surface of the mold is mirror-like, matte-like, or grain-like, and the molding method differs depending on whether injection molding or blow molding is used.
  • the preferred thickness of the heat insulating layer and the preferred thickness of the metal layer in each molding method are described in detail below.
  • the thickness of the heat-insulating layer exceeds 0.1 111111, is less than 0.4 mm, and the thickness of the metal layer is the thickness of the heat-insulating layer. 13 or less, and 0.01 to 0.07 mm, more preferably, the thickness of the heat insulation layer is more than 0.12 mm and less than 0.3 mm, and the thickness of the metal layer is Is 1 to 5 or less and 1 to 100 or more in the thickness of the heat insulating layer, and is 0.02 to 0.06 mm.
  • the thickness of the heat insulating layer exceeds 0.1 111 ⁇ 1 and is less than 0.4 mm, and the thickness of the convex portion of the metal layer is preferably the thickness of the heat insulating layer. 13 or less and 0.01 to 0.07 mm, and the depth of the grain-shaped concave portion is 0.05 to 0.06 mm, and more preferably, the thickness of the heat insulating layer.
  • the thickness of the convex part of the metal layer is 1 to 5 or less of the thickness of the heat insulating layer, and is 0.01 to 0.06 mm
  • the grain shape is The depth of the concave portion is 0.005 to 0.04 mm. If the depth of the concave portion is too large, there will be a large difference in the mold surface reproducibility between the concave portion and the convex portion, or the draft of the molded product will be affected. On the other hand, if the depth of the concave portion is too small, the effect of forming the grain is reduced.
  • the thickness of the heat insulating layer is 0.2 mm or more and less than 0.5 mm, and the thickness of the metal layer is 1 / 3 or less, and 0.002 to 0.1 mm, more preferably, the thickness of the heat insulating layer is 0.3 mm or more and less than 0.5 mm, and the thickness of the metal layer is 1 mm of the thickness of the heat insulating layer. Z 5 or less 1 Z 100 or more, and 0.04 to 0.06 mm.
  • the thickness of the heat insulating layer is 0.2 mm or more and less than 0.5 mm, and the thickness of the convex portion of the metal layer is 1% of the thickness of the heat insulating layer. 3 or less, and 0.01 to 0.1 mm, the depth of the grain-shaped recess is 0.05 to 0.09 mm, and more preferably, the thickness of the heat insulating layer is 0. 3 mm or more and less than 0.5 mm, the thickness of the convex portion of the metal layer is 1/5 or less of the thickness of the heat insulating layer, 1100 or more, and 0.01 to 0.08 mm. The depth of the grain-shaped concave portion is 0.005 to 0.07 mm.
  • the thickness of the metal layer at the thick portion of the metal layer (generally, the thickness of the projection of the metal layer) is covered with the heat insulating layer according to the molding method of the present invention.
  • the reason why the thickness of the metal layer of the mold is set is to improve the reproducibility of the mold surface of the projections and reduce the conspicuousness of well lines and the like of the entire molded product.
  • the thickness of the metal layer is preferably uniform, and the thickness variation is preferably ⁇ 20% or less, more preferably ⁇ 10% or less.
  • the thickness of the metal layer in the convex portion or the thickness of the metal layer in the concave portion is preferably uniform, and the variation in the thickness is preferably ⁇ It is 20% or less, and more preferably ⁇ 10% or less. If the thickness of the metal layer has a large variation, the reproducibility of the mold surface at the portion where the thickness of the metal layer is large is deteriorated, and the portion having good reproducibility of the mold surface and the portion having the bad reproducibility tend to appear on the same molded product surface.
  • the present invention relates to a molding method for achieving both the mold surface reproducibility of the molded article and the molding cycle time.
  • the main mold temperature set low.
  • the main mold temperature described here is the temperature at the time of molding of the main mold in the portion in contact with the heat insulating layer.
  • the main mold temperature is preferably 20 ° C or more and 90 ° C or less, and more preferably 25 ° C or more and 80 ° C or less.
  • the softening temperature described here is a softening temperature at which the deformation of the whole molded article is a problem. This is the softening temperature of the entire synthetic resin including (integral value described later (different from the softening temperature when calculating seconds ⁇ ° ⁇ )).
  • molding conditions are selected such that the mold surface temperature drops below the aging temperature of the synthetic resin 5 seconds after the synthetic resin to be molded contacts the mold surface. That is, if the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin for 5 seconds after the synthetic resin comes into contact with the mold surface, the mold surface reproducibility is sufficiently improved, and after that, the mold surface temperature should be lower. Preferable in terms of molding cycle time. Further, in the injection molding method of the present invention, preferably, the condition is such that the mold surface temperature is lowered to (the synthetic resin's aging temperature minus 10 ° C.) 5 seconds after the synthetic resin comes into contact with the mold surface.
  • the surface temperature of the mold is lowered to (the softening temperature of the synthetic resin is lower than 20 ° C). This can be satisfied by appropriately selecting the thickness of the heat insulating layer and the metal layer, the resin temperature, and the mold temperature.
  • the mold surface reproducibility of the molded product in injection molding is a problem within 5 seconds after the synthetic resin comes into contact with the mold surface, within 3 seconds for standard injection molding, and 2 for most standard injection molding. This is a problem within seconds.
  • the surface temperature of the mold is high and is equal to or higher than the curing temperature of the synthetic resin, it is preferable that the mold surface be rapidly cooled thereafter from the viewpoint of the molding cycle time.
  • the mold surface temperature falls to a temperature lower than the softening temperature of the synthetic resin two seconds after the synthetic resin comes into contact with the mold surface. If the mold surface temperature is higher than the plasticization temperature of the synthetic resin for nearly 20 seconds after the synthetic resin comes into contact with the mold surface, the mold surface reproducibility will naturally improve, but the molding cycle time will increase. , Can not be used economically.
  • the surface of the main mold made of metal When the surface of the main mold made of metal is covered with a heat insulating layer and the injected heated resin comes into contact with the surface, the surface of the mold is heated by the heat of the resin.
  • the present invention relates to a heat-insulating layer coating metal in which a heat-insulating layer made of a heat-resistant polymer is present on a mold wall constituting a mold cavity of a metal main mold, and a metal layer adhered to the heat-insulating layer is present thereon.
  • the mold surface temperature is the interface temperature at which the heated synthetic resin to be molded contacts, and the mold surface temperature and the resin surface temperature are almost equal. In the present invention, the mold surface temperature and the resin surface temperature are used as having the same meaning.
  • the integral value ( ⁇ ⁇ ) while the surface temperature of the mold is equal to or higher than the curing temperature of the synthetic resin is 2 seconds ⁇ ° C or more, and Alternatively, when molding is performed under molding conditions with an integral value ( ⁇ ) of 10 seconds ⁇ ° C or more, the mold surface reproducibility is improved.
  • This integrated value is the area enclosed by the curve and the softening temperature line of the synthetic resin in the drawing of the time-dependent change curve of the mold surface temperature, or the curve and the (softening temperature of synthetic resin minus 10 ° C) line. Corresponds to the area surrounded by.
  • a preferable integral value ( ⁇ ) is 2 seconds ⁇ ° C or more, 50 seconds or less, more preferably 5 seconds ⁇ ° C or more, 40 seconds ⁇ or less, particularly preferably. Is 7 seconds. And is 40 seconds ⁇ ° C or less, most preferably 8 seconds ⁇ ° C or more, 40 seconds ⁇ ° C or less.
  • the preferred integral value ( ⁇ ) is 10 seconds or more and 100 seconds or less, and more preferably 12 seconds or more and 70 seconds or less. It is particularly preferably 15 seconds to ° C or more and 70 seconds or less, and most preferably 20 seconds to ° C or more and 70 seconds or less.
  • the preferred integral value ( ⁇ ) in blow molding is 10 seconds ⁇ ° C or more, more preferably 20 seconds ⁇ ° C or more, and the preferred integral value (mmh) is 20 seconds ⁇ ° C. More preferably, 30 seconds or more.
  • the integral value of the portion where the thickness of the metal layer is large (generally, the convex portion is thick) is used.
  • the upper limit of the integral value is preferably 50 seconds ⁇ ° C or less, more preferably 40 seconds / ° C or less in the injection molding, and on the other hand, the integration value (A h) is preferably 1 0 0 s-e C or less, further preferred properly 7 0 seconds - ° c or less.
  • the integral value ( ⁇ ) is preferably 200 seconds or less, and more preferably 100 seconds ⁇ ° C or less, and the integral value ( ⁇ h) is 400 seconds.
  • ⁇ ° C or less is preferred, and more preferably 300 seconds ⁇ ° C or less.
  • the aging temperature of the synthetic resin used in calculating the integral value ( ⁇ ) and the integral value (A h) is a temperature at which the synthetic resin can be easily deformed.
  • the compound compounded in the synthetic resin is an organic material which is easily deformed during molding of rubber or the like or a compound dissolved in the synthetic resin, it is the softening temperature of the entire synthetic resin including the compound.
  • the base material excluding these inorganic fillers is used for synthetic resins containing fillers that do not deform in the synthetic resin when molding fibers such as glass fibers, whiskers, carbon fibers, and inorganic powders such as calcium carbonate. It is the aging temperature of the synthetic resin.
  • the surface of the molded product be covered with the base synthetic resin. It is preferable that the inorganic filler is hardly exposed on the surface of the molded product. Therefore, when the resin comes into contact with the mold surface during molding, it is necessary for the base synthetic resin to pass through the gap between the inorganic fillers near the molded product surface and reach the mold surface, and the fluidity of the base resin Are directly related to mold surface reproducibility. Therefore, the softening temperature for calculating the integral value of a synthetic resin containing a filler that does not deform in the synthetic resin during molding is indicated by the softening temperature of the base resin.
  • the softening temperature is concerned with the deformation of the whole molded article, and is the softening temperature of the whole resin including the compound.)
  • the curing temperature is the vicat softening temperature for non-crystalline resin (ASTMD 155)
  • the thermal deformation temperature for hard crystalline resin (ASTMD 648 load 18.6 kcm 2 ) and the thermal deformation temperature for crystalline resin Temperature (ASTMD 648 load 4.6 kg Z cm 2 ).
  • the non-crystalline resin is, for example, polystyrene, rubber-reinforced polystyrene, polycarbonate, or the like.
  • the hard crystalline resin is, for example, polyoxymethylene, nylon 6, nylon 66, or the like. Is, for example, various polyethylenes, polypropylenes and the like. Further, in the present invention, it is preferred that the maximum temperature at which the temperature rises immediately after the temperature of the mold surface to be heated once drops is equal to or higher than (curing temperature of synthetic resin + 20 ° C.).
  • the heat-insulating layer and the metal are formed so that the integral value ( ⁇ ) can be molded under molding conditions of 2 seconds' ° C or more and / or the integral value (Ah) is 10 seconds ⁇ ° C or more.
  • the integral value ( ⁇ ) can be molded under molding conditions of 2 seconds' ° C or more and / or the integral value (Ah) is 10 seconds ⁇ ° C or more.
  • Select layer thickness, type of synthetic resin, molding conditions such as resin temperature and mold temperature.
  • An object of the present invention is to improve mold surface reproducibility while maintaining a short molding cycle time. For this purpose, if the change in the mold surface temperature necessary for improving the mold surface reproducibility can be obtained, the integral value ( ⁇ ) and the integral value ( ⁇ ) necessary for improving the mold surface reproducibility can be obtained. If possible, a rapid decrease in the mold surface temperature is necessary to shorten the molding cycle time. Furthermore, the integral value ( ⁇ ) and the integral value (Ah) need to be higher than the value required to obtain the mold surface reproducibility, but it is not necessary to make it much larger than that, A value close to is preferred.
  • the mold surface temperature is preferably equal to or lower than the softening temperature of the synthetic resin.
  • the molding is carried out under the molding conditions of not more than (0 ° C) or more preferably (the curing temperature of the synthetic resin is not more than 20 ° C). This is a limitation that does not increase the molding cycle time. More preferably, the temperature of the main mold is set at 100 ° C or lower at 15 ° C or higher, and at a temperature not higher than the softening temperature of the synthetic resin minus 20 ° C, preferably at 20 ° C or higher.
  • Changes in mold surface temperature during injection molding or blow molding can be calculated from the temperature, specific heat, thermal conductivity, density, etc. of the synthetic resin, main mold, and heat insulating layer.
  • ABAQUS U.S.A., software of Harbbit. Karlson & Sorensen, Inc.
  • ADINA and ADI NAT software developed at Massachusetts Institute of Technology
  • the integrated value ( ⁇ ) and the integrated value (Ah) of the present invention are indicated by values calculated from the calculated value of the change in the mold surface temperature. This calculation is based on the shearing of the plastic during injection molding. The heat generation and the heat transfer coefficient of the film between the layers are ignored.
  • the mold surface temperature change shown in the drawings and the like of the present invention is a value calculated using ABAQUS under the above conditions.
  • the metal layer of the present invention can be coated by various methods, it is well coated by plating.
  • the plating described here is a chemical plating (electroless plating) and an electrolytic plating.
  • the plating it is preferable that the plating be performed through some of the following steps. That is, first, the surface of the heat insulating layer is made fine and uneven, and then the chemical plating is performed.
  • Pretreatment Chemical corrosion (Chemical etching with strong acid solution of strong oxidizing agent: Makes the surface moderately fine irregularities) —Neutralization ”* Sensitivity treatment (Adsorption of metal salts with reducing power on synthetic resin surface) Activation effect is shown.)-Activation treatment (noble metal such as palladium having catalytic action is applied to the resin surface) ⁇ Chemical plating (chemical nickel plating, chemical copper plating, etc.)-Electrolytic plating (electrolytic nickel plating) , Electrolytic copper plating, electrolytic chrome plating, etc.).
  • Calcium carbonate, silicon oxide, titanium oxide, barium carbonate, barium sulfate, and alumina are used as heat insulating materials that form at least the outermost surface of the heat insulating layer in order to increase the adhesion between the heat insulating layer and the metal layer.
  • a fine powdery etching aid such as a fine powder of an inorganic substance such as an inorganic substance or an organic substance such as various polymers, etc., is blended, and the powder is eluted by chemical corrosion to form a surface having an appropriate fine unevenness, and then subjected to plating. Can be used very well. It is preferable that about 1 to 30% by weight of the fine powder etching aid is mixed with the heat insulating material.
  • Chemical plating involves reducing and depositing metal ions on a metal with a reducing agent.
  • chemical plating must satisfy the following conditions. (1) The reducing agent must be stable without self-decomposition while the plating solution is adjusted. (2) The product after the reduction reaction does not precipitate. (3) The deposition rate can be controlled by pH and liquid temperature.
  • sodium hypophosphite, hydrogenated boric acid, and the like are used as a reducing agent, and sodium hypophosphite is particularly preferably used.
  • auxiliary components PH adjusters, buffers, accelerators, stabilizers, etc.
  • main components metal salts, reducing agents
  • the resulting nickel plating contains phosphorus.
  • the preferred chemical nickel layer which adheres to the heat insulating layer contains 1% by weight or more and less than 5% by weight of phosphorus, more preferably 2% by weight or more and 5% by weight or less.
  • the thickness of the chemical Nikkerume luck layer is generally sufficient with a thin layer of about called primers, are favored properly 0.. 1 to 5 m, further preferred properly is 0.
  • the chemical nickel plating layer be firmly adhered to the heat insulating layer. Therefore, in the initial stage of the chemical nickel plating, the temperature of the plating solution is lowered and the pH is lowered. It is extremely preferable to reduce the plating speed by adjusting the thickness, to generate plating particles having a small particle size, and to cause the plating to enter into the fine irregularities on the surface of the heat insulating layer. After the plating layer with a certain thickness is formed, the plating speed is increased to perform plating efficiently.
  • the nickel plating layer in contact with the heat insulating layer becomes a chemical nickel plating layer containing 1% by weight or more and less than 5% by weight of phosphorus, and the nickel plating layer on the nickel plating layer is an electrolytic nickel plating layer. It becomes an electrolytic chrome plating layer, a chemical nickel plating layer containing 5 to 14% by weight of phosphorus, and an electrolytic copper plating layer.
  • Metal plating on the polyimide layer surface most suitable as the heat insulating layer in the present invention.
  • Metal plating on the polyimide surface begins with a polyimide surface treatment. As described in U.S. Pat. Nos. 4,775,449 and 4,842,946, the polyimide surface is treated with an alloy or the like. It is common to do. In other words, polyimide is weak to alkali and its surface is activated. However, the metal layer on the surface of the heat insulating layer is subjected to severe cooling and heating cycles during molding of the synthetic resin, so it is necessary to have sufficient adhesion strength to withstand the severe cooling and heating cycles.
  • polyimide containing a fine powdered etching aid such as calcium carbonate, titanium oxide, or alumina on the polyimide surface layer, and etched the surface with a strong acid solution of a strong oxidizing agent. Then, fine powder of calcium carbonate, titanium oxide, alumina, etc. present on the surface layer and a part of polyimide are eluted to make the polyimide layer surface with moderate fine irregularities, then neutralization and sensitivity It has been discovered that a method of performing chemical nickel plating through the activating treatment and the activation treatment can be favorably used in the present invention.
  • the fine powder an organic substance such as a fine powder of a crosslinked rubber or a fine powder of a poorly soluble polymer can be used.
  • Fine powder of fine calcium carbonate, titanium oxide, alumina, etc. having an average particle size of about 0.01 to 5 m, 1 to 30% by weight based on polyimide, preferably 5 to 25 % By weight, and fully kneaded with the polyimide and blended as the outermost surface layer.
  • the entire polyimide layer may be a compound polyimide, or only the outermost surface layer may be a compound polyimide.
  • the polyimide surface is subjected to an etching treatment with a strong acid solution containing chromic acid, sulfuric acid, phosphoric acid, etc. to elute a part of the fine powder and polyimide on the surface layer, and to form an appropriate surface on the polyimide surface.
  • Fine irregularities are formed, and then, after neutralization, sensitization, and activation, chemical nickel plating is performed using sodium hypophosphite or the like as a reducing agent. Chemical nickel plating is performed at a low temperature and at a low speed in a weakly alkaline state to reduce the size of generated nickel particles and to allow nickel to enter even into the fine irregularities on the polyimide layer surface.
  • a method of remarkably improving the adhesive force by incorporating the nickel metal plating is a very preferable method for the present invention.
  • a preferred composition of the chemical nickel layer in contact with the heat insulating layer of the present invention contains 1% by weight or more and less than 5% by weight of phosphorus.
  • Performing the chemical nickel plating at a low temperature and at a low speed as described in the present invention means that the chemical nickel plating is performed at a lower temperature and at a lower speed than the commonly used chemical nickel plating, but preferably 50 ° C or less and 5 ° C or less. More preferably, the temperature is 40 ° C or less and 10 ° C or more, and the speed is preferably 10 m or less and 0.1 m or more per hour.
  • Electrolytic nickel-plate (such as glossy nickel-plate, semi-gloss nickel-plate, non-light nickel-plate)
  • At least one layer or two or more layers selected from these methods are coated.
  • electrolytic copper plating and Z plating or chemical copper plating are performed on a thin-layer chemical nickel plating, and nickel plating is further performed thereon, the adhesion of the plating is improved and it can be used favorably.
  • the outermost surface of the metal layer has a hard nickel layer that is hard to be scratched, such as a nickel metal layer or a hard chrome metal layer, of 0.5 m or more, more preferably 1 to 50 m, and particularly preferably 2 m or more. Preferably it is ⁇ 30 m.
  • the synthetic resin to be molded contains 5 to 65% by weight of inorganic pitting material such as glass fiber, whiskers and calcium carbonate, more preferably more than 20% by weight and 65% by weight or more
  • inorganic pitting material such as glass fiber, whiskers and calcium carbonate
  • the hardness of the metal layer on the outermost surface of the mold surface is determined by the inorganic filler in the synthetic resin. It is preferable that the hardness is equal to or higher than the hardness of the material. This hardness is relative and means that the metal layer is not easily scratched when the two are rubbed together.
  • Vickers hardness is a method of using a diamond pyramid with an apex angle of 13 6 degrees as an indenter and expressing the hardness by dividing it by the surface area of the indented dent that caused the load. It is shown in kg / mm 2.
  • the following table shows the typical plating and Vickers hardness (HV) of glass. Table 3
  • the hardness of the chemical nickel plating depends on the phosphorus content, but also depends on the heat treatment after plating.
  • the change in hardness due to the heat treatment of nickel plating is described in ISODIS4527.
  • E-glass is often used as glass fiber in synthetic resins.
  • E-glass is a glass developed for electrical products and is close to alkali-free glass. Its composition is S i 0 2 5 2 to 56 wt%, Al 2 0 3 1 2 to 16 wt%, CaO 16 to 25 wt%, MgO 0 to 6 wt%, B 2 O 3 8 to 13 wt% , N a 20 and K or K 200 to 3 wt%.
  • the hardness of the metal layer on the outermost surface of the mold is preferably equal to or greater than the hardness of this glass.
  • the Vickers hardness of the metal layer is determined by the Vickers hardness of the inorganic filler in the synthetic resin. Hardness is greater than 100), preferably the picker hardness of the metal layer is greater than the Vickers hardness of the inorganic filler, and more preferably the Vickers hardness of the metal layer is less than that of the inorganic filler. (Vickers hardness + 50).
  • the interface between the plating layer and the heat insulating layer has a shape in which the plating layer and the heat insulating layer enter each other.
  • the thickness of the metal layer described in the present invention is the thickness of the portion where the metal occupies 50% by volume or more, and the thickness of the heat insulating layer is the thickness of the portion where the heat insulating material exceeds 50% by volume.
  • the surface of the metal layer of the present invention can be mirror-like, matte-like, rugged, lens-like, or the like.
  • etching method can be used favorably.
  • the etching method is best used. If the outermost layer of the mold is a metal that can be etched with an acid solution such as electrolytic nickel plating, electrolytic copper plating, chemical plating, etc., etching used for graining of general metal molds Graining can be performed in the same manner as the method. That is, a method in which the surface of the metal layer is masked in a grain shape using an ultraviolet curable resin and then grained by acid etching can be favorably used.
  • the metal layer is nickel plating, chemical nickel plating having a phosphorus content of 8% by weight or more is difficult to be etched by an acid, and chemical nickel plating having a lower phosphorus content is easily etched.
  • the phosphorus content and acid resistance of Chemical Nickel Macchi are shown in Plating and Surface Face Finishing, 79, No. 3, P. 29-33 (1992), etc.
  • the acid resistance is as follows: G 0 od at phosphorus content of 10 to 12% by weight, air at 1 to 4% by weight at 7 to 9% by weight. oor.
  • the phase diagram of the Nigger-Phosphorus alloy shows that the phosphorus content is 0-4.5% by weight in S phase, 11-15% by weight is in A phase, and 4.5-11% by weight is in ⁇ phase. It is a three-phase mixture.
  • the seven phases are excellent in corrosion resistance to acid, and the corrosion resistance is large when the phosphorus content is 8% by weight or more, which is generally called high phosphorus content.
  • the etching properties vary depending on the composition, and nickel plating having a large phosphorus content is difficult to be etched with an acid.
  • the depth of the grain by etching can be adjusted by adjusting the etching time, a combination of a metal layer which is easily etched and a metal layer which is hardly etched.
  • a thin metal layer having excellent corrosion resistance and / or a metal layer having a high hardness that is, a chemical nickel plating layer having a high phosphorous content ⁇ an electrolytic hard chrome plating.
  • a layer can be used well.
  • the thickness of the heat insulating layer fluctuates like a lens, and the thickness of the metal layer becomes almost constant.
  • the present invention includes both molds. If the thickness of the heat insulating layer fluctuates, the thickness of the heat insulating layer in the thin portion is used as the heat insulating layer thickness.
  • the acute angle portion of the mold cavity is sufficiently reproduced, and a good lens is obtained.
  • the synthetic resin cannot sufficiently enter the acute angle portion of the mold cavity, and a good lens that sufficiently reproduces the angle portion is formed.
  • it was necessary to set the mold temperature extremely high. Increasing the mold temperature has the disadvantage of increasing the molding cycle time and reducing productivity. According to the present invention, an increase in the molding cycle time is kept very small, and a good lens having a good reproduction of the corner can be obtained.
  • the mold of the present invention it is possible to obtain a highly diffusive molded product in which the unevenness of the mold surface is sufficiently reproduced, and in particular, to mold a transparent synthetic resin by injection molding to form a highly transparent, highly diffused plate, etc. This is an extremely preferred molding method.
  • a backlight for a liquid crystal display device has been required to have a high transmission and a high diffusion plate with excellent performance.
  • the mold according to the present invention is used by using the mold of the present invention in which the surface of the mold has a very small number of surfaces parallel to the surface of the mold, that is, the surface of the fine irregularities in which the concaves and convexes of the fine irregularities are formed.
  • a molded product in which the fine uneven surface of the mold surface is sufficiently reproduced by the method a molded product capable of sufficiently diffusing incident light on the molded product surface can be obtained.
  • a high transmittance and high diffusion plate with a sufficiently small parallel light transmittance could be obtained without using a small amount of fine powder mixed with the synthetic resin or without compounding.
  • the relationship between the total light transmittance T (%), the diffuse light transmittance D (%), and the parallel light transmittance P (%) measured by ASTM-D1003 is as follows.
  • a mold for molding such a molded article is a matte which is obtained by forming the metal layer surface or a part of the metal layer surface of the heat-insulating layer-coated mold described in the present invention by a multi-stage sand-plast treatment and / or a multi-stage etching treatment.
  • the use of a mold having a convex surface can be favorably used.
  • the mold surface metal layer has a lower hardness and / or a higher etchability compared to its inner metal layer
  • a mold having a metal layer having a layer is a mold having an candy-like surface formed by a multi-stage sand-plast treatment and / or a multi-stage etching treatment.
  • the etching speed of the metal layer of the metal surface of the metal mold is at least twice the etching speed of the inner metal layer, and the above-mentioned metal layer is made into a 16 erased surface by multi-stage etching. Can be favorably used. It is preferable to use a mold having this matte surface, and the manufacturing method thereof will be described in further detail below.
  • the method of making the mold surface forming the mold cavity of a general mold a matte surface is a method of roughening the mold surface by a sand blast method.
  • the sandblasting method can be considered first to roughen the surface of the heat-insulating layer so that the surface becomes dull.
  • the present invention provides a method for solving the problems inherent in molded articles formed by using these molds coated with a heat-insulating layer having an erased surface II. That is, economical molding of a synthetic resin molded product with excellent appearance that achieves a reduction in well-lined appearance, uniform matte surface, improved scratch resistance, etc. without significantly lengthening the molding cycle time.
  • a molding method is provided.
  • the metal layer on the heat insulating layer surface preferably has two or more metal layers such that the surface metal layer on the mold cavity side has lower hardness and / or greater etching properties than the inner metal layer. I like it.
  • the thickness of the surface metal layer on the mold cavity side is preferably 1 Z2 or more of the thickness of the entire metal layer.
  • the picker hardness value of the surface metal layer is smaller than the (Vickers hardness-150) value of the inner metal layer. In other words, the metal that is easily made uneven by the sand blasting process forms the surface metal layer.
  • the hardness of an object is hard to compare directly with a numerical value when the type of material is different, but in the present invention, the hardness is compared by Vickers hardness (HV).
  • Vickers hardness (HV) is a method that uses a diamond pyramid with an apex angle of 13.6 degrees as an indenter and expresses the hardness by dividing it by the surface area of the thick indent that caused the load. The unit is kg. / shown in mm 2.
  • the sand blasting treatment described here is a sand blasting treatment that makes the surface of a general mold saturate and yields, and the inorganic particles of various particle sizes and various shapes such as carbon random, glass, etc. are mixed with a pressurized gas.
  • Multi-stage sand blasting is the process of sand blasting particles having different particle sizes, shapes, materials, etc. twice or more. is there. It is preferable to use a combination of sandblasts of angular particles and those of spherical particles.
  • the multi-stage sand blasting process of the present invention is to perform different sand blasting processes at least twice, preferably 3 to 6 times. In this case, it is not necessary that all of the third to sixth sandblasting processes be different. For example, two types of processing, A processing and B processing, may be repeatedly performed. It is difficult to obtain the erasing surface required by the present invention by one-step sand-plast treatment.
  • the hardness of chemical nickel plating (electroless nickel plating) depends on the phosphorus content, but also depends on the heat treatment after plating. The change in hardness due to the heat treatment of nickel plating is described in ISODIS 457, etc.
  • the multi-stage etching described in the present invention means that the etching process is repeatedly performed in two or more stages, preferably in three to ten stages, and more preferably in four to eight stages. With a single-step etching process, it is difficult to obtain the matte surface required by the present invention.
  • the etching rate of the metal layer on the mold surface is at least twice the etching rate of the metal layer on the inner side, and more preferably 3 times. More than twice, particularly preferably more than 5 times.
  • the metal layer is a metal that can be etched with a general etching solution such as electrolytic nickel plating, electrolytic copper plating, chemical nickel plating, etc.
  • a general etching solution such as electrolytic nickel plating, electrolytic copper plating, chemical nickel plating, etc.
  • the same etching method used for graining of general metal molds is used. Can be used. That is, the surface of the metal layer is partially masked with an ultraviolet curable resin, and then etched with a ferric chloride solution or an acid solution. By repeating this masking and etching, The face metal layer is made to be in an erased state.
  • the inner metal layer of the metal layer of the present invention is preferably a high phosphorus content nickel having excellent corrosion resistance, and the surface metal layer is preferably nickel having a phosphorus content of less than 8% by weight and 3% by weight or more.
  • the etching properties vary depending on the composition, and vary depending on the sulfur content and the phosphorus content. Higher phosphorus content results in better corrosion resistance.
  • Performing the multi-stage sand-plast process and / or multi-stage etching process described in the present invention includes performing a total of two or more processes using the sand-plast process and the etching process together. Even in this case, it is preferable to perform the processing three times or more in total.
  • the method that combines multi-stage etching and single-stage or multi-stage sand blasting is the best method.
  • the severely erased surface of a synthetic resin injection molded product such as rubber-reinforced polystyrene molded by this mold is preferably a scratch of 2 B or less in a pencil scratch test, and is preferably marked with a hardness of B or less. Has good fine uneven surface with no scratch resistance. More preferably, it has abrasion resistance to human nails.
  • the pencil pull test is measured according to JIS K5401. Conspicuous wounds are those that are easily visible to the naked eye.
  • the matte-shaped molded article formed by the heat-insulating-layer mold has sharp projections of the fine irregularities on the surface thereof, and the sharp corners of the surface irregularities are damaged when human nails or the like come into contact with the molded article. It is easy to be scratched.
  • the concave portions of the fine irregularities in the outermost metal layer of the mold are made obtuse, and the synthetic resin is sufficiently deep into the concave portions of the fine irregularities. It is intended to obtain a molded product with an uneven surface that is hardly scratched even if it enters the surface.
  • multi-stage etching is necessary to make a mold with the bottom of the concave part of the fine unevenness on the metal layer surface formed at an obtuse angle. It is preferable to use a mat and a multi-stage sandplast to make the matted shape, and it has been found that it is extremely preferable to combine this method of forming the matted surface with the mold for coating the heat insulating layer of the present invention. Invented the invention.
  • an injection molding method or a blow molding method can be favorably used.
  • the mold surface reproducibility differs depending on the temperature of the synthetic resin to be injected, the temperature of the main mold, the injection pressure, the flow velocity of the synthetic resin in the mold, and the like.
  • the method of the present invention is more effective when the average flow velocity in the mold of the synthetic resin is 20 to 300 mm / sec, and can be used favorably. More preferably, it is formed well by low-speed injection of 30 to 200 mmZ seconds. The lower the flow velocity in the mold, the lower the mold surface reproducibility generally becomes worse.
  • the present invention is more effective at low-speed injection molding in which mold surface reproducibility is generally poor, and can be used particularly well. Injection compression molding and gas assist injection molding are generally low-speed injection molding.
  • the average speed in the mold can be generally calculated by dividing the resin flow distance from the gate of the mold cavity to the flow end by the flow time of the synthetic resin in the mold. This value is also used in the present invention.
  • the present invention has a large effect in the case of low-speed injection, but is not limited to low-speed injection molding, and can be used in general high-pressure injection molding.
  • the mold temperature depends on the temperature of the synthetic resin to be blown, the temperature of the main mold, the blow pressure, and the time from when the parison to be blown comes into contact with the mold surface until the blow pressure is sufficiently applied to the inner surface of the molded product.
  • the time from when the parison to be blown comes into contact with the mold surface to when the blow pressure is sufficiently applied to the inner surface of the molded article is preferably 1 to 10 seconds, more preferably 2 to 10 seconds. Formed in 8 seconds, particularly preferably 2-5 seconds.
  • blow pressure be applied to the air.
  • FIGS. 1 to 27 show the results obtained by calculating changes in the mold surface temperature and the like.
  • the change in the mold surface temperature can be calculated by transient heat conduction analysis using software such as ABAQUS.
  • the calculation method will be described in more detail. Since the thickness of the Nigel layer and polyimide layer is considerably smaller than the thickness of the resin product, the phenomenon can be described by one-dimensional heat transfer. Think of it as a lead problem. In the steady state, the governing equation is given by
  • T is the temperature
  • X is the position.
  • the heat flux is given by the following equation from Fourier's law.
  • the actual calculation can be performed using commercially available general-purpose structural analysis software.
  • the calculation was performed using ABAQUS.
  • the heat transfer at the boundary between the synthetic resin and the metal layer and the heat conduction in the main mold are ignored because the effects are extremely small.
  • the values of the thermal conductivity and the specific heat used in the CAE calculation of the change in the mold surface temperature during molding according to the present invention use the actually measured values and the values from various documents. That is, for polyimide, an actually measured value of polyimide used as a heat insulating layer in the embodiment is used.
  • the thermal conductivity is H. Loboand R. Newman: Use the value reported in SPEANTEC '90, 862, and the specific heat is J. Brandrup, E.H.I. mm ergut edition Use the values described in rPoolymerH andbookJ John Wiley & Sons.
  • thermo conductivity and the like differ depending on measurement conditions such as temperature and pressure at the time of measurement. In the present invention, the influence of temperature is considered, but the influence of pressure is not considered.
  • Epoxy resins vary greatly in performance depending on the type of epoxy resin and its curing agent, and in general, are often used in combination with compounds such as inorganic substances.
  • the typical values of thermal conductivity, specific heat, and density shall be used, and the values in the Mechanical Design Handbook (3rd edition, published in 1992 by Maruzen Co., Ltd.) shall be used as they are. That is, the thermal conductivity value of the epoxy resin is 0. 3 WZM ⁇ K, the specific heat value 1.1 «1 Bruno 2 *! ⁇ , Density is used regardless of the 1 8 5 0 2 111 3 temperature and pressure.
  • the values for ceramics, nickel and steel are quoted from the Chemical Society of Japan, Chemical Handbook, Basics (Maruzen Co., Ltd.).
  • the thermal conductivity of the ceramics is 2.1 WZ (m ⁇ K), the specific heat is 454 JZ (kg ⁇ K), and the density is 5700 kg / m 3 .
  • FIG. 30 is a diagram showing a temperature distribution of a resin cross section by calculating a CAE of a rise in resin temperature due to shear heat generation during injection molding of rubber-reinforced polystyrene.
  • CAE calculation conditions are as follows: resin is Asahi Kasei polystyrene 492, resin temperature is 240 ° C, mold temperature is 50 ° C, mold is steel, mold cavity is 2 mm in thickness, side gauge The flow distance from the mold to the flow end is 290 mm, and the resin flow time of the mold cavity is 0.4 seconds (injection speed of 72.5 mm, seconds) and 1.0 second (injection speed of 290 mm) mmZ seconds).
  • Figure 30 shows the temperature distribution of the resin cross section immediately after the resin filled the mold cavities at the positions 25 mm and 144 mm from the gate.
  • FIGS. 28 and 29 show the temperature dependence of the thermal conductivity ( ⁇ ) and specific heat (C ⁇ ) of each resin used in the present invention.
  • the CA ⁇ calculation described in the present invention uses the heat shown in these figures. Use values for conductivity and specific heat.
  • Figures 1, 2 and 3 show that the temperature of the steel main mold was 50
  • the figure shows the calculated value of the change in the temperature distribution near the mold surface when injection molding was performed at a temperature of styrene (indicated by HIPS in the figure) of 240.
  • each curve in the figure indicates the time (second) since the heated synthetic resin came into contact with the cooled mold surface.
  • the heated synthetic resin comes into contact with the mold surface and is rapidly cooled (Fig. 1).
  • the mold surface receives heat from the heated synthetic resin and rises in temperature.
  • a heat insulating layer polyimide
  • Figures 2 and 3 when the mold surface is covered with a heat insulating layer (polyimide) of 0.1 111 111 and 0.3 mm ( Figures 2 and 3), it comes into contact with the synthetic resin (rubber reinforced polystyrene).
  • the temperature rise on the surface of the heat insulating layer increases, and the rate of temperature decrease also decreases.
  • Figure 4 shows the mold when heated synthetic resin (rubber reinforced polystyrene) comes in contact with a mold in which various thicknesses of polyimide (indicated by PI in the figure) are coated on the surface of the steel main mold.
  • the change over time (calculated value) of the surface temperature is shown. As the polyimide layer covering the mold surface becomes thicker, the mold surface temperature decreases significantly.
  • Fig. 5 shows that a synthetic resin (rubber reinforced polystyrene) was applied to a mold with a 0.2 mm thick polyimide coated on the surface of the steel main mold at various resin temperatures and mold temperatures. The change over time (calculated value) of the mold surface temperature upon contact is shown. As the synthetic resin temperature and the mold temperature decrease, the mold surface temperature also decreases.
  • a synthetic resin rubber reinforced polystyrene
  • Fig. 6 shows a mold in which a 0.2 mm thick polyimide is coated on the mold surface of a steel main mold, and a synthetic resin (rubber reinforced polystyrene) is applied at various mold thicknesses and mold temperatures. ) Shows the change over time (calculated value) of the mold surface temperature when contacted.
  • Fig. 7 shows a mold in which a polyimide layer is coated on the surface of a steel main mold and a Nigel layer (indicated by N ⁇ ⁇ in the figure) is coated on the surface of the mold.
  • Figure 7 shows the change over time in the resin surface temperature when the thickness of the polyimide layer was 0.3 mm and the thickness of the nickel layer was 0.2 mm.
  • the solid line indicates the polyimide layer.
  • the nickel layer was covered, and the broken line is the case where only the polyimide layer was covered.
  • Polyimid When the resin surface is coated, the resin surface temperature decreases with the passage of time, whereas when the polyimide layer and nickel layer are coated, the temperature drops once and then rises again and then gradually. descend. This is because the heat of the synthetic resin is absorbed by the nickel layer and lowers because the heat capacity of the surface Nigel is large. Therefore, as the thickness of the nickel layer increases, the temperature range that once decreases increases, and the temperature that increases again decreases.
  • FIG. 8 shows the change over time (calculated value) of the mold surface temperature when the thickness of the nickel layer coated on the polyimide layer is variously changed.
  • the integral ( ⁇ ⁇ ) and / or the integral (A h) need to be a certain value or more in order to improve the mold surface reproducibility in molding a synthetic resin.
  • the thickness of Nigel is 0.05 mm and the curing temperature of the synthetic resin is 105 ° C. (indicated by line 1 in the figure), the area 2 indicated by oblique lines is indicated by the present invention.
  • the integral value ( ⁇ ⁇ ) Is 2 seconds * ° C or more, and under the molding conditions where the integrated value (A h) of the mold or (mold surface temperature-(softening temperature of synthetic resin-10 ° C)) ⁇ is 10 seconds ⁇ ° C or more It is necessary to mold.
  • This integral value differs depending on the configuration of the mold, but also depends on factors such as the type of synthetic resin and molding conditions. This integral increases when these factors move in the next direction.
  • the integral value increases in these directions, but the range that can be selected from the viewpoint of the synthetic resin to be molded, the performance of the molded article after molding, the molding cycle time, etc. is limited, and the integrated value is limited within the limited range. Select a range with a large value.
  • the integrated value of the present invention indicates the relationship with the mold surface reproducibility by integrating these factors.
  • Figures 9 to 26 show various changes in the thickness of the heat-insulating layer ⁇ polyimide (indicated by PI in the figure) or epoxy resin ⁇ and the thickness of the nickel layer on the surface of the steel main mold.
  • the graph shows the time-dependent changes in the mold surface temperature when molding is performed by changing the thickness of the molded product, the temperature of the synthetic resin, and the temperature of the main mold.
  • a graph showing the relationship between the integrated value of the (mold surface temperature-synthetic resin aging temperature) value ⁇ ⁇ (second * ° C) (calculated value) while the mold surface temperature is equal to or higher than the curing temperature of the synthetic resin. It is.
  • the integral value of the softening temperature of each synthetic resin is the integral value ( ⁇ ⁇ ⁇ ⁇ ) described in the present invention, and the integral value at a temperature lower by 10 ° C. than the curable temperature is the integral value described in the present invention ( ⁇ ⁇ ).
  • a h The individual conditions are summarized in Tables 4 and 5, and the numbers in the figures correspond to the numbers in Tables 4 and 5.
  • FIGs 9 to 22 show the calculated values for PI for the heat insulation layer and rubber reinforced polystyrene (HIPS) for the synthetic resin.
  • Figures 23 to 24 show PI for the heat insulation layer and latent heat of crystallization for the synthetic resin.
  • a calculated for polyoxyethylene (POM) 2 5 is cross-sectional heated material canceller Mi click (Z r 0 2 / Y 2 0 3), from a synthetic resin! a calcd for IPS
  • FIG 26 is the calculated value for epoxy resin for the heat insulation layer and HIPS for the synthetic resin.
  • polyimide and epoxy resin are used as a heat insulating layer, and a nickel layer is used as a metal layer, but other heat-resistant polymers are used as a heat insulating material, and chromium other than nickel is used as a metal.
  • FIGS. Fig. 18 to Fig. 21 show the change of the mold surface temperature and the change of the integral value when the temperature of the synthetic resin is changed. As the temperature of the synthetic resin increases, the integral value increases significantly.
  • the effect is significantly different depending on molding conditions, and it is necessary to specify at least the temperature of the synthetic resin and the temperature of the main mold. Especially, the effect of resin temperature is great.
  • the present invention introduces the integral values ⁇ and ⁇ , which are parameters including this factor, and clarifies the difference from the known literature.
  • Figure 25 shows the case of using ceramics and the case of using epoxy resin as the heat insulating material. Ceramics are introduced as heat insulating materials, but ceramics have considerably higher thermal conductivity than heat-resistant polymers, and when ceramics are used as heat insulating materials, As shown in FIG. 25, the mold surface temperature decreases rapidly, the integrated value is extremely small, and ceramics cannot be used in the present invention.
  • Figure 26 shows that when the thickness of the heat insulating layer becomes 0.5 mm or more, the mold surface temperature falls below the softening temperature of the synthetic resin within 5 seconds after the synthetic resin contacts the mold surface under the conditions of the present invention. It is difficult to meet the requirements.
  • Figure 27 shows the change in the mold surface temperature of the molding method of the present invention, and the known literature USP 538 of the reference.
  • the mold surface temperature falls below the glass transition temperature of the synthetic resin in about 20 seconds after the synthetic resin comes into contact with the mold surface, but in the present invention, it falls below the glass transition temperature within 5 seconds.
  • the molding surface temperature is reduced to a temperature equal to or lower than the curing temperature of the synthetic resin after 5 seconds, thereby shortening the molding cycle time and providing an economical molding method.
  • Figure 31 shows the gloss of molded products when rubber-reinforced polystyrene (Stylon 495, trade name, manufactured by Asahi Kasei Kogyo Co., Ltd.) was used and the resin temperature was changed and injection molding was performed.
  • the glossiness used in the present invention is measured at JISK 710 and a reflection angle of 60 degrees.
  • This gloss is a gloss based on a mirror gloss of 1.567 for the glass surface having a refractive index of 1.567, and the gloss of the synthetic resin molded article may exceed 100%.
  • the glossiness is measured by this measuring method.
  • the gloss of the molded product changes greatly depending on the resin temperature when molded with the heat-insulating layer-coated mold compared to when molded with a general mold without the heat-insulating layer.
  • Figure 32 shows the relationship between the integral value ( ⁇ ) and the gloss of the molded product when rubber-reinforced polystyrene (Stylon 495, trade name of Asahi Kasei Kogyo Co., Ltd.) is used.
  • the gloss of the injection molded product depends on the injection molding speed, and the lower the injection speed, the lower the gloss. The lower the injection speed, the more remarkable the effect of the present invention is and the better the use.
  • the flow velocity of the synthetic resin in the mold cavity is 20 to 300 mm Z seconds, preferably 30 to 2 mm. Molded at 0 mm / sec.
  • the gloss value in Fig. 32 is a value obtained by injection molding at 50 mm / sec.
  • Fig. 33 shows the relationship between the integral value ( ⁇ ) and the gloss of the injection-molded product when injection molding is performed using rubber-reinforced polystyrene (Stylon 495, trade name, manufactured by Asahi Kasei Corporation). .
  • the integral value (Ah) is 10 seconds ⁇ ° C or more, the mold surface reproducibility is good and the molded product gloss is good.
  • the integral value (Ah) is 12 seconds ⁇ or more, the glossiness is further increased.
  • the integrated value ( ⁇ ⁇ ) becomes 15 seconds or more, the glossiness becomes almost 100%.
  • An object of the present invention is to obtain a molded article of high gloss having a rubber gloss of 80% or more, preferably 90% or more, and more preferably 95% or more in the rubber-reinforced polystyrene shown in the figure. This type of appearance is required to eliminate the need to paint on molded products and to use them in applications that require an appearance.
  • the integral value ( ⁇ ) must be at least 2 seconds * ° C and / or the integral value (Ah) must be at least 10 seconds * ° C. It is important.
  • the glossiness of a molded article can be arranged by the integral value ( ⁇ ) and / or the integral value ( ⁇ ) shown in the present invention, and have reached the present invention.
  • a molded article with a good appearance can be obtained by increasing the thickness of the heat-insulating layer.
  • increasing the thickness of the heat-insulating layer increases the molding cycle time and is not suitable in terms of molding efficiency. In the present invention, this is a method for achieving both improvement in appearance and molding cycle time.
  • Figure 34 uses a normal metal mold that does not cover the heat-insulating layer, makes the mold surface that makes up the mold cavity mirror-like, and uses rubber-reinforced polystyrene (Stylon 495, vicat).
  • the figure shows the relationship between the mold temperature and the gloss of the molded product when injection molding is performed at a temperature of 105 ° C).
  • the mold surface reproducibility during molding can be determined from the gloss of the molded product.
  • the mold surface reproducibility that is, the gloss of the molded product, varies depending on the injection speed of the synthetic resin (the flow speed of the synthetic resin in the mold). However, when the mold temperature becomes (synthetic resin ⁇ temp. Related to Almost constant.
  • the mold temperature should be close to the curing temperature of the synthetic resin to be molded. I need to raise it. However, as can be seen in Fig. 34, if the mold temperature is raised to 95 ° C, which is a temperature that is 10 ° C lower than the synthetic resin softening temperature of 105 ° C, the gloss of the molded product will be considerably improved. However, the glossiness can be said to be close to 95%, which is a class A surface. Even if the integral value ( ⁇ ) is small, if the integral value ( ⁇ h) is extremely large, the mold surface reproducibility will be similarly improved.
  • FIG. 35 shows a state in which the interface between the heat insulating layer and the metal layer of the mold described in the present invention is finely uneven and closely adhered. It is preferable that the adhesion between the heat insulating layer and the metal layer is also large, and it is preferable that the heat insulating layer and the metal layer intersect at the interface alternately to increase the adhesion due to the anchor effect.
  • the preferred degree of fine unevenness is a standard length of 80 m, with the average of the peaks from the highest to the fifth at the interface between the metal layer and the heat insulation layer and the average of the valley bottom from the deepest to the fifth. Is 0.5 to 10 m. Since the unevenness described here is a shape that alternately and intricately interlocks and acts as an anchor effect, and is not a simple unevenness, the elevation where the deepest of each unevenness enters is selected.
  • FIGS. 36 and 37 show that the method of the present invention is suitable for molding lenticular lenses and Fresnel lenses.
  • Figure 36 shows a conventional Fresnel lens mold that has been injection molded under normal molding conditions.
  • the mold surface of the metal mold 3 has a convex corner 5 and a concave corner 6, and the injected synthetic resin 4 generally enters the corner 7 of the concave corner 6 sufficiently. It is impossible to obtain a lens whose corners are sufficiently reproduced.
  • FIG. 37 shows a Fresnel lens mold formed by the method of the present invention.
  • the main mold 8 has a heat insulating layer 9 on its surface, and further has a Fresnel lens-shaped metal layer 10 on its surface.
  • the mold surface reproducibility of ordinary Fresnel lens molds is particularly poor at the concave corners 6, and the effect of the heat insulating layer 9 is to improve the mold surface reproducibility of the concave corners 6. is there. Therefore, in the present invention, in the mold for forming the Fresnel lens or the lenticular lens, the thickness 12 of the thin portion is used as the thickness of the metal layer.
  • the thickness of the metal layer 12 is 1 to 3 or less, preferably 15 or less of the thickness 11 of the heat insulating layer, and is 0.001 to 0.1 mm, and the metal layer is in close contact with the heat insulating layer. There is a need.
  • the present invention has excellent scratch resistance, in which a metal layer surface or a part of the metal layer surface is molded using a mold having an matte surface which is formed by multi-stage sand blasting and / or multi-stage etching. This is a molding method for molded articles with a fine uneven surface and an erasable surface.
  • Fig. 38 shows a saturated molded product (38-1) with excellent scratch resistance produced by the molding method of the present invention, and an easily matted glossy molded product (38-8) formed by the conventional method. ) Shows the cross section.
  • the tip 15 of the concave portion on the fine uneven surface of the synthetic resin molded article 13 has an acute angle, while the tip 14 of the convex portion is rounded. It is hard to be scratched.
  • both the tips 16 and 15 of the concave and convex portions are acute angles, and when the surface of the molded product is rubbed with human nails etc.
  • the tip of the projection is easily scraped off and easily scratched.
  • the present invention is a method of molding a molded article shown in FIG. 38- 1, in which the ratio of the sharp end of the convex portion is small, so that it is difficult for the nail or the like to be scratched.
  • FIG. 39 the synthetic resin injected from the gate 17 flows around the hole 18 and merges at the weld to form a weld line 19.
  • Fig. 39 when injection molding is performed with a mold in which a mold surface is covered with a heat insulating layer and a metal layer having a fine uneven surface on the surface, the fine uneven surface of the metal layer is transferred to the molded product surface. .
  • the area from the weld portion of the molded product 20 to the resin flow edge (hereinafter referred to as the drawing) (In the description used, this is abbreviated as “weld part 21”.)
  • the degree of fine irregularities increases, and when molded with black colored resin, the well part 21 becomes blackish and the general part 22 becomes white-white. It is difficult to obtain a molded article having a uniform glossiness as described in the invention.
  • the cause is estimated as follows. So The cause of this will be described with reference to FIGS. 40 and 41.
  • the pressure applied to the mold wall of the elbow section 21 and the general section 22 is modeled in FIG.
  • the pressure applied to the general part 22 of the molded article is represented by a curve 23
  • the pressure applied to the elbow part 21 is represented by a curve 24.
  • Curve 25 is the pressure applied to the gate. That is, while the pressure applied to the general portion 22 gradually increases with the elapse of the ejection time, the pressure applied to the weld portion 21 is high at the same time when the synthetic resin comes into contact with the mold wall surface. As shown in Fig. 8, the heated synthetic resin contacts the mold wall surface of the heat-insulating layer, heats the surface of the heat-insulating layer coating, and immediately starts cooling.
  • the mold surface drops to 105 ° C. or less after 1.5 seconds.
  • high pressure is applied to the resin at the same time that the heated synthetic resin comes into contact with the mold wall surface, that is, high pressure is applied to the resin while the mold wall surface and the surface layer of the synthetic resin are hot. This is preferred.
  • a high pressure is applied to the resin at the same time when the synthetic resin comes into contact with the mold wall surface, and the fine irregularities on the mold wall surface are more accurately reproduced.
  • the mold surface is composed of a heat insulating layer 26 and a metal layer 27 having fine irregularities on the surface thereof.
  • the fine irregularities on the surface include a concave part 28 at an acute angle.
  • the synthetic resin 29 comes into contact with the mold wall surface and at the same time the resin pressure rises, so that the synthetic resin can penetrate deep into the fine irregularities of the mold (4113).
  • the degree of surface unevenness of the molded product becomes larger than that in the general portion 22, and in the black colored synthetic resin, the weld portion becomes blackish and does not have a uniform matte state.
  • the present invention provides a method for molding a molded article in which this defective phenomenon is improved.
  • FIG. 42, FIG. 43, FIG. 44 and FIG. 45 show preferred examples of the method of manufacturing the mold used in the method of the present invention.
  • a heat insulating layer 26 having a thickness of 0.05 to 2.0 mm, on which a thin metal layer for strengthening adhesion is provided.
  • the surface is covered with two metal layers 33, 34. Since the thin metal layer for strengthening the adhesion between the heat insulating layer and the metal layer is much thinner than the metal layers 33 and 34, it is omitted in FIGS. 42 to 45.
  • the total thickness of all the metal layers including the metal layers 33 and 34 is 1/3 or less of the thickness of the heat insulating layer 26 and is 0.01 to 0.5 mm.
  • the metal layer provided on the thin metal layer for strengthening the adhesion between the heat insulation layer and the metal layer consists of two layers, and the thickness of the surface metal layer 34 may be 12 or more of the total metal layer. Preferably, more preferably more than 2/3.
  • the preferred thickness of the inner metal layer 33 is 0.002 to 0.1 mm, more preferably 0.03 to 0.05 mm.
  • the etching rate of the surface metal layer 22 is at least twice, preferably at least three times, and more preferably at least five times the inner metal layer 33.
  • the mold is etched and the surface metal layer 2 is selectively etched mainly to obtain the mold required by the present invention shown in (42-2).
  • FIGS. 43 and 44 show in more detail the method of making the surface metal layer of the mold into an erased state required by the present invention by etching treatment.
  • the mold wall forming the mold cavity of the main mold 32 made of metal is covered with the heat insulating layer 26 (43-1).
  • a thin metal layer (omitted in the figure) and two metal layers 35 and 36 are coated on the surface of the heat insulating layer 26 (43-2).
  • the etching speed of the surface metal layer 36 is preferably at least twice the etching speed of the inner metal layer 35, more preferably at least three times, and most preferably at least five times.
  • the surface of the metal layer 36 is coated with a photosensitive resin 37 (43-3).
  • Figure 44 shows the second and subsequent multi-stage etching processes.
  • a photosensitive resin 37 is coated on the surface metal layer 26 (44-1) that has been roughened by the first-stage etching (44-1-2), and pattern masking is performed on the surface.
  • etching is performed to make the surface more uneven (44--14), and further (44-1-2) to (444--4)
  • the process is repeated to obtain the mold (444-5) required by the present invention.
  • the etching collides with the inner metal layer 35 having excellent etching resistance, so that the etching speed is slowed, the bottom of the concave portion of the metal layer is rounded, and no sharp-angled concave portion is formed.
  • a molded product excellent in scratch resistance required by the present invention shown in Fig. (38-1) can be obtained.
  • FIGS. 43 and 44 show a method in which a photosensitive resin is applied to the entire surface of the mold and exposed by covering with a masking film.
  • FIG. 45 shows a more excellent method.
  • the photosensitive resin is finely applied at intervals so as to be sprinkled on the surface of the metal layer, and is cured by irradiating it with ultraviolet light (45-1). The surface is roughened (45-2).
  • This sprinkling application of the photosensitive resin, ultraviolet irradiation (45-3) and etching (45-4) are repeated, and this process is repeated several times to obtain the matte surface mold required by the present invention ( 4 5— 5).
  • the steps from the application of the photosensitive resin to the etching are repeated preferably 3 to 10 times, more preferably 4 to 8 times, to obtain a fine irregular surface having a preferable shape.
  • the provision of a thin corrosion-resistant metal layer that does not significantly change the shape of the fine irregularities on the surface of the mold with a matte surface with fine irregularities obtained by the multi-stage etching treatment of the present invention is not limited to durability during injection molding. It is effective for improving the performance and is included in the present invention.
  • Main mold Steel (S55C) mold for injection molding. Mold thermal expansion coefficient of 1. a 1 X 1 0- 3 / ° C .
  • the molded product 20 has the mold cavities shown in FIG.
  • the molded product has a size of 10 O mm x 10 O mm and a thickness of 2 mm, and has a hole 4 of 30 mm 3 O mm in the center.
  • the gate 17 is a side gate as shown in FIG. 39, and a weld line 19 occurs in the molded product 20.
  • the mold surface is mirror-like. Nineteen nests forming the mold cavity of this main mold are prepared, and hard chrome plating is performed on the surface of each nest forming the mold cavity.
  • Heat insulation layer A Primer treatment is applied to the nest surface of the main mold.
  • a primer a polyimide precursor solution having a high C0 group content is applied to a thin layer, and heated to form a polyimide thin layer, which is used as a primer.
  • a polyimide varnish (Trenice # 3000, manufactured by Toray Industries, Inc.) is applied, heated at 160 ° C., and the application and heating are repeated to a predetermined thickness. It is heated to 900 to make it 100% imidized, and a polyimide layer having a predetermined thickness is formed.
  • the adhesion of the polyimide layer to the main mold is 1 kg / 10 mm.
  • Heat insulation layer B Primer treatment is applied to the nest surface of the main mold.
  • a primer a polyimide precursor solution having a high C0 group content is applied to a thin layer, and heated to form a polyimide thin layer to be a primer.
  • a polyimide varnish (Trenice # 3000, manufactured by Toray Industries, Inc.) is applied and heated at 160 ° C.
  • the application and heating are repeated to a predetermined thickness.
  • a thin layer of a blended polyamide varnish obtained by blending 20% by weight of a titanium oxide fine powder having an average particle diameter of 0.1 at a solid content ratio and sufficiently kneading is applied to the outermost surface of the heat insulating layer, and then coated.
  • Metal layer C Electrolytic nickel plating with a sulfur content of 0.05% by weight.
  • Metal layer D Hard chrome plating. The surface hardness of this plating is HV100.
  • the vitrification temperature of the base resin is 110 °
  • the glass fiber in the synthetic resin is E-glass and its hardness is HV640.
  • Injection molding conditions shown in Table 6.
  • the flow rate of the resin in the mold is 50 mm / sec when not specified.
  • a 0.05 mm thick metal layer ⁇ is coated on the surface of the heat insulating layer of the main mold coated with the heat insulating layer ⁇ , and a metal layer C is coated on the surface.
  • molds having a heat insulating layer having thicknesses of polyimide (PI) and nickel (Ni) shown in Table 6 are prepared.
  • the adhesive force between the metal layer and the heat insulating layer and the adhesive force between the heat insulating layer and the main mold are each 0.5 kg / 10 mm or more.
  • injection molding of the synthetic resin (a) is performed under the molding conditions shown in Table 6. Table 6 shows the integrated value of each molding condition and the glossiness of the molded product. Table 6
  • the integrated value ( ⁇ ) is 2 seconds ⁇ ° C or more, and / or the integrated value (A h) is 10 seconds' ° C or more.
  • the mold surface temperature after 5 seconds from contact with the mold surface is lower than (the aging temperature of the synthetic resin is lower than 20 ° C.) in each of the examples.
  • the gloss of each molded product of the example is high, the well line is not conspicuous, the molded product is excellent in appearance, and can be said to be class A surface. Even if injection molding is performed 10,000 times with the mold of Example 3, separation of the heat insulating layer and the metal layer does not occur.
  • a cross-sectional view of the bonding interface between the heat insulating layer and the metal layer in Example 3 is shown in FIG. The metal layer and the cross-section layer are in close contact at the interface of fine irregularities, and the anchor effect works.
  • the outermost metal layer C of the mold shown in Example 7 is etched to form a leather grain-shaped pattern grain having a depth of 0.02 mm.
  • the convex portions of the pattern grain are mirror surfaces, and the concave portions are matte surfaces.
  • Injection molding was performed using this mold in the same manner as in Example 7, and the pattern with excellent appearance was less noticeable in the well line.
  • a molded article with a grain-like surface is obtained.
  • the integral value ( ⁇ H) of the protrusion on the surface of the leather grain-like metal layer is 7.2 seconds ⁇ ° C as in Example 7, and the integral value (Ah) is 17 seconds ⁇ .
  • the mold surface temperature after 5 seconds from the contact of the synthetic resin with the mold surface has fallen below (the curing temperature of the synthetic resin minus 20 ° C).
  • a 0.5- / m-thick metal layer A is coated on the heat-insulating layer surface of the main mold coated with a 0.3-mm heat-insulating layer B, and a 10-m metal layer B is coated on the surface, and the surface is polished.
  • a mold coated with a heat insulating layer coated with a metal layer D of 10 m is used.
  • the adhesive force between the metal layer and the heat insulating layer and the adhesive force between the heat insulating layer and the main mold are all 0.5 kgZ10 mm or more.
  • Synthetic resin (b) is subjected to injection molding at a resin temperature of 240 ° C and a main mold temperature of 5 (TC.
  • the mold surface temperature is higher than the curing temperature of the synthetic resin.
  • the integrated value (mH) of the value between the (surface temperature and the plasticization temperature of the synthetic resin) is at least 5 seconds *
  • the mold surface is damaged by 100 times injection molding of the synthetic resin
  • the mold surface reproducibility of the molded product is good, and a molded product with high gloss and less noticeable eld line is obtained.
  • the mold surface temperature after 5 seconds from the contact of the synthetic resin with the mold surface is as follows. Softening temperature has fallen below 20 eC ).
  • the main mold is coated with a 0.3 mm heat insulation layer A and the surface is polished to a mirror-like heat insulation layer covered mold.
  • Injection molding is performed in the order of synthetic resin (c) and (b).
  • the molding conditions are a resin temperature of 240 ° C and a main mold temperature of 50 ° C.
  • the surface of the heat-insulating layer is not scratched by the injection molding of the synthetic resin (c) 100 times, but the surface of the heat-insulating layer is injection-molded by the synthetic resin (b) 100 times, and the gloss is high. Scratches are reduced to less than 20%.
  • a 0.05-mm-thick metal layer A is coated on the heat-insulating layer surface of the main mold coated with a 0.2-mm heat-insulating layer B, and a 0.01-mm metal layer B is coated on the surface. Then, the surface is coated with a metal layer C having a thickness of 0.03 mm.
  • the saturated surface mold of the present invention is obtained by a six-stage multi-stage etching process shown in FIG.
  • the synthetic resin (a) is subjected to injection molding using the obtained mold of the present invention. Injection molding is performed at a resin temperature of 240 ° C and a mold temperature of 40 ° C. There is no noticeable injection line of injection molded products.
  • the surface is a uniform matte surface, its gloss is less than 20%, and there is no noticeable scratch at 1B hardness in the pencil pull test.
  • Fig. 46 shows the uneven shape of the surface of the injection molded product. The uneven shape is measured with a surface roughness profile meter “Surfcom 570 A” of Tokyo Seimitsu Co., Ltd.
  • the uneven shape of the surface of the injection molded product is a surface shape that has few sharp projections protruding on the surface and is hardly damaged.
  • Injection molding of a synthetic resin is performed in the same manner using the mold coated with polyimide having the fine surface unevenness.
  • the dent of the ⁇ eldrain of the molded product is 1 m or less, and the ⁇ ⁇ ⁇ eldrain is not conspicuous, but there is a difference in the degree of glossiness of the general part 22 and the weld part 21, resulting in a uniform fungus-colored molded article. hard.
  • Figure 47 shows the surface unevenness pattern.
  • the surface unevenness pattern of polyimide coated mold is 47-1
  • the surface unevenness pattern of the general part of the molded product is 47-12
  • the surface unevenness pattern of the welded part 5 of the molded product is 47-3. Show.
  • the general part 22 and the weld part 21 of the molded product are clearly different in the surface unevenness pattern. ⁇
  • the glossy surface of the eld part 2 1 is easily scratched due to the pencil hardness test 2B hardness.
  • a molded article having a good appearance is obtained.
  • Various injection molded products such as housings of light electrical equipment and office equipment, which conventionally required a number of well-lines and required post-processing such as painting, were molded using the molding method of the present invention to improve mold surface reproducibility.
  • the well line is less noticeable and post-processing such as painting can be omitted, which is economically effective.
  • By omitting painting it is easier to recycle synthetic resin, eliminating organic solvents that scatter into the air during painting, and contributing to environmental conservation.
  • a molded article crystallized immediately before the surface of the molded article can be economically obtained. Molded products crystallized to near the surface have excellent surface hardness, wear resistance, and adhesion.

Abstract

A process for molding a synthetic resin, characterized by conducting the molding (1) by the use of a main metal mold constituting a mold cavity covered with a heat insulating layer in a state closely adherent to the mold surface in which a heat insulating layer made of a heat-resistant polymer having a thickness of more than 0.1 mm but below 0.5 mm covers the mold surface, and a metal layer covers the heat insulating layer in a state closely adherent to the insulating layer, (2) under the conditions that the integral [(mold surface temp.)-(softening temp. of the synthetic resin)] value (ΔH) over the period in which the mold surface temperature equals or exceeds the softening temperature of the synthetic resin after the point of time when the resin to be molded has come into contact with the mold surface is 2 sec. °C or above, and/or that the integral [mold surface temp.-(softening temp. of the synthetic resin - 10 °C)] value (Δh) over the period in which the mold surface temperature equals or exceeds the softening temperature (°C) of the synthetic resin minus 10 after the above point of time is 5 sec. °C or above, and (3) under the condition that the mold surface temperature lowers to the softening temperature of the resin or below after 5 seconds from the point of time when the resin to be molded has come into contact with the mold surface.

Description

明 細 書 合成樹脂の成形法  Description Molding method for synthetic resin
V V
5 技術分野  5 Technical fields
本発明は合成樹脂の成形法に関する。 更に詳しくは、 合成樹脂の射出成形、 ブ ロー成形等に適した成形法を提供する。 近年、 合成樹脂の射出成形品やブロー成 形品に塗装等の後加工を省略する要求が強くなつてきた。 すなわち、 製造コス ト の低下、 成形品のリサイクル、 塗装時の溶剤蒸発等による環境破壊の低減等のた 10 め、 塗装を無く したいという要望が極めて強い。 特に電気機器、 電子機器、 事務 機器等の合成樹脂製ハウジング等についてこの後加工省略の要望が極めて強い。 本発明はこれ等の要求を経済的に満たす成形法を提供する。 背景技術  The present invention relates to a method for molding a synthetic resin. More specifically, the present invention provides a molding method suitable for synthetic resin injection molding, blow molding and the like. In recent years, there has been a growing demand to omit post-processing such as painting of synthetic resin injection molded products and blow molded products. In other words, there is a strong demand to eliminate painting in order to reduce manufacturing costs, recycle molded products, and reduce environmental destruction due to solvent evaporation during painting. In particular, there is a strong demand for the processing of synthetic resin housings for electrical equipment, electronic equipment, and office equipment to be omitted. The present invention provides a molding method that economically satisfies these requirements. Background art
15 熱可塑性樹脂を金型キヤビティへ射出して成形し、 成形品に型表面の形状状態 の付与における再現性を良く し、 成形品の外観を良くするには、 通常、 樹脂温度 や金型温度を高く したり、 射出圧力を高くする等の成形条件を選ぶことによりあ る程度達成できる。 ブロー成形においても同様に、 成形品外観を良くするには、 通常、 樹脂温度や金型温度を高く したり、 ブローガス圧力を高くする等の成形条 15 Injecting thermoplastic resin into the mold cavity and molding it to improve the reproducibility of imparting the shape state of the mold surface to the molded product and improve the appearance of the molded product. It can be achieved to some extent by selecting molding conditions such as increasing the injection pressure and increasing the injection pressure. Similarly, in blow molding, in order to improve the appearance of the molded product, it is usually necessary to increase the resin temperature or the mold temperature, or to increase the blow gas pressure, etc.
20 件を選ぶことによりある程度達成できる。 You can achieve this to some extent by choosing 20.
これらの要因の中で最も大きな影響があるのは金型温度であり、 金型温度を高 くする程好ましい。 しかし、 金型温度を高くすると、 可塑化された樹脂の冷却固 化に必要な冷却時間が長くなり成形能率が下がる。 金型温度を高くすることなく 型表面の再現性を良く し、 又金型温度を高く しても必要な冷却時間が長くならな The most significant of these factors is the mold temperature, and the higher the mold temperature, the better. However, when the mold temperature is increased, the cooling time required for cooling and solidifying the plasticized resin is increased, and the molding efficiency is reduced. Improves the reproducibility of the mold surface without increasing the mold temperature, and does not increase the required cooling time even if the mold temperature is increased
25 い方法が要求されている。 25 different methods are required.
金型に加熱用、 冷却用の孔をそれぞれとりつけておき交互に熱媒、 冷媒を流し て金型の加熱、 冷却を繰り返す方法が P l a s t i c T e c h n o l o g y, J u n e, p. 1 5 1 ( 1 9 8 8 ) 等に示されているが、 この方法は熱の消費量 も多く、 冷却時間が長くなる。 金型の型壁面を熱伝導率の小さい物質、 すなわち薄肉の断熱層で被覆した金型 A method of repeating heating and cooling of the mold by alternately supplying a heating medium and a cooling medium to the mold and attaching holes for heating and cooling to the mold is called Plastic Technology, June, p. 1 5 1 (1 9 This method consumes a large amount of heat and requires a long cooling time. A mold in which the mold wall is covered with a substance with low thermal conductivity, that is, a thin heat-insulating layer
については W O 9 3 0 6 9 8 0等で開示されている。 Is disclosed in WO 93 06 980 and the like.
< 更に金型の型壁面を薄肉の断熱層で被覆し、 更にその表面を薄肉の金属層で被  <Furthermore, the mold wall is covered with a thin heat-insulating layer, and the surface is further covered with a thin metal layer.
覆した金型については、 U S P 3 7 3 4 4 4 9、 U S P 5 3 0 2 4 6 7及び U S U SP 3 7 3 4 4 4 9, U SP 5 3 0 2 4 6 7 and U S
P 5 3 8 8 8 0 3の各明細書に示されている。 しかし、 これ等の公知文献には型 It is shown in each specification of P 5 3 8 8 0 3. However, these known documents do not
表面再現性と成形サイクルタイムとを共に十分に満たす成形法は開示されていな A molding method that sufficiently satisfies both surface reproducibility and molding cycle time has not been disclosed.
I
従来、 成形時の型表面再現性と成形サイクルタイムとは相反する方向に働く。  Conventionally, mold surface reproducibility during molding and molding cycle time work in opposite directions.
すなわち、 金型温度を高くすれば、 型表面再現性は良くなるが、 成形サイクルタ In other words, when the mold temperature is increased, the mold surface reproducibility improves, but the molding cycle
ィムは長く なる。 断熱層被覆金型を用いた場合、 あるいは断熱層表面に更に金属 The limb becomes longer. When using a heat-insulating layer-coated mold,
層を被覆した断熱層被覆金型では、 断熱層を厚くすれば型表面再現性は良く なる In the heat-insulating layer-coated mold, the thicker the heat-insulating layer, the better the mold surface reproducibility
力〈、 成形サイクルタイムは長くなり、 また最表面の金属層を厚くすれば型表面再 Force <, molding cycle time becomes longer, and thicker outermost metal layer
現性が悪く なる。 従来型表面再現性と成形サイクルタイムは二者択一の関係にあ Possibility is reduced. Conventional surface reproducibility and molding cycle time are in an alternative relationship.
り、 この両者を両立させることが本発明の課題である。 Thus, it is an object of the present invention to achieve both.
型表面再現性と成形サイ クルタイムの両者を両立させるため、 断熱層被覆金型  In order to achieve both mold surface reproducibility and molding cycle time, a mold coated with a heat insulating layer
を用い、 断熱層と して重合体を用いた場合、 一般に断熱層は使用中に傷がつきや When a polymer is used as the heat insulating layer, the heat insulating layer is generally damaged during use.
すく 、 合成樹脂に無機充塡材が多量に配合されると型表面は更に傷つきやすく な If a large amount of inorganic filler is added to the synthetic resin, the mold surface becomes more easily damaged.
る。 また、 成形される合成樹脂の種類によっては、 成形時に金型からの離型が困 You. Also, depending on the type of synthetic resin to be molded, it is difficult to release it from the mold during molding.
難になる場合があり、 その改良が要求されている。 この改良法と して断熱層表面 It may be difficult, and improvement is required. As an improvement method, the heat insulation layer surface
に薄肉金属層を被覆することが考えられる。 It is conceivable to coat a thin metal layer on the substrate.
本発明は限定した範囲の断熱層被覆金型の最表面に、 限定した範囲の金属層を  The present invention forms a limited range of a metal layer on the outermost surface of a limited range of a heat-insulating layer-coated mold.
被覆した金型を用いて、 限定した成形条件で成形し、 型表面再現性、 成形サイク Using the coated mold, molding under limited molding conditions, mold surface reproducibility, molding cycle
ルタイム、 金型耐久性の 3者を満たす成形法を提供する。  Provide molding methods that meet the three requirements of mold time and mold durability.
断熱層表面に薄肉金属層を被覆した金型にも種々の問題があり、 我々は次の問  There are various problems with molds in which a thin metal layer is coated on the surface of a heat insulating layer.
題があることを発見した。 すなわち、 金属層の厚みと断熱層の厚みの関係が不適 I found that there was a title. That is, the relationship between the thickness of the metal layer and the thickness of the heat insulating layer is inappropriate.
当であると、 成形時の型表面再現性が不良になる、 断熱層厚みを厚くすると成形  If this is the case, the mold surface reproducibility during molding will be poor.
サイクルタイムが長く なり、 成形効率が低下する、 金属層が厚く なると型表面再  The cycle time becomes longer and the molding efficiency decreases.
現性が悪くなる、 必要な断熱層厚みと金属層厚みは成形する合成樹脂の軟化温度、 金型温度や樹脂温度等の成形条件等と密接な関係を有する、 金属層と断熱層は強 固に密着していることが必要であり、 更に断熱層と金属層の密着面は合成樹脂の 成形により繰り返される冷熱サイクルに耐える必要がある、 表面金属層の耐久性 が必要であり、 特に成形される合成樹脂に無機充塡材が配合されると特別な耐久 性を必要とする、 等の課題を解決する必要がある。 発明の開示 The required heat insulation layer thickness and metal layer thickness have a close relationship with the softening temperature of the synthetic resin to be molded, molding conditions such as mold temperature and resin temperature, etc. It must be firmly adhered, and the contact surface between the heat-insulating layer and the metal layer must withstand repeated cooling and heating cycles by molding the synthetic resin.The surface metal layer must have durability, especially molding It is necessary to solve problems such as a need for special durability when an inorganic filler is blended with the synthetic resin to be used. Disclosure of the invention
本発明者らはこれらの問題点を解決するため、 断熱層で被覆した金型について 検討を行い、 主金型表面を被覆する断熱物質及びその厚み、 その被覆伏態、 主金 型材質との組み合わせ、 最表面に被覆する金属層の密着力及びその厚み、 成形す る合成樹脂の軟化温度、 合成樹脂の成形条件等との関係について検討を行い、 成 形品の型表面再現性、 成形サイクルタイム、 金型の耐久性の 3つを満たす本発明 に至った。  In order to solve these problems, the present inventors studied a mold coated with a heat insulating layer, and found that the heat insulating material covering the main mold surface and its thickness, its coating state, and the main mold material The relationship between the combination, the adhesion strength of the metal layer covering the outermost surface and its thickness, the softening temperature of the synthetic resin to be molded, the molding conditions of the synthetic resin, etc. is examined, and the mold surface reproducibility of the molded product, molding cycle The present invention satisfies the three requirements of thyme and mold durability.
すなわち本発明は、 以下のとおりである。  That is, the present invention is as follows.
1. 合成樹脂の成形法に於いて、  1. In the molding method of synthetic resin,
( 1 ) 金属からなる主金型の型キヤ ビティ を構成する型表面に、 該型表面に密着 した耐熱性重合体からなる 0. 1 111111を越ぇ 0. 5 mm未満の断熱層が存在し、 且つ前記断熱層の上に密着した金属層が存在する断熱層被覆金型を用い、 (1) On the surface of the mold that constitutes the mold cavity of the main mold made of metal, there is a heat insulating layer of less than 0.5 mm that exceeds 0.1111111 and that is made of a heat-resistant polymer adhered to the mold surface. Using a heat-insulating layer-coated mold in which a metal layer closely adhered to the heat-insulating layer is present,
( 2 ) 成形される合成樹脂が型表面に接触後、 型表面温度が合成樹脂の軟化温度 以上にある間の (型表面温度一合成樹脂の钦化温度) 値の積分値 (ΔΗ) が 2秒 * °C以上の成形条件、 及び/又は、 型表面温度が (合成樹脂の軟化温度一 1 0 °C ) 以上にある間の {型表面温度一 (合成樹脂の軟化温度一 1 0 °C) } 値の積分値 (A h) が 1 0秒 · °C以上の成形条件と、 更に、 (2) After the synthetic resin to be molded comes into contact with the mold surface, while the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin, the integral value (ΔΗ) of the value of (mold surface temperature minus the plasticization temperature of the synthetic resin) is 2 Molding conditions of seconds * ° C or more, and / or while the mold surface temperature is (synthetic resin softening temperature-10 ° C) or more, (mold surface temperature-(softening temperature of synthetic resin-10 ° C) )} Molding conditions with integrated value (A h) of 10 seconds · ° C or more,
( 3 ) 成形される合成樹脂が型表面に接触して 5秒後に、 型表面温度が合成樹脂 の軟化温度以下に低下する成形条件で成形する合成樹脂の成形法。  (3) A synthetic resin molding method in which molding is performed under molding conditions such that the mold surface temperature falls below the softening temperature of the synthetic resin 5 seconds after the synthetic resin to be molded contacts the mold surface.
2. 合成樹脂の射出成形法に於いて、  2. In the injection molding method of synthetic resin,
( 1 ) 金属からなる主金型の型キヤ ビティ を構成する型表面に、 該型表面に密着 した耐熱性重合体からなる 0. 1 111111を越ぇ 0. 5 mm未満の断熱層が存在し、 且つ前記断熱層の上に該断熱層厚みの 1ノ 3以下で、 且つ 0. 0 0 1〜0. l m mの厚みの金属層が存在する断熱層被覆金型を用い、 ( 2 ) 主金型温度を 1 5 °C以上、 1 0 0 °C以下で、 且つ合成樹脂の钦化温度から 2 0 °Cを'减じた温度以下に設定した成形条件と、 (1) On the surface of the mold that constitutes the mold cavity of the main mold made of metal, there is a heat-insulating layer of less than 0.5 mm exceeding 0.1111111 made of a heat-resistant polymer adhered to the mold surface. Using a heat-insulating-layer-coated mold having a metal layer having a thickness of 1 to 3 mm or less on the heat-insulating layer and a thickness of 0.01 to 0.1 mm, (2) Molding conditions in which the main mold temperature is set to 15 ° C or more and 100 ° C or less, and set to a temperature not more than 20 ° C from the curing temperature of the synthetic resin, and
( 3 ) 成形される合成樹脂が型表面に接触後、 型表面温度が合成樹脂の軟化温度 以上にある間の (型表面温度一合成樹脂の軟化温度) 値の積分値 (ΔΗ) が 2秒 · °C以上の成形条件、 及び/又は、 型表面温度が (合成樹脂の钦化温度一 1 0 °C ) 以上にある間の (型表面温度一 (合成樹脂の軟化温度一 1 0 eC) } 値の積分値 (厶 h) が 1 0秒 · °C以上の成形条件と、 更に、 (3) After the synthetic resin to be molded comes into contact with the surface of the mold, the integral value (ΔΗ) of (the mold surface temperature minus the softening temperature of the synthetic resin) is 2 seconds while the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin. · ° C or more molding conditions, and / or the mold surface temperature (synthetic resin钦化temperature one 1 0 ° C) softening temperature one 1 0 (mold surface temperature one (synthetic resin while in the above e C )} Molding conditions where the integrated value (mmh) is 10 seconds · ° C or more,
( 4 ) 成形される合成樹脂が型表面に接触して 5秒後に、 型表面温度が合成樹脂 の軟化温度以下に低下する成形条件で成形する合成樹脂の射出成形法。  (4) A synthetic resin injection molding method in which molding is performed under molding conditions such that the mold surface temperature falls below the softening temperature of the synthetic resin 5 seconds after the molded resin contacts the mold surface.
3. 合成樹脂の射出成形法に於いて、 3. In the injection molding method of synthetic resin,
( 1 ) 金属からなる主金型の型キヤ ビティ を構成する型表面に、 該型表面に密着 した耐熱性重合体からなる 0. 1 mmを越え 0. 5 mm未満の断熱層が存在し、 更に前記断熱層の上に、 凸部の金属層厚みが断熱層厚みの 1 / 3以下で、 且つ、 0. 0 1〜 0. 1 mmであり、 また凹部の深さが 0. 0 0 1〜0. 0 9 mmで、 且つ凸部の厚みより小さいしぼ状表面を有する金属層が存在する断熱層被覆金型 を用い、  (1) A heat insulating layer of more than 0.1 mm and less than 0.5 mm made of a heat-resistant polymer adhered to the mold surface is present on the mold surface constituting the mold cavity of the main mold made of metal, Further, on the heat insulating layer, the thickness of the metal layer of the convex portion is 1/3 or less of the thickness of the heat insulating layer, and is 0.01 to 0.1 mm, and the depth of the concave portion is 0.001. Using a heat-insulating layer-coated mold having a metal layer having a grain-like surface of about 0.09 mm and having a thickness smaller than the thickness of the convex portion,
( 2 ) 主金型温度を 1 5 °C以上、 1 0 0て以下で、 且つ合成樹脂の軟化温度から 2 0 °Cを減じた温度以下に設定した成形条件と、  (2) Molding conditions in which the main mold temperature is set to 15 ° C or higher, 100 ° C or lower, and a temperature equal to or lower than the softening temperature of the synthetic resin minus 20 ° C,
( 3 ) 成形される合成樹脂が型表面に接触後、 型表面温度が合成樹脂の軟化温度 以上にある間の (型表面温度一合成樹脂の钦化温度) 値の積分値 (ΔΗ) が 2秒 (3) After the synthetic resin to be molded comes into contact with the mold surface, while the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin, the integral value (ΔΗ) of the value of (mold surface temperature-plasticization temperature of synthetic resin) is 2 Second
• °C以上の成形条件、 及びノ又は、 型表面温度が (合成樹脂の钦化温度一 1 0 °C ) 以上にある間の (型表面温度一 (合成樹脂の軟化温度一 1 0で) } 値の積分値 (A h ) が 1 0秒 · °C以上の成形条件と、 更に、 • Molding conditions of more than ° C, and / or while the mold surface temperature is (Synthetic resin tempering temperature-10 ° C) or more (Mold surface temperature-(Synthetic resin softening temperature-10 ° C) } Molding conditions with integrated value (A h) of 10 seconds · ° C or more,
( 4 ) 成形される合成樹脂が型表面に接触して 5秒後に、 型表面温度が合成樹脂 の軟化温度以下に低下する成形条件で成形する合成樹脂の射出成形法。  (4) A synthetic resin injection molding method in which molding is performed under molding conditions such that the mold surface temperature falls below the softening temperature of the synthetic resin 5 seconds after the molded resin contacts the mold surface.
4. 断熱層の厚みが 0. 1 mmを越え 0. 4 mm未満であり、 金属層の厚みが断 熱層厚みの 1 / 3以下で、 且つ 0. 0 0 1 ~ 0. 0 7 mmであり、 積分値 (厶 H ) が 2秒 · °C以上 5 0秒 · て以下、 及び Z又は積分値 (A h) が 1 0秒 · °C以上 4. When the thickness of the heat insulation layer is more than 0.1 mm and less than 0.4 mm, and the thickness of the metal layer is 1/3 or less of the thickness of the heat insulation layer, and it is 0.01 to 0.07 mm. Yes, integrated value (mH) is 2 seconds · ° C or more and 50 seconds or less, and Z or integrated value (Ah) is 10 seconds · ° C or more
1 0 0秒 ' °C以下であり、 且つ合成樹脂が型表面に接触して 5秒後に、 型表面温 度が (合成樹脂の軟化温度一 1 o °c) 以下に低下している成形条件で射出成形す る上記 2に記載の合成樹脂の射出成形法。 100 seconds or less, and 5 seconds after the synthetic resin contacts the mold surface, the mold surface temperature 3. The injection molding method for a synthetic resin according to the above item 2, wherein the injection molding is performed under molding conditions in which the degree is lowered to (the softening temperature of the synthetic resin is 1 ° C. or less).
5. 断熱層の厚みが 0. 1 2 mmを越え 0. 3 mm未満であり、 金属層の厚みが 断熱層厚みの 1 Z 5以下 1 1 0 0以上で、 且つ 0. 0 0 2〜0. 0 6 mmであ り、 積分値 (Δ H) が 5秒 'て以上 4 0秒 ' 以下、 及び 又は積分値 (A h) が 1 2秒 ' °C以上 7 0秒 · °C以下であり、 且つ合成樹脂が型表面に接触して 5秒 後に、 型表面温度が (合成樹脂の軟化温度一 1 0 °C) 以下に低下している成形条 件で射出成形する上記 2に記載の合成樹脂の射出成形法。  5. The thickness of the heat insulation layer is more than 0.12 mm and less than 0.3 mm, and the thickness of the metal layer is 1 Z5 or less of the heat insulation layer and 1100 or more, and 0.02 to 0. 0.6 mm and the integrated value (ΔH) is 5 seconds or more and 40 seconds or less, and / or the integrated value (Ah) is 12 seconds or more. The injection molding is performed under the molding conditions in which the mold surface temperature is decreased to (the softening temperature of the synthetic resin −10 ° C.) or less 5 seconds after the synthetic resin comes into contact with the mold surface. Injection molding of synthetic resin.
6. 断熱層の厚みが 0. 1 mmを越え 0. 4 m m未満であり、 凸部の金属層厚み が断熱層厚みの 1ノ 3以下で、 且つ 0. 0 1〜0. 0 7 mmであり、 しぼ形状凹 部の深さが 0. 0 0 5〜 0. 0 6 mmであり、 積分値 (Δ H) が 2秒 · °C以上 5 0秒 · eC以下、 及び 又は積分値 (Δ h) が 1 0秒 · °C以上 1 0 0秒 · °C以下で あり、 且つ合成樹脂が型表面に接触して 5秒後に、 型表面温度が (合成樹脂の钦 化温度一 1 0 °C) 以下に低下している成形条件で射出成形する上記 3に記載の合 成樹脂の射出成形法。 6. When the thickness of the heat insulation layer is more than 0.1 mm and less than 0.4 mm, and the thickness of the metal layer of the projection is 1 to 3 or less of the thickness of the heat insulation layer, and is 0.01 to 0.07 mm Yes, the depth of the grain-shaped recess is 0.005 to 0.06 mm, and the integral value (ΔH) is 2 seconds · ° C or more and 50 seconds · eC or less, and / or the integral value ( Δh) is at least 10 seconds · ° C and at most 100 seconds · ° C, and after 5 seconds from the contact of the synthetic resin with the mold surface, the mold surface temperature becomes (the curing temperature of the synthetic resin minus 10). ° C) The injection molding method for a synthetic resin according to the above item 3, wherein the injection molding is carried out under molding conditions reduced below.
7. 断熱層の厚みが 0. 1 2を越え 0. 3 mm未満であり、 凸部の金属層厚みが 断熱層厚みの 1 5以下で、 且つ 0. 0 1〜0. 0 6 mmであり、 しぼ形状凹部 の深さが 0. 0 0 5〜0. 0 4 mmであり、 積分値 (Δ H) が 5秒 · °C以上 4 0 秒 · °C以下、 及び/又は積分値 (A h) が 1 2秒 · °C以上 7 0秒 · °C以下であり、 且つ合成樹脂が型表面に接触して 5秒後に、 型表面温度が (合成樹脂の钦化温度 - 1 0 °C) 以下に低下している成形条件で射出成形する上記 3に記載の合成樹脂 の射出成形法。  7. The thickness of the heat-insulating layer is more than 0.12 and less than 0.3 mm, the thickness of the metal layer of the projection is 15 or less of the thickness of the heat-insulating layer, and 0.01 to 0.06 mm. And the depth of the grain-shaped concave portion is 0.005 to 0.04 mm, and the integral value (ΔH) is 5 seconds · ° C to 40 seconds · ° C or less, and / or the integral value (A h) is 12 seconds · ° C or more and 70 seconds · ° C or less, and 5 seconds after the synthetic resin comes into contact with the mold surface, the mold surface temperature becomes (curing temperature of synthetic resin-10 ° C 3.) The injection molding method for a synthetic resin according to the above item 3, wherein the injection molding is performed under the following molding conditions.
8. 合成樹脂の型内平均流動速度が 2 0〜3 0 0 mm,秒で射出成形する上記 2、 3、 4、 5、 6又は 7に記載の合成樹脂の射出成形法。  8. The injection molding method for a synthetic resin as described in 2, 3, 4, 5, 6, or 7 above, wherein the average flow velocity in the mold of the synthetic resin is 20 to 300 mm / sec.
9. 合成樹脂のブロー成形法に於いて、  9. In the blow molding method of synthetic resin,
( 1 ) 金属からなる主金型の型キヤビティを構成する型表面に、 該型表面に密着 した耐熱性重合体からなる 0. 1111111を越ぇ 0. 5 mm未満の断熱層が存在し、 且つ前記断熱層の上に該断熱層厚みの 1 3以下で、 且つ 0. 0 0 2〜0. l m mの厚みの金属層が存在する断熱層被覆金型を用い、 ( 2 ) 主金型温度を 1 5°C以上、 1 0 0°C以下で、 且つ合成樹脂の軟化温度から 2 0てを減じた温度以下に設定した成形条件と、 (1) On the surface of the mold constituting the mold cavity of the main mold made of metal, there is a heat insulating layer of less than 0.5 mm, which exceeds 0.11111111 and which is made of a heat-resistant polymer adhered to the mold surface, and Using a heat-insulating layer-coated mold having a metal layer with a thickness of 13 to 13 mm or less of the heat-insulating layer and a thickness of 0.02 to 0.1 mm on the heat-insulating layer, (2) molding conditions in which the main mold temperature is set to 15 ° C or higher, 100 ° C or lower, and a temperature equal to or lower than the softening temperature of the synthetic resin minus 20.
( 3 ) 成形される合成樹脂が型表面に接触後、 型表面温度が合成樹脂の钦化温度 以上にある間の (型表面温度一合成樹脂の軟化温度) 値の積分値 (ΔΗ) が 1 0 秒 · °C以上 2 0 0秒 · °C以下の成形条件、 及び Z又は、 型表面温度が (合成樹脂 の軟化温度一 1 0°C) 以上にある間の (型表面温度一 (合成樹脂の軟化温度一 1 0 °C) } 値の積分値 (Δ ΐι) が 2 0秒 · て以上 4 0 0秒 · °C以下の成形条件と、 更に、  (3) After the synthetic resin to be molded comes into contact with the mold surface, while the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin, the integral value (ΔΗ) of the value of (mold surface temperature-softening temperature of the synthetic resin) is 1 0 seconds · ° C or more and 200 seconds · ° C or less, and Z or while the mold surface temperature is (synthetic resin softening temperature-10 ° C) or more (Mold surface temperature-(synthesis) The softening temperature of the resin is less than 10 ° C)} The molding conditions are such that the integrated value (Δΐι) is at least 20 seconds · at least 400 seconds · ° C.
( 4 ) 成形される合成樹脂が型表面に接触して 5秒後に、 型表面温度が合成樹脂 の軟化温度以下に低下する成形条件で成形する合成樹脂のブロー成形法。  (4) A blow molding method for synthetic resin in which molding is performed under molding conditions such that the mold surface temperature drops below the softening temperature of the synthetic resin 5 seconds after the synthetic resin to be molded contacts the mold surface.
1 0. 断熱層の厚みが 0. 2 mm以上 0. 5 mm未满であり、 金属層の厚みが断 熱層厚みの 1 5以下 1 1 0 0以上で、 且つ 0. 0 0 4〜0. 0 6mmであり、 積分値 (ΔΗ) が 2 0秒 · °C以上 1 0 0秒 · °C以下、 及び 又は穣分値 (Δΐι) が 3 0秒 · °C以上 3 0 0秒 ' °C以下の成形条件でブロー成形する上記 9に記載の 合成樹脂のブロー成形法。  1 0. The thickness of the heat insulation layer is 0.2 mm or more and less than 0.5 mm, and the thickness of the metal layer is 15 or less of the thickness of the heat insulation layer and 1 100 or more, and 0.04 to 0. 0.6 mm, integral value (ΔΗ) is 20 seconds · ° C or more and 100 seconds or less · ° C, and / or yield value (Δΐι) is 30 seconds · ° C or more and 300 seconds' ° C. The blow molding method for synthetic resin according to 9 above, wherein the blow molding is performed under molding conditions of not more than C.
1 1. 合成樹脂のブロー成形法に於いて、  1 1. In synthetic resin blow molding,
( 1 ) 金属からなる主金型の型キヤ ビティ を構成する型表面に、 該型表面に密着 した耐熱性重合体からなる 0. 1 mmを越え 0. 5 mm未満の断熱層が存在し、 更に前記断熱層の上に、 凸部の金属層厚みが断熱層厚みの 1 Z 3以下で、 且つ、 0. 0 1〜0. 1 mmであり、 また凹部の深さが 0. 0 0 5〜0. 0 9 mmであ るしぼ状表面を有する金属層が存在する断熱層彼覆金型を用い、  (1) A heat insulating layer of more than 0.1 mm and less than 0.5 mm made of a heat-resistant polymer adhered to the mold surface is present on the mold surface constituting the mold cavity of the main mold made of metal, Further, on the heat insulating layer, the metal layer thickness of the convex portion is not more than 1 Z 3 of the heat insulating layer thickness, and is 0.01 to 0.1 mm, and the depth of the concave portion is 0.005. Using a heat-insulating mold with a metal layer having a grain-like surface of ~ 0.09 mm,
( 2 ) 主金型温度を 1 5 °C以上、 1 0 0て以下で、 且つ合成樹脂の钦化温度から 2 0 °Cを減じた温度以下に設定した成形条件と、  (2) Molding conditions in which the main mold temperature is set to 15 ° C. or more, 100 ° C. or less, and a temperature not more than a temperature obtained by subtracting 20 ° C. from the aging temperature of the synthetic resin,
( 3 ) 成形される合成樹脂が型表面に接触後、 型表面温度が合成樹脂の軟化温度 以上にある間の (型表面温度一合成樹脂の軟化温度) 値の積分値 (ΔΗ) が 1 0 秒 · °C以上 2 0 0秒 · °C以下、 及び Z又は、 型表面温度が (合成樹脂の钦化温度 一 1 0 °C) 以上にある間の {型表面温度一 (合成樹脂の軟化温度一 1 0°C) } 値 の積分値 (Δ h) が 2 0秒 · て以上 4 0 0秒 · °C以下の成形条件と、 更に、  (3) After the synthetic resin to be molded comes into contact with the surface of the mold, while the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin, the integral value (ΔΗ) of the value of (mold surface temperature-softening temperature of the synthetic resin) is 10 · ° C or more and 200 s or less °° C or less, and Z or while the mold surface temperature is (the synthetic resin's aging temperature-10 ° C) or more The temperature (10 ° C)) The integral value (Δh) of the value is 20 seconds · more than 400 seconds · ° C
( 4 ) 成形される合成樹脂が型表面に接触して 5秒後に、 型表面温度が合成樹脂 の軟化温度以下に低下する成形条件で成形する合成樹脂のブロー成形法。 (4) 5 seconds after the molded resin contacts the mold surface, the mold surface temperature becomes Blow molding method for molding a synthetic resin under molding conditions lowering below the softening temperature.
1 2. 断熱層の厚みが 0. 2 mm以上 0. 5 mm未満であり、 凸部の金属層厚み が断熱層厚みの 1 5以下 1 / 1 0 0以上で、 且つ 0. 0 1〜0. 0 8 mmであ り、 しぼ形状凹部の深さが 0. 0 0 5 ~ 0. 0 7 mmであり、 積分値 (ΔΗ) が 2 0秒 'て以上 1 0 0秒 · °C以下、 及びノ又は積分値 (A h) が 3 0秒 . °C以上 3 0 0秒 · °C以下の成形条件でブロー成形する上記 1 1に記載の合成樹脂の成形 法  1 2. The thickness of the heat insulating layer is 0.2 mm or more and less than 0.5 mm, and the thickness of the metal layer of the projection is 15 or less of the thickness of the heat insulating layer, 1/100 or more, and 0.0 1 to 0. 0.8 mm, the depth of the grain-shaped recess is 0.05 to 0.07 mm, and the integral (ΔΗ) is 20 seconds or more and 100 seconds or less and ° C or less. The method for molding a synthetic resin according to 11 above, wherein blow molding is performed under molding conditions of 30 seconds or less and 300 seconds or less.
1 3. パリソンが型表面に接触してから、 ブロー圧力が成形品内面に十分にかか るまでの時間が 1〜 5秒である成形条件でブロー成形する上記 9、 1 0、 1 1又 は 1 2に記載の合成樹脂のブロー成形法。  1 3. Perform blow molding under the molding conditions in which the time from when the parison contacts the mold surface until the blow pressure is sufficiently applied to the inner surface of the molded product is 1 to 5 seconds. Is a method for blow molding the synthetic resin described in 12.
1 4. 断熱層と金属層は微細凹凸界面で密着している上記 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1、 1 2又は 1 3に記載の合成樹脂の成形法。  1 4. The heat insulating layer and the metal layer are in close contact with each other at the fine irregularities interface, as described in 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11, 12 or 13. Molding method for synthetic resin.
1 5. 断熱層を形成する耐熱性重合体が直鎖型高分子量ポリイ ミ ドからなる上記 1 5. The heat-resistant polymer forming the heat-insulating layer is composed of linear high molecular weight polyimide.
1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1、 1 2、 1 3又は 1 4に記載 の合成樹脂の成形法。 The method of molding a synthetic resin according to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11, 12, 13 or 14.
1 6. 断熱層の最表面層を微粉末状エッチング助剤が 1〜3 0重量%配合された 耐熱性重合体で形成した後に、 該断熱層の最表面層を化学ェッチング処理を行い 微細凹凸状にし、 その表面に化学メ ツキを行い、 更に必要に応じて化学メ ツキ及 び 又は電解メ ツキの 1つ以上を行うことにより金属層を形成し、 該金属層の密 着力が 0. 3 k gZ 1 0 mm以上の金属層を被覆してなる金型を用いる上記 1、 1 6. After forming the outermost surface layer of the heat insulating layer with a heat-resistant polymer containing 1 to 30% by weight of a fine powdered etching aid, the outermost layer of the heat insulating layer is subjected to chemical etching to obtain fine irregularities. The metal layer is formed by subjecting the surface to a chemical plating and, if necessary, performing one or more of a chemical plating and / or an electrolytic plating. The adhesion of the metal layer is 0.3. The above 1, using a mold coated with a metal layer of kg g 10 mm or more,
2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1、 1 2、 1 3、 1 4又は 1 5に記 載の合成樹脂の成形法。 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11, 12, 13, 14, 14 or 15;
1 7. 金属層表面あるいは金属層表面の一部が、 鏡面伏である金型を用いる上記 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1、 1 2、 1 3、 1 4、 1 5又 は 1 6に記載の合成樹脂の成形法。  1 7. Using a mold with a mirror surface on the metal layer surface or part of the metal layer surface 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1 1, 1 2 , 13, 14, 15, or 16.
1 8. 金属層表面あるいは金属層表面の一部が、 レンズ様の凹凸状である金型を 用いる上記 1、 2、 4、 5、 8、 1 4、 1 5又は 1 6に記載の合成樹脂の成形法。  1 8. Synthetic resin according to 1, 2, 4, 5, 8, 14, 15, or 16 above using a mold in which the metal layer surface or a part of the metal layer surface has a lens-like unevenness Molding method.
1 9. 金属層表面あるいは金属層表面の一部が、 微細凹凸飽消し伏である金型を 用いる上記 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1、 1 2、 1 3、 1 4、 1 5又は 1 6に記載の合成樹脂の成形法。 1 9. Using a mold in which the surface of the metal layer or a part of the surface of the metal layer is finely uneven and saturated. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 , 1 2, 1 3, 1 4. The method of molding a synthetic resin according to 4, 15 or 16.
2 0. 金属層表面の凸部と凹部のうち一方が鏡面状であり、 他方が酷消し状であ る金型を用いる上記 1、 3、 6、 7、 8、 1 1、 1 2、 1 3、 1 4、 1 5又は 1 6に記載の合成樹脂の成形法。  20. The above 1, 3, 6, 7, 8, 11, 1, 1, 2, 1 using a mold in which one of the projections and depressions on the surface of the metal layer is specular and the other is severely erased. 3. The method for molding a synthetic resin according to 3, 14, 15, or 16.
2 1. 金属層表面あるいは金属層表面の一部が、 多段サン ドブラス ト処理及び 又は多段エッチング処理により形成された酷消し伏表面を有する金型を用いる上 記 1 9又は 2 0に記載の合成樹脂の成形法。 2 1. The synthesis as described in 19 or 20 above, wherein a metal layer surface or a part of the metal layer surface uses a mold having a severely erased surface formed by multi-stage sand blasting and / or multi-stage etching. Resin molding method.
2 2. 金属層が、 金型キヤ ビティ側表面金属層がその内側金属雇に比較して硬度 が小さい、 及び Z又はエッチング性が大きい、 少なく とも 2層を有する金属層で ある金型を用いる上記 2 1 に記載の合成樹脂の成形法。  2 2. Use a metal layer whose metal layer is a metal layer having at least two layers, the hardness of the surface metal layer on the mold cavity side being lower than that of the inner metal layer, and the Z or etching property being large. 21. The method for molding a synthetic resin according to 21 above.
2 3. 金属層の金型キヤ ビティ側表面金属層のエッチング速度がその内側金属層 のエッチング速度の 2倍以上であり、 上記金属層を多段エッチング処理により艷 消し状表面にした金型を用いる上記 2 2に記載の合成樹脂の成形法。  2 3. Mold of metal layer The etching rate of the metal layer on the cavity side is more than twice the etching rate of the inner metal layer, and a metal mold is used in which the above metal layer has a matte surface by multi-stage etching. 22. The method for molding a synthetic resin according to 22 above.
2 4. 成形する合成樹脂が、 ポリ スチレン、 ゴム強化ポリ スチレン、 スチレン一 ァク リ ロ二 ト リ ル共重合体、 A B S樹脂、 スチレンーメチルメタク リ レー ト共重 合体等のスチレン系樹脂、 ポリ メチルメタク リ レー ト、 ゴム強化ポリ メチルメタ ク リ レー ト等のメ タク リル樹脂、 ポリカーボネー 卜から選択される非結晶性樹脂 である上記 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1、 1 2、 1 3、 1 4、 1 5、 1 6、 1 7、 1 8、 1 9、 2 0、 2 1、 2 2又は 2 3に記載の合成樹 脂の成形法。  2 4. Synthetic resin to be molded is styrene-based resin such as polystyrene, rubber-reinforced polystyrene, styrene-acrylonitrile copolymer, ABS resin, styrene-methyl methacrylate copolymer. And 1, 2, 3, 4, 5, 6, 7, and 8 which are non-crystalline resins selected from methacrylic resins such as methacrylic resin, rubber reinforced polymethyl methacrylate, and the like, and polycarbonate. 8, 9, 10, 11, 12, 13, 13, 14, 15, 15, 16, 17, 18, 19, 20, 21, 22, 22, or 23 Fat molding method.
2 5. 合成樹脂が繊維状、 粉末状等の無機充塡材を 5〜 6 5重量%含有する合成 樹脂であり、 金型最表面の金属層の硬さが合成樹脂中の無機充; W材の硬さと同等、 あるいは大きい金型を用いる上記 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1、 1 2、 1 3、 1 4、 1 5、 1 6、 1 7、 1 8、 1 9、 2 0、 2 1、 2 2、 2 3又は 2 4 に記載の合成樹脂の成形法。  2 5. The synthetic resin is a synthetic resin containing 5 to 65% by weight of a fibrous or powdery inorganic filler, and the hardness of the metal layer on the outermost surface of the mold is such that the inorganic filler in the synthetic resin; W 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 1, 12, 1, 3, 1, 4, 1, 5, 1 6. The method for molding a synthetic resin described in 6, 17, 18, 19, 20, 20, 21, 22, 23 or 24.
2 6. 合成樹脂が無機充塡材を 2 0重量%を越え 6 5重量%以下含有する合成樹 脂である上記 2 5に記載の合成樹脂の成形法。  26. The method for molding a synthetic resin according to the above item 25, wherein the synthetic resin is a synthetic resin containing more than 20% by weight and not more than 65% by weight of an inorganic filler.
2 7. 合成樹脂が無機充塡材を 3 0〜5 0重量%含有する合成樹脂である上記 2 5に記載の合成樹脂の成形法。 図面の簡単な説明 27. The method for molding a synthetic resin according to the above item 25, wherein the synthetic resin is a synthetic resin containing 30 to 50% by weight of an inorganic filler. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 鋼鉄製の主金型に、 加熱された合成樹脂が接触した時の型表面付近の 合成樹脂の温度分布変化 (計算値) を示すグラフ図である。  Figure 1 is a graph showing the temperature distribution change (calculated value) of the synthetic resin near the mold surface when the heated synthetic resin comes into contact with the steel main mold.
図 2は、 鋼鉄製の主金型の型表面に 0 . 1 m mのポリ イ ミ ドを被覆した金型に、 加熱された合成樹脂が接触した時の型表面付近の合成樹脂及び耐熱性樹脂の温度 分布変化 (計算値) を示すグラフ図である。  Figure 2 shows the synthetic resin and heat-resistant resin near the mold surface when the heated synthetic resin comes into contact with the mold in which 0.1 mm polyimide is coated on the mold surface of the steel main mold. FIG. 4 is a graph showing a change in the temperature distribution (calculated value) of FIG.
図 3 は、 鋼鉄製の主金型の型表面に 0 . 5 m mのポリイ ミ ドを被覆した金型に、 加熱された合成樹脂が接触した時の型表面付近の合成樹脂及び耐熱性樹脂の温度 分布変化 (計算値) を示すグラフ図である。  Figure 3 shows the synthetic resin and the heat-resistant resin near the mold surface when the heated synthetic resin comes into contact with the mold of 0.5 mm polyimide coated on the mold surface of the steel main mold. It is a graph figure which shows a temperature distribution change (calculated value).
図 4 は、 鋼鉄製の主金型の型表面に各種厚みのポリィ ミ ドを被覆した金型に、 加熱された合成樹脂が接触した時の型表面温度の経時変化 (計算値) を示すグラ フ図である。  Figure 4 is a graph showing the change over time (calculated value) of the mold surface temperature when a heated synthetic resin comes into contact with a mold in which various thicknesses of polyimide are coated on the mold surface of a steel main mold. FIG.
図 5 は、 鋼鉄製の主金型の型表面に 0 . 2 m m厚のポリィ ミ ドを被覆した金型 に、 各種の樹脂温度と金型温度で合成樹脂が接触した時の型表面温度の経時変化 (計算値) を示すグラフ図である。  Fig. 5 shows the temperature of the mold surface when the synthetic resin was brought into contact with a mold in which a 0.2 mm thick polyimide was coated on the mold surface of a steel main mold at various resin temperatures and mold temperatures. It is a graph which shows a time-dependent change (calculated value).
図 6は、 鋼鉄製の主金型の型表面に 0 . 2 m m厚のポリイ ミ ドを被 Siした金型 に、 各種の成形品厚みと金型温度で合成樹脂が接触した時の型表面温度の経時変 化 (計算値) を示すグラフ図である。  Fig. 6 shows the mold surface when synthetic resin comes in contact with a mold in which 0.2 mm thick polyimide is coated on the mold surface of a steel main mold at various mold thicknesses and mold temperatures. FIG. 4 is a graph showing a change over time (calculated value) of temperature.
図 7 は、 鋼鉄製の主金型の型表面に 0 . 3 m mのポリィ ミ ドを被覆し、 更にそ の表面に 0 . 0 2 m mのニッケルを被覆した金型に、 加熱された合成樹脂が接触 した時の型表面 (樹脂表面と金型表面の界面) の温度変化 (計算値) を示すグラ フ図である。  Fig. 7 shows the heated synthetic resin in a mold in which the mold surface of a steel main mold is coated with 0.3 mm of polyimide, and the surface is further coated with 0.2 mm of nickel. FIG. 4 is a graph showing a temperature change (calculated value) of a mold surface (an interface between a resin surface and a mold surface) when a contact occurs.
図 8 は、 鋼鉄製の主金型の型表面に 0 . 3 m mのポリイ ミ ドを被 Sし、 更にそ の表面に厚みを種々変化させた二ッケル層を被覆した金型に、 加熱された合成樹 脂が接触した時の型表面 (樹脂表面と金型表面の界面) 温度の経時変化 (計算値 ) を示すグラフ図である。  Figure 8 shows that the steel main mold was heated to a mold in which 0.3 mm of polyimide was coated on the mold surface and the surface was coated with a nickel layer of various thicknesses. FIG. 4 is a graph showing the change over time (calculated value) of the temperature of the mold surface (the interface between the resin surface and the mold surface) when the synthetic resin comes into contact with the synthetic resin.
図 9 は、 合成樹脂 : ゴム強化ポリ スチレン (H I P S:) 、 成形品厚み : 2 m m、 合成樹脂温度 : 2 4 0て、 主金型温度 : 5 0 °C、 二ッケル層厚み : 0 . 0 3 m m で、 ポリ イ ミ ド層厚みを 0 . 1 m m、 0 . 2 m m、 0 . 3 m m、 0 . 5 m mに変 化させて成形した場合の、 型表面温度の経時変化を示すグラフ図 ( 9—A) と、 合成樹脂の钦化温度と型表面温度が合成樹脂の軟化温度以上にある間の (型表面 温度一合成樹脂軟化温度) 値の積分値 (計算値) との関係を示すグラフ図 ( 9一 B ) である。 Figure 9 shows synthetic resin: rubber reinforced polystyrene (HIPS :), molded product thickness: 2 mm, synthetic resin temperature: 240, main mold temperature: 50 ° C, nickel layer thickness: 0.0 3 mm to change the polyimide layer thickness to 0.1 mm, 0.2 mm, 0.3 mm, and 0.5 mm Graph (9-A) showing the change over time in the mold surface temperature when molding is performed in a plasticized state, and the graph (9-A) showing the relationship between the aging temperature of the synthetic resin and the mold surface temperature being higher than the softening temperature of the synthetic resin. FIG. 9 is a graph (9-1B) showing the relationship between the integrated value (calculated value) of the value of one synthetic resin (softening temperature).
図 1 0 は、 合成樹脂 : H I P S、 成形品厚み : 2 mm、 合成樹脂温度 : 2 4 0 °Cと 2 7 0 °C、 主金型温度 : 3 0て、 ニッケル層厚み : 0. 0 5 mmで、 ポリイ ミ ド層厚みを 0. 1 mm、 0. 2 mmに変化させて成形した場合の、 型表面温度 の経時変化を示すグラフ図 ( 1 0 — A) と、 合成樹脂の钦化温度と型表面温度が 合成樹脂の軟化温度以上にある間の (型表面温度-合成樹脂钦化温度) 値の積分 値 (計算値) との関係を示すグラフ図 ( 1 0 — B) である。  Figure 10 shows synthetic resin: HIPS, molded product thickness: 2 mm, synthetic resin temperature: 240 ° C and 270 ° C, main mold temperature: 30 and nickel layer thickness: 0.05 The graph (10-A) shows the change over time in the mold surface temperature when molding with the thickness of the polyimide layer changed to 0.1 mm and 0.2 mm in mm. FIG. 11 is a graph (10—B) showing the relationship between the temperature and the integrated value (calculated value) of the value of (mold surface temperature-plastic resin softening temperature) while the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin. .
図 1 1 は、 合成樹脂 : H I P S、 成形品厚み : 2 mm、 合成樹脂温度 : 2 4 0 °C、 主金型温度 : 7 0 eC、 二ッケル層厚み : 0. 0 3 mmで、 ポリイ ミ ド層厚み を 0. l mm、 0. 2 mmに変化させて成形した場合の、 型表面温度の経時変化 を示すグラフ図 ( 1 1一 A) と、 合成樹脂の钦化温度と型表面温度が合成樹脂の 軟化温度以上にある間の (型表面温度-合成樹脂钦化温度) 値の積分値 (計算値) との関係を示すグラフ図 ( 1 1一 B) である。 Figure 1 1 is a synthetic resin: HIPS, moldings Thickness: 2 mm, the synthetic resin temperature: 2 4 0 ° C, the main mold temperature: 7 0 e C, nickel layer thickness: at 0. 0 3 mm, Porii A graph showing the change over time of the mold surface temperature (111 A) when the mold layer thickness was changed to 0.1 mm and 0.2 mm, and the aging temperature of the synthetic resin and the mold surface FIG. 11B is a graph (111B) showing a relationship between an integral value (calculated value) of (mold surface temperature-synthetic resin tempering temperature) while the temperature is equal to or higher than the softening temperature of the synthetic resin.
図 1 2は、 合成樹脂 : H I P S、 成形品厚み : 2 mm、 合成樹脂温度 : 2 4 0 て、 主金型温度 : 5 0 °C、 二ッケル層厚み : 0. 0 1 mm、 0. 0 2 mmで、 ポ リ イ ミ ド層厚みを 0. 2 mm、 0. 3 mmに変化させて成形した場合の、 型表面 温度の経時変化を示すグラフ図 ( 1 2— A) と、 合成樹脂の钦化温度と型表面温 度が合成樹脂の软化温度以上にある間の (型表面温度 -合成樹脂钦化温度) 値の 積分値 (計算値) との関係を示すグラフ図 ( 1 2 — B) である。  Figure 12 shows synthetic resin: HIPS, molded product thickness: 2 mm, synthetic resin temperature: 240, main mold temperature: 50 ° C, nickel layer thickness: 0.01 mm, 0.0 A graph (12-A) showing the change over time of the mold surface temperature when molding with a polyimide layer thickness of 0.2 mm and 0.3 mm at 2 mm, and a synthetic resin Graph showing the relationship between the aging temperature of the mold and the integral value (calculated value) of the (mold surface temperature-synthetic resin aging temperature) value while the mold surface temperature is equal to or higher than the aging temperature of the synthetic resin. B).
図 1 3は、 合成樹脂 : H I P S、 成形品厚み : 2 mm、 合成樹脂温度 : 2 4 0 °C、 主金型温度 : 5 0 °C、 ポリイ ミ ド層厚み : 0. 3 mmで、 二ッケル層厚みを 0. 0 1 mm、 0. 0 2 mm、 0. 0 3 mm、 0. 0 5 mm、 0. 1 mmに変化 させて成形した場合の、 型表面温度の経時変化を示すグラフ図 ( 1 3 — A) と、 合成樹脂の軟化温度と型表面温度が合成樹脂の软化温度以上にある間の (型表面 温度一合成樹脂軟化温度) 値の積分値 (計算値) との関係を示すグラフ図 ( 1 3 — B ) である。 図 1 4は、 合成樹脂: H I P S、 成形品厚み : 2 mm、 合成樹脂温度: 2 4 0 °C、 主金型温度: 5 0 °C、 ポリイ ミ ド層厚み: 0. 2 mmで、 二ッケル層厚みを 0. 0 2 mm、 0. 0 3 mm. 0. 0 5 mに変化させて成形した場合の、 型表面 温度の経時変化を示すグラフ図 ( 1 4一 A) と、 合成樹脂の钦化温度と型表面温 度が合成樹脂の軟化温度以上にある間の (型表面温度 -合成樹脂軟化温度) 値の 積分値 (計算値) との関係を示すグラフ図 ( 1 4一 B ) である。 Figure 13 shows that synthetic resin: HIPS, molded product thickness: 2 mm, synthetic resin temperature: 240 ° C, main mold temperature: 50 ° C, polyimide layer thickness: 0.3 mm, Graph showing the time-dependent change of the mold surface temperature when the thickness of the nickel layer is changed to 0.01 mm, 0.02 mm, 0.03 mm, 0.05 mm, and 0.1 mm. Relationship between the figure (13-A) and the integrated value (calculated value) of the value (mold surface temperature-synthetic resin softening temperature) while the softening temperature of the synthetic resin and the mold surface temperature are higher than the softening temperature of the synthetic resin. Fig. 13 is a graph (13-B). Figure 14 shows that synthetic resin: HIPS, molded product thickness: 2 mm, synthetic resin temperature: 240 ° C, main mold temperature: 50 ° C, polyimide layer thickness: 0.2 mm, A graph (14-A) showing the change over time of the mold surface temperature when molding with the thickness of the nickel layer changed to 0.02 mm and 0.03 mm. 0.05 m, and synthetic resin Graph showing the relationship between the mold temperature and the integral value (calculated value) of the (mold surface temperature-synthetic resin softening temperature) value while the mold surface temperature is above the softening temperature of the synthetic resin. ).
図 1 5は、 合成樹脂: H I P S、 成形品厚み: 2 mm、 合成樹脂温度: 2 4 0 °C、 主金型温度: 3 0 °C、 ポリイ ミ ド層厚み : 0. 2 mmで、 二ッケル層厚みを 0. 0 1 mm. 0. 0 2 mm、 0. 0 3 m mに変化させて成形した場合の、 型表 面温度の経時変化を示すグラフ図 ( 1 5 — A) と、 合成樹脂の軟化温度と型表面 温度が合成樹脂の軟化温度以上にある間の (型表面温度 -合成樹脂钦化温度) 値 の積分値 (計算値) との関係を示すグラフ図 ( 1 5 — B) である。  Fig. 15 shows that synthetic resin: HIPS, molded product thickness: 2 mm, synthetic resin temperature: 240 ° C, main mold temperature: 30 ° C, polyimide layer thickness: 0.2 mm, A graph (15-A) showing the change over time of the mold surface temperature when molding with the thickness of the nickel layer changed to 0.01 mm. 0.02 mm and 0.03 mm; Graph diagram showing the relationship between the resin softening temperature and the integral value (calculated value) of the (mold surface temperature-synthetic resin softening temperature) value while the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin (15 — B ).
図 1 6は、 合成樹脂 : H I P S、 成形品厚み: 2 mm、 合成樹脂温度: 2 4 0 °C、 ニッケル層厚み: 0. 0 1 mmで、 ポリイ ミ ド層厚みを 0. 1 mmで、 主金 型温度を 3 0 °C、 4 0て、 5 0 °Cと変化させて成形した場合の、 型表面温度の経 時変化を示すグラフ図 ( 1 6 — A) と、 合成樹脂の钦化温度と型表面温度が合成 樹脂の軟化温度以上にある間の (型表面温度 -合成樹脂钦化温度) 値の積分値 ( 計算値) との関係を示すグラフ図 ( 1 6 — B) である。  Fig. 16 shows that synthetic resin: HIPS, molded product thickness: 2 mm, synthetic resin temperature: 240 ° C, nickel layer thickness: 0.01 mm, polyimide layer thickness 0.1 mm, A graph (16-A) showing the change over time in the mold surface temperature when the main mold temperature was changed to 30 ° C, 40 ° C, and 50 ° C, and the temperature of the synthetic resin Fig. 16 (B) shows the relationship between the mold temperature and the integral value (calculated value) of the (mold surface temperature-synthetic resin softening temperature) value while the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin. is there.
図 1 7は、 合成樹脂: H I P S、 成形品厚み : 2 mm、 合成樹脂温度: 2 4 0 °C、 ニッケル層厚み : 0. 0 2 mmで、 ポリイ ミ ド層厚みを 0. 1 mm、 主金型 温度を 3 0 °C、 4 0 °C、 5 0 °C、 7 0 °Cに変化させて成形した場合の、 型表面温 度の経時変化を示すグラフ図 ( 1 7 — A) と、 合成樹脂の钦化温度と型表面温度 が合成樹脂の軟化温度以上にある間の (型表面温度 -合成樹脂钦化温度) 値の積 分値 (計算値) との関係を示すグラフ図 ( 1 7 — B ) である。  Fig. 17 shows synthetic resin: HIPS, molded product thickness: 2 mm, synthetic resin temperature: 240 ° C, nickel layer thickness: 0.02 mm, polyimide layer thickness 0.1 mm, A graph (17—A) showing the change over time of the mold surface temperature when the mold temperature was changed to 30 ° C, 40 ° C, 50 ° C, and 70 ° C. A graph showing the relationship between the plasticization temperature of the synthetic resin and the integrated value (calculated value) of the (mold surface temperature-plasticization temperature) while the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin. 1 7 — B).
図 1 8は、 合成樹脂: H I P S、 成形品厚み : 2 mm、 主金型温度: 3 0 °C、 ニッケル層厚み : 0. 0 1 mmで、 ポリイ ミ ド層厚みを 0. 1 mmで、 合成樹脂 温度を 2 1 0 、 2 4 0 °C、 2 7 0 °Cに変化させて成形した場合の、 型表面温度 の経時変化を示すグラフ図 ( 1 8 — A) と、 合成樹脂の軟化温度と型表面温度が 合成樹脂の軟化温度以上にある間の (型表面温度 -合成樹脂钦化温度) 値の積分 値 (計算値) との関係を示すグラフ図 ( 1 8— B) である。 Fig. 18 shows that synthetic resin: HIPS, molded product thickness: 2 mm, main mold temperature: 30 ° C, nickel layer thickness: 0.01 mm, polyimide layer thickness: 0.1 mm, A graph (18-A) showing the change over time in the mold surface temperature when molding with the synthetic resin temperature changed to 210, 240 ° C, and 270 ° C, and the softening of the synthetic resin Integration of the value of (mold surface temperature-plastic resin softening temperature) while the temperature and mold surface temperature are above the softening temperature of the synthetic resin Fig. 18 is a graph (18-B) showing the relationship with the values (calculated values).
図 1 9は、 合成樹脂 : H I P S、 成形品厚み : 2 mm、 主金型温度 : 3 (TC、 ポリ イ ミ ド層厚み : 0. 1 mm、 ニッケル層厚み : 0. 0 2 mmで、 合成樹脂温 度を 2 1 0 °C、 2 4 0 °C、 2 7 0 eCに変化させて成形した場合の、 型表面温度の 経時変化を示すグラフ図 ( 1 9 — A) と、 合成樹脂の軟化温度と型表面温度が合 成樹脂の钦化温度以上にある間の (型表面温度 -合成樹脂軟化温度) 値の積分値 (計算値) との関係を示すグラフ図 ( 1 9 — B) である。 Fig. 19 shows synthetic resin: HIPS, molded product thickness: 2 mm, main mold temperature: 3 (TC, polyimide layer thickness: 0.1 mm, nickel layer thickness: 0.02 mm, synthetic) in the case of molding a resin temperature 2 1 0 ° C, 2 4 0 ° C, 2 7 0 e C to alter a graph showing the time course of the mold surface temperature - and (1 9 a), a synthetic resin Graph showing the relationship between the mold softening temperature and the integrated value (calculated value) of the (mold surface temperature-synthetic resin softening temperature) value while the mold surface temperature is equal to or higher than the plasticization temperature of the synthetic resin (1 9 — B ).
図 2 0 は、 合成樹脂 : H I P S、 成形品厚み : 2 mm、 主金型温度 : 3 0 °C、 ポリ イ ミ ド層厚み : 0. 2 mmで、 ニッケル層厚みを 0. 0 1 mmで、 合成樹脂 温度を 2 1 0 °C、 2 4 0 °C、 2 7 (TCに変化させて成形した場合の、 型表面温度 の経時変化を示すグラフ図 ( 2 0 — A) と、 合成樹脂の軟化温度と型表面温度が 合成樹脂の軟化温度以上にある間の (型表面温度 -合成樹脂钦化温度) 値の積分 値 (計算値) との関係を示すグラフ図 ( 2 0 — B ) である。  Fig. 20 shows that synthetic resin: HIPS, molded product thickness: 2 mm, main mold temperature: 30 ° C, polyimide layer thickness: 0.2 mm, and nickel layer thickness: 0.01 mm. , Synthetic resin temperature: 210 ° C, 240 ° C, 27 (Temperature change of mold surface temperature when molding by changing to TC (20-A), and synthetic resin Graph showing the relationship between the softening temperature of the mold and the integral value (calculated value) of the (mold surface temperature-synthetic resin tempering temperature) value while the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin (20-B) It is.
図 2 1 は、 合成樹脂 : H I P S、 成形品厚み : 2 mm、 主金型温度 : 3 0 °C、 ポリ イ ミ ド層厚み : 0. 2 mmで、 ニッケル層厚みを 0. 0 2 mmで、 合成樹脂 温度を 2 1 0て、 2 4 0 °C、 2 7 0 °Cに変化させて成形した場合の、 型表面温度 の経時変化を示すグラフ図 ( 2 1 — A) と、 合成樹脂の钦化温度と型表面温度が 合成樹脂の钦化温度以上にある間の (型表面温度 -合成樹脂軟化温度) 値の積分 値 (計算値) との関係を示すグラフ図 ( 2 1 — B) である。  Fig. 21 shows synthetic resin: HIPS, molded product thickness: 2 mm, main mold temperature: 30 ° C, polyimide layer thickness: 0.2 mm, nickel layer thickness: 0.02 mm. A graph (2 1 — A) showing the change over time of the mold surface temperature when molding was performed by changing the temperature of the synthetic resin to 210 ° C, 240 ° C, and 270 ° C; Graph showing the relationship between the curing temperature of the mold and the integral value (calculated value) of the (mold surface temperature-synthetic resin softening temperature) value while the mold surface temperature is equal to or higher than the plasticization temperature of the synthetic resin (2 1 — B ).
図 2 2 は、 合成樹脂 : H I P S、 合成樹脂温度 : 2 4 0 °C、 主金型温度 : 5 0 て、 ポリ イ ミ ド層厚み : 0. 2 mmで、 ニッケル層厚みを 0. 0 2 mmで、 成形 品厚みを 3 mm、 4 mm、 5 mmに変化させて成形した場合の、 型表面温度の経 時変化を示すグラフ図 ( 2 2 — A) と、 合成樹脂の軟化温度と型表面温度が合成 樹脂の軟化温度以上にある間の (型表面温度 -合成樹脂钦化温度) 値の積分値 ( 計算値) との関係を示すグラフ図 ( 2 2 — B) である。  Figure 22 shows the synthetic resin: HIPS, the synthetic resin temperature: 240 ° C, the main mold temperature: 50, the polyimide layer thickness: 0.2 mm, and the nickel layer thickness: 0.02. Figure 2 (A) shows the change over time in the mold surface temperature when molding was performed with the molded product thickness changed to 3 mm, 4 mm, and 5 mm in mm, and the softening temperature of the synthetic resin and the mold. FIG. 9 is a graph (22-B) showing the relationship between the (mold surface temperature-synthetic resin softening temperature) value and the integrated value (calculated value) while the surface temperature is equal to or higher than the softening temperature of the synthetic resin.
図 2 3 は、 合成樹脂 : ポリオキシメチレン (P OM) 、 成形品厚み : 2 mm、 合成樹脂温度 : 2 0 0 °C、 主金型温度 : 6 0 °C、 ポリイ ミ ド層厚み : 0. 2 mm で、 ニッゲル層厚みを 0. 0 1 mm、 0. 0 2 mm、 0. 0 4 mmに変化させて 成形した場合の、 型表面温度の経時変化を示すグラフ図 ( 2 3 —A) と、 合成樹 脂の軟化温度と型表面温度が合成樹脂の钦化温度以上にある間の (型表面温度 - 合成樹脂钦化温度) 値の積分値 (計算値) との関係を示すグラフ図 ( 2 3 - B) である。 Figure 23 shows synthetic resin: polyoxymethylene (POM), molded product thickness: 2 mm, synthetic resin temperature: 200 ° C, main mold temperature: 60 ° C, polyimide layer thickness: 0 Graph showing the change over time of the mold surface temperature when molding was performed with the Nigger layer thickness changed to 0.01 mm, 0.02 mm, and 0.04 mm at 2 mm. ) And the synthetic tree Graph showing the relationship between the softening temperature of the fat and the integral value (calculated value) of the (mold surface temperature-synthetic resin curing temperature) value while the mold surface temperature is equal to or higher than the curing temperature of the synthetic resin (23- B).
図 2 4は、 合成樹脂 : P OM、 成形品厚み: 2 mm、 合成樹脂温度: 2 0 0 °C、 主金型温度 : 6 0 °C、 ニッケル層厚みを 0. 0 2 mmで、 ポリイミ ド厚みを 0. 2 mm. 0. 3 mm、 0. 4 mmに変化させて成形した場合の、 型表面温度の経 時変化を示すグラフ図 ( 2 4 —A) と、 合成樹脂の軟化温度と型表面温度が合成 樹脂の軟化温度以上にある間の (型表面温度 -合成樹脂軟化温度) 値の積分値 ( 計算値) との関係を示すグラフ図 ( 2 4 - B) である。  Figure 24 shows the synthetic resin: POM, molded product thickness: 2 mm, synthetic resin temperature: 200 ° C, main mold temperature: 60 ° C, nickel layer thickness of 0.02 mm, and Polyimi Graph (24-A) showing the change over time in the mold surface temperature when molding was performed while changing the mold thickness to 0.2 mm. 0.3 mm and 0.4 mm, and the softening temperature of the synthetic resin. FIG. 11 is a graph (24-B) showing the relationship between the mold surface temperature and the integral (calculated value) of the (mold surface temperature-synthetic resin softening temperature) value while the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin.
図 2 5は、 合成樹脂: H I P S、 成形品厚み: 3 mm、 断熱材: エポキシ樹脂、 断熱層厚み : 0. 3 mm、 金属層厚み: 0. 0 3 mm、 樹脂温度: 2 0 0 °C、 主 金型温度: 4 0 °Cで成形した場合と、 合成樹脂: H I P S、 成形品厚み: 2 mm、 断熱材: セラ ミ ッ クス (Y2 03 Z r 02 ) 、 断熱層厚み: 0. 3 mm、 金属 層は無し、 樹脂温度: 2 4 0 で、 主金型温度を 3 5 °C、 5 0 eCに変化させて成 形した場合の、 型表面温度の経時変化を示すグラフ図 ( 2 5 — A) と、 合成樹脂 の钦化温度と型表面温度が合成樹脂の钦化温度以上にある間の (型表面温度 -合 成樹脂钦化温度) 値の積分値 (計算値) との関係を示すグラフ図 ( 2 5 — B) で ある。 Fig. 25 shows synthetic resin: HIPS, molded product thickness: 3 mm, heat insulating material: epoxy resin, heat insulating layer thickness: 0.3 mm, metal layer thickness: 0.03 mm, resin temperature: 200 ° C the main mold temperature: and when molded at 4 0 ° C, the synthetic resin: HIPS, moldings thickness: 2 mm, insulation material: sera mission-box (Y 2 0 3 Z r 0 2), the heat insulating layer thickness: 0. 3 mm, the metal layer is no, resin temperature: indicated by 2 4 0, in the case of forming the form with varying main mold temperature 3 5 ° C, 5 0 e C, the aging of the mold surface temperature The graph (25-A) shows the integrated value of (mold surface temperature-synthetic resin aging temperature) while the aging temperature of the synthetic resin and the surface temperature of the mold are higher than the aging temperature of the synthetic resin. (25-B).
図 2 6は、 合成樹脂 : H I P S、 成形品厚み: 2 mm、 ポリイ ミ ド厚み: 0. 5 mm、 ニッケル厚み: 0. 0 3 mm、 合成樹脂温度: 2 4 0 °Cと 2 7 0 °C、 主 金型温度: 5 0 °Cと 7 0てで成形した場合の、 型表面温度の経時変化を示すグラ フ図 ( 2 6 - A) と、 合成樹脂の軟化温度と型表面温度が合成樹脂の軟化温度以 上にある間の (型表面温度 -合成樹脂钦化温度) 値の積分値 (計算値) との関係 を示すグラフ図 ( 2 6 — B) である。  Figure 26 shows synthetic resin: HIPS, molded product thickness: 2 mm, polyimide thickness: 0.5 mm, nickel thickness: 0.03 mm, synthetic resin temperatures: 240 ° C and 270 ° C, Main mold temperature: A graph (26-A) showing the change over time of the mold surface temperature when molding at 50 ° C and 70 ° C. The softening temperature of the synthetic resin and the mold surface temperature Fig. 26 is a graph (26-B) showing the relationship between the (mold surface temperature-synthetic resin softening temperature) value and the integrated value (calculated value) while the temperature is above the softening temperature of the synthetic resin.
図 2 7は、 引例の公知文献 U S P 5 3 8 8 8 0 3の図 6に示されている型表面 温度の変化と、 本発明の型表面温度変化を対比して示す図である。  FIG. 27 is a diagram showing a change in the mold surface temperature shown in FIG. 6 of the known document U.S. Pat. No. 5,388,803 of the reference and a change in the mold surface temperature of the present invention.
図 2 8は、 本発明に示す各図の型表面温度変化を計算するに用いた、 樹脂の熱 伝導率の温度変化を示すグラフ図である。  FIG. 28 is a graph showing the temperature change of the thermal conductivity of the resin used to calculate the change in the mold surface temperature in each figure shown in the present invention.
図 2 9は、 本発明に示す各図の型表面温度変化を計算するに用いた'、 樹脂の比 熱の温度変化を示すグラフ図である。 FIG. 29 shows the ratio of the resin used in calculating the mold surface temperature change in each figure shown in the present invention. It is a graph which shows the temperature change of heat.
図 3 0は、 射出成形時の金型内剪断発熱を示すグラフ図である。  FIG. 30 is a graph showing the heat generated by shearing in the mold during injection molding.
図 3 1 は、 断熱層のない一般金型と断熱層被覆金型を使用した場合の、 H I P Sの射出成形品の光沢度の樹脂温度による変化を示すグラフ図である。  FIG. 31 is a graph showing a change in glossiness of an HIPS injection molded product depending on a resin temperature when a general mold having no heat insulating layer and a mold having a heat insulating layer are used.
図 3 2は、 断熱層被覆金型による H I P Sの射出成形品の光沢度と型表面温度 が合成樹脂の钦化温度以上にある間の (型表面温度 -合成樹脂钦化温度) 値の積 分値 (Δ Η ) との関係を示すグラフ図である。  Figure 32 shows the integration of the value of (mold surface temperature-synthetic resin aging temperature) while the gloss of the HIPS injection-molded product with the heat-insulating layer-coated mold and the mold surface temperature are higher than the aging temperature of the synthetic resin. It is a graph which shows the relationship with a value ((DELTA) *).
図 3 3は、 断熱層被覆金型による H I P Sの射出成形品の光沢度と、 型表面温 度が (合成樹脂の軟化温度一 1 0 °C ) 以上にある間の {型表面温度一 (合成樹脂 軟化温度一 1 0て) } 値の積分値 (Δ ΐι ) との関係を示すグラフ図である。 図 3 4は、 一般の金属金型で H I P S (スタイロン 4 9 5 旭化成工業( 株) 製 商品名) を射出成形した場合の、 金型温度と成形品光沢度の関係を示すグラ フ図である。  Fig. 33 shows the gloss of the HIPS injection-molded product using the heat-insulating layer-coated mold and the {mold surface temperature-(synthetic resin temperature-10 ° C) while the mold surface temperature is higher than (softening temperature of synthetic resin-10 ° C). FIG. 4 is a graph showing a relationship between a resin softening temperature and an integral value (Δΐι). Fig. 34 is a graph showing the relationship between mold temperature and gloss of molded products when HIPS (Stylon 495, trade name, manufactured by Asahi Kasei Kogyo Co., Ltd.) is injection-molded with a general metal mold. .
図 3 5は、 本発明の断熱層と金属層が微細凹凸界面で密着していることを示す 金型表面層の断面である。  FIG. 35 is a cross section of the mold surface layer showing that the heat insulating layer and the metal layer of the present invention are in close contact with each other at the fine uneven interface.
図 3 6は、 従来のフレネルレンズ金型で、 通常の成形条件で射出成形した状態 を示す部分断面説明図である。  FIG. 36 is a partial cross-sectional explanatory view showing a state where a conventional Fresnel lens mold is injection-molded under ordinary molding conditions.
図 3 7は、 本発明法で使用するフレネルレンズ金型の部分断面図である。 図 3 8は、 本発明の方法で射出成形した艷消し状成形品の断面と、 従来の金型 で射出成形した齙消し状成形品の断面を示す。  FIG. 37 is a partial sectional view of a Fresnel lens mold used in the method of the present invention. FIG. 38 shows a cross section of an erase-shaped molded article injection-molded by the method of the present invention and a cross-section of a mat-shaped molded article injection-molded with a conventional mold.
図 3 9は、 本発明の説明に使用する射出成形品を示す図である。  FIG. 39 is a diagram showing an injection-molded product used for describing the present invention.
図 4 0は、 射出成形時の型壁面にかかる樹脂圧力の経時変化を示すグラフ図で ある。  FIG. 40 is a graph showing the change with time of the resin pressure applied to the mold wall surface during injection molding.
図 4 1 は、 射出成形された合成樹脂が型表面の微細凹凸へ充填される様子をモ デル的に示す説明図である。  FIG. 41 is an explanatory view modelly showing how the injection-molded synthetic resin is filled into the fine irregularities on the mold surface.
図 4 2は、 本発明の成形品を成形する金型の断面図を示す。  FIG. 42 shows a sectional view of a mold for molding the molded article of the present invention.
図 4 3は、 金型表面をエッチング処理する各工程を示す。  FIG. 43 shows each step of etching the mold surface.
図 4 4は、 金型表面を多段エッチング処理する各工程を示す。  FIG. 44 shows each step of performing multi-stage etching on the mold surface.
図 4 5は、 金型表面を多段エッチング処理する各工程を示す。 図 4 6は、 実施例 1 0における成形品の表面凹凸パターンを示すグラフ図であ る。 FIG. 45 shows each step of performing multi-stage etching on the mold surface. FIG. 46 is a graph showing a surface unevenness pattern of a molded article in Example 10.
図 4 7は、 比較例 9における金型と成形品の表面凹凸パターンを示すグラフ図 である。 発明を実施するための最良の形態  FIG. 47 is a graph showing the surface unevenness patterns of the mold and the molded product in Comparative Example 9. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の成形法で成形される合成樹脂は、 一般の射出成形やブロー成形に使用 できる熱可塑性樹脂であり、 ポリエチレン、 ポリプロピレン等のポリオレフィ ン、 ポリ スチレン、 スチ レン一アク リ ロニ ト リ ル共重合体、 ゴム強化ポリ スチレン、 スチ レンーメチルメ タク リ レー ト共重合体、 A B S樹脂等のスチレン系樹脂、 ポ リ メチルメ タ ク リ レー ト、 メチルメ タ ク リ レー トースチレン共重合体等のメ タ ク リ ル樹脂、 ポリア ミ ド、 ポリエステル、 ポリカーボネー ト、 塩化ビニール樹脂等 である。  The synthetic resin molded by the molding method of the present invention is a thermoplastic resin that can be used for general injection molding and blow molding, and is a polyolefin such as polyethylene and polypropylene, polystyrene, styrene and acrylonitrile. Polymers, rubber-reinforced polystyrene, styrene-methyl methacrylate copolymer, styrene resins such as ABS resin, polymethyl methacrylate, methyl methacrylate, styrene copolymer, etc. Resin, polyamide, polyester, polycarbonate, and vinyl chloride resin.
本発明の成形法が特に良好に使用できるのは、 ポリ スチレン、 ゴム強化ポリス チレン、 スチレン—アク リ ロニ ト リ ル共重合体、 A B S樹脂、 スチレン一メチル メ タク リ レー 卜共重合体等のスチレン系樹脂、 ポリ メチルメタク リ レー ト、 ゴム 強化ポリ メチルメ タク リ レー ト等のメ タク リル樹脂、 ポリカーボネー トから選択 された非桔晶性樹脂であリ、 更にこれに各種充塡材が配合された樹脂である。 ガラス繊維、 カーボン繊維、 ウイスカ一等の繊維、 炭酸カルシウム、 酸化チタ ン、 タルク等の粉末等の無機充塡材の含量が 5〜 6 5重量%配合された各種合成 樹脂は特に本発明に好ま しく使用できる。 ガラス繊維、 ウイスカ一等の無機充填 材が 5 ~ 6 5重量%含有される合成樹脂を用いて断熱層被覆金型で射出成形する と、 型表面は無機充塡材で傷がつき易く なる。 特に無機充塡材が 2 0重量%を越 えて配合されると断熱雇に傷が付き易く、 充塡材が 3 0重量%以上の多量が配合 されると、 型表面は著しく傷つきやすく なる。 本発明では型表面に無機充塡材と 同等程度、 あるいはそれ以上の硬さで、 且つ、 適度な厚みの金属層を存在させる ことにより傷つき防止ができる。 また、 ポリアミ ド樹脂、 ァク リ ロ二 ト リル含有 量の多い樹脂等は一般に極性基を有する断熱層との離型性が悪く、 その様な場合 には該断熱層表面に金属層を存在させることにより、 離型性を改良できる。 本発明の成形法が最も良好に使用できるのは、 ゴムが 1〜 1 0重量%配合され、 ガラス転移温度が 8 0 ~ 1 2 0てのゴム強化ポリスチレンである。 The molding method of the present invention can be particularly preferably used for polystyrene, rubber-reinforced polystyrene, styrene-acrylonitrile copolymer, ABS resin, styrene-methylmethacrylate copolymer and the like. Non-crystalline resin selected from methacrylic resin such as styrene resin, polymethylmethacrylate, rubber reinforced polymethylmethacrylate, and polycarbonate, and various fillers. It is the resin which was done. Various synthetic resins containing 5 to 65% by weight of an inorganic filler such as glass fiber, carbon fiber, whisker and other fibers, calcium carbonate, titanium oxide, and talc are particularly preferred in the present invention. It can be used properly. When a synthetic resin containing 5 to 65% by weight of an inorganic filler such as glass fiber or whisker is used for injection molding with a heat-insulating layer-coated mold, the surface of the mold is easily damaged by the inorganic filler. In particular, if the amount of the inorganic filler is more than 20% by weight, the heat insulation is easily damaged, and if the amount of the filler is more than 30% by weight, the mold surface is extremely easily damaged. In the present invention, the presence of a metal layer having a hardness equal to or higher than that of the inorganic filler on the mold surface and an appropriate thickness can prevent damage. In addition, polyamide resins, resins containing a large amount of acrylonitrile, and the like generally have poor releasability from a heat insulating layer having a polar group. In such a case, a metal layer is present on the surface of the heat insulating layer. By doing so, the releasability can be improved. The molding method of the present invention is most preferably used for rubber-reinforced polystyrene having a glass transition temperature of 80 to 120, containing 1 to 10% by weight of rubber.
本発明の成形法で成形される良好な成形品は弱電機器、 電子機器、 事務機器等 のハウジング、 各種自動車部品、 各種日用品、 各種工業部品等の一般に使用され る合成樹脂射出成形品である。 特に好ま しく は、 多点ゲー トで射出成形され、 そ の結果ウエル ドライ ンが多数発生する電子機器、 電気機器、 事務機器のハウジン グ等である。 また、 良好な能消し状成形品、 良好なパターンしぼ成形品、 透明な 合成樹脂を用いて成形した良好なレンチキュラーレンズ、 フレネルレンズ等のレ ンズ、 良好な高透過、 高拡散板等の射出成形品も得られる。 本発明法で成形され るこれらの成形品は型表面の再現性が良く、 ウエルドラインの目立ちが少なく な り、 型表面のシャープエッ ジの再現性や、 微細な型表面の凹凸の再現性も良くな り、 上記の各種成形品が良好に得られる。 これらの射出成形品は一般の射出成形 法で成形されるが、 特にガスアシス ト射出成形、 液体アシス ト射出成形、 オリ ゴ マ一アシス ト射出成形、 射出圧縮成形等の、 成形時に合成樹脂が型壁面を押し付 ける圧力が低い、 及び/又は合成樹脂の型内流動速度がおそい低圧射出成形と組 み合わせて使用した場合に効果は大きく、 本発明に良好に使用できる。  Good molded articles molded by the molding method of the present invention are generally used synthetic resin injection molded articles such as housings for light electric equipment, electronic equipment, office equipment, various automobile parts, various daily necessities, and various industrial parts. Particularly preferred are housings for electronic equipment, electrical equipment, and office equipment, which are injection-molded at a multipoint gate, resulting in a large number of well lines. In addition, injection molding of good eraser-like molded products, good patterned grain molded products, good lenticular lenses molded using transparent synthetic resin, Fresnel lenses, etc., good high transmission, high diffusion plates, etc. Goods are also obtained. These molded products molded by the method of the present invention have good reproducibility of the mold surface, less noticeable weld lines, reproducibility of sharp edges on the mold surface, and reproducibility of minute irregularities on the mold surface. Thus, the above-mentioned various molded products can be obtained satisfactorily. These injection molded products are molded by a general injection molding method.In particular, the synthetic resin is molded during molding such as gas assist injection molding, liquid assist injection molding, oligomer assist injection molding, and injection compression molding. The effect is great when used in combination with low-pressure injection molding, in which the pressure against the wall surface is low, and / or the flow velocity of the synthetic resin in the mold is slow, and can be used favorably in the present invention.
更に、 本発明法により成形される良好な成形品は外観が要求される各種ブロー 成形品である。  Further, good molded products molded by the method of the present invention are various blow molded products requiring appearance.
本発明に述べる金属からなる主金型とは、 鉄又は鉄を主成分とする鋼材、 アル ミニゥム又はアルミ二ゥムを主成分とする合金、 Z A S等の亜鉛合金、 ベリ リ ウ ムー銅合金等の一般に合成樹脂の成形に使用されている金属金型を包含する。 特 に S 5 5 C、 S 4 5 C等の鋼材から成る金型が良好に使用できる。 これらの金属 からなる主金型の断熱層と接する型表面は硬質クロムやニッケル等でメ ツキされ ていることが好ま しい。  The main mold composed of the metal described in the present invention includes iron or steel mainly composed of iron, alloy mainly composed of aluminum or aluminum, zinc alloy such as ZAS, beryllium copper alloy, etc. And metal molds generally used for molding synthetic resins. In particular, molds made of steel such as S55C and S45C can be used favorably. It is preferable that the mold surface in contact with the heat insulating layer of the main mold made of these metals is coated with hard chromium, nickel, or the like.
本発明で断熱層と して良好に用いられる耐熱性重合体は、 成形される合成樹脂 より高い軟化温度を有する重合体であり、 好ま しく はガラス転移温度が 1 4 0 °C 以上、 更に好ま しく は 1 6 0 °C以上、 最も好ま しく は 1 9 0 °C以上、 及び 又は 融点が 2 0 0 °C以上が好ま しく、 更に好ま しく は 2 5 0 °C以上の耐熱性重合体で ある。 特に好ま しく は、 成形される合成樹脂の成形温度より高い钦化温度を有す る重合体である。 耐熱性重合体の熱伝導率は一般に 0 . 0 0 0 1〜 0 . 0 0 3 c a l Z c m ' s e c ' -Cであり、 金属より大幅に小さい。 また、 該耐熱性重合体 の破断伸度は 4 %以上、 好ま しく は 5 %以上、 更に好ま しく は 1 0 %以上の靭性 のある重合体が好ま しい。 破断伸度の測定法は A S T M D 6 3 8に準じて行い、 測定時の引っ張り速度は 5 m m ,分である。 The heat-resistant polymer favorably used as the heat-insulating layer in the present invention is a polymer having a softening temperature higher than that of the synthetic resin to be molded, and preferably has a glass transition temperature of 140 ° C. or higher, more preferably. Or more preferably at least 160 ° C, most preferably at least 190 ° C, and / or a melting point of at least 200 ° C, more preferably at least 250 ° C. is there. Particularly preferably, it has a higher curing temperature than the molding temperature of the synthetic resin to be molded. Polymer. The thermal conductivity of the heat-resistant polymer is generally 0.001 to 0.003 calZcm 'sec'-C, which is much smaller than that of metal. Further, a polymer having a toughness of 4% or more, preferably 5% or more, more preferably 10% or more of the heat-resistant polymer is preferred. The elongation at break is measured according to ASTMD 638, and the tensile speed at the time of measurement is 5 mm / min.
本発明で断熱層と して良好に使用できる耐熱性重合体は、 主鎖に芳香環を有す る耐熱性重合体であり、 例えば、 有機溶剤に溶解する各種非結晶性耐熱性重合体 や、 各種ポリイ ミ ド等が良好に使用できる。 非結晶性耐熱性重合体と しては、 ポ リ スルホン、 ポリエーテルスルホン等である。 これらの非結晶性耐熱性重合体に はカーボン繊維や各種無機充塡材等の充塡材を配合することにより熱膨張係数を 低下させて本発明の断熱層と して使用することができる。 ポリ イ ミ ドは各種ある 力 <、 直鎖型高分子量ポリ イ ミ ド、 一部架橋型のポリイ ミ ドが良好に使用できる。 直鎖型高分子量ポリ イ ミ ドは破断伸度が大き く強靭であり、 耐久性に優れており 特に良好に使用できる。 この直鎖型高分子量ポリイ ミ ドにはポリアミ ドイ ミ ド、 ポリ エーテルイ ミ ドも含まれる。  The heat-resistant polymer that can be favorably used as the heat-insulating layer in the present invention is a heat-resistant polymer having an aromatic ring in the main chain, such as various amorphous heat-resistant polymers dissolved in an organic solvent, And various polyimides can be used favorably. Examples of the non-crystalline heat-resistant polymer include polysulfone and polyethersulfone. These amorphous heat-resistant polymers can be used as the heat insulating layer of the present invention by lowering the coefficient of thermal expansion by blending fillers such as carbon fibers and various inorganic fillers. As the polyimide, various types of polyimides, linear high molecular weight polyimides, and partially crosslinked polyimides can be used favorably. The linear high molecular weight polyimide has a large breaking elongation, is tough, has excellent durability, and can be used particularly favorably. The linear high molecular weight polyimide also includes polyamide imide and polyether imide.
更に、 本発明では熱膨張係数の小さいエポキシ樹脂硬化物、 すなわち熱膨張係 数が小さ く なる硬化剤とエポキシ樹脂を組み合わせたエポキシ樹脂硬化物、 ある いは各種充塡材を適量配合したエポキシ樹脂硬化物等も使用できる (以後、 ェポ キシ樹脂硬化物をエポキシ樹脂と略称する。 ) 。 エポキシ樹脂は一般に熱膨張係 数が大き く、 金属金型との熱膨張係数の差は大きい。 しかし、 熱膨張係数が小さ いガラス、 シ リ カ、 タルク、 ク レー、 珪酸ジルコニウム、 珪酸リ チウム、 炭酸力 ルシゥム、 アルミ ナ、 マイ力等の粉体や粒子、 ガラス繊維、 ゥイスカー、 炭素繊 維等の適量をエポキシ樹脂に配合し、 金属金型との熱膨張係数の差を小さ く した 充塡材配合エポキシ樹脂は本発明の断熱層と して良好に使用できる。  Furthermore, in the present invention, an epoxy resin cured product having a small coefficient of thermal expansion, that is, an epoxy resin cured product obtained by combining a curing agent having a small thermal expansion coefficient with an epoxy resin, or an epoxy resin prepared by mixing various fillers in an appropriate amount A cured product can also be used (hereinafter, a cured epoxy resin is abbreviated as an epoxy resin). Epoxy resins generally have a large thermal expansion coefficient, and have a large difference in thermal expansion coefficient from metal molds. However, powders and particles such as glass, silica, talc, cres, zirconium silicate, lithium silicate, carbonic acid ruthenium, alumina, myrium, etc., which have a small coefficient of thermal expansion, glass fiber, whiskers, and carbon fiber An epoxy resin blended with a filler in which an appropriate amount such as that described above is blended with the epoxy resin to reduce the difference in thermal expansion coefficient from the metal mold can be used favorably as the heat insulating layer of the present invention.
また、 エポキシ樹脂あるいは充塡材配合エポキシ樹脂に、 更にナイロン等の強 靭な熱可塑性樹脂、 ゴム等の強靭性を与える各種配合物を加えて強靭性を与えた 配合エポキシ樹脂は良好に使用できる。 特に、 エポキシ樹脂にポリエーテルスル ホンやポリエーテルィ ミ ドを配合して硬化したポリマ一ァロイは強靭性に優れ良 好に使用できる。 本発明の断熱層を形成する断熱性重合体には、 断熱層上に形成するメ ツキ等の 金属層の密着力を向上させるために、 酸化チタン、 アルミナ、 炭酸カルシヴム等 の微粉末を配合することが好ま しい。 この微粉末は断熱層全体に、 あるいは表層 部のみに配合しても良い。 これ等の微粉末配合量が多すぎると断熱層の熱伝導率 を低下させ、 本発明の目的が達成でき難く なり、 一般には微粉末は 1 ~ 3 0重量 %の範囲で配合される。 In addition, epoxy resin or filler-containing epoxy resin, tough thermoplastic resin such as nylon, and various compounds that provide toughness such as rubber by adding toughness can be used favorably. . In particular, a polymer alloy cured by mixing polyether sulfone or polyether imide with an epoxy resin has excellent toughness and can be used favorably. The heat-insulating polymer forming the heat-insulating layer of the present invention is blended with fine powders such as titanium oxide, alumina, and calcium carbonate in order to improve the adhesion of the metal layer such as the plating formed on the heat-insulating layer. It is preferable. This fine powder may be blended in the entire heat insulating layer or only in the surface layer. If the amount of these fine powders is too large, the thermal conductivity of the heat insulating layer is reduced, making it difficult to achieve the object of the present invention. Generally, the fine powders are mixed in the range of 1 to 30% by weight.
射出成形やブロー成形等では成形される加熱樹脂に接触する型表面は各成形毎 に厳しい冷熱サイクルにさらされる。 従来技術では、 メ ツキ等で断熱層表面に形 成される金属層は一般に重合体からなる断熱層より熱膨張係数が小さ く、 断熱層 と金属層の熱膨張係数が大きく異なるため、 その界面で応力が成形毎に繰り返し 発生し、 その界面で剝離が発生する。 断熱層と接する主金型及び/又は金属層の 熱膨張係数と断熱層の熱膨張係数との差を小さ くすることにより、 剝離を引き起 こす応力を低減することができる。 本発明において、 断熱層と接する主金型及び Z又は金属層の熱膨張係数と断熱層の熱膨張係数の差は 4 X 1 0 _5 Z °C未満であ ることが好ま しく、 更に好ましく は 3 X 1 0— 5 Z °C未満である。 一般に金属は重 合体より熱膨張係数が小さ く、 従って、 熱膨張係数が小さい耐熱性重合体を選択 することが好ま しい。 ここに述べる熱膨張係数は線膨張係数である。 断熱層の熱 膨張係数は断熱層の面方向の線膨張係数であり、 J I S K 7 1 9 7 - 1 9 9 1 に示される方法で測定し、 5 0 °Cと 2 5 0 °Cの温度間の平均値、 あるいは断熱層 のガラス転移温度が 2 5 0 °C以下の場合には、 5 0 °Cと該ガラス転移温度間の平 均値で示す。 すなわち、 平滑な平板状金属の上に断熱層を形成し、 次いで該断熱 層を剝離し、 その断熱層の 5 0 °Cと 2 5 0 °Cの間、 あるいは 5 0 °Cとガラス転移 温度の間の平均熱膨張係数を測定する。 In injection molding, blow molding, etc., the mold surface that comes into contact with the heated resin to be molded is subjected to severe cooling and heating cycles for each molding. In the prior art, the metal layer formed on the surface of the heat-insulating layer by plating or the like generally has a lower coefficient of thermal expansion than the heat-insulating layer made of a polymer. , Stress is repeatedly generated at each molding, and separation occurs at the interface. By reducing the difference between the coefficient of thermal expansion of the main mold and / or metal layer in contact with the heat insulating layer and the coefficient of thermal expansion of the heat insulating layer, the stress that causes separation can be reduced. In the present invention, the difference in the thermal expansion coefficients of the main mold and Z or metal layer thermal expansion coefficient and the heat insulating layer in contact with the heat-insulating layer is laid preferred is 4 X 1 0 _ 5 Z ° C below der Rukoto, more preferably is less than 3 X 1 0- 5 Z ° C . In general, metals have a smaller coefficient of thermal expansion than polymers, and therefore, it is preferable to select a heat-resistant polymer having a smaller coefficient of thermal expansion. The coefficient of thermal expansion described here is the coefficient of linear expansion. The coefficient of thermal expansion of the heat insulating layer is the coefficient of linear expansion of the heat insulating layer in the plane direction.It is measured by the method shown in JISK 7197-1991, and it is measured between 50 ° C and 250 ° C. In the case where the glass transition temperature of the heat insulating layer is 250 ° C. or less, the average value is shown between 50 ° C. and the glass transition temperature. That is, a heat insulating layer is formed on a flat metal plate, and then the heat insulating layer is separated, and the heat insulating layer is heated to a temperature between 50 ° C. and 250 ° C. or 50 ° C. and a glass transition temperature. The average coefficient of thermal expansion during the measurement is measured.
断熱層と主金型の間、 あるいは断熱層と金属層の間の剝離の原因は熱膨張係数 の差だけではない。 しかし、 熱膨張係数の差が極めて大きな要因である。 断熱層 と主金型及び 又は金属層との密着力が大き く、 断熱層の引っ張り弾性率が小さ く、 破断伸度が大きい、 いわゆるゴム状の钦質材質の断熱層であれば、 熱膨張係 数の差が若干大き くても剝離は生じない。 しかし、 断熱層に適した材質、 すなわ ち、 耐熱性が高く、 硬度が大きく、 研磨により鏡面になりやすいこと等を満たす 断熱材は、 一般に弾性率が大きい主鎖に芳香環を有する耐熱性硬質合成樹脂であ り、 この耐熱性硬質合成樹脂層を主金型及び 又は金属層に密着させ、 剝離を起 こさせない様にするには、 熱膨張係数の差が小さいことが好ま しい。 The cause of separation between the heat insulating layer and the main mold or between the heat insulating layer and the metal layer is not only the difference in thermal expansion coefficient. However, the difference in the coefficient of thermal expansion is an extremely large factor. If the thermal insulation layer has a large adhesion between the main mold and / or metal layer, the thermal elastic layer has a low tensile modulus and a high elongation at break. Separation does not occur even if the difference between the coefficients is slightly large. However, a material suitable for the heat insulation layer, that is, high heat resistance, high hardness, and a mirror surface that is easily polished are satisfied. The heat insulating material is generally a heat-resistant hard synthetic resin having an aromatic ring in a main chain having a large elastic modulus. The heat-resistant hard synthetic resin layer is closely adhered to a main mold and / or a metal layer so that separation does not occur. To achieve this, it is preferable that the difference between the coefficients of thermal expansion be small.
本発明に良好に使用できる主金型の金属、 及び最表面に被覆する金属層の金属. 断熱層の耐熱性重合体、 及び一般の合成樹脂の熱膨張係数を表 1 に示す。  Table 1 shows the metal of the main mold and the metal of the metal layer coated on the outermost surface that can be favorably used in the present invention. The thermal expansion coefficient of the heat-resistant polymer of the heat insulating layer and the general synthetic resin are shown in Table 1.
表 1 物質 熱膨張係数  Table 1 Materials Thermal expansion coefficient
鋼鉄 1. 1 X 1 0 -ゾ。 C  Steel 1.1 x 10-Z. C
 main
アルミニウム 2. 2 "  Aluminum 2.2 "
 Money
アルミニゥ厶合金 2. 4 "  Aluminum alloy 2.4 "
 Type
銅 1. 7 "  Copper 1.7 "
 Passing
黄銅 1. 9 "  Brass 1.9 "
 And
亜鉛 3. 3 "  Zinc 3.3 "
 Money
亜鉛合金 (Z A S ) 2. 8 〃  Zinc alloy (ZA S) 2.8〃
 Genus
錫 2. 0 〃  Tin 2.0 〃
 Layer
クロム 0. 8 〃  Chrome 0.8 〃
ニッケル 1. 3 " 低熱膨張型ポリイ ミ ド 0. 4〜 3 〃 断 —般のポリイ ミ ド 3〜 6 "  Nickel 1.3 "Low thermal expansion type polyimide 0.4 ~ 3 dia. —General polyimide 3 ~ 6"
ポリベンツイ ミ ダゾール 2. 3 〃 熱 ポリア ミ ドイ ミ ド 3〜 7 "  Polybenzimidazole 2.3 〃 heat Polyamide 3 ~ 7 "
ポリエーテルスルホン 4〜 5. 5 " 層 ポリスルホン 4〜 5. 6 "  Polyethersulfone 4-5.5 "layer Polysulfone 4-5.6"
ポリエーテルィ ミ ド 4 ~ 5. 6 " ボリプロビレン樹脂 6〜 9 " ム ボリスチレン系樹脂 3〜 1 2 "  Polyetherimide 4 to 5.6 "Polypropylene resin 6 to 9" Polystyrene resin 3 to 12 "
成 ボリエステル樹脂 5〜 1 0 〃  Composition Polyester resin 5 ~ 10 〃
樹 エポキシ樹脂 6〜 1 0 〃  Tree Epoxy resin 6 ~ 10 〃
脂 ナイ口ン樹脂 8〜 1 3 "  Fat Nail resin 8 ~ 13 "
ポリエチレン樹脂 8〜 1 8 〃 主金型及びノ又は金属層の熱膨張係数が大き く なれば、 相対的に熱膨張係数の 大きい断熱層が使用できる様になる。 金型材質と して鋼鉄が最も多く使用されて いるが、 最近アルミニウム合金や Z A S等の亜鉛合金も使用される様になつてき た。 本発明では熱膨張係数が近ければ近い程好ま しく 、 主金型に鋼鉄を使用した 場合には熱膨張係数が極めて小さい低熱膨張型ポリイ ミ ド等は良好に使用できる, 表 2に本発明に良好に使用できる耐熱性重合体の構造 (繰り返し単位) とガラ ス転移温度 (T g ) を示す。 表 2 Polyethylene resin 8 to 18 〃 When the thermal expansion coefficient of the main mold and the metal layer or the metal layer is increased, a heat insulating layer having a relatively large thermal expansion coefficient can be used. Steel is the most commonly used mold material, but recently aluminum alloys and zinc alloys such as ZAS have come to be used. In the present invention, the closer the coefficient of thermal expansion is, the more preferable.If steel is used for the main mold, a low thermal expansion type polyimide having an extremely small coefficient of thermal expansion can be used satisfactorily. The structure (repeating unit) and glass transition temperature (T g) of the heat-resistant polymer that can be used well are shown. Table 2
射出成形やブロー成形では複雑な形状の成形品を一度の成形で得られるところ に経済的価値がある。 この複雑な金型表面を耐熱性重合体で被覆し、 且つ強固に 密着させるには、 耐熱性重合体溶液、 及び Z又は耐熱性重合体前駆体溶液を塗布 し、 次いで加熱して耐熱性重合体の断熱層を形成させる方法や、 金型表面で耐熱 性重合体を蒸着重合させる方法等が好ま しい。 塗布により耐熱性重合体を形成す るには、 耐熱性重合体、 あるいは耐熱性重合体の前駆体が溶剤に溶解できること が好ま しい。 ポリ イ ミ ドの前駆体であるポリア ミ ド酸の溶液を型壁面に塗布し、 次いで加熱キュアを行い型壁面上にポリィ ミ ドを形成する方法は良好に使用でき る。 下記にポリアミ ド酸からポリ イ ミ ドを形成する反応式を示す。 In injection molding and blow molding, there is economic value in that a molded product with a complicated shape can be obtained in one molding. In order to coat the complex mold surface with a heat-resistant polymer and to make it adhere tightly, apply a heat-resistant polymer solution and a solution of Z or a heat-resistant polymer precursor, and then heat to obtain a heat-resistant polymer. Preference is given to a method of forming a united heat insulating layer or a method of vapor-depositing and polymerizing a heat-resistant polymer on the surface of a mold. In order to form a heat-resistant polymer by coating, it is preferable that the heat-resistant polymer or a precursor of the heat-resistant polymer can be dissolved in a solvent. A method in which a solution of a polyamic acid, which is a precursor of polyimide, is applied to a mold wall surface and then cured by heating to form polyimide on the mold wall surface can be used favorably. The reaction formula for forming polyimide from polyamic acid is shown below.
Figure imgf000023_0001
ポリ イ ミ ドの前駆体のポリァミ ド酸溶液を型壁面に塗布し、 次いで加熱キュア を行いポリ イ ミ ドを形成した場合、 加熱キュア温度、 及び Z又は加熱キュア棼囲 気によりポリ イ ミ ドのガラス転移温度や熱膨張係数が異なる。 一般に加熱キュア 温度が高い程ガラス転移温度が高くなり、 また熱膨張係数が小さ く なる。 ポリア ミ ド酸は一般に 2 5 0 °C以上にすればほとんどィ ミ ド化カ《 1 0 0 %進行しポリィ ミ ドが形成されるが、 ポリイ ミ ドになってからの分子の動きが熱膨張係数に影饗 を与えると考えられている。 本発明の断熱層と主金型、 及び 又は断熱層と金属層とは密着している。 その 密着力は大きいことが好ま しい。 本発明に述べる、 主金型に密着した断熱層、 あ るいは断熱層に密着した金属層とは、 一万回を越える合成樹脂の成形で引き起こ される冷熱サイクルで剝離が起こらないことである。 密着力は 2 3 °Cで 0 . 3 k g Z 1 0 m m巾以上が好ま しく、 更に好ま しく は 0 . 5 k g 1 0 m m巾以上、 最も好ま しく は 0 . 7 k g Z l O m m巾以上である。 これは密着した金属層、 あ るいは金属層と断熱層を 1 0 m m巾に切り、 接着面と直角方向に 2 0 m m Z分の 速度で引張った時の剝離力である。 この剝離カは測定場所、 測定回数によりかな りバラツキが見られるが、 最小値が大きいことが重要であり、 安定して大きい密 着力であることが好ま しい。 本発明に述べる密着力は金型の主要部の密着力の最 小値である。 主金型と断熱層の密着力を向上させるため、 主金型の表面を微細な 凹凸状にしたり、 主金型表面に各種メ ツキをしたり、 プライマー処理をすること は適宜実施できる。 プライマー処理の好ま しい例と して、 C O基や、 S 0 2 基を 多く含むポリィ ミ ドは金属表面に密着しやすく、 これらの密着性に優れたポリィ ミ ドの薄層をプライマー層と して用い、 この上に一般のポリィ ミ ドを被覆する方 法は良好に使用できる。
Figure imgf000023_0001
When a polyimide acid solution of a polyimide precursor is applied to the mold wall surface and then cured by heating to form a polyimide, the polyimide is heated at a heating cure temperature and Z or a heating cure atmosphere. Have different glass transition temperatures and thermal expansion coefficients. Generally, the higher the heating cure temperature, the higher the glass transition temperature and the lower the coefficient of thermal expansion. Generally, when the temperature of the polyamic acid is raised to 250 ° C or higher, almost all imidization proceeds <100% and polyimide is formed, but the movement of molecules after the formation of the polyimide becomes heat. It is thought to have an effect on the expansion coefficient. The heat insulating layer and the main mold of the present invention and / or the heat insulating layer and the metal layer are in close contact with each other. It is preferable that the adhesion is large. The heat-insulating layer closely adhered to the main mold or the metal layer closely adhered to the heat-insulating layer described in the present invention is not separated by a cooling and heating cycle caused by molding of synthetic resin more than 10,000 times. is there. The adhesion is preferably 0.3 kg Z 10 mm width or more at 23 ° C, more preferably 0.5 kg 10 mm width or more, and most preferably 0.7 kg Z l O mm width or more. It is. This is the separation force when the adhered metal layer or the metal layer and the heat insulation layer are cut to a width of 10 mm and pulled at a speed of 20 mm Z in a direction perpendicular to the bonding surface. Although there is considerable variation in this separation force depending on the measurement location and the number of measurements, it is important that the minimum value is large, and it is preferable that the adhesion force be stable and large. The adhesion described in the present invention is the minimum value of the adhesion of the main part of the mold. In order to improve the adhesion between the main mold and the heat insulating layer, the surface of the main mold can be formed into fine irregularities, the surface of the main mold can be variously plated, and primer treatment can be appropriately performed. As a preferable example of the primer treatment, polyimide containing a large amount of CO group or SO 2 group easily adheres to the metal surface, and a thin layer of polyimide having excellent adhesion is used as the primer layer. The method of coating a general polyimide on this can be used favorably.
断熱層と金属層の密着力も大きいことが好ま しく、 両者は微細凹凸界面で密着 していることが好ま しい。 すなわち、 断熱層と金属層がその界面で交互に入り合 つてアンカー効果により密着力が増大していることが好ま しい。 断熱層と金属層 の界面の微細凹凸の大きさは、 交互に入り合っている距離が 0 . 5〜 1 0 ;u m程 度の凹凸であり、 該凹凸の一部が複雑に入り合ってアンカー効果が働く凹凸が好 ま しい。 微細凹凸度の測定は、 断熱層と金属層の界面部の断面を顕微鏡で観察し て測定する。 好ま しい微細凹凸度は基準長さ 8 0 mで金属層と断熱層の界面の 凹凸の高い方から 5番目までの山頂の標高の平均と深い方から 5番目までの谷底 の標高の平均との差が 0 . 5〜 1 0 / mである。 ここに述べる凹凸は交互に複雑 に入り合ってアンカー効果が働く形状であって単純な凹凸ではないので、 標高は 各凹凸の最も深く入り込んでいる位置を選択することとする。  It is preferable that the adhesion between the heat insulating layer and the metal layer is also large, and it is preferable that both are in close contact with each other at the fine uneven surface interface. That is, it is preferable that the heat insulating layer and the metal layer alternately enter each other at the interface, so that the adhesion is increased by the anchor effect. The size of the fine irregularities at the interface between the heat insulating layer and the metal layer is such that the distance between the alternating irregularities is about 0.5 to 10 μm, and a part of the irregularities enters the complex and anchors. Irregularities that work well are preferred. The degree of fine irregularities is measured by observing the cross section of the interface between the heat insulating layer and the metal layer with a microscope. The preferred degree of fine unevenness is a reference length of 80 m, which is the average of the height of the top five peaks and the mean of the deepest valley bottom at the interface between the metal layer and the heat insulating layer. The difference is 0.5-10 / m. Since the irregularities described here are intricately and alternately complicated and the anchor effect works, and are not simple irregularities, the altitude should be set to the position where each irregularity is deepest.
射出成形やブロー成形では複雑な形状の型物が一度の成形でできることが最大 の長所であり、 そのため金型キヤ ビティ は一般に複雑な形状をしている。 し力、し、 この複雑な形状の金型キヤ ビティ表面に鏡面状に被覆物質を塗布することは極め て困難であり、 そのため塗布された被覆層を後から表面研磨したり、 塗布層を数 値制御フラィス盤等の各種工作機械で削った後に表面研磨して鏡面状に仕上げる ことは最も良好な方法である。 The biggest advantage of injection molding and blow molding is that a mold with a complicated shape can be formed in one shot, and therefore, mold cavities generally have complex shapes. Power, power, It is extremely difficult to apply a coating substance to the surface of the mold cavity having such a complicated shape in a mirror-like manner. Therefore, the applied coating layer is polished later, or the coating layer is subjected to a numerical control milling machine. The best method is to grind the surface with a machine tool and then polish the surface to a mirror finish.
本発明では、 断熱層の全厚みは、 本発明に指定する積分値、 型表面温度の変化 を満たす範囲で選択され、 0. 1 mmを越え 0. 5 mm未満の極めて狭い範囲内 で選択される。 射出成形においては更に好ま しく は 0. 1 mmを越え 0. 4 mm 未満、 特に好ま しく は 0. 1 2 mmを越え 0. 3 mm未満であり、 ブロー成形に おいては、 好ま しく は 0. 2 mm以上 0. 5 mm未満、 更に好ま しく は 0. 3 m m以上 0. 5 mm未満である。 0. 1 mm以下の薄い断熱層では、 十分な外観改 良効果が得られない。 断熱層厚みが厚く なりすぎると成形時の金型内必要冷却時 間が長く なり、 経済的観点から好ま しく ない。  In the present invention, the total thickness of the heat insulating layer is selected within a range that satisfies the integral value and the change in mold surface temperature specified in the present invention, and is selected within an extremely narrow range of more than 0.1 mm and less than 0.5 mm. You. In injection molding, more preferably, more than 0.1 mm and less than 0.4 mm, particularly preferably, more than 0.1 mm and less than 0.3 mm, and in blow molding, preferably 0 mm 2 mm or more and less than 0.5 mm, more preferably 0.3 mm or more and less than 0.5 mm. With a thin heat-insulating layer of 0.1 mm or less, sufficient appearance improvement effect cannot be obtained. If the thickness of the heat insulating layer is too large, the required cooling time in the mold during molding becomes long, which is not preferable from an economic viewpoint.
熱可塑性樹脂の成形では、 金型温度と成形サイクルタイムは密接に関連してい る。 すなわち、 成形時の、 金型温度 (T d ) と金型内必要冷却時間 ( 0 ) の関係 は理論的には次式で示される。  In molding thermoplastics, mold temperature and molding cycle time are closely related. That is, the relationship between the mold temperature (T d) and the required cooling time in the mold (0) during molding is theoretically expressed by the following equation.
Θ = - (D 2 / 2 π a ) · I n [ ( π / i ) { (Τ χ - Τ d ) / Θ = - (D 2/2 π a) · I n [(π / i) {(Τ χ - Τ d) /
(Τ c 一 Τ d ) } ]  (Τ c Τ Τ d)}]
θ : 冷却時間 ( s e c )  θ: Cooling time (sec)
D : 成形品の最大肉厚 ( c m)  D: Maximum thickness of molded product (cm)
T c : 成形時の加熱樹脂温度 (°C)  T c: Heated resin temperature during molding (° C)
T X : 成形品の軟化温度 (°C)  T X: Softening temperature of molded product (° C)
a : 樹脂の熱拡散率  a: Thermal diffusivity of resin
T d : 金型温度 (で)  T d: Mold temperature (in)
冷却時間 ( 0 ) は、 成形品肉厚 (D) の 2乗に比例し、 (T x— T d ) Z (T c -Τ d ) の関数である。  The cooling time (0) is proportional to the square of the part thickness (D) and is a function of (T x-T d) Z (T c -Τ d).
主金型に断熱層を被覆することは、 成形品肉厚を厚く して、 冷却時間を長くす る方向と同様の働きをするが、 一方、 金型温度を下げると冷却時間を短くする方 向へ働く。 断熱層の厚みは薄肉で外観改良ができることが成形サイクルタイムの 観点から経済的に好ま しい。 本発明では特に好ま しく は断熱層厚みを前記の狭い 範囲に設定することが外観改良と成形サイクルタイムを良好に满足させる。 Coating the main mold with a heat-insulating layer works in the same way as increasing the thickness of the molded product and increasing the cooling time, but on the other hand, decreasing the mold temperature reduces the cooling time. Work in the direction. It is economically preferable that the thickness of the heat insulating layer is thin and the appearance can be improved from the viewpoint of the molding cycle time. In the present invention, particularly preferably, the thickness of the heat insulating layer is set to the above-mentioned narrow range. Setting within this range will improve the appearance and improve the molding cycle time.
金型に断熱層と金属層を被覆した公知文献の多く は断熱層厚みが厚い。 断熱層 厚みが厚く なれば、 型表面再現性は良く なるが、 生産性、 経済性に大きな影響を 与える成形サイクルタイムを犠牲にすることとなる。  Many of the known documents in which a mold is coated with a heat insulating layer and a metal layer have a large heat insulating layer thickness. As the thickness of the heat-insulating layer increases, the mold surface reproducibility improves, but at the expense of molding cycle time, which greatly affects productivity and economy.
断熱層厚みと成形サイクルタイムの関係を具体的な数値で説明する。 断熱層が 0. 6 mmと 0. 2 mmの 2種の断熱層被覆金型を用いて 2 mm厚の成形品を射 出成形するに必要な冷却時間を比較する場合、 射出成形する合成樹脂と断熱材の 熱伝導率は一般にほぼ同等レベルであり、 従って型内必要冷却時間の比は 2. 6 mm厚と 2. 2 mm厚の成形品を成形するに必要な冷却時間の比とほぼ同等にな る。 2. 6 mm厚と 2. 2 mm厚の成形に必要な冷却時間の比は、 前記式に示す 様に、 2. 62 / 2. 22 = 1. 4 になる。 必要冷却時間が 1. 4倍の差は、 ェ 業的に合成樹脂を成形する場合の経済性の面から考えると極めて大きな差である。 本発明で使用される金型の断熱層の表面に被覆される金属層に用いられる好ま しい金属は、 一般にメ ツキに用いられる金属であり、 クロム、 ニッケル、 銅等の 1種又は 2種以上である。 良好に使用できるのは化学二ッケルメ ッキ、 電解二ッ ケルメ ツキ、 化学銅メ ツキ、 電解銅メ ツキ、 電解クロムメ ツキ等である。 金属層 は断熱層の表面に被覆される。 断熱層と金属層は密着していることが必要であり、 その密着力は 0. 3 k 1 0 mm以上が好ま しく、 更に好ま しく は 0. 5 k g 1 0 mm以上であり、 最も好ま しく は 0. 7 k g/ 1 0 mm以上である。 断熱 層に直接に接する層は化学メ ッキ層にすることが特に好ま しい。 The relationship between the thickness of the heat insulating layer and the molding cycle time will be described with specific numerical values. When comparing the cooling time required for injection molding a 2 mm thick molded product using two types of molds with a heat insulation layer of 0.6 mm and 0.2 mm, synthetic resin injected And the thermal conductivity of the insulation material are generally almost the same level, so the ratio of the required cooling time in the mold is almost the same as the ratio of the cooling time required to form a 2.6 mm thick and 2.2 mm thick molded product. Be equivalent. 2. 6 mm thick and 2. cooling time required for molding 2 mm thick ratio, as shown in the formula, 2. become 6 2 / 2.2 2 = 1.4. The difference of 1.4 times in the required cooling time is an extremely large difference from the economical point of view of industrially molding synthetic resins. The preferred metal used for the metal layer coated on the surface of the heat insulating layer of the mold used in the present invention is a metal generally used for plating, and one or more of chromium, nickel, copper, and the like. It is. Suitable for use are chemical nickel plating, electrolytic nickel plating, chemical copper plating, electrolytic copper plating, and electrolytic chrome plating. The metal layer is coated on the surface of the heat insulating layer. The heat insulation layer and the metal layer must be in close contact with each other, and the adhesion is preferably at least 0.3 k10 mm, more preferably at least 0.5 kg10 mm, and most preferably. Is 0.7 kg / 10 mm or more. It is particularly preferred that the layer directly in contact with the thermal insulation layer be a chemical mech layer.
金属層の表面は鏡面状、 微細な凹凸表面の艷消し状、 微細なレンズ伏凹凸表面 のレンズ状、 皮しぼや木目しぼ等のしぼ状等のいずれでも良く、 必要に応じて選 択される。 本発明に良好に使用できるしぼ形伏は、 皮しぼ、 木目しぼ、 ヘアーラ イ ンしぼ等のパターンしぼである。 しぼ状表面を浮き出させるために、 しぼ状型 表面の凹凸の一方を鏡面に、 他方を艷消し面にすることが好ま しい。 又、 しぼ状 表面の凹凸を適度に細かく し、 凹凸の一方を鏡面に他方を ¾消し状にすると、 ァ ルミ二ゥムフレーク等を配合した合成樹脂で成形した、 いわゆるメタ リ ック調外 観が得られ、 これも本発明に含まれる。  The surface of the metal layer may be any of a mirror surface, a matte surface with a fine uneven surface, a lens shape with a fine lens uneven surface, and a grain shape such as a grain of grain or a grain of wood, etc., and is selected as necessary. . The grain-shaped reliefs that can be favorably used in the present invention are patterned grain such as bark grain, grain grain, and hairline grain. In order to make the grain-shaped surface stand out, it is preferable to make one of the irregularities on the grain-shaped mold surface a mirror surface and the other a matte surface. In addition, when the unevenness of the grain-shaped surface is appropriately reduced and one of the unevenness is made to be a mirror surface and the other is erased, a so-called metallic appearance formed by a synthetic resin mixed with aluminum flakes or the like is obtained. And this is also included in the present invention.
レンズ状とは微細なフ レネルレンズ、 微細なレンチキュラーレンズ等の平板状 レンズである。 微細なレンズ状金型で、 断熱層がほぼ一定厚みで金属層にレンズ 状の厚み変動がある場合には、 金属層の薄肉部分の厚みを本発明に述べる金属層 厚みとし、 逆に金属層がほぼ一定厚みで断熱層にレンズ状の厚み変動がある場合 には、 断熱層の薄肉部分の厚みを本発明に述べる断熱層厚みとする。 Lenticular is a flat plate such as a fine Fresnel lens or a fine lenticular lens. Lens. In the case of a fine lens-shaped mold, when the heat insulating layer has a substantially constant thickness and the metal layer has a lens-shaped thickness variation, the thickness of the thin portion of the metal layer is defined as the metal layer thickness described in the present invention. When the thickness of the heat insulating layer is substantially constant and there is a lens-shaped thickness variation, the thickness of the thin portion of the heat insulating layer is defined as the heat insulating layer thickness described in the present invention.
断熱層の厚み及び金属層の好ましい厚みは、 型表面が鏡面状、 艷消し状、 しぼ 状のいずれかにより異なり、 更に、 成形法が射出成形、 ブロー成形のいずれかに より異なる。 各成形法における好ましい断熱層の厚みと好ましい ½属層の厚みを 次に詳しく示す。  The thickness of the heat insulating layer and the preferred thickness of the metal layer differ depending on whether the surface of the mold is mirror-like, matte-like, or grain-like, and the molding method differs depending on whether injection molding or blow molding is used. The preferred thickness of the heat insulating layer and the preferred thickness of the metal layer in each molding method are described in detail below.
射出成形法で鏡面状、 又は艷消し状成形品を成形する場合には、 好ましくは、 断熱層の厚みが 0. 1 111111を越ぇ 0. 4 mm未満で、 金属雇の厚みが断熱層厚み の 1 3以下で、 且つ、 0. 0 0 1〜 0. 0 7 mmであり、 更に好ましくは、 断 熱層の厚みが 0. 1 2 mmを越え 0. 3 mm未満で、 金属層の厚みが断熱層厚み の 1ノ 5以下 1ノ 1 0 0以上で、 且つ、 0. 0 0 2〜 0. 0 6 mmである。  In the case of molding a mirror-like or matte-like molded product by the injection molding method, preferably, the thickness of the heat-insulating layer exceeds 0.1 111111, is less than 0.4 mm, and the thickness of the metal layer is the thickness of the heat-insulating layer. 13 or less, and 0.01 to 0.07 mm, more preferably, the thickness of the heat insulation layer is more than 0.12 mm and less than 0.3 mm, and the thickness of the metal layer is Is 1 to 5 or less and 1 to 100 or more in the thickness of the heat insulating layer, and is 0.02 to 0.06 mm.
射出成形法でしぼ状成形品を成形する場合には、 好ましくは、 断熱層の厚みが 0. 1 111^1を越ぇ 0. 4 mm未満で、 金属層の凸部の厚みが断熱層厚みの 1 3 以下で、 且つ、 0. 0 1〜 0. 0 7 mmであり、 しぼ形状凹部の深さが 0. 0 0 5 ~ 0. 0 6 mmであり、 更に好ましくは、 断熱層の厚みが 0. 1 2 mmを越え 0. 3 mm未満であり、 金属層の凸部の厚みが断熱層厚みの 1ノ 5以下で、 且つ 0. 0 1 - 0. 0 6 mmであり、 しぼ形状凹部の深さが 0. 0 0 5〜 0. 0 4 m mである。 凹部の深さが大き過ぎると、 凹部と凸部の型表面再現性に大きな差が 生じたり、 成形品の抜き勾配に影響を与える。 また、 凹部の深さが小さ過ぎると、 しぼ形状にする効果が小さくなる。 ' ブロー成形で鏡面状あるいは能消し状成形品を成形する場合には、 好ましくは、 断熱層の厚みが 0. 2 mm以上 0. 5 mm未満で、 金属層の厚みが断熱層厚みの 1 / 3以下で、 且つ、 0. 0 0 2〜 0. 1 mmであり、 更に好ましく は、 断熱層 の厚みが 0. 3 mm以上 0. 5 mm未満で、 金属層の厚みが断熱層厚みの 1 Z 5 以下 1 Z 1 0 0以上で、 且つ、 0. 0 0 4〜 0. 0 6 mmである。  When the grain-shaped molded article is formed by the injection molding method, preferably, the thickness of the heat insulating layer exceeds 0.1 111 ^ 1 and is less than 0.4 mm, and the thickness of the convex portion of the metal layer is preferably the thickness of the heat insulating layer. 13 or less and 0.01 to 0.07 mm, and the depth of the grain-shaped concave portion is 0.05 to 0.06 mm, and more preferably, the thickness of the heat insulating layer. Is more than 0.12 mm and less than 0.3 mm, the thickness of the convex part of the metal layer is 1 to 5 or less of the thickness of the heat insulating layer, and is 0.01 to 0.06 mm, and the grain shape is The depth of the concave portion is 0.005 to 0.04 mm. If the depth of the concave portion is too large, there will be a large difference in the mold surface reproducibility between the concave portion and the convex portion, or the draft of the molded product will be affected. On the other hand, if the depth of the concave portion is too small, the effect of forming the grain is reduced. '' In the case of forming mirror-like or eraser-like molded products by blow molding, it is preferable that the thickness of the heat insulating layer is 0.2 mm or more and less than 0.5 mm, and the thickness of the metal layer is 1 / 3 or less, and 0.002 to 0.1 mm, more preferably, the thickness of the heat insulating layer is 0.3 mm or more and less than 0.5 mm, and the thickness of the metal layer is 1 mm of the thickness of the heat insulating layer. Z 5 or less 1 Z 100 or more, and 0.04 to 0.06 mm.
ブロー成形でしぼ状成形品を成形する場合には、 好ましくは、 断熱層の厚みが 0. 2 mm以上 0. 5 mm未満であり、 金属層の凸部の厚みが断熱層厚みの 1 3以下で、 且つ、 0. 0 1〜 0. 1 mmであり、 しぼ形状凹部の深さが 0. 0 0 5〜 0. 0 9 mmであり、 更に好ま しく は、 断熱層の厚みが 0. 3 mm以上 0. 5 mm未満であり、 金属層の凸部の厚みが断熱層厚みの 1 / 5以下、 1 1 0 0 以上で、 且つ、 0. 0 1〜 0. 0 8 mmであり、 しぼ形状凹部の深さが 0. 0 0 5〜 0. 0 7 mmである。 In the case of forming a grain-shaped molded product by blow molding, preferably, the thickness of the heat insulating layer is 0.2 mm or more and less than 0.5 mm, and the thickness of the convex portion of the metal layer is 1% of the thickness of the heat insulating layer. 3 or less, and 0.01 to 0.1 mm, the depth of the grain-shaped recess is 0.05 to 0.09 mm, and more preferably, the thickness of the heat insulating layer is 0. 3 mm or more and less than 0.5 mm, the thickness of the convex portion of the metal layer is 1/5 or less of the thickness of the heat insulating layer, 1100 or more, and 0.01 to 0.08 mm. The depth of the grain-shaped concave portion is 0.005 to 0.07 mm.
本発明において、 金属層表面にしぼ状凹凸を有する場合には、 金属層の厚肉部 (一般には金属層の凸部の厚み) の金属層厚みを本発明の成形法に係る断熱層被 覆金型の金属層厚みとするのは、 凸部の型表面再現性を良好にして、 成形品全体 のウエルドライ ン等の目立ちを低減するためである。  In the present invention, when the surface of the metal layer has irregularities in the shape of a grain, the thickness of the metal layer at the thick portion of the metal layer (generally, the thickness of the projection of the metal layer) is covered with the heat insulating layer according to the molding method of the present invention. The reason why the thickness of the metal layer of the mold is set is to improve the reproducibility of the mold surface of the projections and reduce the conspicuousness of well lines and the like of the entire molded product.
金属層の厚みは均一であることが好ま しく、 厚みのばらつきは好ま しく は ± 2 0 %以下、 更に好ま しく は ± 1 0 %以下である。 金属層表面がしぼ状の凹凸の場 合には、 凸部の金属層厚み、 あるいは凹部の金属層の厚みが、 それぞれ均一であ ることが好ま しく 、 それぞれの厚みのばらつきが好ま しく は ± 2 0 %以下、 更に 好ま しく は ± 1 0 %以下である。 金属層厚みのばらつきが大きいと、 金属層厚み の厚い部分の型表面再現性が悪く なり、 型表面再現性が良い部分と悪い部分が同 一成形品表面に現れやすく なる。  The thickness of the metal layer is preferably uniform, and the thickness variation is preferably ± 20% or less, more preferably ± 10% or less. When the surface of the metal layer is uneven, the thickness of the metal layer in the convex portion or the thickness of the metal layer in the concave portion is preferably uniform, and the variation in the thickness is preferably ± It is 20% or less, and more preferably ± 10% or less. If the thickness of the metal layer has a large variation, the reproducibility of the mold surface at the portion where the thickness of the metal layer is large is deteriorated, and the portion having good reproducibility of the mold surface and the portion having the bad reproducibility tend to appear on the same molded product surface.
本発明は成形品の型表面再現性と成形サイクルタイムを両立させる成形法に係 わるが、 成形サイ クルタイムを短く保っために主金型温度を低く設定して成形す ることが好ま しい。 本発明では主金型温度を、 1 5 °C以上、 1 0 0で以下で、 且 つ合成樹脂の钦化温度から 2 0 °Cを減じた温度以下に設定して成形することが好 ま しく 、 更に好ま しく は、 合成樹脂の軟化温度から 3 0 °Cを-减じた温度以下で成 形する。 こ こに述べる主金型温度は、 断熱層と接する部分の主金型の成形時の温 度である。 主金型温度をこれより高くすると金型内必要冷却時間が長く なり、 従 つて成形サイクルタイムが長く なり、 成形効率が低下する。 主金型温度を 1 0 0 てを越える高温度にすれば当然型表面再現性は良くなるが、 成形効率の面から好 ま しく ない。 主金型温度は好ま しく は 2 0 °C以上で 9 0 °C以下であり、 更に好ま しく は 2 5 °C以上で 8 0 °C以下である。 主金型温度を 1 5 °C未満にすることは型 表面に結露等がおこりやすく なる。 ここに述べる軟化温度は成形品全体の変形を 問題とする軟化温度であり、 ガラス繊維等の配合物等を含む場合には、 該配合物 を含む合成樹脂全体の軟化温度である (後で述べる積分値 (秒 · °ο を計算する 際の軟化温度とは異なる) 。 The present invention relates to a molding method for achieving both the mold surface reproducibility of the molded article and the molding cycle time. In order to keep the molding cycle time short, it is preferable to carry out molding with the main mold temperature set low. In the present invention, it is preferable to perform molding by setting the main mold temperature to 15 ° C. or higher and 100 or lower and a temperature obtained by subtracting 20 ° C. from the curing temperature of the synthetic resin. More preferably, the molding is performed at a temperature not higher than −30 ° C. from the softening temperature of the synthetic resin. The main mold temperature described here is the temperature at the time of molding of the main mold in the portion in contact with the heat insulating layer. If the main mold temperature is higher than this, the required cooling time in the mold will be longer, and therefore the molding cycle time will be longer and the molding efficiency will be lower. If the main mold temperature is set to a temperature higher than 100, the reproducibility of the mold surface is naturally improved, but it is not preferable from the viewpoint of molding efficiency. The main mold temperature is preferably 20 ° C or more and 90 ° C or less, and more preferably 25 ° C or more and 80 ° C or less. When the temperature of the main mold is lower than 15 ° C, dew condensation or the like easily occurs on the mold surface. The softening temperature described here is a softening temperature at which the deformation of the whole molded article is a problem. This is the softening temperature of the entire synthetic resin including (integral value described later (different from the softening temperature when calculating seconds · ° ο)).
本発明では成形される合成樹脂が型表面に接触して 5秒後に、 型表面温度が合 成樹脂の钦化温度以下に低下する成形条件を選択する。 すなわち、 合成樹脂が型 表面に接触して 5秒の間、 型表面温度が合成樹脂の軟化温度以上であれば型表面 再現性は十分に良く なり、 この後は型表面温度は低く なる方が成形サイクルタイ ムの点から好ま しい。 更に本発明の射出成形法では、 好ま しく は合成樹脂が型表 面に接触して 5秒後に、 型表面温度が (合成樹脂の钦化温度一 1 0 °C ) 以下に低 下する条件で成形され、 更に好ま しく は型表面温度が (合成樹脂の軟化温度一 2 0 °C ) 以下に低下する。 これは、 断熱層と金属層の各厚み、 樹脂温度、 金型温度 を適度に選択して満たすことができる。 射出成形に於ける成形品の型表面再現性 は合成樹脂が型表面に接触してから 5秒以内の問題であり、 標準的な射出成形で は 3秒以内、 最も標準的な射出成形では 2秒以内の問題であり、 その間だけ型表 面温度が高く、 合成樹脂の钦化温度以上であれば、 その後は成形サイクルタイム の観点から型表面は急速に冷却されることが好ま しい。 従って、 本発明では合成 樹脂が型表面に接触してから 2秒後に、 型表面温度が合成樹脂の軟化温度以下に 低下する条件が特に好ま しい。 合成樹脂が型表面に接触してから 2 0秒近くの間、 型表面温度が合成樹脂の钦化温度以上にすれば当然のことながら型表面再現性は 良く なるが、 成形サイ クルタイムが長くなり、 経済的に使用できない。  In the present invention, molding conditions are selected such that the mold surface temperature drops below the aging temperature of the synthetic resin 5 seconds after the synthetic resin to be molded contacts the mold surface. That is, if the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin for 5 seconds after the synthetic resin comes into contact with the mold surface, the mold surface reproducibility is sufficiently improved, and after that, the mold surface temperature should be lower. Preferable in terms of molding cycle time. Further, in the injection molding method of the present invention, preferably, the condition is such that the mold surface temperature is lowered to (the synthetic resin's aging temperature minus 10 ° C.) 5 seconds after the synthetic resin comes into contact with the mold surface. It is molded and, more preferably, the surface temperature of the mold is lowered to (the softening temperature of the synthetic resin is lower than 20 ° C). This can be satisfied by appropriately selecting the thickness of the heat insulating layer and the metal layer, the resin temperature, and the mold temperature. The mold surface reproducibility of the molded product in injection molding is a problem within 5 seconds after the synthetic resin comes into contact with the mold surface, within 3 seconds for standard injection molding, and 2 for most standard injection molding. This is a problem within seconds. During that time, if the surface temperature of the mold is high and is equal to or higher than the curing temperature of the synthetic resin, it is preferable that the mold surface be rapidly cooled thereafter from the viewpoint of the molding cycle time. Accordingly, in the present invention, it is particularly preferable that the mold surface temperature falls to a temperature lower than the softening temperature of the synthetic resin two seconds after the synthetic resin comes into contact with the mold surface. If the mold surface temperature is higher than the plasticization temperature of the synthetic resin for nearly 20 seconds after the synthetic resin comes into contact with the mold surface, the mold surface reproducibility will naturally improve, but the molding cycle time will increase. , Can not be used economically.
金属からなる主金型表面を断熱層で被覆し、 その表面に射出された加熱樹脂が 接触すると、 型表面は樹脂の熱を受けて昇温する。 断熱層の熱伝導率が小さいほ ど、 また、 断熱層が厚いほど型表面温度は高く なる。  When the surface of the main mold made of metal is covered with a heat insulating layer and the injected heated resin comes into contact with the surface, the surface of the mold is heated by the heat of the resin. The lower the thermal conductivity of the heat insulating layer, and the thicker the heat insulating layer, the higher the mold surface temperature.
本発明は、 金属からなる主金型の型キヤ ビティ を構成する型壁面に、 耐熱性重 合体からなる断熱層が存在し、 その上に断熱層に密着した金属層が存在する断熱 層被覆金型を用い、 成形される加熱合成樹脂が型表面に接触後、 型表面温度が合 成樹脂の钦化温度以上にある間の (型表面温度 -合成樹脂の軟化温度) 値の積分 値 (Δ Η ) が 2秒 · て以上、 及び 又は、 型表面温度が (合成樹脂の軟化温度一 1 0 °C ) 以上にある間の {型表面温度一 (合成樹脂の軟化温度一 1 0 °C ) } 値の 積分値 (Δ ΐι ) が 1 0秒 · て以上になる成形条件で成形する合成樹脂の成形法で ある。 型表面温度とは、 成形される加熱合成樹脂が接触する界面温度であり、 型 表面温度と樹脂表面温度はほぼ等しい。 本発明では型表面温度と樹脂表面温度は 同一の意味を有するものと して使用する。 冷却された金型に加熱可塑化された合 成樹脂が接触すると、 熱容量の大きい金属層に熱が奪われて、 型表面温度は一旦 低下するが、 直ちに昇温して合成樹脂の軟化温度以上に上がり、 それから再び低 下して行く。 成形時の型表面再現性は型表面が合成樹脂の軟化温度以上にある時 間と、 钦化温度から何度高い温度に上昇するかの 2つの要因が大きいことを見出 し、 本発明に至った。 即ち、 本発明では、 成形される加熱合成樹脂が型表面に接 触後、 型表面温度が合成樹脂の钦化温度以上にある間の積分値 (Δ Η ) が 2秒 · °C以上、 及び 又は積分値 (Δ ίι ) が 1 0秒 · °C以上の成形条件で成形すると型 表面再現性が良好になる。 この積分値は、 型表面温度の経時変化曲線を描いた図 の、 該曲線と合成樹脂の軟化温度線で囲まれる面積、 あるいは該曲線と (合成樹 脂の軟化温度一 1 0 °C ) 線で囲まれる面積に相当する。 The present invention relates to a heat-insulating layer coating metal in which a heat-insulating layer made of a heat-resistant polymer is present on a mold wall constituting a mold cavity of a metal main mold, and a metal layer adhered to the heat-insulating layer is present thereon. After the heated synthetic resin to be molded is in contact with the mold surface using the mold, the integral value of the (mold surface temperature-softening temperature of the synthetic resin) value (Δ Η) for at least 2 seconds and / or while the mold surface temperature is (synthetic resin softening temperature-10 ° C) or more (the mold surface temperature-(softening temperature of synthetic resin-10 ° C)) } A molding method for synthetic resin that is molded under molding conditions where the integrated value (Δΐι) of the value is 10 seconds or more. is there. The mold surface temperature is the interface temperature at which the heated synthetic resin to be molded contacts, and the mold surface temperature and the resin surface temperature are almost equal. In the present invention, the mold surface temperature and the resin surface temperature are used as having the same meaning. When the plasticized resin that has been heated and plasticized comes into contact with the cooled mold, the heat is taken away by the metal layer having a large heat capacity, and the mold surface temperature temporarily decreases, but immediately rises to the softening temperature of the synthetic resin. And then fall again. The mold surface reproducibility during molding was found to be largely dependent on two factors: the time during which the mold surface was above the softening temperature of the synthetic resin, and the number of times the temperature rose from the aging temperature to a higher temperature. Reached. That is, in the present invention, after the heated synthetic resin to be molded comes into contact with the surface of the mold, the integral value (Δ Η) while the surface temperature of the mold is equal to or higher than the curing temperature of the synthetic resin is 2 seconds · ° C or more, and Alternatively, when molding is performed under molding conditions with an integral value (Δίι) of 10 seconds · ° C or more, the mold surface reproducibility is improved. This integrated value is the area enclosed by the curve and the softening temperature line of the synthetic resin in the drawing of the time-dependent change curve of the mold surface temperature, or the curve and the (softening temperature of synthetic resin minus 10 ° C) line. Corresponds to the area surrounded by.
射出成形に於いては、 好ましい積分値 (Δ Η ) は 2秒 · °C以上、 5 0秒 · 以 下、 更に好ま しく は 5秒 · °C以上、 4 0秒 · て以下、 特に好ま しく は 7秒 . で以 上、 4 0秒 · °C以下、 最も好ま しく は 8秒 · °C以上、 4 0秒 , °C以下である。 好 ま しい積分値 (Δ ΐι ) は 1 0秒 · て以上、 1 0 0秒 · °C以下であり、 更に好ま し く は 1 2秒 · °C以上、 7 0秒 · °C以下であり、 特に好ま しく は 1 5秒 · °C以上、 7 0秒 · て以下であり、 最も好ま しく は 2 0秒 · °C以上、 7 0秒 , °C以下である。 ブロー成形は、 射出成形に比較して合成樹脂が型表面に押しつける力が低く、 且つ型表面に接触後に圧力が加わるまでの時間が長いため必要な積分値も大きく なる。 ブロー成形に於ける好ま しい積分値 (Δ Η ) は 1 0秒 · °C以上、 更に好ま しく は 2 0秒 · て以上であり、 好ま しい積分値 (厶 h ) は 2 0秒 · °C以上、 更に 好ま しく は 3 0秒 , て以上である。  In injection molding, a preferable integral value (ΔΔ) is 2 seconds · ° C or more, 50 seconds or less, more preferably 5 seconds · ° C or more, 40 seconds · or less, particularly preferably. Is 7 seconds. And is 40 seconds · ° C or less, most preferably 8 seconds · ° C or more, 40 seconds · ° C or less. The preferred integral value (Δΐι) is 10 seconds or more and 100 seconds or less, and more preferably 12 seconds or more and 70 seconds or less. It is particularly preferably 15 seconds to ° C or more and 70 seconds or less, and most preferably 20 seconds to ° C or more and 70 seconds or less. In the blow molding, the required integral value becomes large because the force of pressing the synthetic resin against the mold surface is low and the time until pressure is applied after contacting the mold surface is long as compared with the injection molding. The preferred integral value (ΔΗ) in blow molding is 10 seconds · ° C or more, more preferably 20 seconds · ° C or more, and the preferred integral value (mmh) is 20 seconds · ° C. More preferably, 30 seconds or more.
金属層表面が凹凸を有するしぼ状の場合には、 金属層厚みの厚い部分 (一般に は凸部が厚い) の積分値を用いる。  When the surface of the metal layer is in the shape of a grain having irregularities, the integral value of the portion where the thickness of the metal layer is large (generally, the convex portion is thick) is used.
積分値の上限は、 成形サイクルタイム等の観点から、 射出成形においては積分 値 (Δ Η ) は好ま しく は 5 0秒 · °C以下、 更に好ま しく は 4 0秒 , °C以下であり、 一方、 積分値 (A h ) は好ましく は 1 0 0秒 · eC以下、 更に好ま しく は 7 0秒 · °c以下である。 From the viewpoint of the molding cycle time, etc., the upper limit of the integral value is preferably 50 seconds · ° C or less, more preferably 40 seconds / ° C or less in the injection molding, and On the other hand, the integration value (A h) is preferably 1 0 0 s-e C or less, further preferred properly 7 0 seconds - ° c or less.
ブロー成形においては積分値 (Δ Η ) は 2 0 0秒 ' °C以下が好ま しく、 更に好 ま しく は 1 0 0秒 · °C以下であり、 積分値 (Δ h ) は 4 0 0秒 · °C以下が好ま し く、 更に好ま しく は 3 0 0秒 · °C以下である。 本発明では成形サイクルタイムの 観点から、 実用的に型表面再現性が達成される範囲内で積分値が小さ くなる成形 条件と金型構造を選択することが好ま しい。  In blow molding, the integral value (ΔΗ) is preferably 200 seconds or less, and more preferably 100 seconds · ° C or less, and the integral value (Δh) is 400 seconds. · ° C or less is preferred, and more preferably 300 seconds · ° C or less. In the present invention, from the viewpoint of the molding cycle time, it is preferable to select molding conditions and a mold structure in which the integral value is small within a range where the mold surface reproducibility is practically achieved.
積分値 (Δ Η ) と積分値 (A h ) を計算する際に用いる合成樹脂の钦化温度は 合成樹脂が容易に変形しうる温度である。 合成樹脂に配合されている配合物がゴ ム等の成形時に変形し易い有機物や合成樹脂に溶解している物の場合には、 それ ら配合物を含む合成樹脂全体の軟化温度である。 一方、 ガラス繊維、 ゥイスカー、 カーボン繊維等の繊維、 炭酸カルシウム等の無機粉末等の成形時に合成樹脂中で 変形しない充塡材を配合された合成樹脂では、 これら無機充塡材を除いたベース の合成樹脂の钦化温度である。 成形時に合成樹脂中で変形しない充塡材が含有さ れる合成樹脂を成形して型表面再現性を良くするには、 成形品表面がベースの合 成樹脂で彼覆されることが好ま しく、 成形品表面には無機充塡材がほとんど露出 していない状態にすることが好ま しい。 このため成形時、 型表面に樹脂が接触し た時に、 成形品表面付近に存在する無機充塡材の隙間をベース合成樹脂が通り抜 けて型表面に達する必要があり、 ベース樹脂の流動性が型表面再現性に直接に関 係がある。 従って、 成形時に合成樹脂中で変形しない充塡材が配合された合成樹 脂の積分値を計算する際の軟化温度は、 ベース樹脂の軟化温度をもって示す (金 型温度を設定する際に使用した钦化温度は、 成形品全体の変形を問題と しており、 配合物を含む樹脂全体の軟化温度である) 。 钦化温度は非結晶性樹脂ではビカツ ト軟化温度 (A S T M D 1 5 2 5 ) 硬質結晶性樹脂では熱変形温度 (A S T M D 6 4 8 荷重 1 8 . 6 k c m 2 ) 、 钦質結晶性樹脂では熱変形温度 ( A S T M D 6 4 8 荷重 4 . 6 k g Z c m 2 ) でそれぞれ示す温度とする。 非 結晶性樹脂とは、 例えばポリスチレン、 ゴム強化ポリスチレン、 ポリ カーボネー ト等であり、 硬質結晶性樹脂とは、 例えばポリオキシメチレン、 ナイロン 6、 ナ ィロン 6 6等であり、 钦質結晶性樹脂とは、 例えば各種ポリエチレン、 ポリプロ ピレン等である。 更に本発明では、 昇温する型表面温度が一度低下した後、 直ちに昇温する最高 温度が、 (合成樹脂の钦化温度 + 2 0°C) 以上になることが好ましい。 The aging temperature of the synthetic resin used in calculating the integral value (ΔΗ) and the integral value (A h) is a temperature at which the synthetic resin can be easily deformed. In the case where the compound compounded in the synthetic resin is an organic material which is easily deformed during molding of rubber or the like or a compound dissolved in the synthetic resin, it is the softening temperature of the entire synthetic resin including the compound. On the other hand, for synthetic resins containing fillers that do not deform in the synthetic resin when molding fibers such as glass fibers, whiskers, carbon fibers, and inorganic powders such as calcium carbonate, the base material excluding these inorganic fillers is used. It is the aging temperature of the synthetic resin. In order to improve the mold surface reproducibility by molding a synthetic resin containing a filler that does not deform in the synthetic resin during molding, it is preferable that the surface of the molded product be covered with the base synthetic resin. It is preferable that the inorganic filler is hardly exposed on the surface of the molded product. Therefore, when the resin comes into contact with the mold surface during molding, it is necessary for the base synthetic resin to pass through the gap between the inorganic fillers near the molded product surface and reach the mold surface, and the fluidity of the base resin Are directly related to mold surface reproducibility. Therefore, the softening temperature for calculating the integral value of a synthetic resin containing a filler that does not deform in the synthetic resin during molding is indicated by the softening temperature of the base resin. The softening temperature is concerned with the deformation of the whole molded article, and is the softening temperature of the whole resin including the compound.) The curing temperature is the vicat softening temperature for non-crystalline resin (ASTMD 155) The thermal deformation temperature for hard crystalline resin (ASTMD 648 load 18.6 kcm 2 ) and the thermal deformation temperature for crystalline resin Temperature (ASTMD 648 load 4.6 kg Z cm 2 ). The non-crystalline resin is, for example, polystyrene, rubber-reinforced polystyrene, polycarbonate, or the like. The hard crystalline resin is, for example, polyoxymethylene, nylon 6, nylon 66, or the like. Is, for example, various polyethylenes, polypropylenes and the like. Further, in the present invention, it is preferred that the maximum temperature at which the temperature rises immediately after the temperature of the mold surface to be heated once drops is equal to or higher than (curing temperature of synthetic resin + 20 ° C.).
本発明では、 積分値 (ΔΗ) が 2秒 ' °C以上、 及び/又は積分値 (Ah) が 1 0秒 · °C以上の成形条件になる成形条件で成形できる様に、 断熱層と金属層の厚 み、 合成樹脂の種類、 樹脂温度や金型温度等の成形条件等を選択する。  In the present invention, the heat-insulating layer and the metal are formed so that the integral value (ΔΗ) can be molded under molding conditions of 2 seconds' ° C or more and / or the integral value (Ah) is 10 seconds · ° C or more. Select layer thickness, type of synthetic resin, molding conditions such as resin temperature and mold temperature.
本発明の目的は型表面再現性を良くすることと、 成形サイクルタイムを短く保 持することを両立させることである。 このためには型表面再現性を良くするに必 要な型表面温度の変化が得られれば、 即ち型表面再現性を良くするに必要な積分 値 (ΔΗ) 、 積分値 (Δ ΐ ) が得られれば、 その後の型表面温度は急速に低くな ることが成形サイクルタイムを短くするには必要である。 更には積分値 (ΔΗ) 、 積分値 (A h) は型表面再現性が得られるのに必要な値以上である必要があるが、 それ以上に大幅に大き くする必要はなく、 必要最小限に近い値が好ま しい。  An object of the present invention is to improve mold surface reproducibility while maintaining a short molding cycle time. For this purpose, if the change in the mold surface temperature necessary for improving the mold surface reproducibility can be obtained, the integral value (ΔΗ) and the integral value (Δΐ) necessary for improving the mold surface reproducibility can be obtained. If possible, a rapid decrease in the mold surface temperature is necessary to shorten the molding cycle time. Furthermore, the integral value (ΔΗ) and the integral value (Ah) need to be higher than the value required to obtain the mold surface reproducibility, but it is not necessary to make it much larger than that, A value close to is preferred.
これを達成するために本発明では、 成形される合成樹脂が型表面に接触して 5 秒後に、 型表面温度が合成樹脂の钦化温度以下に、 好ま しく は (合成樹脂の軟化 温度一 1 0 °C) 以下に、 更に好ま しく は (合成樹脂の钦化温度一 2 0 °C) 以下に 低下する成形条件で成形される。 これが成形サイ クルタイムを長く しない制限事 項である。 更に好ま しく は主金型温度を 1 5 °C以上で 1 0 0て以下、 且つ合成樹 脂の軟化温度から 2 0°Cを減じた温度以下に設定し、 好ま しく は 2 0°C以上で 9 0°C以下、 且つ合成樹脂の軟化温度から 2 0 °Cを減じた温度以下に設定し、 特に 好ま しく は 2 5て以上で 8 0 °C以下、 且つ合成樹脂の軟化温度から 3 0°Cを減じ た温度以下に設定し、 断熱層厚みを 0. 1 mmを越え 0. 5 mm未满と し、 その 上で積分値 (ΔΗ) と積分値 (Ah) の範囲を規定している。  In order to achieve this, in the present invention, after 5 seconds from the contact of the synthetic resin to be molded with the mold surface, the mold surface temperature is preferably equal to or lower than the softening temperature of the synthetic resin. The molding is carried out under the molding conditions of not more than (0 ° C) or more preferably (the curing temperature of the synthetic resin is not more than 20 ° C). This is a limitation that does not increase the molding cycle time. More preferably, the temperature of the main mold is set at 100 ° C or lower at 15 ° C or higher, and at a temperature not higher than the softening temperature of the synthetic resin minus 20 ° C, preferably at 20 ° C or higher. At 90 ° C or lower, and at a temperature not higher than the softening temperature of the synthetic resin minus 20 ° C, and particularly preferably at a temperature of 25 ° C or higher and 80 ° C or lower, and 3 ° C from the softening temperature of the synthetic resin. Set the temperature below 0 ° C or less, set the thickness of the heat insulation layer to more than 0.1 mm and less than 0.5 mm, and then specify the range of the integral value (ΔΗ) and the integral value (Ah). ing.
射出成形時やブロー成形時の型表面温度の変化は、 合成樹脂、 主金型、 断熱層 の温度、 比熱、 熱伝導率、 密度等から計算できる。 例えば、 ABAQUS (米国 の H a r b b i t . K a r l s o n & S o r e n s e n , I n cのソフ ト ウェア) や、 AD I NA及び AD I NAT (マサチューセッツエ科大学で開発さ れたソフ トウエア) 等を用い、 非線形有限要素法による非定常熱伝導解析により 計算できる。 本発明の積分値 (ΔΗ) 及び積分値 (Ah) は型表面温度の変化の 計算値から算出した値をもって示す。 この計算値は射出成形中の合成樹脂の剪断 発熱と各層間の境膜伝熱係数は無視している。 本発明の図等で示す型表面温度変 化は上記の条件で A B A Q U Sを用いて計算した値である。 Changes in mold surface temperature during injection molding or blow molding can be calculated from the temperature, specific heat, thermal conductivity, density, etc. of the synthetic resin, main mold, and heat insulating layer. For example, ABAQUS (U.S.A., software of Harbbit. Karlson & Sorensen, Inc.), ADINA and ADI NAT (software developed at Massachusetts Institute of Technology), etc. It can be calculated by transient heat conduction analysis using the element method. The integrated value (ΔΗ) and the integrated value (Ah) of the present invention are indicated by values calculated from the calculated value of the change in the mold surface temperature. This calculation is based on the shearing of the plastic during injection molding. The heat generation and the heat transfer coefficient of the film between the layers are ignored. The mold surface temperature change shown in the drawings and the like of the present invention is a value calculated using ABAQUS under the above conditions.
本発明の金属層は種々の方法で被覆できるが、 メ ツキにより良好に被覆される。 ここに述べるメ ツキは化学メ ツキ (無電解メ ツキ) と電解メ ツキである。 本発明 では次の工程のいく つかを経てメ ツキされることが好ま しい。 すなわち、 まず断 熱層表面の微細凹凸化、 次いで化学メ ツキが行われる。  Although the metal layer of the present invention can be coated by various methods, it is well coated by plating. The plating described here is a chemical plating (electroless plating) and an electrolytic plating. In the present invention, it is preferable that the plating be performed through some of the following steps. That is, first, the surface of the heat insulating layer is made fine and uneven, and then the chemical plating is performed.
前処理—化学腐食 (強酸化剤の強酸溶液等による化学エッチング : 表面を適度 な微細凹凸状にする) —中和" *感受性化処理 (合成樹脂表面に還元力のある金属 塩を吸着させて活性化を効果あらしめる) —活性化処理 (触媒作用を有するパラ ジゥム等の貴金属を樹脂表面に付与) →化学メ ツキ (化学ニッケルメ ツキ、 化学 銅メ ツキ等) —電解メ ツキ (電解ニッケルメ ツキ、 電解銅メ ツキ、 電解クロムメ ッキ等) 。  Pretreatment—Chemical corrosion (Chemical etching with strong acid solution of strong oxidizing agent: Makes the surface moderately fine irregularities) —Neutralization ”* Sensitivity treatment (Adsorption of metal salts with reducing power on synthetic resin surface) Activation effect is shown.)-Activation treatment (noble metal such as palladium having catalytic action is applied to the resin surface) → Chemical plating (chemical nickel plating, chemical copper plating, etc.)-Electrolytic plating (electrolytic nickel plating) , Electrolytic copper plating, electrolytic chrome plating, etc.).
断熱層とメ ッキ層の密着力を増大させるため、 断熱層の少なく とも最表面を形 成する断熱材に炭酸カルシウム、 酸化珪素、 酸化チタ ン、 炭酸バリ ウム、 硫酸バ リ ウム、 アルミ ナ等の無機物、 各種重合体等の有機物の微粉末等の微粉末状エツ チング助剤を配合し、 化学腐食で該粉末を溶出して表面を適度な微細凹凸状にし た後にメ ツキを行う ことは極めて良好に使用できる。 微粉末状ェッチング助剤は 断熱材に 1〜 3 0重量%程度配合することが好ましい。  Calcium carbonate, silicon oxide, titanium oxide, barium carbonate, barium sulfate, and alumina are used as heat insulating materials that form at least the outermost surface of the heat insulating layer in order to increase the adhesion between the heat insulating layer and the metal layer. A fine powdery etching aid such as a fine powder of an inorganic substance such as an inorganic substance or an organic substance such as various polymers, etc., is blended, and the powder is eluted by chemical corrosion to form a surface having an appropriate fine unevenness, and then subjected to plating. Can be used very well. It is preferable that about 1 to 30% by weight of the fine powder etching aid is mixed with the heat insulating material.
次に、 本発明に良好に使用できる化学二ッケルメ ツキについて詳しく述べる。 化学メ ツキは、 金属イオンを還元剤により金属に還元析出させるものである。 一般的に化学メ ツキは次の条件を満たすことが必要である。 ( 1 ) メ ツキ液を調 整したままの状態で還元剤が自己分解をせずに安定であること。 ( 2 ) 還元反応 後の生成物が沈澱を生じないこと。 ( 3 ) 析出速度が p H、 液温度により制御で きること等があげられる。 化学ニッケルメ ツキでは還元剤に次亜燐酸ソーダ、 水 素化ホウ酸等が使用され、 特に次亜燐酸ソーダが良好に使用される。 上記の条件 を満たすためには、 化学メ ツキ液中に主成分 (金属塩、 還元剤) 以外に補助成分 ( P H調整剤、 緩衝剤、 促進剤、 安定剤等) が加えられる。 還元剤と して次亜燐 酸ソーダが各種補助成分と共に使用されると、 結果的に形成されるニッケルメ ッ キには燐が含有される。 本発明において断熱層に密着する好ま しい化学二ッケルメ ッキ層は燐を 1重量 %以上、 5重量%未満含有し、 更に好ま しく は 2重量%以上、 5重量%未满含有 する。 この化学ニッケルメ ツキ層の厚みは一般にプライマーと称される程度の薄 層で十分であり、 好ま しく は 0 . 1〜 5 m、 更に好ま しく は 0 . 2 ~ 2 tf m程 度である。 本発明に用いられる断熱層被覆金型では、 化学ニッケルメ ツキ層を断 熱層にしっかりと密着させることが必要であり、 そのために化学ニッケルメ ツキ の初期はメ ッキ液の温度を下げ、 p Hを調節することによりメ ッキ速度を遅く し、 小粒径のメ ツキ粒子を生成させ、 断熱層表面の微細凹凸の内部にまでメ ツキが入 り込ませることが極めて好ま しい。 一定厚みのメ ツキ層が形成された後は、 メ ッ キ速度を上げて効率良く メ ツキを行う。 この結果、 断熱層に接するニッケルメ ッ キ層は燐を 1重量%以上、 5重量%未満を含有する化学二ッケルメ ッキ層になり、 その上のメ ッキ層は電解二ッケルメ ッキ層、 電解クロムメ ッキ層、 燐を 5〜 1 4 重量%含有する化学ニッケルメ ツキ層、 電解銅メ ツキ層等になる。 断熱層表面に 直接燐含量が多い化学ニッケルメ ツキ、 特に燐を 8重悬%以上含有する化学ニッ ケルメ ツキを行うと、一般にニッケルの生成粒子が大き くなり、 メ ツキ層の密着 力が低く なる。 Next, the chemical nickel plating that can be favorably used in the present invention will be described in detail. Chemical plating involves reducing and depositing metal ions on a metal with a reducing agent. Generally, chemical plating must satisfy the following conditions. (1) The reducing agent must be stable without self-decomposition while the plating solution is adjusted. (2) The product after the reduction reaction does not precipitate. (3) The deposition rate can be controlled by pH and liquid temperature. In chemical nickel plating, sodium hypophosphite, hydrogenated boric acid, and the like are used as a reducing agent, and sodium hypophosphite is particularly preferably used. In order to satisfy the above conditions, auxiliary components (PH adjusters, buffers, accelerators, stabilizers, etc.) are added to the chemical plating solution in addition to the main components (metal salts, reducing agents). When sodium hypophosphite is used as a reducing agent with various auxiliary components, the resulting nickel plating contains phosphorus. In the present invention, the preferred chemical nickel layer which adheres to the heat insulating layer contains 1% by weight or more and less than 5% by weight of phosphorus, more preferably 2% by weight or more and 5% by weight or less. The thickness of the chemical Nikkerume luck layer is generally sufficient with a thin layer of about called primers, are favored properly 0.. 1 to 5 m, further preferred properly is 0. 2 ~ 2 tf m extent. In the heat-insulating-layer-coated mold used in the present invention, it is necessary that the chemical nickel plating layer be firmly adhered to the heat insulating layer. Therefore, in the initial stage of the chemical nickel plating, the temperature of the plating solution is lowered and the pH is lowered. It is extremely preferable to reduce the plating speed by adjusting the thickness, to generate plating particles having a small particle size, and to cause the plating to enter into the fine irregularities on the surface of the heat insulating layer. After the plating layer with a certain thickness is formed, the plating speed is increased to perform plating efficiently. As a result, the nickel plating layer in contact with the heat insulating layer becomes a chemical nickel plating layer containing 1% by weight or more and less than 5% by weight of phosphorus, and the nickel plating layer on the nickel plating layer is an electrolytic nickel plating layer. It becomes an electrolytic chrome plating layer, a chemical nickel plating layer containing 5 to 14% by weight of phosphorus, and an electrolytic copper plating layer. Chemical nickel plating with a high phosphorus content directly on the surface of the heat insulating layer, especially chemical nickel plating containing more than 8% by weight of phosphorus, generally increases the size of the nickel-produced particles and reduces the adhesion of the plating layer. .
本発明において断熱層と して最も適しているポリ ィ ミ ド層表面への金属メ ッキ について詳しく説明する。 ポリイ ミ ド表面への金属メ ツキはポリィ ミ ド表面処理 を行う ことからはじめる。 この方法と して米国特許第 4 7 7 5 4 4 9号や同第 4 8 4 2 9 4 6号明細書等に示されている様に、 ポリイ ミ ド表面をアル力 リ等で処 理することが一般的である。 即ち、 ポリ イ ミ ドはアルカ リに弱く、 表面が活性化 される。 しかし、 断熱層表面の金属層は合成樹脂成形中に厳しい冷熱サイクルに さ らされるため、 その厳しい冷熱サイクルに耐えるだけの十分な密着強度にする 必要がある。 我々は種々検討の結果、 ポリイ ミ ド表面層に炭酸カルシウム、 酸化 チタン、 アルミナ等の微粉末状エッチング助剤を配合したポリ ィ ミ ドを披覆し、 その表面を強酸化剤の強酸溶液でェッチングして表層部に存在する炭酸カルシゥ ム、 酸化チタン、 アルミ ナ等の微粉末とポリィ ミ ドの一部を溶出させてポリィ ミ ド層表面を適度な微細凹凸伏にし、 次いで、 中和、 感受性化処理、 活性化処理を 経て、 化学二ッケルメ ツキを行う方法が本発明に良好に使用できることを発見し た。 微粉末は架橋したゴムの微粉末、 難溶性重合体の微粉末等の有機物も使用で きる。 A detailed description will be given of the metal plating on the polyimide layer surface most suitable as the heat insulating layer in the present invention. Metal plating on the polyimide surface begins with a polyimide surface treatment. As described in U.S. Pat. Nos. 4,775,449 and 4,842,946, the polyimide surface is treated with an alloy or the like. It is common to do. In other words, polyimide is weak to alkali and its surface is activated. However, the metal layer on the surface of the heat insulating layer is subjected to severe cooling and heating cycles during molding of the synthetic resin, so it is necessary to have sufficient adhesion strength to withstand the severe cooling and heating cycles. As a result of various studies, we demonstrated polyimide containing a fine powdered etching aid such as calcium carbonate, titanium oxide, or alumina on the polyimide surface layer, and etched the surface with a strong acid solution of a strong oxidizing agent. Then, fine powder of calcium carbonate, titanium oxide, alumina, etc. present on the surface layer and a part of polyimide are eluted to make the polyimide layer surface with moderate fine irregularities, then neutralization and sensitivity It has been discovered that a method of performing chemical nickel plating through the activating treatment and the activation treatment can be favorably used in the present invention. Was. As the fine powder, an organic substance such as a fine powder of a crosslinked rubber or a fine powder of a poorly soluble polymer can be used.
本発明に良好に使用できるメ ツキの具体例を更に詳しく次に示す。 平均粒径が 0 . 0 0 1〜 5 m程度の微細な炭酸カルシウム、 酸化チタン、 アルミナ等の微 粉末を、 ポリ イ ミ ドに対して 1〜 3 0重量%、 好ま しく は 5〜 2 5重量%配合し、 十分にポリィ ミ ドと混練して配合したポリィ ミ ドを最表面層とする。 この場合、 ポリ イ ミ ド層全体が配合ポリ ィ ミ ドであっても良いし、 最表面層のみが配合ポリ ィ ミ ドであってもよい。 これらの微粉末は凝集しやすく、 ポリイ ミ ド前駆体溶液 と良く混練して十分に分散させ、 それを金型表面に塗布し、 加熱してポリイ ミ ド 化する。 次いで、 該ポリ イ ミ ド表面をクロム酸、 硫酸、 燐酸等が含まれる強酸溶 液でェッチング処理し、 表層にある微粉末とポリィ ミ ドの一部を溶出してポリィ ミ ド表面に適度な微細な凹凸を形成し、 次いで中和、 感受性化処理、 活性化処理 を経て、 次亜燐酸ソーダ等を還元剤と して化学ニッケルメ ツキを行う。 化学ニッ ケルメ ツキは低温度、 弱アルカ リ性の状態で低速度で行い、 生成するニッケル粒 子を小さ く し、 ポリ イ ミ ド層表面の微細な凹凸の内部にまで均一にニッケルが入 り込んだ二ッケルメ ツキとすることにより、 密着力を著しく向上させる方法が本 発明に極めて好ま しい方法である。  Specific examples of the plating that can be favorably used in the present invention are shown below in more detail. Fine powder of fine calcium carbonate, titanium oxide, alumina, etc., having an average particle size of about 0.01 to 5 m, 1 to 30% by weight based on polyimide, preferably 5 to 25 % By weight, and fully kneaded with the polyimide and blended as the outermost surface layer. In this case, the entire polyimide layer may be a compound polyimide, or only the outermost surface layer may be a compound polyimide. These fine powders are easily agglomerated, and are sufficiently kneaded with a polyimide precursor solution to be sufficiently dispersed, applied to a mold surface, and heated to form a polyimide. Next, the polyimide surface is subjected to an etching treatment with a strong acid solution containing chromic acid, sulfuric acid, phosphoric acid, etc. to elute a part of the fine powder and polyimide on the surface layer, and to form an appropriate surface on the polyimide surface. Fine irregularities are formed, and then, after neutralization, sensitization, and activation, chemical nickel plating is performed using sodium hypophosphite or the like as a reducing agent. Chemical nickel plating is performed at a low temperature and at a low speed in a weakly alkaline state to reduce the size of generated nickel particles and to allow nickel to enter even into the fine irregularities on the polyimide layer surface. A method of remarkably improving the adhesive force by incorporating the nickel metal plating is a very preferable method for the present invention.
一般に化学ニッケルメ ツキは酸性伏態で、 温度を上げて、 メ ツキ効率を良く し て行われている。 次亜燐酸ソーダを還元剤と して使用し、 弱アルカ リ状態で低温、 低速度で化学二ッケルメ ツキを行うと、 二ッケルメ ッキ中の燐含有量は 1重量% 以上 5重量%未満になる。 本発明の断熱層に接する化学二ッケルメ ッキ層の好ま しい組成は、 1重量%以上 5重量%未満の燐を含有することである。  In general, chemical nickel plating is in acidic condition, and the temperature is raised to improve plating efficiency. When sodium nickel hypophosphite is used as a reducing agent and chemical nickel plating is carried out at low temperature and low speed in a weak alkaline state, the phosphorus content in nickel nickel falls to 1% by weight or more and less than 5% by weight. Become. A preferred composition of the chemical nickel layer in contact with the heat insulating layer of the present invention contains 1% by weight or more and less than 5% by weight of phosphorus.
本発明に述べる化学ニッケルメ ツキを低温度、 低速度で行うとは、 一般に行わ れている化学ニッケルメ ツキより低温度、 低速度で行う ことを示すが、 好ま しく は 5 0 °C以下 5 °C以上、 更に好ま しく は 4 0 °C以下 1 0 °C以上の温度であり、 ま た好ま しく は時間当たり 1 0 m以下 0 . 1 m以上の速度である。  Performing the chemical nickel plating at a low temperature and at a low speed as described in the present invention means that the chemical nickel plating is performed at a lower temperature and at a lower speed than the commonly used chemical nickel plating, but preferably 50 ° C or less and 5 ° C or less. More preferably, the temperature is 40 ° C or less and 10 ° C or more, and the speed is preferably 10 m or less and 0.1 m or more per hour.
断熱層に強固に密着する薄層化学二ッケルメ ツキの上には各種のメ ッキ層をつ けることができる。 該薄層化学ニッケルメ ツキの上に更につけるメ ツキの好ま し い具体例を次に示す。 ( 1 ) 化学二ッケルメ ッキ (燐を 5〜 1 8重量%含有) Various types of metal layers can be placed on the thin chemical nickel plating that firmly adheres to the heat insulation layer. Preferred specific examples of the plating further attached on the thin chemical nickel plating are shown below. (1) Chemical nickel plating (containing 5 to 18% by weight of phosphorus)
( 2 ) 電解クロムメ ツキ (硬質クロムメ ツキ等)  (2) Electrolytic chrome plating (hard chrome plating, etc.)
( 3 ) 電解二ッケルメ ツキ (光沢二ッケルメ ッキ、 半光沢二ッケルメ ッキ、 無光 沢二ッケルメ ッキ等)  (3) Electrolytic nickel-plate (such as glossy nickel-plate, semi-gloss nickel-plate, non-light nickel-plate)
( 4 ) 化学銅メ ッキ  (4) Chemical copper plating
( 5 ) 電解銅メ ッキ  (5) Electrolytic copper plating
これ等のメ ツキから選択された少なく と も 1層あるいは 2層以上が被覆されるこ とが好ま しい。 例えば薄層化学二ッケルメ ッキの上に電解銅メ ッキ及び Z又は化 学銅メ ツキを行い、 更にその上にニッケルメ ツキを行うと、 メ ッキ密着力が向上 し良好に使用できる。 It is preferable that at least one layer or two or more layers selected from these methods are coated. For example, if electrolytic copper plating and Z plating or chemical copper plating are performed on a thin-layer chemical nickel plating, and nickel plating is further performed thereon, the adhesion of the plating is improved and it can be used favorably.
メ ッキ層の最表面に硬く 、 傷つき難いニッケルメ ッキ層ゃ硬質クロムメ ツキ層 等が 0 . 5 m以上あることが好ま しく、 より好ま しく は 1〜 5 0 m、 特に好 ま しく は 2〜 3 0 mあることが好ま しい。  It is preferable that the outermost surface of the metal layer has a hard nickel layer that is hard to be scratched, such as a nickel metal layer or a hard chrome metal layer, of 0.5 m or more, more preferably 1 to 50 m, and particularly preferably 2 m or more. Preferably it is ~ 30 m.
成形する合成樹脂にガラス繊維、 ゥイスカー、 炭酸カルシウム等の無機充壙材 が 5 ~ 6 5重量%配合されている場合、 更に好ま しく は 2 0重量%を越え 6 5重 量%の多量が配合されている場合、 特に好ま しく は 3 0〜 5 0重量%の無機充塡 材が配合されている場合には、 型表面の最表面の金属層の硬さが、 合成樹脂中の 無機充塡材の硬さと同等程度、 あるいはそれ以上であることが好ま しい。 この硬 さとは相対的なものであり、 2つを擦り合わせて金属層に容易に傷がつかないこ とである。 ガラス繊維と硬質クロムメ ツキを比較する場合、 硬質クロムメ ツキを ガラス繊維でこすりつければ比較できる。 物体の硬度は材質の種類が異なると直 接的には数値で比較しにく いが、 本発明ではビッカース硬度 (H V ) で比較する ことにする。 ビッカース硬度 (H V ) とは 1 3 6度の頂角を有するダイヤモン ド 角錐を圧子と して用い、 荷重を生じた厚痕凹みの表面積で割った値で硬度を表現 する方法であり、 単位は k g / m m 2で示す。 次表に代表的なメ ツキとガラスの ビッカース硬度 (H V ) を示す。 表 3 When the synthetic resin to be molded contains 5 to 65% by weight of inorganic pitting material such as glass fiber, whiskers and calcium carbonate, more preferably more than 20% by weight and 65% by weight or more In particular, when 30 to 50% by weight of an inorganic filler is blended, the hardness of the metal layer on the outermost surface of the mold surface is determined by the inorganic filler in the synthetic resin. It is preferable that the hardness is equal to or higher than the hardness of the material. This hardness is relative and means that the metal layer is not easily scratched when the two are rubbed together. When comparing glass fiber and hard chrome plating, it can be compared by rubbing the hard chrome plating with glass fiber. It is difficult to directly compare the hardness of an object with a numerical value when the type of material is different, but in the present invention, the hardness is compared with Vickers hardness (HV). Vickers hardness (HV) is a method of using a diamond pyramid with an apex angle of 13 6 degrees as an indenter and expressing the hardness by dividing it by the surface area of the indented dent that caused the load. It is shown in kg / mm 2. The following table shows the typical plating and Vickers hardness (HV) of glass. Table 3
Figure imgf000037_0001
Figure imgf000037_0001
化学二ッケルメ ッキ (無電解二ッケルメ ッキ) の硬度は、 含有される燐含量に より異なるが、 メ ツキ後の熱処理によっても異なる。 ニッケルメ ツキの熱処理に よる硬度の変化は I S O D I S 4 5 2 7等に記載されている。 The hardness of the chemical nickel plating (electroless nickel plating) depends on the phosphorus content, but also depends on the heat treatment after plating. The change in hardness due to the heat treatment of nickel plating is described in ISODIS4527.
合成樹脂に配合されるガラス繊維と して多く使用されているのは Eガラスであ り、 Eガラスは電気製品用に開発されたガラスで無アルカ リガラスに近く、 その 組成は、 S i 02 5 2〜 5 6 w t %、 A l 2 03 1 2〜 1 6 w t %、 C a O 1 6〜2 5 w t %、 Mg O 0~ 6 w t %、 B2 O3 8〜 1 3 w t %、 N a 2 0及びノ又は K 2 0 0〜3 w t %である。 このガラスを多量含有する合成樹脂 を成形する場合には、 金型の最表面の金属層の硬さはこのガラスの硬さと同等あ るいはそれ以上であることが好ま しい。 本発明に述べる金属層の硬さが合成樹脂中の無機充塡材の硬さと同等、 あるい はそれ以上であるとは、 金属層のビッカース硬度が合成樹脂中の無機充旗材の ( ビッカース硬度一 1 0 0 ) 値より大きいことであり、 好ま しく は金属層のピツカ ース硬度が無機充塡材のビッカース硬度より大きいことであり、 更に好ましく は 金属層のビッカース硬度が無機充填材の (ビッカース硬度 + 5 0) 値より大きい ことである。 E-glass is often used as glass fiber in synthetic resins. E-glass is a glass developed for electrical products and is close to alkali-free glass. Its composition is S i 0 2 5 2 to 56 wt%, Al 2 0 3 1 2 to 16 wt%, CaO 16 to 25 wt%, MgO 0 to 6 wt%, B 2 O 3 8 to 13 wt% , N a 20 and K or K 200 to 3 wt%. When molding a synthetic resin containing a large amount of this glass, the hardness of the metal layer on the outermost surface of the mold is preferably equal to or greater than the hardness of this glass. When the hardness of the metal layer described in the present invention is equal to or higher than the hardness of the inorganic filler in the synthetic resin, the Vickers hardness of the metal layer is determined by the Vickers hardness of the inorganic filler in the synthetic resin. Hardness is greater than 100), preferably the picker hardness of the metal layer is greater than the Vickers hardness of the inorganic filler, and more preferably the Vickers hardness of the metal layer is less than that of the inorganic filler. (Vickers hardness + 50).
本発明に良好に使用できるこれらの金属メ ツキは断熱層と微細凹凸界面で密着 している。 従って、 メ ツキ層と断熱層の界面はメ ツキ層と断熱層が相互に入り込 んだ形状をしている。 この場合の本発明に述べる金属層の厚みは金属が 5 0容量 %以上を占める部分の厚みを用い、 断熱層厚みは断熱材が 5 0容量%を越える部 分の厚みを用いる。  These metal features that can be favorably used in the present invention are in intimate contact with the heat insulating layer at the interface of fine irregularities. Therefore, the interface between the plating layer and the heat insulating layer has a shape in which the plating layer and the heat insulating layer enter each other. In this case, the thickness of the metal layer described in the present invention is the thickness of the portion where the metal occupies 50% by volume or more, and the thickness of the heat insulating layer is the thickness of the portion where the heat insulating material exceeds 50% by volume.
本発明の金属層表面は鏡面状、 艷消し状、 しぼ伏、 レンズ状等にできる。  The surface of the metal layer of the present invention can be mirror-like, matte-like, rugged, lens-like, or the like.
メ ツキで形成した金属層表面をしぼ状にする方法は、 種々の方法で行うことが できる。 エッチング法は良好に使用できる。 エッチング法は最も良好に使用でき る。 金型の最表面層が電解二ッケルメ ツキ、 電解銅メ ッキ、 化学二ッケルメ ッキ 等の酸溶液等でェッチングできる金属であれば一般の金属金型のしぼ化に使用さ れているエッチング法と同様の方法でしぼ化ができる。 すなわち、 金属層表面を 紫外線硬化樹脂を用いてしぼ状にマスキングし、 次いで酸ェッチングでしぼ化す る方法は良好に使用できる。 金属層が二ッケルメ ツキの場合、 燐含量が 8重量% 以上の化学ニッケルメ ツキは酸でエッチングされ難く、 燐含量がそれより少ない 化学ニッケルメ ツキはエッチングされ易い。  Various methods can be used to make the surface of the metal layer formed by plating into a grain shape. The etching method can be used favorably. The etching method is best used. If the outermost layer of the mold is a metal that can be etched with an acid solution such as electrolytic nickel plating, electrolytic copper plating, chemical plating, etc., etching used for graining of general metal molds Graining can be performed in the same manner as the method. That is, a method in which the surface of the metal layer is masked in a grain shape using an ultraviolet curable resin and then grained by acid etching can be favorably used. When the metal layer is nickel plating, chemical nickel plating having a phosphorus content of 8% by weight or more is difficult to be etched by an acid, and chemical nickel plating having a lower phosphorus content is easily etched.
化学二ッケルメ ッキの燐含有量と耐酸性については、 P l a t i n g a n d S u r f a c e F i n i s h i n g, 7 9 , N o. 3, P. 2 9〜3 3 ( 1 9 9 2 ) 等に示されており、 燐含有量が多い程、 耐酸性は良く なる。 上記文献の 表 1には、 耐酸性は燐含有量が 1 0~ 1 2重量%で G 0 o d、 7〜9重量%で a i r . 1〜 4重量%で? o o rとなっている。 二ッゲルと燐の合金の状態図は、 燐含量が 0〜4. 5重量%が S相、 1 1〜 1 5重量%がァ相であり、 4. 5〜 1 1重量%は γ相と 3相の混合物である。 酸に対する耐食性は 7相が優れており、 一般には高燐含量と言われる 8重量%以上の時に耐食性は大きい。 電解ニッケルメ ツキでも組成によりエッチング性が異なり、 燐含有量が多い二 ッケルメ ツキは酸でエツチングされ難い。 エッチングによるしぼ深さは、 エッチ ング時間の調節、 ェッチングされやすい金属層とェッチングされ難い金属層の組 み合わせ等により調節できる。 更にしぼ状にした後の金属層の最表面には薄層の 耐食性に優れた金属層、 及び 又は硬度の大きい金属層、 すなわち燐含量の多い 化学二ッケルメ ッキ層ゃ電解硬質クロムメ ッキ層等をつけることは良好に使用で きる。 The phosphorus content and acid resistance of Chemical Nickel Macchi are shown in Plating and Surface Face Finishing, 79, No. 3, P. 29-33 (1992), etc. The higher the phosphorus content, the better the acid resistance. In Table 1 of the above-mentioned literature, the acid resistance is as follows: G 0 od at phosphorus content of 10 to 12% by weight, air at 1 to 4% by weight at 7 to 9% by weight. oor. The phase diagram of the Nigger-Phosphorus alloy shows that the phosphorus content is 0-4.5% by weight in S phase, 11-15% by weight is in A phase, and 4.5-11% by weight is in γ phase. It is a three-phase mixture. The seven phases are excellent in corrosion resistance to acid, and the corrosion resistance is large when the phosphorus content is 8% by weight or more, which is generally called high phosphorus content. Even in electrolytic nickel plating, the etching properties vary depending on the composition, and nickel plating having a large phosphorus content is difficult to be etched with an acid. The depth of the grain by etching can be adjusted by adjusting the etching time, a combination of a metal layer which is easily etched and a metal layer which is hardly etched. Further, on the outermost surface of the metal layer after the grain formation, a thin metal layer having excellent corrosion resistance and / or a metal layer having a high hardness, that is, a chemical nickel plating layer having a high phosphorous content ゃ an electrolytic hard chrome plating. A layer can be used well.
型表面をフレネルレンズやレンチキユラーレンズ状にする方法は種々考えられ るが、 次の方法等は良好に使用できる。  There are various methods for forming the mold surface into a Fresnel lens or lenticular lens shape, but the following methods can be used favorably.
( a ) メ ツキで形成された金属層を工作機械でレンズ状に切削及び Z又は研磨す る方法、 ( b ) 断熱層を工作機械でレンズ状に切削し、 そのレンズ状表面にメ ッ キを行い、 次いでその表面を再び工作機械で切削及び/又は研磨する方法、 ( c ) あらかじめ形成されたレンズのモデルを用い、 その表面を電鋅加工で金属層を 被覆し、 その金属層を剝離してレンズ表面の金属薄層をつく り、 それを断熱層に 貼り付ける方法、 等は良好に使用できる。 ( a ) と ( c ) の方法でつく られた金 型は断熱層厚みがほぼ一定で、 金属層の厚みがレンズ状に変動している。 一方、 ( b ) の方法でつく られた金型は、 断熱層厚みがレンズ伏に変動し、 金属層の厚 みはほぼ一定になる。 本発明では両方の金型が含まれる。 断熱層厚みが変動する 場合には、 薄肉部分の断熱層厚みを断熱層厚みとする。  (a) A method in which a metal layer formed by plating is cut into a lens shape by a machine tool and Z or polished. (b) A heat insulating layer is cut into a lens shape by a machine tool, and the lens surface is plated. Then, the surface is cut and / or polished again with a machine tool. (C) Using a preformed lens model, the surface is coated with a metal layer by electroforming, and the metal layer is separated. Then, a thin metal layer on the lens surface can be created and then attached to the heat-insulating layer. In the molds made by the methods (a) and (c), the thickness of the heat insulating layer is almost constant, and the thickness of the metal layer fluctuates like a lens. On the other hand, in the mold made by the method (b), the thickness of the heat insulating layer fluctuates like a lens, and the thickness of the metal layer becomes almost constant. The present invention includes both molds. If the thickness of the heat insulating layer fluctuates, the thickness of the heat insulating layer in the thin portion is used as the heat insulating layer thickness.
本発明に述べる断熱層被覆金型で成形されるレンズは、 金型キヤ ビティの鋭角 部が十分に再現され、 良好なレンズが得られる。 すなわち、 従来の金型で金型キ ャ ビティの鋭角部を有するレンズを成形すると、 金型キヤ ビティの鋭角部に合成 樹脂は十分に入り込めず、 角部を十分に再現した良好なレンズを成形するには金 型温度を極めて高く設定して成形する必要があつた。 金型温度を高くすることは 成形サイ クルタイムが長くなり、 生産性を低下させる欠点がある。 本発明では成 形サイ クルタイムの増大を微小にとどめ、 角部を良好に再現した良好なレンズが 得られる。  In the lens formed by the heat-insulating layer-coated mold described in the present invention, the acute angle portion of the mold cavity is sufficiently reproduced, and a good lens is obtained. In other words, when a lens having an acute angle portion of the mold cavity is molded by a conventional mold, the synthetic resin cannot sufficiently enter the acute angle portion of the mold cavity, and a good lens that sufficiently reproduces the angle portion is formed. In order to mold, it was necessary to set the mold temperature extremely high. Increasing the mold temperature has the disadvantage of increasing the molding cycle time and reducing productivity. According to the present invention, an increase in the molding cycle time is kept very small, and a good lens having a good reproduction of the corner can be obtained.
微細な凹凸状表面を有する高度な拡散率をもつ拡散性成形品を得る場合におい ても、 同様な問題があり、 型表面の微細凹凸が十分に再現された成形品は従来の 金型では成形困難であつた。 本発明金型では型表面の凹凸が十分に再現された高 度な拡散性成形品が得られ、 特に透明な合成樹脂を射出成形して、 高透過、 高拡 散板等を成形するには極めて好ま しい成形法である。 近年、 液晶表示装置のバッ クライ トには性能の優れた高透過、 高拡散板が要求されている。 すなわち、 全光 線透過率が大き く、 平行光線透過率が小さい高透過、 高拡散板が要求されている。 従来これらの高透過、 高拡散板にはメ タク リル樹脂等の透明樹脂に炭酸カルシゥ ム、 硫酸バリ ウム等の該透明合成樹脂と屈折率が異なる微粉末を分散させて、 入 射光線を分散させる板が使用されてきた。 しかしながらこれら微粉末が入射光線 を吸収して十分な高透過、 高拡散板を得ることは困難であった。 本発明では、 型 表面を該型表面に平行な面が極めて少ない、 すなわち微細凹凸の凹と凸がとがつ ている微細凹凸表面にした本発明の金型を使用し、 本発明に示す成形法で該型表 面の微細凹凸表面を十分に再現させた成形品と し、 入射した光を十分に成形品表 面で拡散できる成形品が得られる。 この結果、 合成樹脂に配合する微粉末の配合 量を少なく、 あるいは配合しなくても平行光線透過率を十分に小さ く した高透過、 高拡散板が得られることがわかった。 この成形品は、 A S T M— D 1 0 0 3で測 定した全光線透過率 T ( % ) 、 拡散光線透過率 D ( % ) 、 平行光線透過率 P ( % ) の関係が、 A similar problem arises when obtaining a diffusive molded product with a high diffusivity with a fine uneven surface, and a molded product in which the fine irregularities on the mold surface are sufficiently reproduced Molding was difficult with a mold. With the mold of the present invention, it is possible to obtain a highly diffusive molded product in which the unevenness of the mold surface is sufficiently reproduced, and in particular, to mold a transparent synthetic resin by injection molding to form a highly transparent, highly diffused plate, etc. This is an extremely preferred molding method. In recent years, a backlight for a liquid crystal display device has been required to have a high transmission and a high diffusion plate with excellent performance. In other words, there is a demand for a high transmission and high diffusion plate having a high total light transmittance and a low parallel light transmittance. Conventionally, these high transmission and high diffusion plates disperse incident light by dispersing fine powder having a different refractive index from the transparent synthetic resin such as calcium carbonate and barium sulfate in a transparent resin such as methacrylic resin. Plates have been used. However, it was difficult for these fine powders to absorb incident light and obtain a sufficiently high transmission and high diffusion plate. In the present invention, the mold according to the present invention is used by using the mold of the present invention in which the surface of the mold has a very small number of surfaces parallel to the surface of the mold, that is, the surface of the fine irregularities in which the concaves and convexes of the fine irregularities are formed. As a molded product in which the fine uneven surface of the mold surface is sufficiently reproduced by the method, a molded product capable of sufficiently diffusing incident light on the molded product surface can be obtained. As a result, it was found that a high transmittance and high diffusion plate with a sufficiently small parallel light transmittance could be obtained without using a small amount of fine powder mixed with the synthetic resin or without compounding. The relationship between the total light transmittance T (%), the diffuse light transmittance D (%), and the parallel light transmittance P (%) measured by ASTM-D1003 is as follows.
T = D + P  T = D + P
P < 0 . 0 4 5 T  P <0 .0 4 5 T
である高透過、 高拡散板になり、 これは本発明の成形法の好ましい使用法の一つ である。 This is one of the preferred uses of the molding method of the present invention.
次に本発明の成形法の好ま しい使用法の別の例を示す。 ゥエルド部を有する家 電、 事務機器等の艷消し状外観ハウジング等の成形品、 すなわち上記の高度な拡 散率を有する高透過、 高拡散板とは全く逆の効果が要求される成形品の成形にも 本発明は良好に使用できる。 この様な成形品を成形する金型は、 本発明に述べる 断熱層被覆金型の金属層表面あるいは金属層表面の一部が、 多段サン ドプラス ト 処理及び 又は多段ェッチング処理により形成された艷消し状表面を有する金型 を用いることが良好に使用できる。 更に好ま しく は、 型表面金属層がその内側金 属層に比較して硬度が小さい、 及び/又はエッチング性が大きい、 少なく とも 2 層を有する金属層を有する金型を、 多段サン ドプラス ト処理及び 又は多段エツ チング処理により形成された飴消し状表面を有する金型である。 特に、 金属雇の 型表面金属層のエツチング速度がその内側金属層のェッチング速度の 2倍以上で あることが更に好ま しく、 上記金属層を多段ェッチング処理により 16消し伏表面 にした齙消し伏表面を有する金型が良好に使用できる。 この艷消し状表面を有す る金型を用いることが好ま しいことと、 その製法について次に更に詳しく説明す る。 Next, another example of a preferable use of the molding method of the present invention will be described.成形 Molded products with a matte appearance such as home appliances and office equipment with an eld part, that is, molded products that are required to have effects completely opposite to those of the high-permeability, high-diffusion plate with the high diffusion rate described above. The present invention can be favorably used for molding. A mold for molding such a molded article is a matte which is obtained by forming the metal layer surface or a part of the metal layer surface of the heat-insulating layer-coated mold described in the present invention by a multi-stage sand-plast treatment and / or a multi-stage etching treatment. The use of a mold having a convex surface can be favorably used. More preferably, the mold surface metal layer has a lower hardness and / or a higher etchability compared to its inner metal layer, and A mold having a metal layer having a layer is a mold having an candy-like surface formed by a multi-stage sand-plast treatment and / or a multi-stage etching treatment. In particular, it is more preferable that the etching speed of the metal layer of the metal surface of the metal mold is at least twice the etching speed of the inner metal layer, and the above-mentioned metal layer is made into a 16 erased surface by multi-stage etching. Can be favorably used. It is preferable to use a mold having this matte surface, and the manufacturing method thereof will be described in further detail below.
従来の一般の金型の型キヤ ビティ を構成する金型表面を艷消し伏にする方法は、 これまで一般にサン ドプラス ト法により型表面を粗面化する方法が主に用いられ ている。 断熱層被覆金型においても、 断熱層表面を粗面化して艷消し状にするに はまずサン ドブラス ト法が考えられる。 断熱層被覆金型の断熱層表面を、 あるい は断熱層表面の金属層をサン ドプラス 卜処理して齣消し状にしてゴム強化ポリス チレン等で射出成形を行ったところ、 金型表面は均一な菌色消し状であるにもかか わらず、 成形された合成樹脂射出成形品は均一な艷消し状にならず、 更に人の爪 等で極めて傷付き易く なることがわかった。 すなわち、 見苦しいウエル ドライ ン のへこみは無く なるが、 射出成形品は容易に傷が付き易く なり、 更に成形品の一 般部とゥエル ド部、 及び Z又は一般部と樹脂流動端部が不均一な艷消し面になり 易いという不良現象が顕著に現れる成形品になる。 本発明はこれ等の II消し状表 面の断熱層被覆金型を使用して成形した成形品に発現する固有の問題を解決する 方法を提供する。 すなわち、 ウエルドライ ンの目立ち低減、 均一な艷消し面、 耐 擦傷性の改良等を達成した、 優れた外観を有する合成樹脂成形品を成形サイクル タィムを大幅に長くすることなく経済的に成形する成形法を提供する。  Conventionally, the method of making the mold surface forming the mold cavity of a general mold a matte surface is a method of roughening the mold surface by a sand blast method. In the case of a mold coated with a heat-insulating layer, the sandblasting method can be considered first to roughen the surface of the heat-insulating layer so that the surface becomes dull. When the surface of the heat-insulating layer of the heat-insulating layer-coated mold or the metal layer on the surface of the heat-insulating layer was subjected to sand-blasting to form an exposed state, and injection-molded with rubber-reinforced polystyrene or the like, the mold surface was uniform It was found that the molded synthetic resin injection-molded product did not have a uniform matte shape, and was extremely easily scratched by human nails or the like, despite the fact that it had a fungus-colored form. In other words, unsightly well line dents are eliminated, but the injection molded product is easily damaged, and the general part and the weld part of the molded product and the Z or general part and the resin flowing end are uneven. It is a molded product that shows a remarkable defect phenomenon that it easily becomes a shiny matte surface. The present invention provides a method for solving the problems inherent in molded articles formed by using these molds coated with a heat-insulating layer having an erased surface II. That is, economical molding of a synthetic resin molded product with excellent appearance that achieves a reduction in well-lined appearance, uniform matte surface, improved scratch resistance, etc. without significantly lengthening the molding cycle time. A molding method is provided.
断熱層表面の金属層は、 金型キヤ ビティ側表面金属層がその内側金属層に比較 して硬度が小さい、 及び 又はエッチング性が大き くなるような 2層以上の金属 層を有することが特に好ま しい。 この金属層が 2層以上の場合には、 金型キヤ ビ ティ側の表面金属層の厚みは全金属層の厚みの 1 Z 2以上であることが好ま しい。 金属層を多段サン ドプラス ト処理により艷消し状にするには表面金属層のピツカ ース硬度値がその内側金属層の (ビッカース硬度一 5 0 ) 値より小さいことが好 ま しい。 すなわち、 サン ドブラス ト処理で凹凸化され易い金属が表面金属層を形 成することが好ま しい。 物体の硬度は材質の種類が異なると直接的には数値で比 铰しにく いが、 本発明ではビッカース硬度 (H V ) で比較することにする。 ビッ カース硬度 (H V ) とは 1 3 6度の頂角を有するダイヤモン ド角錐を圧子として 用い、 荷重を生じた厚痕凹みの表面積で割った値で硬度を表現する方法であり、 単位は k g / m m 2 で示す。 ここに述べるサン ドブラス ト処理とは、 一般の金型 表面を飽消し伏にするサン ドブラス ト処理であり、 各種粒径、 各種形伏のカーボ ラ ンダム、 ガラス等の無機物粒子を加圧気体と一緒に金型表面に吹き付けて、 型 表面を艷消し状にすることであり、 多段サン ドプラス 卜処理とは、 粒径、 形状、 材質等が異なる粒子を 2度以上サン ドプラス 卜処理することである。 角ばつた粒 子のサン ドプラス 卜と球形粒子のサン ドプラス ト等を組み合わせて行うことが好 ま しい。 本発明の多段サン ドプラス ト処理は、 2度以上、 好ま しく は 3〜 6度に わたって異なるサン ドブラス ト処理を施すことである。 この場合、 3〜 6度のサ ン ドブラス ト処理のうち全てが異なる処理である必要はない。 例えば、 A処理、 B処理の 2種の処理を繰り返し行っても良い。 一段のサン ドプラス ト処理では、 本発明が求める齄消し表面を得るのは困難である。 化学ニッケルメ ツキ (無電解 ニッケルメ ツキ) の硬度は、 含有される燐含量により異なるが、 メ ツキ後の熱処 理によっても異なる。 ニッケルメ ツキの熱処理による硬度の変化は I S O D I S 4 5 2 7等に記載されている。 In particular, the metal layer on the heat insulating layer surface preferably has two or more metal layers such that the surface metal layer on the mold cavity side has lower hardness and / or greater etching properties than the inner metal layer. I like it. When the number of the metal layers is two or more, the thickness of the surface metal layer on the mold cavity side is preferably 1 Z2 or more of the thickness of the entire metal layer. In order to make the metal layer in a matte state by multi-stage sand blasting, it is preferable that the picker hardness value of the surface metal layer is smaller than the (Vickers hardness-150) value of the inner metal layer. In other words, the metal that is easily made uneven by the sand blasting process forms the surface metal layer. It is preferred that The hardness of an object is hard to compare directly with a numerical value when the type of material is different, but in the present invention, the hardness is compared by Vickers hardness (HV). Vickers hardness (HV) is a method that uses a diamond pyramid with an apex angle of 13.6 degrees as an indenter and expresses the hardness by dividing it by the surface area of the thick indent that caused the load. The unit is kg. / shown in mm 2. The sand blasting treatment described here is a sand blasting treatment that makes the surface of a general mold saturate and yields, and the inorganic particles of various particle sizes and various shapes such as carbon random, glass, etc. are mixed with a pressurized gas. It is to spray the mold surface together to make the mold surface matte.Multi-stage sand blasting is the process of sand blasting particles having different particle sizes, shapes, materials, etc. twice or more. is there. It is preferable to use a combination of sandblasts of angular particles and those of spherical particles. The multi-stage sand blasting process of the present invention is to perform different sand blasting processes at least twice, preferably 3 to 6 times. In this case, it is not necessary that all of the third to sixth sandblasting processes be different. For example, two types of processing, A processing and B processing, may be repeatedly performed. It is difficult to obtain the erasing surface required by the present invention by one-step sand-plast treatment. The hardness of chemical nickel plating (electroless nickel plating) depends on the phosphorus content, but also depends on the heat treatment after plating. The change in hardness due to the heat treatment of nickel plating is described in ISODIS 457, etc.
本発明に述べる多段ェツチングとは 2段以上、 好ましく は 3〜 1 0段、 更に好 ま しく は 4 ~ 8段にわたって繰り返しエツチング処理を行うことである。 一段の エッチング処理では、 本発明が求める艷消し表面を得るのは困難である。 金属層 表面を多段エッチング処理で艷消し状にする場合には、 型表面金属層のエツチン グ速度がその内側金属層のエッチング速度の 2倍以上であることが好ま しく、 更 に好ま しく は 3倍以上、 特に好ま しく は 5倍以上である。  The multi-stage etching described in the present invention means that the etching process is repeatedly performed in two or more stages, preferably in three to ten stages, and more preferably in four to eight stages. With a single-step etching process, it is difficult to obtain the matte surface required by the present invention. When the surface of the metal layer is made to be in a matte state by multi-stage etching, it is preferable that the etching rate of the metal layer on the mold surface is at least twice the etching rate of the metal layer on the inner side, and more preferably 3 times. More than twice, particularly preferably more than 5 times.
金属層が電解二ッケルメ ツキ、 電解銅メ ッキ、 化学二ッケルメ ッキ等の一般の ェッチング液でェッチングできる金属であれば一般の金属金型のしぼ化に使用さ れているエッチング法と同様のエッチング法が使用できる。 すなわち、 金属層表 面を紫外線硬化樹脂を用いて部分的にマスキングし、 次いで塩化第 2鉄溶液や酸 溶液でエッチング処理される。 このマスキングとエッチングを繰り返し行い、 表 面金属層を艷消し状にする。 If the metal layer is a metal that can be etched with a general etching solution such as electrolytic nickel plating, electrolytic copper plating, chemical nickel plating, etc., the same etching method used for graining of general metal molds is used. Can be used. That is, the surface of the metal layer is partially masked with an ultraviolet curable resin, and then etched with a ferric chloride solution or an acid solution. By repeating this masking and etching, The face metal layer is made to be in an erased state.
金属層がニッケルメ ツキの場合、 燐含量が 8重量%以上の化学ニッケルメ ツキ はェッチングされ難く 、 燐含量がそれより少ない化学二ッケルメ ツキはェッチン グされ易い。 本発明の金属層の内側金属層には耐蝕性に優れた高燐含量二ッケル が好ま しく 、 表面金属層には燐含量が 8重量%未満で 3重量%以上のニッケルが 好ま しい。 電解二ッケルメ ッキでも組成によりエッチング性が異なり、 硫黄含有 量や燐含有量により異なる。 燐含量が大きいと耐蝕性が良く なる。  When the metal layer is nickel plating, chemical nickel plating having a phosphorus content of 8% by weight or more is difficult to etch, and chemical nickel plating having a lower phosphorus content is easily etched. The inner metal layer of the metal layer of the present invention is preferably a high phosphorus content nickel having excellent corrosion resistance, and the surface metal layer is preferably nickel having a phosphorus content of less than 8% by weight and 3% by weight or more. Even in electrolytic nickel plating, the etching properties vary depending on the composition, and vary depending on the sulfur content and the phosphorus content. Higher phosphorus content results in better corrosion resistance.
本発明に述べる多段サン ドプラス ト処理、 及び 又は多段ェッチング処理を行 う ことには、 サン ドプラス ト処理とエッチング処理を併用して合計 2回以上の処 理を行う こと も含まれることとする。 この場合でも合計 3回以上の処理を行うこ とが好ま しい。 多段エッチング処理と、 一段あるいは多段サン ドブラス ト処理を 組み合わせる方法は最も良好に使用できる。  Performing the multi-stage sand-plast process and / or multi-stage etching process described in the present invention includes performing a total of two or more processes using the sand-plast process and the etching process together. Even in this case, it is preferable to perform the processing three times or more in total. The method that combines multi-stage etching and single-stage or multi-stage sand blasting is the best method.
この金型で成形されるゴム強化ポリ スチレン等の合成樹脂射出成形品の酷消し 面は好ま しく は鉛筆引つかき試験の 2 B以下の硬度、 好ま しく は B以下の硬度で 目立つ傷がつかない耐擦傷性を有する良好な微細凹凸表面を有する。 更に好ま し く は人の爪に対する耐擦傷性を有する。 鉛筆引つかき試験は J I S K 5 4 0 1 に準じて測定する。 目立つ傷とは肉眼で容易にわかる傷である。  The severely erased surface of a synthetic resin injection molded product such as rubber-reinforced polystyrene molded by this mold is preferably a scratch of 2 B or less in a pencil scratch test, and is preferably marked with a hardness of B or less. Has good fine uneven surface with no scratch resistance. More preferably, it has abrasion resistance to human nails. The pencil pull test is measured according to JIS K5401. Conspicuous wounds are those that are easily visible to the naked eye.
断熱層被覆金型を使用して成形した場合、 型表面に未だ固化層が形成されてい ない状態で型壁面の合成樹脂に型表面を再現させるに必要な圧力を加えることが 可能になる。 断熱層被覆金型の型表面が微細凹凸状の艷消し状であると、 固化層 が形成されないうちに合成樹脂は型表面の微細凹凸の凹部の奥まで十分に流れ込 み、 型表面が十分に再現される。 型表面の微細凹凸の凹部が鋭角になっていても、 それが十分に再現されることになる。 その結果、 断熱層披覆金型で成形された艷 消し状成形品はその表面の微細凹凸の凸部が鋭角になり、 該成形品に人の爪等が 接触すると表面凹凸の鋭角部が損傷して傷となり易く なる。 本発明の多段エッチ ング及び 又は多段サン ドプラス 卜を行った断熱層彼覆金型では、 金型の最表面 金属層の微細凹凸の凹部を鈍角にし、 微細凹凸の凹部の奥まで合成樹脂が十分に 入り込んでも、 傷が付き難い凹凸表面の成形品を得るものである。 すなわち、 金 属層表面の微細凹凸の凹部の底が鈍角になつた金型をつく るには多段ェツチング 及びノ又は多段サン ドプラス トを用いて艷消し状にすることが好ま しく、 この齙 消し状表面の形成法を本発明の断熱層被覆金型と組み合わせることが極めて好ま しいことを発見し、 本発明に至った。 When molding is performed using a mold coated with a heat insulating layer, it is possible to apply the pressure necessary for reproducing the mold surface to the synthetic resin on the mold wall surface in a state where a solidified layer has not yet been formed on the mold surface. If the mold surface of the heat-insulating layer-coated mold is in a matte shape with fine irregularities, the synthetic resin will flow sufficiently into the concaves of the fine irregularities on the mold surface before the solidified layer is formed, and the mold surface will be sufficient. Will be reproduced. Even if the concave portion of the fine irregularities on the mold surface is sharp, it will be sufficiently reproduced. As a result, the matte-shaped molded article formed by the heat-insulating-layer mold has sharp projections of the fine irregularities on the surface thereof, and the sharp corners of the surface irregularities are damaged when human nails or the like come into contact with the molded article. It is easy to be scratched. In the heat-insulating layer-covered mold which has been subjected to the multi-stage etching and / or multi-stage sand-plasting of the present invention, the concave portions of the fine irregularities in the outermost metal layer of the mold are made obtuse, and the synthetic resin is sufficiently deep into the concave portions of the fine irregularities. It is intended to obtain a molded product with an uneven surface that is hardly scratched even if it enters the surface. In other words, multi-stage etching is necessary to make a mold with the bottom of the concave part of the fine unevenness on the metal layer surface formed at an obtuse angle. It is preferable to use a mat and a multi-stage sandplast to make the matted shape, and it has been found that it is extremely preferable to combine this method of forming the matted surface with the mold for coating the heat insulating layer of the present invention. Invented the invention.
本発明では、 射出成形法あるいはブロー成形法が良好に使用できる。  In the present invention, an injection molding method or a blow molding method can be favorably used.
射出成形では、 射出される合成樹脂温度、 主金型温度、 射出圧力、 合成樹脂の 型内流動速度等により型表面再現性が異なる。 本発明法は、 合成樹脂の型内平均 流動速度が 2 0〜 3 0 0 m m /秒である場合に効果が大き くなり良好に使用でき る。 更に好ま しく は 3 0〜 2 0 0 m m Z秒の低速射出で良好に成形される。 型内 流動速度が小さい程、 型表面再現性は一般に悪く なり、 本発明は型表面再現性が 一般に悪い低速射出成形時に効果が大き く、 特に良好に使用できる。 射出圧縮成 形やガスアシス ト射出成形等は一般に低速射出成形である。 型内平均速度は一般 に型キヤ ビティのゲー 卜から流動端部までの樹脂流動距離を合成樹脂の型内流動 時間で割ることにより算出でき、 本発明においてもこの値を用いる。 本発明は低 速射出の場合に効果は大きいが、 低速射出成形に限定するものではなく、 一般の 高圧射出成形においても使用できる。  In injection molding, the mold surface reproducibility differs depending on the temperature of the synthetic resin to be injected, the temperature of the main mold, the injection pressure, the flow velocity of the synthetic resin in the mold, and the like. The method of the present invention is more effective when the average flow velocity in the mold of the synthetic resin is 20 to 300 mm / sec, and can be used favorably. More preferably, it is formed well by low-speed injection of 30 to 200 mmZ seconds. The lower the flow velocity in the mold, the lower the mold surface reproducibility generally becomes worse. The present invention is more effective at low-speed injection molding in which mold surface reproducibility is generally poor, and can be used particularly well. Injection compression molding and gas assist injection molding are generally low-speed injection molding. The average speed in the mold can be generally calculated by dividing the resin flow distance from the gate of the mold cavity to the flow end by the flow time of the synthetic resin in the mold. This value is also used in the present invention. The present invention has a large effect in the case of low-speed injection, but is not limited to low-speed injection molding, and can be used in general high-pressure injection molding.
ブロー成形においても、 ブローされる合成樹脂温度、 主金型温度、 ブロー圧力、 ブローされるパリ ソンが型表面に接触してから、 ブロー圧力が成形品内面に十分 にかかるまでの時間等により型表面再現性が異なる。 本発明では、 ブローされる パリ ソンが型表面に接触してから、 ブロー圧力が成形品内面に十分にかかるまで の時間が 1〜 1 0秒であることが好ま しく、 更に好ま しく は 2〜 8秒、 特に好ま しく は 2〜 5秒で成形される。 特に本発明では合成樹脂が型表面に接触後、 型表 面温度が合成樹脂の軟化温度以上に保たれている状態でブロー圧力が加われば、 型表面再現性は充分に良く なり、 5秒以内にブロー圧力が加わることが特に好ま しい。  In blow molding, the mold temperature depends on the temperature of the synthetic resin to be blown, the temperature of the main mold, the blow pressure, and the time from when the parison to be blown comes into contact with the mold surface until the blow pressure is sufficiently applied to the inner surface of the molded product. Surface reproducibility is different. In the present invention, the time from when the parison to be blown comes into contact with the mold surface to when the blow pressure is sufficiently applied to the inner surface of the molded article is preferably 1 to 10 seconds, more preferably 2 to 10 seconds. Formed in 8 seconds, particularly preferably 2-5 seconds. In particular, in the present invention, after the synthetic resin comes into contact with the mold surface, if a blow pressure is applied while the mold surface temperature is maintained at or above the softening temperature of the synthetic resin, the mold surface reproducibility is sufficiently improved, and within 5 seconds. It is particularly preferred that blow pressure be applied to the air.
本発明を図面を用いて説明する。  The present invention will be described with reference to the drawings.
図 1〜図 2 7 は型表面温度の変化等を計算により算出した結果を示す。 型表面 温度の変化は、 前記した通り、 A B A Q U S等のソフ トを用いて非定常熱伝導解 折で計算できる。 次に、 計算法について更に詳しく述べる。 樹脂製品の肉厚に対 して二ッゲル層およびポリ ィ ミ ド層の厚みはかなり小さいので現象を一次元熱伝 導問題と考える。 定常状態においては支配方程式は、 次式で示される。 FIGS. 1 to 27 show the results obtained by calculating changes in the mold surface temperature and the like. As described above, the change in the mold surface temperature can be calculated by transient heat conduction analysis using software such as ABAQUS. Next, the calculation method will be described in more detail. Since the thickness of the Nigel layer and polyimide layer is considerably smaller than the thickness of the resin product, the phenomenon can be described by one-dimensional heat transfer. Think of it as a lead problem. In the steady state, the governing equation is given by
k ( d 2 T/d x2 ) = 0 k (d 2 T / dx 2 ) = 0
ここで、 kは物質の熱伝導率、 Tは温度、 Xは位置である。 Where k is the thermal conductivity of the material, T is the temperature, and X is the position.
また、 熱流束はフーリェの法則から次式で示される。  The heat flux is given by the following equation from Fourier's law.
q = - k (d T/d x)  q =-k (d T / d x)
ここで、 Qは熱流束である。 これらの式から有限要素法を用い、 連立方程式をマ ト リ クス表示すると次式のようになる。 Where Q is the heat flux. Using the finite element method from these equations, the simultaneous equations are displayed in a matrix as shown below.
[κ] m = {?}  [κ] m = {?}
ここで、 [K] は熱伝導マ ト リ クス、 {T} は全体の節点温度ベク トル、 {F} は熱流束ベク トルである。 熱伝導マ ト リ クス [K] と熱流束ベク トル {F} が既 知であれば連立方程式を解く ことができ、 節点温度が求まる。 Where [K] is the heat transfer matrix, {T} is the overall nodal temperature vector, and {F} is the heat flux vector. If the heat transfer matrix [K] and the heat flux vector {F} are known, the simultaneous equations can be solved, and the nodal temperatures can be obtained.
実際の計算は、 市販されている汎用の構造解析ソフ トを用いて行う ことができ る。 ここでは A B A Q U Sを用いて計算を行った。 この計算では、 合成樹脂と金 属層間の境界熱伝達、 及び主金型内の熱伝導は影響が極めて小さいと して無視し て計算している。  The actual calculation can be performed using commercially available general-purpose structural analysis software. Here, the calculation was performed using ABAQUS. In this calculation, the heat transfer at the boundary between the synthetic resin and the metal layer and the heat conduction in the main mold are ignored because the effects are extremely small.
本発明の成形時の型表面温度変化の C A E計算に用いる熱伝導率と比熱の値は 実測値と各種文献からの値を使用する。 すなわち、 ポリ イ ミ ドについては実施例 で断熱層と して使用するポリイ ミ ドの実測値を用いる。 ポリ スチレンについては 熱伝導率は、 H. L o b o a n d R. N e wm a n : S P E A N T E C ' 9 0 , 8 6 2に報告されている値を使用し、 比熱は J. B r a n d r u p, E. H . I mm e r g u t編 rP o l ym e r H a n d b o o kJ J o h n W i l e y & S o n s発行に記載の値を使用する。 ポリオキシメチレンについて は、 橋本壽正著 「高分子の熱拡散率 · 比熱容量 · 熱伝導率データハン ドブック 1 9 9 4」 (株) ュ一テス刊に記載の値を使用する。 熱伝導率等は厳密には測定 時の温度や圧力等の測定条件により異なるが、 本発明では温度の影響は考慮する が圧力の影響は考慮しない。 重合体の熱伝導率と測定時の圧力の関係については、 成形加工, V o し 8 ( 2 ) , 9 2 ( 1 9 9 6 ) 、 S P E, ANT E C ' 9 0, 8 6 2 ( 1 9 9 0 ) 、 成形加工' 9 0 , 1 3 9 ( 1 9 9 0 ) 等で報告されている が測定法により異なり、 はっきりと していないので、 大気圧時の熱伝導率等を使 用することとする。 密度については、 ポリスチレンは 8 8 4 k gZm3 、 ポリオ キシメチレンは 1 4 2 0 k g/m3 、 ポリイ ミ ドは 1 4 2 0 k g/m3 をそれぞ れ使用する。 エポキシ樹脂はエポキシ樹脂及びその硬化剤の種類により性能は大 き く異なり、 更に一般には無機物等の配合物を配合して使用される場合が多く、 従って単にエポキシ樹脂と称した場合の、 最も一般的な値の熱伝導率、 比熱、 密 度の各値を用いることと し、 機械設計便覧 (第 3版、 平成 4年、 丸善株式会社発 行) の値をそのまま使用することとする。 すなわち、 エポキシ樹脂の熱伝導率値 は 0. 3 WZm · K、 比熱値は 1. 1 «1ノ2 * !<、 密度は 1 8 5 0 2 1113 を 温度と圧力に関係なく使用する。 セラ ミ ッ クス、 ニッケル、 鋼鉄についての各値 は、 日本化学会編、 化学便覧、 基礎編 (丸善株式会社) から引用する。 セラ ミ ッ クスの熱伝導率は 2. 1 WZ (m · K) 、 比熱は 4 5 4 JZ (k g · K) 、 密度 は 5 7 0 0 k g/m3 を使用する。 The values of the thermal conductivity and the specific heat used in the CAE calculation of the change in the mold surface temperature during molding according to the present invention use the actually measured values and the values from various documents. That is, for polyimide, an actually measured value of polyimide used as a heat insulating layer in the embodiment is used. For polystyrene, the thermal conductivity is H. Loboand R. Newman: Use the value reported in SPEANTEC '90, 862, and the specific heat is J. Brandrup, E.H.I. mm ergut edition Use the values described in rPoolymerH andbookJ John Wiley & Sons. For polyoxymethylene, the values described in “Human's Hashimoto's Thermal Diffusivity of Polymers, Specific Heat Capacity, Thermal Conductivity Data Handbook 1994” published by Unites Co., Ltd. are used. Strictly speaking, the thermal conductivity and the like differ depending on measurement conditions such as temperature and pressure at the time of measurement. In the present invention, the influence of temperature is considered, but the influence of pressure is not considered. For the relationship between the thermal conductivity of the polymer and the pressure at the time of measurement, refer to the molding process, V o 8 (2), 92 (1 996), SPE, ANT EC '90, 86 2 (1 9 90), molding process '90, 1339 (1990), etc., but it differs depending on the measurement method and is not clear, so the thermal conductivity at atmospheric pressure is used. Shall be used. The density, polystyrene 8 8 4 k gZm 3, Polio Kishimechiren is 1 4 2 0 kg / m 3, Porii mi de is the 1 4 2 0 kg / m 3 using, respectively. Epoxy resins vary greatly in performance depending on the type of epoxy resin and its curing agent, and in general, are often used in combination with compounds such as inorganic substances. The typical values of thermal conductivity, specific heat, and density shall be used, and the values in the Mechanical Design Handbook (3rd edition, published in 1992 by Maruzen Co., Ltd.) shall be used as they are. That is, the thermal conductivity value of the epoxy resin is 0. 3 WZM · K, the specific heat value 1.1 «1 Bruno 2 *! <, Density is used regardless of the 1 8 5 0 2 111 3 temperature and pressure. The values for ceramics, nickel and steel are quoted from the Chemical Society of Japan, Chemical Handbook, Basics (Maruzen Co., Ltd.). The thermal conductivity of the ceramics is 2.1 WZ (m · K), the specific heat is 454 JZ (kg · K), and the density is 5700 kg / m 3 .
更に、 本発明の型表面温度変化の C A E計算には、 成形時の樹脂剪断発熱を考 慮していない。 図 3 0はゴム強化ポリスチレンの射出成形時の剪断発熱による樹 脂温度上昇を C A E計算し、 樹脂断面の温度分布を示した図である。 C A E計算 条件は、 樹脂が旭化成ポリ スチレン 4 9 2、 樹脂温度は 2 4 0 °C、 金型温度は 5 0 °C、 金型は鋼鉄製、 金型キヤ ビティ は厚みは 2 mm、 サイ ドゲー トから流動端 部までの流動距離は 2 9 0 mm、 金型キヤ ビティ の樹脂流動時間が 0. 4秒 (射 出速度 7 2 5 mm,秒) と 1. 0秒 (射出速度 2 9 0 mmZ秒) である。 ゲー ト からの距離が 2 5 mmの位置と、 1 4 5 mmの位置で、 樹脂が金型キヤ ビティを 充塡した直後の樹脂断面の温度分布を図 3 0に示す。 射出速度が 7 2 5 mmZ秒 の高速射出の場合には剪断発熱量は大き く、 樹脂の温度上昇は大きいが、 射出速 度が低く なる程発熱量は下がり、 射出速度が 2 9 0 mmZ秒になると発熱は少な く なる。 本発明が特に良好に使用できる、 射出速度が 2 0〜 3 0 0 mmZ秒の低 速射出の場合には剪断発熱の要因は小さ く なり、 剪断発熱を計算に入れていない。 図 2 8 と図 2 9 に本発明に使用する各樹脂の熱伝導率 ( λ ) と比熱 (C ρ) の 温度依存性を示し、 本発明に述べる C A Ε計算にはこれらの図に示す熱伝導率と 比熱の値を使用する。  Further, the CAE calculation of the change in the mold surface temperature of the present invention does not take into account the heat generated by resin shearing during molding. FIG. 30 is a diagram showing a temperature distribution of a resin cross section by calculating a CAE of a rise in resin temperature due to shear heat generation during injection molding of rubber-reinforced polystyrene. CAE calculation conditions are as follows: resin is Asahi Kasei polystyrene 492, resin temperature is 240 ° C, mold temperature is 50 ° C, mold is steel, mold cavity is 2 mm in thickness, side gauge The flow distance from the mold to the flow end is 290 mm, and the resin flow time of the mold cavity is 0.4 seconds (injection speed of 72.5 mm, seconds) and 1.0 second (injection speed of 290 mm) mmZ seconds). Figure 30 shows the temperature distribution of the resin cross section immediately after the resin filled the mold cavities at the positions 25 mm and 144 mm from the gate. In the case of high-speed injection with an injection speed of 725 mmZ seconds, the amount of heat generated by shearing is large and the temperature of the resin rises significantly, but the lower the injection speed, the lower the heat generation, and the injection speed is 290 mmZ seconds Then, the heat generation decreases. In the case of low-speed injection at an injection speed of 20 to 300 mmZ seconds, in which the present invention can be used particularly well, the factor of shear heat generation is small, and shear heat generation is not taken into account. FIGS. 28 and 29 show the temperature dependence of the thermal conductivity (λ) and specific heat (C ρ) of each resin used in the present invention. The CA Ε calculation described in the present invention uses the heat shown in these figures. Use values for conductivity and specific heat.
図 1、 図 2及び図 3には、 鋼鉄からなる主金型の温度を 5 0 、 ゴム強化ポリ スチレン (図では H I P Sで示す。 ) の温度が 2 4 0てで射出成形したときの金 型表面付近の温度分布の変化の計算値を示している。 Figures 1, 2 and 3 show that the temperature of the steel main mold was 50 The figure shows the calculated value of the change in the temperature distribution near the mold surface when injection molding was performed at a temperature of styrene (indicated by HIPS in the figure) of 240.
図中の各曲線の数値は加熱された合成樹脂が冷却された金型表面に接触してか らの時間 (秒) を示している。 加熱された合成樹脂は型表面に接触して、 急速に 冷却される (図 1 ) 。 主金型表面を断熱層で被覆すると、 型表面は加熱された合 成樹脂から熱を受けて昇温する。 図に示すように、 金型表面を 0 . 1 111 111と 0 . 3 m mの断熱層 (ポリイ ミ ド) で被覆すると (図 2及び図 3 ) 、 合成樹脂 (ゴム 強化ポリ スチレン) と接触する断熱層表面の温度上昇は大き く なり、 温度低下速 度も小さ く なる。  The numerical value of each curve in the figure indicates the time (second) since the heated synthetic resin came into contact with the cooled mold surface. The heated synthetic resin comes into contact with the mold surface and is rapidly cooled (Fig. 1). When the main mold surface is covered with a heat insulating layer, the mold surface receives heat from the heated synthetic resin and rises in temperature. As shown in the figure, when the mold surface is covered with a heat insulating layer (polyimide) of 0.1 111 111 and 0.3 mm (Figures 2 and 3), it comes into contact with the synthetic resin (rubber reinforced polystyrene). The temperature rise on the surface of the heat insulating layer increases, and the rate of temperature decrease also decreases.
図 4 は、 鋼鉄製の主金型の型表面に各種厚みのポリイ ミ ド (図では P I で示す ) を被覆した金型に、 加熱された合成樹脂 (ゴム強化ポリスチレン) が接触した 時の型表面温度の経時変化 (計算値) を示す。 型表面に被覆されるポリ イ ミ ド層 が厚く なるに従い、 型表面温度の低下は著しくおそく なる。  Figure 4 shows the mold when heated synthetic resin (rubber reinforced polystyrene) comes in contact with a mold in which various thicknesses of polyimide (indicated by PI in the figure) are coated on the surface of the steel main mold. The change over time (calculated value) of the surface temperature is shown. As the polyimide layer covering the mold surface becomes thicker, the mold surface temperature decreases significantly.
図 5 は、 鋼鉄製の主金型の型表面に 0 . 2 m m厚のポリ ィ ミ ドを被 した金型 に、 各種の樹脂温度と金型温度で、 合成樹脂 (ゴム強化ポリ スチレン) が接触し た時の型表面温度の経時変化 (計算値) を示す。 合成樹脂温度及び金型温度が低 く なると型表面温度も低下する。  Fig. 5 shows that a synthetic resin (rubber reinforced polystyrene) was applied to a mold with a 0.2 mm thick polyimide coated on the surface of the steel main mold at various resin temperatures and mold temperatures. The change over time (calculated value) of the mold surface temperature upon contact is shown. As the synthetic resin temperature and the mold temperature decrease, the mold surface temperature also decreases.
図 6 は、 鋼鉄製の主金型の型表面に 0 . 2 m m厚のポリ ィ ミ ドを被覆した金型 に、 各種の成形品厚みと金型温度で、 合成樹脂 (ゴム強化ポ リ スチレン) が接触 した時の型表面温度の経時変化 (計算値) を示す。  Fig. 6 shows a mold in which a 0.2 mm thick polyimide is coated on the mold surface of a steel main mold, and a synthetic resin (rubber reinforced polystyrene) is applied at various mold thicknesses and mold temperatures. ) Shows the change over time (calculated value) of the mold surface temperature when contacted.
図 7 は、 鋼鉄からなる主金型の表面にポリ ィ ミ ド層を被覆し、 その表面に二ッ ゲル層 (図では N ί で示す) を被覆した金型と、 比铰と してポリ イ ミ ド層のみが 被覆された金型を用い、 主金型の温度を 5 0 °Cに設定し、 該金型でゴム強化ポリ スチレン樹脂の温度が 2 4 0 °Cで射出成形した時の、 該樹脂が金型最表面に接触 してからの型表面の温度 (これは樹脂表面とニッケル表面の界面の温度、 あるい は樹脂表面とポ リ イ ミ ド表面の界面の温度である) の経時変化を示す。 図 7はポ リ イ ミ ド層の厚みを 0 . 3 m m、 ニッケル層の厚みを 0 . 0 2 m mにした場合の 樹脂表面温度の経時変化であり、 図中で実線はポリ イ ミ ド層とニッケル層を被覆 した場合であり、 破線はポリィ ミ ド層のみを被覆した場合である。 ポリイ ミ ドの みを被覆した場合には、 樹脂表面温度は時間経過とともに低下するのに対して、 ポリイ ミ ド層とニッケル層を被覆した場合には、 一旦温度が大き く低下した後に 再び上昇してから次第に低下する。 これは表層の二ッゲルの熱容量が大きいため に合成樹脂の熱がニッケル層に吸収されて低下するものである。 従って、 ニッケ ル層の厚みが大き くなる程、 一旦低下する温度幅は大き くなり、 再び上昇する温 度も低く なる。 合成樹脂の温度が高いと、 最表層の金属雇に熱が吸収されてもそ の熱を十分に供給できる。 合成樹脂温度は型表面再現性に著しい影響を与える。 図 8は、 ポリイ ミ ド層の上に被覆するニッケル層の厚みを種々変化させた場合 の型表面温度の経時変化 (計算値) を示す。 我々は合成樹脂の成形で型表面再現 性を良くするには、 積分値 (Δ Η ) 、 及び 又は積分値 (A h ) が一定以上の値 である必要があることを発見した。 図 8において、 二ッゲルの厚みが 0 . 0 5 m mで、 合成樹脂の钦化温度が 1 0 5 °C (図中で線 1で示す) の場合、 斜線で示す 面積 2が本発明で示す積分値 (Δ Η ) になる。 钦化温度の線 1 より 1 0 °C下に線 を引いて、 該線と型表面温度曲線で囲まれた面積が積分値 (A h ) になる。 ニッ ゲル層の厚みが 0 . 1 m mになると、 一旦低下した表面温度が再び上昇する温度 は低く なり、 射出成形時の型表面再現性が悪く なることが推定できる。 ニッケル 層の厚みが 0 . 0 0 2 m mの場合には樹脂表面温度は一旦低下しても急速に回復 し、 その温度も高いために、 射出成形時の型表面再現性は良好である。 本発明で は、 加熱合成樹脂が型表面に接触後、 型表面温度が合成樹脂の钦化温度以上にあ る間の (型表面温度一合成樹脂の钦化温度) 値の積分値 (Δ Η ) が 2秒 * °C以上、 及びノ又は (型表面温度一 (合成樹脂の軟化温度一 1 0 °C ) } 値の積分値 (A h ) が 1 0秒 · °C以上の成形条件で成形することが必要である。 Fig. 7 shows a mold in which a polyimide layer is coated on the surface of a steel main mold and a Nigel layer (indicated by N で は in the figure) is coated on the surface of the mold. Using a mold with only the imid layer coated, setting the temperature of the main mold at 50 ° C, and performing injection molding with the mold at a rubber-reinforced polystyrene resin temperature of 240 ° C Temperature of the mold surface after the resin comes into contact with the outermost surface of the mold (this is the temperature of the interface between the resin surface and the nickel surface or the temperature of the interface between the resin surface and the polyimide surface) ) Shows changes over time. Figure 7 shows the change over time in the resin surface temperature when the thickness of the polyimide layer was 0.3 mm and the thickness of the nickel layer was 0.2 mm. In the figure, the solid line indicates the polyimide layer. And the nickel layer was covered, and the broken line is the case where only the polyimide layer was covered. Polyimid When the resin surface is coated, the resin surface temperature decreases with the passage of time, whereas when the polyimide layer and nickel layer are coated, the temperature drops once and then rises again and then gradually. descend. This is because the heat of the synthetic resin is absorbed by the nickel layer and lowers because the heat capacity of the surface Nigel is large. Therefore, as the thickness of the nickel layer increases, the temperature range that once decreases increases, and the temperature that increases again decreases. If the temperature of the synthetic resin is high, even if the heat is absorbed by the outermost metal layer, the heat can be supplied sufficiently. Synthetic resin temperature has a significant effect on mold surface reproducibility. FIG. 8 shows the change over time (calculated value) of the mold surface temperature when the thickness of the nickel layer coated on the polyimide layer is variously changed. We have found that the integral (Δ 型) and / or the integral (A h) need to be a certain value or more in order to improve the mold surface reproducibility in molding a synthetic resin. In FIG. 8, when the thickness of Nigel is 0.05 mm and the curing temperature of the synthetic resin is 105 ° C. (indicated by line 1 in the figure), the area 2 indicated by oblique lines is indicated by the present invention. It becomes the integral value (Δ Η). Draw a line 10 ° C below the aging temperature line 1, and the area enclosed by the line and the mold surface temperature curve becomes the integral value (A h). When the thickness of the nigel layer becomes 0.1 mm, the temperature at which the surface temperature once decreased rises again decreases, and it can be estimated that the mold surface reproducibility during injection molding becomes worse. When the thickness of the nickel layer is 0.002 mm, the resin surface temperature recovers rapidly even if it once drops, and since the temperature is high, the mold surface reproducibility during injection molding is good. In the present invention, after the heated synthetic resin comes into contact with the mold surface, while the mold surface temperature is equal to or higher than the plasticization temperature of the synthetic resin, the integral value (Δ Η ) Is 2 seconds * ° C or more, and under the molding conditions where the integrated value (A h) of the mold or (mold surface temperature-(softening temperature of synthetic resin-10 ° C))} is 10 seconds · ° C or more It is necessary to mold.
この積分値は金型の構成によって異なるが、 この他に合成樹脂の種類、 成形条 件等の要因により異なる。 この積分値はこれらの要因が次の方向へ向かう時に大 き く なる。  This integral value differs depending on the configuration of the mold, but also depends on factors such as the type of synthetic resin and molding conditions. This integral increases when these factors move in the next direction.
• 合成樹脂の軟化温度が低く なる  • The softening temperature of the synthetic resin decreases
• 断熱層が厚く なる  • Thick insulation layer
• 金属層が薄く なる  • Thin metal layer
• 合成樹脂温度が高く なる •金型温度が高くなる • Synthetic resin temperature rises • Mold temperature rises
•成形品厚みが厚くなる  • Thickness of molded products increases
これらの方向に向ければ積分値は大きくなるが、 成形される合成樹脂及び成形 後の成形品性能、 成形サイクルタイム等の観点から選択できる幅は限定されてお り、 その限定された範囲で積分値の大きい範囲を選択する。  The integral value increases in these directions, but the range that can be selected from the viewpoint of the synthetic resin to be molded, the performance of the molded article after molding, the molding cycle time, etc. is limited, and the integrated value is limited within the limited range. Select a range with a large value.
本発明の積分値はこれらの要因を総合して、 型表面再現性との関係を示すもの である。  The integrated value of the present invention indicates the relationship with the mold surface reproducibility by integrating these factors.
図 9〜図 2 6は、 鋼鉄製の主金型の型表面に、 断熱層 {ポリイ ミ ド (図中では P Iで示す。 ) 又はエポキシ樹脂 } 厚み、 その表面のニッケル層厚みを種々変化 させて被覆し、 更に成形品厚み、 合成樹脂温度、 主金型温度を種々変化させて成 形した場合の、 型表面温度の経時変化を示すグラフと、 各場合について、 合成樹 脂の欧化温度と、 型表面温度が合成樹脂の钦化温度以上にある間の (型表面温度 -合成樹脂钦化温度) 値の積分値 Δ Η (秒 * °C ) (計算値) との関係を示すグラ フである。 これらの各図では、 各合成樹脂の軟化温度の積分値が本発明に述べる 積分値 (Δ Η ) であり、 钦化温度より 1 0 °C低い温度の積分値が本発明に述べる 積分値 (A h ) に相当する。 個々の条件を表 4及び表 5にまとめて示し、 図中の 番号は表 4及び表 5の中に示す番号に相当する。 Figures 9 to 26 show various changes in the thickness of the heat-insulating layer {polyimide (indicated by PI in the figure) or epoxy resin} and the thickness of the nickel layer on the surface of the steel main mold. The graph shows the time-dependent changes in the mold surface temperature when molding is performed by changing the thickness of the molded product, the temperature of the synthetic resin, and the temperature of the main mold. A graph showing the relationship between the integrated value of the (mold surface temperature-synthetic resin aging temperature) value Δ Η (second * ° C) (calculated value) while the mold surface temperature is equal to or higher than the curing temperature of the synthetic resin. It is. In each of these figures, the integral value of the softening temperature of each synthetic resin is the integral value (Δ 述 べ る) described in the present invention, and the integral value at a temperature lower by 10 ° C. than the curable temperature is the integral value described in the present invention (Δ Η). A h). The individual conditions are summarized in Tables 4 and 5, and the numbers in the figures correspond to the numbers in Tables 4 and 5.
表 4 の 成形品厚み PI厚み fii厚み ^脂 IS度 Table 4 Molded product thickness PI thickness fii thickness ^ grease IS degree
[mm] [ma] [mm] [t] [ΐ] [mm] [ma] [mm] [t] [ΐ]
HIPS 2 0.1 0.01 210 30HIPS 2 0.1 0.01 210 30
HIPS 2 0.1 0.02 210 30HIPS 2 0.1 0.02 210 30
HIPS 2 0.2 0.01 210 30HIPS 2 0.2 0.01 210 30
HIPS 2 0.2 0.02 210 30HIPS 2 0.2 0.02 210 30
HIPS 2 0.1 0.01 240 30HIPS 2 0.1 0.01 240 30
HIPS 2 0.1 0.02 240 30HIPS 2 0.1 0.02 240 30
HIPS 2 0.2 0.01 240 30HIPS 2 0.2 0.01 240 30
HIPS 2 0.2 0.02 240 30HIPS 2 0.2 0.02 240 30
HIPS 2 0.1 0.01 270 30HIPS 2 0.1 0.01 270 30
HIPS 2 0.1 0.02 270 30HIPS 2 0.1 0.02 270 30
HIPS 2 0.2 0.01 270 30HIPS 2 0.2 0.01 270 30
HIPS 2 0.2 0.02 270 30HIPS 2 0.2 0.02 270 30
HIPS 2 0.1 0.01 240 40HIPS 2 0.1 0.01 240 40
HIPS 2 0.1 0.01 240 50HIPS 2 0.1 0.01 240 50
HIPS 2 0.1 0.02 240 40HIPS 2 0.1 0.02 240 40
HIPS 2 0.1 0.02 240 50HIPS 2 0.1 0.02 240 50
HIPS 2 0.1 0.02 240 70HIPS 2 0.1 0.02 240 70
HIPS 2 0.2 0.01 240 50HIPS 2 0.2 0.01 240 50
HIPS 2 0.2 0.02 240 50HIPS 2 0.2 0.02 240 50
HIPS 2 0.2 0.03 240 30HIPS 2 0.2 0.03 240 30
HIPS 2 0.2 0.02 280 50HIPS 2 0.2 0.02 280 50
HIPS 2 0.1 0,03 240 . 50HIPS 2 0.1 0,03 240 .50
HIPS 2 0.2 0.03 240 50HIPS 2 0.2 0.03 240 50
HIPS 2 0.2 0.05 240 50HIPS 2 0.2 0.05 240 50
HIPS 2 0.3 0.01 240 50HIPS 2 0.3 0.01 240 50
HIPS 2 0.3 0.02 240 50HIPS 2 0.3 0.02 240 50
HIPS 2 0.3 0.03 240 50HIPS 2 0.3 0.03 240 50
HIPS 2 0.3 0.05 240 50HIPS 2 0.3 0.05 240 50
HIPS 2 0.3 0.1 210 50HIPS 2 0.3 0.1 210 50
HIPS 2 0.5 0.03 240 50
Figure imgf000051_0001
図 9〜図 2 2 は断熱層が P I 、 合成樹脂がゴム強化ポリスチレン (H I P S ) についての計算値であり、 図 2 3〜図 2 4 は断熱層が P I 、 合成樹脂が結晶化潜 熱を有するポリオキシエチレン (P O M ) についての計算値であり、 図 2 5は断 熱材がセラ ミ ック (Z r 0 2 / Y 2 0 3 ) 、 合成樹脂から! I P Sについての計算 値であり、 図 2 6 は断熱層がエポキシ樹脂、 合成樹脂が H I P Sについての計算 値である。
HIPS 2 0.5 0.03 240 50
Figure imgf000051_0001
Figures 9 to 22 show the calculated values for PI for the heat insulation layer and rubber reinforced polystyrene (HIPS) for the synthetic resin. Figures 23 to 24 show PI for the heat insulation layer and latent heat of crystallization for the synthetic resin. a calculated for polyoxyethylene (POM), 2 5 is cross-sectional heated material canceller Mi click (Z r 0 2 / Y 2 0 3), from a synthetic resin! a calcd for IPS, FIG 26 is the calculated value for epoxy resin for the heat insulation layer and HIPS for the synthetic resin.
これらの図から種々の層構成の金型、 種々の成形条件で成形時の積分値がわか る。 すなわち、 本発明に示す積分値の計算にはコンピューターを用いた計算が必 要になるが、 図 4〜図 2 6 に示す各種データから該積分値の概略の値は容易に読 み取れる。  From these figures, the integrated values at the time of molding under various types of molds and various molding conditions can be seen. In other words, the calculation of the integrated value shown in the present invention requires calculation using a computer, but the approximate value of the integrated value can be easily read from the various data shown in FIGS.
図では、 断熱層と してポリイ ミ ド及びエポキシ樹脂、 金属層と してニッケル層 を用いて示したが、 断熱材と して他の耐熱性重合体、 金属と してニッケル以外の クロム等の他金属を使用した場合も、 図 4〜図 2 6に示すデータから推測できる。 図 1 8〜図 2 1 に合成樹脂の温度を変化させた時の型表面温度の変化と、 積分 値の変化を示す。 合成樹脂温度を高くすると積分値は著しく大き く なる。 すなわ ち、 断熱層と金属層は合成樹脂より熱を供給されて昇温し、 その昇温する温度と 時間が積分値を大き く し、 成形品の型表面再現性を良くする。 このことは、 断熱 層被覆のない一般の金属金型とは著しく異なることである。 即ち、 一般の金属金 型では図 1 に示すように、 合成樹脂が冷却された金型表面に接すると直ちに合成 樹脂表面層は冷却されて金型温度と同一温度になる。 合成樹脂温度を高く しても 同じであり、 合成樹脂温度を上げる効果はない。 一般金型で合成樹脂温度を高く して成形すると、 合成樹脂の粘度が低下して、 射出圧力の伝達が成形品端部にま で伝達される効果で成形品の型表面再現性を若干良くすることはあるが、 本発明 に示すように型表面温度を一定時間上昇させ、 積分値 Δ Η、 積分値 A hを増大さ せることにより、 型表面再現性を著しく良くすることはない。 本発明では合成樹 脂温度を高く して成形することは、 積分値を著しく増大させる効果があり、 この 点が一般金型を使用する場合と全く異なる。  In the figure, polyimide and epoxy resin are used as a heat insulating layer, and a nickel layer is used as a metal layer, but other heat-resistant polymers are used as a heat insulating material, and chromium other than nickel is used as a metal. When other metals are used, it can be inferred from the data shown in FIGS. Fig. 18 to Fig. 21 show the change of the mold surface temperature and the change of the integral value when the temperature of the synthetic resin is changed. As the temperature of the synthetic resin increases, the integral value increases significantly. In other words, heat is supplied from the synthetic resin to the heat insulating layer and the metal layer and the temperature rises, and the temperature and time for the temperature rise increase the integral value, thereby improving the mold surface reproducibility of the molded product. This is significantly different from ordinary metal molds without insulation layer coating. That is, as shown in Fig. 1, in a general metal mold, as soon as the synthetic resin comes into contact with the cooled mold surface, the synthetic resin surface layer is cooled to the same temperature as the mold temperature. The same is true even if the temperature of the synthetic resin is increased, and there is no effect of increasing the temperature of the synthetic resin. When molding with a general mold at a high synthetic resin temperature, the viscosity of the synthetic resin decreases and the transmission of the injection pressure is transmitted to the end of the molded product. However, as shown in the present invention, by increasing the mold surface temperature for a certain period of time and increasing the integral value ΔΗ and the integral value Ah, the mold surface reproducibility is not significantly improved. In the present invention, molding at a high synthetic resin temperature has the effect of significantly increasing the integral value, which is completely different from the case where a general mold is used.
本発明では成形条件によりその効果は著しく異なり、 少なく とも合成樹脂の温 度と主金型温度を指定することが必要である。 特に樹脂温度の効果は大き く、 本 発明ではこの要因を含むパラメーターである積分値 Δ Η、 Δ ΐιを導入し、 公知文 献との差異を明らかにした。 In the present invention, the effect is significantly different depending on molding conditions, and it is necessary to specify at least the temperature of the synthetic resin and the temperature of the main mold. Especially, the effect of resin temperature is great. The present invention introduces the integral values ΔΗ and Δΐι, which are parameters including this factor, and clarifies the difference from the known literature.
図 2 5 は断熱材と して、 セラ ミ ッ クスを使用した場合とエポキシ樹脂を使用し た場合について示す。 断熱材と してセラ ミ ックが紹介されているが、 しかしセラ ミ ッ クは耐熱性重合体より熱伝導率がかなり大き く、 断熱材と してセラ ミ ッ クス を使用した場合には、 図 2 5に示す様に型表面温度は急速に低下し、 積分値は極 めて小さ く 、 本発明ではセラ ミ ックスは使用できない。  Figure 25 shows the case of using ceramics and the case of using epoxy resin as the heat insulating material. Ceramics are introduced as heat insulating materials, but ceramics have considerably higher thermal conductivity than heat-resistant polymers, and when ceramics are used as heat insulating materials, As shown in FIG. 25, the mold surface temperature decreases rapidly, the integrated value is extremely small, and ceramics cannot be used in the present invention.
図 2 6は、 断熱層厚みが 0 . 5 m m以上になると、 本発明の条件の、 型表面温 度が合成樹脂が型表面に接触後、 5秒以内に合成樹脂温度の軟化温度以下に低下 することを満たし難く なることを示す。  Figure 26 shows that when the thickness of the heat insulating layer becomes 0.5 mm or more, the mold surface temperature falls below the softening temperature of the synthetic resin within 5 seconds after the synthetic resin contacts the mold surface under the conditions of the present invention. It is difficult to meet the requirements.
図 2 7 は本発明の成形法の型表面温度の変化と、 引例の公知文献 U S P 5 3 8 Figure 27 shows the change in the mold surface temperature of the molding method of the present invention, and the known literature USP 538 of the reference.
8 8 0 3の図 6に示されている型表面温度の変化を対比して示す。 引例では合成 樹脂が型表面に接触後、 約 2 0秒で型表面温度は合成樹脂のガラス転移温度以下 になるが、 本発明では 5秒以内にガラス転移温度以下になる。 本発明では型表面 温度が、 5秒後に合成樹脂の钦化温度以下に低下することにより、 成形サイ クル タイムを短く し、 経済性に優れた成形法を提供する。 8 shows the change in the mold surface temperature shown in FIG. In the reference, the mold surface temperature falls below the glass transition temperature of the synthetic resin in about 20 seconds after the synthetic resin comes into contact with the mold surface, but in the present invention, it falls below the glass transition temperature within 5 seconds. In the present invention, the molding surface temperature is reduced to a temperature equal to or lower than the curing temperature of the synthetic resin after 5 seconds, thereby shortening the molding cycle time and providing an economical molding method.
図 3 1 はゴム強化ポ リ スチレン (スタイロン 4 9 5 旭化成工業 (株) 製 商 品名) を使用して、 樹脂温度を変化させて射出成形法した場合の成形品光沢度を 示す。 本発明で使用する光沢度は J I S K 7 1 0 5、 反射角度 6 0度で測定す る。 この光沢度は屈折率 1 . 5 6 7のガラス表面の鏡面光沢度を 1 0 0 %と した 光沢度であり、 従って合成樹脂成形品の光沢度が 1 0 0 %を越えることもある。 以後光沢度はこの測定法により測定する。 断熱層がない一般金型で成形した場合 に比較して、 断熱層被覆金型で成形した場合には樹脂温度により成形品光沢度は 大き く変化する。  Figure 31 shows the gloss of molded products when rubber-reinforced polystyrene (Stylon 495, trade name, manufactured by Asahi Kasei Kogyo Co., Ltd.) was used and the resin temperature was changed and injection molding was performed. The glossiness used in the present invention is measured at JISK 710 and a reflection angle of 60 degrees. This gloss is a gloss based on a mirror gloss of 1.567 for the glass surface having a refractive index of 1.567, and the gloss of the synthetic resin molded article may exceed 100%. Hereinafter, the glossiness is measured by this measuring method. The gloss of the molded product changes greatly depending on the resin temperature when molded with the heat-insulating layer-coated mold compared to when molded with a general mold without the heat-insulating layer.
図 3 2 はゴム強化ポリ スチレン (スタイロ ン 4 9 5 旭化成工業 (株) 製 商 品名) を使用した場合の積分値 (Δ Η ) と成形品光沢度の関係を示す。 射出成形 品の光沢度は射出成形速度により異なり、 射出速度が小さい程光沢度は低く なる。 射出速度が低い程本発明の効果は顕著に現れ、 良好に使用できる。 本発明では型 キャ ビティ 内の合成樹脂流動速度が 2 0〜 3 0 0 m m Z秒、 好ま しく は 3 0〜 2 0 0 mm/秒で成形される。 図 3 2の光沢度は 5 0 mm/秒で射出成形された値 である。 図 3 2の射出成形品の例で示す様に、 本発明では積分値 (ΔΗ) が 2秒 • °C以上になると型表面再現性が良く、 成形品光沢度は良く なり、 積分値 (厶 H ) が 5秒 · °Cになれば更に光沢度は良く なり、 積分値 (ΔΗ) が 7秒 * °C以上に なれば光沢度はほぼ 1 0 0 %に近く なる。 Figure 32 shows the relationship between the integral value (ΔΗ) and the gloss of the molded product when rubber-reinforced polystyrene (Stylon 495, trade name of Asahi Kasei Kogyo Co., Ltd.) is used. The gloss of the injection molded product depends on the injection molding speed, and the lower the injection speed, the lower the gloss. The lower the injection speed, the more remarkable the effect of the present invention is and the better the use. In the present invention, the flow velocity of the synthetic resin in the mold cavity is 20 to 300 mm Z seconds, preferably 30 to 2 mm. Molded at 0 mm / sec. The gloss value in Fig. 32 is a value obtained by injection molding at 50 mm / sec. As shown in the example of the injection molded product in FIG. 32, in the present invention, when the integral value (ΔΗ) is 2 seconds • ° C or more, the mold surface reproducibility is good, the molded product glossiness is good, and the integral value (mm When H) is 5 seconds · ° C, the glossiness is further improved, and when the integrated value (ΔΗ) is 7 seconds * ° C or more, the glossiness is nearly 100%.
図 3 3は同様にゴム強化ポリ スチレン (スタイロン 4 9 5 旭化成工業 (株) 製 商品名) を使用して射出成形した場合の積分値 (Δ ΐι) と射出成形品の光沢 度の関係を示す。 積分値 (A h) が 1 0秒 · °C以上になると型表面再現性が良く、 成形品光沢が良く なり、 積分値 (A h) が 1 2秒 · で以上になれば更に光沢度は 良く なり、 積分値 (Δ ΐι) が 1 5秒 · て以上になれば光沢度はほぼ 1 0 0 %に近 くなる。  Fig. 33 shows the relationship between the integral value (Δΐι) and the gloss of the injection-molded product when injection molding is performed using rubber-reinforced polystyrene (Stylon 495, trade name, manufactured by Asahi Kasei Corporation). . When the integral value (Ah) is 10 seconds · ° C or more, the mold surface reproducibility is good and the molded product gloss is good. When the integral value (Ah) is 12 seconds · or more, the glossiness is further increased. When the integrated value (Δ ΐι) becomes 15 seconds or more, the glossiness becomes almost 100%.
本発明は図に示すゴム強化ポリスチレンでは光沢度が 8 0 %以上、 好ま しく は 9 0 %以上、 更に好ま しく は 9 5 %以上の高光沢度成形品を得ることを目的にし ている。 成形品への塗装を無く し、 外観が要求される用途に使用するにはこの程 度の外観が要求される。 勿論、 積分値 (ΔΗ) が 2秒 · °C未満、 あるいは積分値 (A h) が 1 0秒 · °C以上でなくてもそれ相応に光沢度は改善されるが、 高光沢 度成形品で、 且つ、 ウエルドライ ンの目立ちが極めて小さい成形品を得るには積 分値 (ΔΗ) が 2秒 * °C以上、 及び 又は積分値 (A h) が 1 0秒 * °C以上が必 要である。 我々は成形品光沢度を本発明に示す積分値 (ΔΗ) 、 及び 又は積分 値 (Δ ίι) で整理できることを発見し本発明に至った。 断熱層厚みを厚く してゆ けば良好な外観の成形品が得られるが、 しかし、 断熱層厚みを厚くすることは成 形サイ クルタイムを長く し、 成形効率の面から不適である。 本発明では外観改良 と成形サイクルタイムを両立させる方法である。  An object of the present invention is to obtain a molded article of high gloss having a rubber gloss of 80% or more, preferably 90% or more, and more preferably 95% or more in the rubber-reinforced polystyrene shown in the figure. This type of appearance is required to eliminate the need to paint on molded products and to use them in applications that require an appearance. Of course, if the integrated value (ΔΗ) is less than 2 seconds · ° C or the integrated value (A h) is not more than 10 seconds · ° C, the glossiness will be improved accordingly, In order to obtain a molded product with very small well-lined appearance, the integral value (ΔΗ) must be at least 2 seconds * ° C and / or the integral value (Ah) must be at least 10 seconds * ° C. It is important. We have found that the glossiness of a molded article can be arranged by the integral value (ΔΗ) and / or the integral value (Δίι) shown in the present invention, and have reached the present invention. A molded article with a good appearance can be obtained by increasing the thickness of the heat-insulating layer. However, increasing the thickness of the heat-insulating layer increases the molding cycle time and is not suitable in terms of molding efficiency. In the present invention, this is a method for achieving both improvement in appearance and molding cycle time.
図 3 4は断熱層を被覆していない通常の金属金型を使用し、 型キヤ ビティ を構 成する型表面を鏡面状にして、 ゴム強化ポリスチレン (スタイロン 4 9 5、 ビカ ッ 卜幸欠化温度 1 0 5 °C) を射出成形した場合の、 金型温度と成形品の光沢度の 関係を示す。 成形時の型表面再現性は成形品の光沢度でわかる。 型表面再現性、 すなわち成形品光沢度は合成樹脂の射出速度 (合成樹脂の型内流動速度) により 異なるが、 金型温度が (合成樹脂钦化温度一 1 0°C) になると、 射出速度に関係 なく ほぼ一定になる。 金型温度が高く なれば、 それ相応に成形品の光沢度は良く なるが、 光沢度を 1 0 0 %近く にまでもってゆく には金型温度を成形する合成樹 脂の钦化温度近く まで上げる必要がある。 しかし、 図 3 4でわかる様に、 合成樹 脂軟化温度の 1 0 5 °Cから 1 0 °C減じた温度の 9 5 °Cまで金型温度を上げれば、 成形品光沢度はかなり良くなり、 クラス A表面と言える光沢度 9 5 %近く までに なる。 積分値 (Δ Η ) が小さ くても、 積分値 (Δ h ) が著しく大きければ、 同様 に型表面再現性は良く なる。 (積分値 (A h ) 積分値 (Δ Η ) } 比は断熱層が 厚く なると大き く なる傾向にある。 従って、 積分値 (Δ Η ) と積分値 (A h ) の 両方で型表面再現性を整理することが、 現実の結果を良好に整理できることを発 見した。 我々がこの 2種の積分値をパラメータ一に選定している理由はこのこと にある。 ここに述べる光沢度の数値はあく までも相対的なものであり、 元来外観 が極めて悪い合成樹脂、 あるいは元来外観が良く ならない合成樹脂では、 高光沢 度の数値も相対的に低く、 従来の一般金型を使用した成形品と比較して顕著に外 観が改良されていれば、 本発明に述べる高光沢度成形品である。 Figure 34 uses a normal metal mold that does not cover the heat-insulating layer, makes the mold surface that makes up the mold cavity mirror-like, and uses rubber-reinforced polystyrene (Stylon 495, vicat The figure shows the relationship between the mold temperature and the gloss of the molded product when injection molding is performed at a temperature of 105 ° C). The mold surface reproducibility during molding can be determined from the gloss of the molded product. The mold surface reproducibility, that is, the gloss of the molded product, varies depending on the injection speed of the synthetic resin (the flow speed of the synthetic resin in the mold). However, when the mold temperature becomes (synthetic resin 钦 temp. Related to Almost constant. The higher the mold temperature, the higher the gloss of the molded product.However, to achieve a gloss of nearly 100%, the mold temperature should be close to the curing temperature of the synthetic resin to be molded. I need to raise it. However, as can be seen in Fig. 34, if the mold temperature is raised to 95 ° C, which is a temperature that is 10 ° C lower than the synthetic resin softening temperature of 105 ° C, the gloss of the molded product will be considerably improved. However, the glossiness can be said to be close to 95%, which is a class A surface. Even if the integral value (ΔΗ) is small, if the integral value (Δh) is extremely large, the mold surface reproducibility will be similarly improved. (Integral value (A h) Integral value (Δ})} The ratio tends to increase as the adiabatic layer becomes thicker. Thus, both the integral value (Δ で) and the integral value (A h) The reason why we chose these two types of integral values as a parameter was that we found that the actual result could be satisfactorily organized. For synthetic resins that are relative in nature and have a very poor appearance, or that do not have a good appearance, the value of high gloss is relatively low and molding using conventional dies If the appearance is remarkably improved as compared with the article, the article is a high gloss molded article according to the present invention.
図 3 5 は本発明に述べる金型の断熱層と金属層の界面が微細凹凸状になって密 着している状態を示す。 断熱層と金属層の密着力も大きいことが好ま しく、 断熱 層と金属層がその界面で交互に入り合ってアンカー効果により密着力が増大して いることが好ま しい。 好ま しい微細凹凸度は基準長さ 8 0 mで金属層と断熱層 の界面の凹凸の高い方から 5番目までの山頂の標高の平均と深い方から 5番目ま での谷底の標高の平均との差が 0 . 5〜 1 0 mである。 ここに述べる凹凸は交 互に複雑に入り合ってアンカー効果が働く形状であつて単純な凹凸ではないので、 標高は各凹凸の最も深く入り込んでいる位置を選択することとする。  FIG. 35 shows a state in which the interface between the heat insulating layer and the metal layer of the mold described in the present invention is finely uneven and closely adhered. It is preferable that the adhesion between the heat insulating layer and the metal layer is also large, and it is preferable that the heat insulating layer and the metal layer intersect at the interface alternately to increase the adhesion due to the anchor effect. The preferred degree of fine unevenness is a standard length of 80 m, with the average of the peaks from the highest to the fifth at the interface between the metal layer and the heat insulation layer and the average of the valley bottom from the deepest to the fifth. Is 0.5 to 10 m. Since the unevenness described here is a shape that alternately and intricately interlocks and acts as an anchor effect, and is not a simple unevenness, the elevation where the deepest of each unevenness enters is selected.
図 3 6、 図 3 7 は本発明法がレンチキュラーレンズやフ レネルレンズ等を成形 するに適していることを示す。 図 3 6 は従来のフレネルレンズ金型で、 通常の成 形条件で射出成形した状態を示す。 図 3 6に於いて、 金属金型 3の型表面には凸 の角部 5 と凹の角部 6があり、 射出された合成樹脂 4は一般に凹の角部 6の隅 7 に十分に入り込めず、 角部が十分に再現されたレンズは得られない。  FIGS. 36 and 37 show that the method of the present invention is suitable for molding lenticular lenses and Fresnel lenses. Figure 36 shows a conventional Fresnel lens mold that has been injection molded under normal molding conditions. In FIG. 36, the mold surface of the metal mold 3 has a convex corner 5 and a concave corner 6, and the injected synthetic resin 4 generally enters the corner 7 of the concave corner 6 sufficiently. It is impossible to obtain a lens whose corners are sufficiently reproduced.
図 3 7 は本発明法で成形するフレネルレンズ金型を示す。 図 3 7に於いて、 主 金型 8の表面に断熱層 9があり、 更にその表面にフレネルレンズ状の金属層 1 0 がある。 一般のフレネルレンズ金型で型表面再現性が特に悪いのは図に示す様に 凹の角部 6であり、 断熱層 9の効果は凹の角部 6の型表面再現性を良くすること にある。 従って、 本発明に於いて、 フレネルレンズやレンチキュラーレンズを成 形する金型では、 金属層の厚みとして薄肉部の厚み 1 2を用いる。 該金属層厚み 1 2は断熱層厚み 1 1の 1ノ3以下、 好ましくは 1 5以下で、 0 . 0 0 1〜 0 . 1 m mであり、 且つ該金属層は断熱層に密着している必要がある。 FIG. 37 shows a Fresnel lens mold formed by the method of the present invention. In FIG. 37, the main mold 8 has a heat insulating layer 9 on its surface, and further has a Fresnel lens-shaped metal layer 10 on its surface. There is. As shown in the figure, the mold surface reproducibility of ordinary Fresnel lens molds is particularly poor at the concave corners 6, and the effect of the heat insulating layer 9 is to improve the mold surface reproducibility of the concave corners 6. is there. Therefore, in the present invention, in the mold for forming the Fresnel lens or the lenticular lens, the thickness 12 of the thin portion is used as the thickness of the metal layer. The thickness of the metal layer 12 is 1 to 3 or less, preferably 15 or less of the thickness 11 of the heat insulating layer, and is 0.001 to 0.1 mm, and the metal layer is in close contact with the heat insulating layer. There is a need.
本発明は、 金属層表面あるいは金属層表面の一部が、 多段サン ドブラス ト処理 及び 又は多段ェツチング処理により形成された艷消し伏表面を有する金型を用 いて成形する、 耐傷つき性に優れた微細凹凸状艷消し状表面をもつ成形品の成形 法である。  The present invention has excellent scratch resistance, in which a metal layer surface or a part of the metal layer surface is molded using a mold having an matte surface which is formed by multi-stage sand blasting and / or multi-stage etching. This is a molding method for molded articles with a fine uneven surface and an erasable surface.
図 3 8は本発明の成形法でつく られた耐傷つき性に優れた飽消し状成形品 ( 3 8 — 1 ) と、 従来法で成形された傷つき易い艷消し伏成形品 ( 3 8 — 2 ) の断面 を示す。 ( 3 8 — 1 ) に示す本発明法で成形される成形品は、 合成樹脂成形品 1 3の微細凹凸表面の凹部の先 1 5は鋭角であるが、 凸部の先 1 4は丸くなってお り、 傷がつきにく くなつている。 これに対し、 ( 3 8 — 2 ) で示す従来の成形品 は凹凸の凸部の先 1 6 も凹部の先 1 5 も共に鋭角であり、 人の爪等で成形品表面 をこすった場合に凸部の先 1 6は容易に削りとられ、 傷がつきやすい。 本発明は 凸部の先が鋭角になっている割合が少なく、 したがって人の爪等で傷がつき難く なっている、 図 ( 3 8 — 1 ) に示す成形品を成形法である。  Fig. 38 shows a saturated molded product (38-1) with excellent scratch resistance produced by the molding method of the present invention, and an easily matted glossy molded product (38-8) formed by the conventional method. ) Shows the cross section. In the molded article molded by the method of the present invention shown in (38-1), the tip 15 of the concave portion on the fine uneven surface of the synthetic resin molded article 13 has an acute angle, while the tip 14 of the convex portion is rounded. It is hard to be scratched. On the other hand, in the conventional molded product shown in (3 8-2), both the tips 16 and 15 of the concave and convex portions are acute angles, and when the surface of the molded product is rubbed with human nails etc. The tip of the projection is easily scraped off and easily scratched. The present invention is a method of molding a molded article shown in FIG. 38- 1, in which the ratio of the sharp end of the convex portion is small, so that it is difficult for the nail or the like to be scratched.
図 3 9に示す射出成形品の例で更に詳しく説明する。 図 3 9に於いて、 ゲート 1 7から射出された合成樹脂は穴部 1 8をまわって流動し、 ウエルド部で合体し、 ゥエルドライン 1 9を形成する。 図 3 9に於いて、 型表面に断熱層と更にその表 面に微細凹凸表面を有する金属層を被覆した金型で射出成形すると、 成形品表面 には金属層の微細凹凸表面が転写される。 しかし、 一般に飽消し化に使用される サン ドブラス 卜法で微細凹凸化した断熱層被覆金型で射出成形すると、 成形品 2 0のウエル ド部から樹脂流動端部にかけての領域 (以後、 図面を使用した説明で はゥエルド部 2 1 と略称する) の微細凹凸度は大きくなり、 黒着色樹脂で成形す ると、 ウエル ド部 2 1は黒っぽくなり、 一般部 2 2は白つぼくなり、 本発明に述 ベる均一な光沢度の成形品にはなり難い。 この原因は次の様に推定している。 そ の原因を図 4 0と図 4 1で説明する。 This will be described in more detail with an example of an injection molded product shown in FIG. In FIG. 39, the synthetic resin injected from the gate 17 flows around the hole 18 and merges at the weld to form a weld line 19. In Fig. 39, when injection molding is performed with a mold in which a mold surface is covered with a heat insulating layer and a metal layer having a fine uneven surface on the surface, the fine uneven surface of the metal layer is transferred to the molded product surface. . However, when injection molding is performed using a heat-insulating layer-coated mold with fine irregularities formed by the sand blast method, which is generally used for saturation, the area from the weld portion of the molded product 20 to the resin flow edge (hereinafter referred to as the drawing) (In the description used, this is abbreviated as “weld part 21”.) The degree of fine irregularities increases, and when molded with black colored resin, the well part 21 becomes blackish and the general part 22 becomes white-white. It is difficult to obtain a molded article having a uniform glossiness as described in the invention. The cause is estimated as follows. So The cause of this will be described with reference to FIGS. 40 and 41.
図 3 9に示す成形品の射出成形で、 ゥエルド部 2 1 と一般部 2 2の型壁面にか かる圧力をモデル的に図 4 0に示す。 図 4 0に於いて、 成形品の一般部 2 2にか かる圧力は曲線 2 3となり、 ゥエルド部 2 1にかかる圧力は曲線 2 4となる。 曲 線 2 5はゲー ト部にかかる圧力である。 すなわち、 一般部 2 2にかかる圧力は射 出時間の経過に応じて徐々に上昇するのに対し、 ウエルド部 2 1にかかる圧力は 合成樹脂が型壁面に接触すると同時に高圧力がかかる。 図 8に示す様に、 加熱さ れた合成樹脂が断熱層の型壁面に接して断熱層被覆表面を加熱し、 そして直ちに 冷却が始まる。 図 8の N iが 0 . 0 5 m m被覆された金型では型表面は 1 . 5秒 後には 1 0 5 °C以下に低下する。 型表面をより良く再現するには加熱された合成 樹脂が型壁面に接すると同時に樹脂に高圧力がかかること、 すなわち、 型壁面と 合成樹脂の表層部が高温である間に樹脂に高圧力がかかることが好ましい。 図 4 0に示す様に、 ゥエルド部は合成樹脂が型壁面に接すると同時に樹脂に高圧力が かかり、 型壁面の微細凹凸がより正確に再現される。  In the injection molding of the molded article shown in FIG. 39, the pressure applied to the mold wall of the elbow section 21 and the general section 22 is modeled in FIG. In FIG. 40, the pressure applied to the general part 22 of the molded article is represented by a curve 23, and the pressure applied to the elbow part 21 is represented by a curve 24. Curve 25 is the pressure applied to the gate. That is, while the pressure applied to the general portion 22 gradually increases with the elapse of the ejection time, the pressure applied to the weld portion 21 is high at the same time when the synthetic resin comes into contact with the mold wall surface. As shown in Fig. 8, the heated synthetic resin contacts the mold wall surface of the heat-insulating layer, heats the surface of the heat-insulating layer coating, and immediately starts cooling. In the mold shown in FIG. 8 in which Ni is coated to a thickness of 0.05 mm, the mold surface drops to 105 ° C. or less after 1.5 seconds. In order to reproduce the mold surface better, high pressure is applied to the resin at the same time that the heated synthetic resin comes into contact with the mold wall surface, that is, high pressure is applied to the resin while the mold wall surface and the surface layer of the synthetic resin are hot. This is preferred. As shown in FIG. 40, in the ゥ eld portion, a high pressure is applied to the resin at the same time when the synthetic resin comes into contact with the mold wall surface, and the fine irregularities on the mold wall surface are more accurately reproduced.
図 4 1でこの経過をモデル的に説明する。 4 1 一 1において、 型表面は断熱層 2 6とその表面に微細凹凸形状の金属層 2 7よりなる。 表面の微細凹凸には鋭角 の凹部 2 8がある。 この金型で射出成形を行うと成形品の一般部では合成樹脂 2 9が型壁面に接触してから徐々に樹脂圧力が上昇するため、 圧力上昇中に型壁面 と樹脂の表層部が冷却し、 型壁面の微細凹凸の奥まで入り込めず、 充填されない 部分 3 0が発生する ( 4 1 一 2 ) 。 これに対して、 成形品のゥエルド部では合成 樹脂 2 9が型壁面に接触すると同時に樹脂圧力が上昇するため、 合成樹脂は型の 微細凹凸の奥まで入り込める ( 4 1 一 3 ) 。 この結果、 ウエルド部 2 1では一般 部 2 2に比較して成形品の表面凹凸度がより大きくなり、 黒着色合成樹脂ではゥ エルド部が黒っぽくなり、 均一な艷消し伏態にならない。  Fig. 41 explains this process in model form. In 4 1 1, the mold surface is composed of a heat insulating layer 26 and a metal layer 27 having fine irregularities on the surface thereof. The fine irregularities on the surface include a concave part 28 at an acute angle. When injection molding is performed with this mold, the resin pressure gradually rises after the synthetic resin 29 comes into contact with the mold wall surface in the general part of the molded product, so that the mold wall surface and the surface layer of the resin cool while the pressure rises. However, a part 30 that cannot be filled to the depth of the fine irregularities on the mold wall and is not filled occurs (4 1 1 2). On the other hand, in the peg portion of the molded product, the synthetic resin 29 comes into contact with the mold wall surface and at the same time the resin pressure rises, so that the synthetic resin can penetrate deep into the fine irregularities of the mold (4113). As a result, in the weld portion 21, the degree of surface unevenness of the molded product becomes larger than that in the general portion 22, and in the black colored synthetic resin, the weld portion becomes blackish and does not have a uniform matte state.
この様な現象は断熱層被覆金型で艷消し状成形品を射出成形した場合に顕著に 現れる。 本発明はこの不良現象を改良した成形品の成形法を提供する。 成形品の ゥエルド部と一般部の表面凹凸を均一にするため、 断熱層表面の微細凹凸を適度 な凹凸形状にする必要がある。 本発明を図 3 9に示す単純な形状の成形品で説明 したが、 弱電機器のハウジング等は多点ゲー卜で成形される複雑な形状をしてお り、 この様な複雑な形状の成形品では一般部とゥエルド部の艷消し度の差の他に、 ゥエル ドライ ンをはさんで左右で鮪消し度に差が生ずる場合が多い。 ゥエルドラ ィ ンをはさんで左右に差が生ずるのは、 左右の樹脂の流動速度に差がある場合で ある。 流動速度が速い側の樹脂は型壁面に接触してから速く樹脂圧力がかかり、 遅い側の樹脂は型壁面に接触してから遅く樹脂圧力がかかり、 左右で型表面再現 性に差が生じやすい。 本発明はこの様な場合に特に有効である。 Such a phenomenon is remarkable when an opaque molded article is injection-molded with a mold coated with a heat insulating layer. The present invention provides a method for molding a molded article in which this defective phenomenon is improved. In order to make the surface irregularities of the elbow part and the general part of the molded product uniform, it is necessary to make the fine irregularities on the surface of the heat insulating layer an appropriate irregular shape. Although the present invention has been described with reference to a molded article having a simple shape as shown in FIG. 39, the housing and the like of a weak electric device have a complicated shape formed by a multipoint gate. In addition, in such a molded article having a complicated shape, in addition to the difference in the degree of glossiness between the general part and the ゥ eld part, there is often a difference in the degree of elimination of tuna on the left and right across the ゥ eldrain.差 The difference between the left and right across the Eldrain occurs when the flow velocity of the left and right resins is different. Resin on the side with the higher flow velocity is quickly applied with resin pressure after contacting the mold wall surface, and resin on the slower side is applied with the resin pressure slowly after contacting the mold wall surface, and there is a tendency for difference in mold surface reproducibility between left and right . The present invention is particularly effective in such a case.
図 4 2、 図 4 3、 図 4 4及び図 4 5に、 本発明法に使用する金型の製法の好ま しい例を示す。 図 4 2に於いて、 金属からなる主金型 3 2の表面には 0 . 0 5〜 2 . O m m厚みの断熱層 2 6があり、 その上に密着力を強くするための薄肉金属 層が付けられ、 更にその表面に 2層の金属層 3 3、 3 4が被覆されている。 この 断熱層と金属層の密着力を強くするための薄肉金属層は金属層 3 3、 3 4に比較 して大幅に薄肉であるため、 図 4 2〜4 5では省略している。 金属層 3 3、 3 4 を含めた全金属層の厚みの合計は断熱層 2 6の厚みの 1 / 3以下で、 且つ 0 . 0 1〜0 . 5 m mである。 断熱層と金属層の密着力を強くするための薄肉金属層の 上に付けられる金属層は 2層からなり、 表面金属層 3 4の厚みは全金属層の厚み の 1 2以上であることが好ま しく、 更に好ま しく は 2 / 3以上である。 内側金 属層 3 3の好ま しい厚みは 0 . 0 0 2〜0 . 1 m mであり、 更に好ま しく は 0 . 0 0 3〜 0 . 0 5 m mである。 表面金属層 2 2のエッチング速度はその内側金属 層 3 3の 2倍以上、 好ま しく は 3倍以上、 更に好ま しく は 5倍以上である。 この 金型をエッチング処理して、 主に表面金属層 2を選択的にエッチング処理するこ とにより ( 4 2— 2 ) に示す本発明が求める金型を得る。  FIG. 42, FIG. 43, FIG. 44 and FIG. 45 show preferred examples of the method of manufacturing the mold used in the method of the present invention. In FIG. 42, on the surface of the main metal mold 32 made of metal, there is a heat insulating layer 26 having a thickness of 0.05 to 2.0 mm, on which a thin metal layer for strengthening adhesion is provided. , And the surface is covered with two metal layers 33, 34. Since the thin metal layer for strengthening the adhesion between the heat insulating layer and the metal layer is much thinner than the metal layers 33 and 34, it is omitted in FIGS. 42 to 45. The total thickness of all the metal layers including the metal layers 33 and 34 is 1/3 or less of the thickness of the heat insulating layer 26 and is 0.01 to 0.5 mm. The metal layer provided on the thin metal layer for strengthening the adhesion between the heat insulation layer and the metal layer consists of two layers, and the thickness of the surface metal layer 34 may be 12 or more of the total metal layer. Preferably, more preferably more than 2/3. The preferred thickness of the inner metal layer 33 is 0.002 to 0.1 mm, more preferably 0.03 to 0.05 mm. The etching rate of the surface metal layer 22 is at least twice, preferably at least three times, and more preferably at least five times the inner metal layer 33. The mold is etched and the surface metal layer 2 is selectively etched mainly to obtain the mold required by the present invention shown in (42-2).
図 4 3 と図 4 4 にエツチング処理により、 金型の表面金属層を本発明が求める 能消し状にする方法を更に詳しく示す。 図 4 3に於いて、 金属からなる主金型 3 2の型キヤ ビティ を構成する型壁面を断熱層 2 6で被覆する ( 4 3— 1 ) 。 次い で、 該断熱層 2 6の表面に薄肉金属層 (図では省略している。 ) 、 2層の金属層 3 5、 3 6を被覆する ( 4 3— 2 ) 。 金属層は表面金属層 3 6のエツチング速度 が内側金属層 3 5エツチング速度の 2倍以上であることが好ま しく、 更に好ま し く 3倍以上、 最も好ま しく は 5倍以上である。 該金属層 3 6の表面に感光性樹脂 3 7を被覆する ( 4 3— 3 ) 。 次いで、 マスクシー ト 3 8でマスキングを行い。 紫外線照射を行い、 照射された部分の感光性樹脂を硬化する (4 3— 4) 。 次い で、 硬化されなかった部分の感光性樹脂を洗浄して取り去り、 パターン状の硬化 樹脂 3 9を残す ( 4 3— 5) 。 次いで、 ェッチング処理で硬化樹脂 3 9が被 し ていない部分の金属層を溶解し、 凹凸状表面の金属層 3 6を有する型表面とする ( 4 3— 6 ) 。 更に感光性樹脂の被覆 (4 3— 3 ) からエッチング (4 3— 6) まで繰り返し行う。 FIGS. 43 and 44 show in more detail the method of making the surface metal layer of the mold into an erased state required by the present invention by etching treatment. In FIG. 43, the mold wall forming the mold cavity of the main mold 32 made of metal is covered with the heat insulating layer 26 (43-1). Next, a thin metal layer (omitted in the figure) and two metal layers 35 and 36 are coated on the surface of the heat insulating layer 26 (43-2). In the metal layer, the etching speed of the surface metal layer 36 is preferably at least twice the etching speed of the inner metal layer 35, more preferably at least three times, and most preferably at least five times. The surface of the metal layer 36 is coated with a photosensitive resin 37 (43-3). Next, masking is performed with a mask sheet 38. Ultraviolet irradiation is performed to cure the exposed portion of the photosensitive resin (43-3-4). Next, the uncured portion of the photosensitive resin is washed away and removed, leaving a patterned cured resin 39 (43-5). Next, the metal layer in the portion not covered with the cured resin 39 is dissolved by the etching treatment to obtain a mold surface having the metal layer 36 having an uneven surface (43-6). Further, the steps from coating of the photosensitive resin (43-3) to etching (43-6) are repeated.
多段エッチングの 2段め以降のエッチング工程を図 4 4に示す。 図 4 4におい て、 第 1段めのエッチングで凹凸化された表面金属層 2 6 ( 4 4 - 1 ) に感光性 樹脂 3 7を被覆し ( 4 4一 2 ) 、 その表面にパターンマスキングをして露光、 現 像、 洗浄をした後 ( 4 4一 3 ) 、 エッチングをして更なる凹凸化を行い ( 4 4一 4 ) 、 更に ( 4 4一 2 ) から ( 4 4一 4 ) の工程を繰り返して本発明が求める金 型 ( 4 4一 5 ) を得る。 エツチングは耐ェッチング性に優れた内側金属層 3 5に ぶっかってそこでェッチング速度は遅く なり、 金属層の凹部の底は丸く なり、 鋭 角の凹部は形成されない。 (4 4— 5) に示す金型を用いて射出成形することに より、 図 ( 3 8— 1 ) に示す本発明が求める耐傷つき性に優れた成形品が得られ る。  Figure 44 shows the second and subsequent multi-stage etching processes. In FIG. 44, a photosensitive resin 37 is coated on the surface metal layer 26 (44-1) that has been roughened by the first-stage etching (44-1-2), and pattern masking is performed on the surface. After exposing, developing, and cleaning (44-3-1), etching is performed to make the surface more uneven (44--14), and further (44-1-2) to (444--4) The process is repeated to obtain the mold (444-5) required by the present invention. The etching collides with the inner metal layer 35 having excellent etching resistance, so that the etching speed is slowed, the bottom of the concave portion of the metal layer is rounded, and no sharp-angled concave portion is formed. By injection molding using the mold shown in (44-5), a molded product excellent in scratch resistance required by the present invention shown in Fig. (38-1) can be obtained.
図 4 3と図 4 4では感光性樹脂を型表面全面に塗布し、 マスキングフィ ルムで カバーして露光する方法を示したが、 図 4 5は更に優れた方法を示す。 図 4 5に おいて、 感光性樹脂を金属層表面に振りかけるように間隔をあけて細かく塗布し 、 それを紫外線照射して硬化し ( 4 5— 1 ) 、 次いでエッチング処理により表面 金属層 3 6を凹凸化する ( 4 5— 2 ) 。 この感光性樹脂の振りかけ塗布、 紫外線 照射 ( 4 5— 3 ) と、 エッチング処理 (4 5— 4 ) を繰り返し、 更にこの工程を 数回繰り返して本発明が求める艷消し状表面金型を得る ( 4 5— 5 ) 。 本発明で は感光性樹脂塗布からエツチングまでの工程を好ましく は 3〜 1 0回、 更に好ま しく は 4 ~ 8回繰り返して、 好ま しい形状の微細凹凸表面とする。 本発明の多段 ェッチング処理で得られた微細凹凸伏の艷消し表面金型表面に、 更に該微細凹凸 形状を大幅に変化させない程度の薄肉の耐蝕性金属層をつけることは、 射出成形 中の耐久性向上に有効であり、 本発明に含まれる。  FIGS. 43 and 44 show a method in which a photosensitive resin is applied to the entire surface of the mold and exposed by covering with a masking film. FIG. 45 shows a more excellent method. In FIG. 45, the photosensitive resin is finely applied at intervals so as to be sprinkled on the surface of the metal layer, and is cured by irradiating it with ultraviolet light (45-1). The surface is roughened (45-2). This sprinkling application of the photosensitive resin, ultraviolet irradiation (45-3) and etching (45-4) are repeated, and this process is repeated several times to obtain the matte surface mold required by the present invention ( 4 5— 5). In the present invention, the steps from the application of the photosensitive resin to the etching are repeated preferably 3 to 10 times, more preferably 4 to 8 times, to obtain a fine irregular surface having a preferable shape. The provision of a thin corrosion-resistant metal layer that does not significantly change the shape of the fine irregularities on the surface of the mold with a matte surface with fine irregularities obtained by the multi-stage etching treatment of the present invention is not limited to durability during injection molding. It is effective for improving the performance and is included in the present invention.
以下の実施例及び比較例により、 本発明を更に説明する。 実施例及び比較例において、 次の主金型、 断熱層、 金属層及び合成樹脂を使用 した。 The following examples and comparative examples further illustrate the present invention. In the examples and comparative examples, the following main mold, heat insulating layer, metal layer and synthetic resin were used.
主金型 : 鋼鉄 ( S 5 5 C) 製の射出成形用の金型である。 該金型の熱膨張係 数は 1. 1 X 1 0— 3/°Cである。 図 3 9に示す成形品 2 0の型キヤ ビティを有す る。 成形品サイズは 1 0 O mmx 1 0 O mmで厚みは 2 mmであり、 中央に 3 0 mm 3 O mmの穴 4が空いている。 ゲー ト 1 7 は図 3 9に示す様にサイ ドゲー トであり、 成形品 2 0にはウエルドライン 1 9が発生する。 型表面は鏡面状であ る。 この主金型の型キヤ ビティを形成する入れ子を 1 9個用意し、 各入れ子の型 キヤ ビティを形成する表面には硬質クロムメ ツキを行う。 Main mold: Steel (S55C) mold for injection molding. Mold thermal expansion coefficient of 1. a 1 X 1 0- 3 / ° C . The molded product 20 has the mold cavities shown in FIG. The molded product has a size of 10 O mm x 10 O mm and a thickness of 2 mm, and has a hole 4 of 30 mm 3 O mm in the center. The gate 17 is a side gate as shown in FIG. 39, and a weld line 19 occurs in the molded product 20. The mold surface is mirror-like. Nineteen nests forming the mold cavity of this main mold are prepared, and hard chrome plating is performed on the surface of each nest forming the mold cavity.
断熱層 A : 主金型の入れ子表面をプライマー処理する。 プライマーと しては C 0基含量が多いポリ ィ ミ ド前駆体溶液を薄層に塗布し、 加熱してポリ イ ミ ド薄 層を形成してプライマーとする。 その上に、 ポリイ ミ ドワニス ( ト レニース # 3 0 0 0 東レ (株) 製 商品名) を塗布し、 1 6 0 °Cで加熱し、 次いでこの塗布 、 加熱を繰り返して所定の厚みにし、 次いで 2 9 0 に加熱して 1 0 0 %イ ミ ド 化し、 所定厚みのポリィ ミ ド層を形成する。 ポリイ ミ ド層の主金型への密着力は 1 k g / 1 0 mmである。 Heat insulation layer A: Primer treatment is applied to the nest surface of the main mold. As a primer, a polyimide precursor solution having a high C0 group content is applied to a thin layer, and heated to form a polyimide thin layer, which is used as a primer. Then, a polyimide varnish (Trenice # 3000, manufactured by Toray Industries, Inc.) is applied, heated at 160 ° C., and the application and heating are repeated to a predetermined thickness. It is heated to 900 to make it 100% imidized, and a polyimide layer having a predetermined thickness is formed. The adhesion of the polyimide layer to the main mold is 1 kg / 10 mm.
断熱層 B : 主金型の入れ子表面をプライマー処理する。 プライマーとしては C 0基含量が多いポリ ィ ミ ド前駆体溶液を薄層に塗布し、 加熱してポリイ ミ ド薄 層を形成してプライマ一とする。 その上に、 ポリイ ミ ドワニス ( ト レニース # 3 0 0 0 東レ (株) 製 商品名) を塗布し、 1 6 0 °Cで加熱し、 次いでこの塗布、 加熱を繰り返して所定の厚みにし、 最後に平均粒径が 0. 1 の酸化チタン微 粉末を固形分比で 2 0重量%配合して十分に混練した配合ポリィ ミ ドワニスの薄 層を断熱層の最表面に塗布して被覆し、 次いで 2 9 0 °Cに加熱して 1 0 0 %イ ミ ド化し、 最表面 1 0 m厚の配合ポリィ ミ ド層を有する所定厚みのポリィ ミ ド層 を形成する。 ポリ イ ミ ド層の主金型への密着力は、 1 k gZ 1 0 mmである。 金属層 A 断熱層表面をクロム酸を含む強酸溶液でエッチング処理を行い、 次いで、 中和→感受性化処理—活性化処理の順に処理し、 次いで次亜燐酸ソーダ を還元剤と し、 3 5 °Cの低温、 弱アルカ リ状態、 低速度で化学ニッケルメ ツキを 行い形成した、 燐含量が 3〜 4重量%の化学ニッケルメ ツキ。 金属層 B : 次亜燐酸ソーダを還元剤と し、 6 0 °C、 酸性伏態で化学ニッケル メ ツキを行い形成した燐含量が 6〜 7重量%の化学ニッケルメ ツキ。 Heat insulation layer B: Primer treatment is applied to the nest surface of the main mold. As a primer, a polyimide precursor solution having a high C0 group content is applied to a thin layer, and heated to form a polyimide thin layer to be a primer. Then, a polyimide varnish (Trenice # 3000, manufactured by Toray Industries, Inc.) is applied and heated at 160 ° C. Then, the application and heating are repeated to a predetermined thickness. Then, a thin layer of a blended polyamide varnish obtained by blending 20% by weight of a titanium oxide fine powder having an average particle diameter of 0.1 at a solid content ratio and sufficiently kneading is applied to the outermost surface of the heat insulating layer, and then coated. Heat to 290 ° C. to make 100% imidation, and form a polyimide layer of a predetermined thickness having a blended polyimide layer of 10 m thickness on the outermost surface. The adhesion of the polyimide layer to the main mold is 1 kgZ10 mm. The surface of the heat insulating layer of the metal layer A is etched with a strong acid solution containing chromic acid, then processed in the order of neutralization → sensitization processing—activation processing, and then sodium hypophosphite is used as a reducing agent. Chemical nickel plating with a phosphorus content of 3 to 4% by weight formed by chemical nickel plating at a low temperature, in a weakly alkaline state, and at a low speed. Metal layer B: A chemical nickel plating having a phosphorus content of 6 to 7% by weight, formed by performing a chemical nickel plating at 60 ° C and in an acidic condition using sodium hypophosphite as a reducing agent.
金属層 C : 硫黄含有量が 0. 0 0 5重量%の電解ニッケルメ ツキ。 Metal layer C: Electrolytic nickel plating with a sulfur content of 0.05% by weight.
上記の各ニッケルメ ツキ層の熱膨張係数は、 いずれもほぼ 1. 3 X 1 0 -5Z°C である。 Thermal expansion coefficient of each Nikkerume luck layer of the are all nearly 1. 3 X 1 0 - a 5 Z ° C.
金属層 D : 硬質クロムメ ツキ。 このメ ツキの表面硬度は HV 1 0 0 0であ る。  Metal layer D: Hard chrome plating. The surface hardness of this plating is HV100.
射出成形する合成樹脂 :  Synthetic resin for injection molding:
( a ) : ゴム強化ポ リ スチレン (スタイロ ン 4 9 5 旭化成工業( 株) 製、 商品名) 、 ガラス転移温度は 1 0 5°C。  (a): Rubber-reinforced polystyrene (Stylon 495, trade name, manufactured by Asahi Kasei Corporation), glass transition temperature: 105 ° C.
(b) : ガラス繊維 3 0重量%配合スチレン一アク リ ロニ ト リ ル共重合体樹 B旨 (スタイラック一 AS G F R 1 6 0 T、 旭化成工業 (株) 製、 商品名) 。 ベ ース樹脂のビカッ ト钦化温度は 1 1 0 ° (:。 合成樹脂中のガラス繊維は E—ガラス であり、 その硬度は HV 6 4 0である。  (b): 30% by weight of glass fiber blended styrene-acrylonitrile copolymer tree B (Styrac-AS GFR 160 T, manufactured by Asahi Kasei Kogyo Co., Ltd., trade name). The vitrification temperature of the base resin is 110 ° (: The glass fiber in the synthetic resin is E-glass and its hardness is HV640.
( c ) : スチレン一アク リ ロニ ト リル共重合体樹脂 (スタイラック— A S 7 6 7 旭化成工業 (株) 製 商品名) 。 ビカツ ト钦化温度 1 1 0°C。  (c): Styrene-acrylonitrile copolymer resin (Styrac—AS 767 Asahi Kasei Kogyo Co., Ltd.). Vicat curing temperature 110 ° C.
射出成形条件 : 表 6に示す。 金型内の樹脂流動速度は指定のない時は 5 0 m m/ s e c. である。 Injection molding conditions: shown in Table 6. The flow rate of the resin in the mold is 50 mm / sec when not specified.
光沢度の測定法 : J I S K 7 1 0 5、 反射角度 6 0 ° 。  Gloss measurement method: JISK 710, reflection angle 60 °.
(実施例 1〜 7及び比較例 1〜 7 )  (Examples 1 to 7 and Comparative Examples 1 to 7)
断熱層 Βを被覆した主金型の断熱層表面に、 0. 0 0 0 5 mm厚の金属層 Αを 被覆し、 その表面に金属層 Cを被覆し、 その表面を研磨して鏡面伏と し、 表 6に 示すポリ イ ミ ド (P I ) とニッケル (N i ) の各厚みを有する断熱層被覆金型を 用意する。 金属層と断熱層の密着力、 及び断熱層と主金型の密着力は、 いずれも 0. 5 k g/ 1 0 mm以上である。 この金型を用いて表 6に示す各成形条件で合 成樹脂 ( a ) の射出成形を行う。 各成形条件の積分値と成形品の光沢度を表 6に 示す。 表 6 A 0.05 mm thick metal layer Α is coated on the surface of the heat insulating layer of the main mold coated with the heat insulating layer Β, and a metal layer C is coated on the surface. Then, molds having a heat insulating layer having thicknesses of polyimide (PI) and nickel (Ni) shown in Table 6 are prepared. The adhesive force between the metal layer and the heat insulating layer and the adhesive force between the heat insulating layer and the main mold are each 0.5 kg / 10 mm or more. Using this mold, injection molding of the synthetic resin (a) is performed under the molding conditions shown in Table 6. Table 6 shows the integrated value of each molding condition and the glossiness of the molded product. Table 6
Figure imgf000062_0001
Figure imgf000062_0001
実施例 1〜 7の積分値 (Δ Η ) は 2秒 · °C以上、 及び 又は積分値 (A h ) は 1 0秒 ' °C以上である。 更に型表面に接触して 5秒後の型表面温度は、 いずれの 実施例においても (合成樹脂の钦化温度一 2 0 °C ) 以下に低下している。 実施例 の各成形品光沢度は高く、 ウエル ドライ ンの目立ちもなく、 外観に優れた成形品 であり、 ク ラス A表面といえる外観である。 実施例 3の金型で 1万回の射出成形 を行っても断熱層や金属層の剝離は発生しない。 実施例 3の断熱層と金属層の接 着界面の断面図を図 3 5に示す。 金属層と断面層は微細凹凸界面で密着しており , アンカー効果が働いている。 In Examples 1 to 7, the integrated value (ΔΗ) is 2 seconds · ° C or more, and / or the integrated value (A h) is 10 seconds' ° C or more. Further, the mold surface temperature after 5 seconds from contact with the mold surface is lower than (the aging temperature of the synthetic resin is lower than 20 ° C.) in each of the examples. The gloss of each molded product of the example is high, the well line is not conspicuous, the molded product is excellent in appearance, and can be said to be class A surface. Even if injection molding is performed 10,000 times with the mold of Example 3, separation of the heat insulating layer and the metal layer does not occur. A cross-sectional view of the bonding interface between the heat insulating layer and the metal layer in Example 3 is shown in FIG. The metal layer and the cross-section layer are in close contact at the interface of fine irregularities, and the anchor effect works.
(実施例 8 )  (Example 8)
実施例 7 に示す金型の最表面金属層 Cを、 エッチング加工により、 凹部の深さ 0 . 0 2 m mの革しぼ状のパターンしぼにする。 この金属層表面はパターンしぼ の凸部が鏡面であり、 凹部が艷消し面である。 この金型を用いて実施例 7 と同様 に射出成形を行ない、 ウエル ドライ ンの目立ちが小ない、 外観に優れたパターン しぼ状表面の成形品が得られる。 この革しぼ状の金属層表面の凸部の積分値 (△ H) は実施例 7と同じく 7. 2秒 · °C、 積分値 (A h) は 1 7秒 ·てである。 合 成樹脂が型表面に接触して 5秒後の型表面温度は、 (合成樹脂の钦化温度一 2 0 °C) 以下に低下している。 The outermost metal layer C of the mold shown in Example 7 is etched to form a leather grain-shaped pattern grain having a depth of 0.02 mm. On the surface of the metal layer, the convex portions of the pattern grain are mirror surfaces, and the concave portions are matte surfaces. Injection molding was performed using this mold in the same manner as in Example 7, and the pattern with excellent appearance was less noticeable in the well line. A molded article with a grain-like surface is obtained. The integral value (△ H) of the protrusion on the surface of the leather grain-like metal layer is 7.2 seconds · ° C as in Example 7, and the integral value (Ah) is 17 seconds ·. The mold surface temperature after 5 seconds from the contact of the synthetic resin with the mold surface has fallen below (the curing temperature of the synthetic resin minus 20 ° C).
(実施例 9 )  (Example 9)
0. 3 mmの断熱層 Bを被覆した主金型の断熱層表面に、 0. 5 / m厚の金属 層 Aを被覆し、 その表面に 1 0 mの金属層 Bを被覆し、 表面研磨して鏡面状に した後、 更に 1 0 mの金属層 Dを被覆した断熱層被覆金型を用いる。 金属層と 断熱層の密着力、 及び断熱層と主金型の密着力はいずれも 0. 5 k gZ 1 0 mm 以上である。 合成樹脂 (b ) を樹脂温度 2 4 0 °C、 主金型温度 5 (TCで射出成形 を行う。 加熱合成樹脂が型表面に接触後、 型表面温度が合成樹脂の钦化温度以上 にある間の (表面温度 -合成樹脂の钦化温度) 値の積分値 (厶 H) は 5秒 *て以 上である。 型表面は合成樹脂の 1 0 0 0回の射出成形で傷がつく ことはなく、 成 形品の型表面再現性も良好で、 高光沢でゥエルドラインの目立ちが少ない成形品 を得る。 合成樹脂が型表面に接触して 5秒後の型表面温度は、 (合成樹脂の軟化 温度一 2 0 eC) 以下に低下している。 A 0.5- / m-thick metal layer A is coated on the heat-insulating layer surface of the main mold coated with a 0.3-mm heat-insulating layer B, and a 10-m metal layer B is coated on the surface, and the surface is polished. After that, a mold coated with a heat insulating layer coated with a metal layer D of 10 m is used. The adhesive force between the metal layer and the heat insulating layer and the adhesive force between the heat insulating layer and the main mold are all 0.5 kgZ10 mm or more. Synthetic resin (b) is subjected to injection molding at a resin temperature of 240 ° C and a main mold temperature of 5 (TC. After the heated synthetic resin comes into contact with the mold surface, the mold surface temperature is higher than the curing temperature of the synthetic resin. The integrated value (mH) of the value between the (surface temperature and the plasticization temperature of the synthetic resin) is at least 5 seconds * The mold surface is damaged by 100 times injection molding of the synthetic resin The mold surface reproducibility of the molded product is good, and a molded product with high gloss and less noticeable eld line is obtained.The mold surface temperature after 5 seconds from the contact of the synthetic resin with the mold surface is as follows. Softening temperature has fallen below 20 eC ).
(比較例 8 )  (Comparative Example 8)
主金型に 0. 3 mmの断熱層 Aを被覆し、 表面研磨して鏡面状にした断熱層被 覆金型を用いる。 合成樹脂 ( c ) 、 (b ) の順序で射出成形する。 成形条件は樹 脂温度 2 4 0 °C、 主金型温度 5 0 °Cで行う。 合成樹脂 ( c ) の 1 0 0 0回の射出 成形では断熱層表面に傷はっかないが、 合成樹脂 (b ) の射出成形では、 断熱層 表面は 1 0 0回の成形で、 光沢度が 2 0 %以下になる程の傷がつく。  The main mold is coated with a 0.3 mm heat insulation layer A and the surface is polished to a mirror-like heat insulation layer covered mold. Injection molding is performed in the order of synthetic resin (c) and (b). The molding conditions are a resin temperature of 240 ° C and a main mold temperature of 50 ° C. The surface of the heat-insulating layer is not scratched by the injection molding of the synthetic resin (c) 100 times, but the surface of the heat-insulating layer is injection-molded by the synthetic resin (b) 100 times, and the gloss is high. Scratches are reduced to less than 20%.
(実施例 1 0 )  (Example 10)
0. 2 mmの断熱層 Bを被覆した主金型の断熱層表面に、 0. 0 0 0 5 mm厚 の金属層 Aを被覆し、 その表面に 0. 0 1 mmの金属層 Bを被覆し、 その表面に 0. 0 3 mmの厚みの金属層 Cを被覆する。 この金型を用いて図 4 5に示す 6段 の多段ェッチング処理で本発明の飽消し状表面金型を得る。 得られた本発明の金 型で合成樹脂 ( a ) の射出成形を行う。 射出成形条件は樹脂温度 2 4 0 °C、 金型 温度 4 0 °Cで行う。 射出成形品のゥエルドライ ンの目立ちは無く、 一般部とゥェ ルド部は均一な艷消し面であり、 その光沢度は 2 0 %以下であり、 鉛筆引つ搔き 試験の 1 B硬度で目立つ傷はっかない。 射出成形品の表面の凹凸形状を図 4 6に 示す。 凹凸形状は (株) 東京精密の表面粗さ形伏測定器 「サーフコム 5 7 0 A」 で測定する。 射出成形品表面の凹凸形状は表面に飛び出している鋭角凸部が少な く、 傷つき難い表面形状である。 A 0.05-mm-thick metal layer A is coated on the heat-insulating layer surface of the main mold coated with a 0.2-mm heat-insulating layer B, and a 0.01-mm metal layer B is coated on the surface. Then, the surface is coated with a metal layer C having a thickness of 0.03 mm. Using this mold, the saturated surface mold of the present invention is obtained by a six-stage multi-stage etching process shown in FIG. The synthetic resin (a) is subjected to injection molding using the obtained mold of the present invention. Injection molding is performed at a resin temperature of 240 ° C and a mold temperature of 40 ° C. There is no noticeable injection line of injection molded products. The surface is a uniform matte surface, its gloss is less than 20%, and there is no noticeable scratch at 1B hardness in the pencil pull test. Fig. 46 shows the uneven shape of the surface of the injection molded product. The uneven shape is measured with a surface roughness profile meter “Surfcom 570 A” of Tokyo Seimitsu Co., Ltd. The uneven shape of the surface of the injection molded product is a surface shape that has few sharp projections protruding on the surface and is hardly damaged.
これに対して、 0 . 2 m mの断熱層 Aを被覆した主金型のポリイ ミ ド被覆金型 表面に 1段サン ドブラス ト処理を行い鮑消し状表面化する場合を次に示す。  On the other hand, the case where the surface of the polyimide-coated mold of the main mold coated with 0.2 mm of the heat insulating layer A is subjected to a one-stage sandblast treatment to form an abalone-like surface is shown below.
この表面微細凹凸状化ポリイ ミ ド被覆金型を用いて、 同様に合成樹脂の射出成 形を行う。 成形品のゥエルドライ ンのへこみは 1 m以下でゥエルドライ ンの目 立ちはないが、 一般部 2 2 とウエルド部 2 1 の艷消し度には差があり、 均一な菌色 消し状成形品になり難い。 図 4 7に表面凹凸パターンを示す。 ポリ イ ミ ド被覆金 型の表面凹凸パターンを 4 7 — 1 に、 成形品の一般部の表面凹凸パターンを 4 7 一 2に、 成形品のゥエルド部 5の表面凹凸パターンを 4 7 - 3に示す。 成形品の —般部 2 2 とゥエル ド部 2 1 は表面凹凸パターンが明らかに異なる。 ゥエルド部 2 1 の艷消し表面は鉛筆引つ搔き試験の 2 B硬度で傷がつき易い。 産業上の利用可能性  Injection molding of a synthetic resin is performed in the same manner using the mold coated with polyimide having the fine surface unevenness. The dent of the ゥ eldrain of the molded product is 1 m or less, and the ド ラ イ eldrain is not conspicuous, but there is a difference in the degree of glossiness of the general part 22 and the weld part 21, resulting in a uniform fungus-colored molded article. hard. Figure 47 shows the surface unevenness pattern. The surface unevenness pattern of polyimide coated mold is 47-1, the surface unevenness pattern of the general part of the molded product is 47-12, and the surface unevenness pattern of the welded part 5 of the molded product is 47-3. Show. The general part 22 and the weld part 21 of the molded product are clearly different in the surface unevenness pattern.艷 The glossy surface of the eld part 2 1 is easily scratched due to the pencil hardness test 2B hardness. Industrial applicability
本発明の断熱層被覆金型を使用して合成樹脂の射出成形やブロー成形を行うこ とにより、 外観良好な成形品を得る。 従来ウエルドライ ンが多数発生し、 塗装等 の後加工を必要と してきた弱電機器や事務機器のハウジング等の各種射出成形品 を、 本発明成形法にて成形することにより型表面再現性を良く し、 ウエルドライ ンの目立ちを少なく し、 塗装等の後加工を省略することができ、 経済的に有効で ある。 塗装を省略することにより、 合成樹脂のリサイクルが容易になり、 塗装時 に大気中に飛散する有機溶剤がなくなり、 環境保全に貢献できる。  By performing injection molding or blow molding of a synthetic resin using the heat-insulating layer-coated mold of the present invention, a molded article having a good appearance is obtained. Various injection molded products, such as housings of light electrical equipment and office equipment, which conventionally required a number of well-lines and required post-processing such as painting, were molded using the molding method of the present invention to improve mold surface reproducibility. In addition, the well line is less noticeable and post-processing such as painting can be omitted, which is economically effective. By omitting painting, it is easier to recycle synthetic resin, eliminating organic solvents that scatter into the air during painting, and contributing to environmental conservation.
また、 結晶性合成樹脂を本発明法で成形することにより、 成形品表面の直近ま で結晶化した成形品を経済的に得ることができる。 表面近く まで結晶化した成形 品は表面硬度、 耐摩耗性、 メ ツキ性等に優れる。  In addition, by molding a crystalline synthetic resin by the method of the present invention, a molded article crystallized immediately before the surface of the molded article can be economically obtained. Molded products crystallized to near the surface have excellent surface hardness, wear resistance, and adhesion.

Claims

請 求 の 範 囲 The scope of the claims
1. 合成樹脂の成形法に於いて、 1. In the molding method of synthetic resin,
( 1 ) 金属からなる主金型の型キヤビティを構成する型表面に、 該型表面に密着 した耐熱性重合体からなる 0. 1 111111を越ぇ 0. 5 mm未満の断熱層が存在し、 且つ前記断熱層の上に密着した金属層が存在する断熱層被覆金型を用い、  (1) On the surface of the mold that constitutes the mold cavity of the main mold made of metal, there is a heat insulating layer of less than 0.5 mm, which exceeds 0.1111111 and is made of a heat-resistant polymer adhered to the mold surface, And using a heat-insulating-layer-coated mold in which a metal layer in close contact with the heat-insulating layer is present,
( 2 ) 成形される合成樹脂が型表面に接触後、 型表面温度が合成樹脂の钦化温度 以上にある間の (型表面温度一合成樹脂の钦化温度) 値の積分値 (ΔΗ) が 2秒 (2) After the synthetic resin to be molded comes into contact with the mold surface, while the mold surface temperature is equal to or higher than the plasticization temperature of the synthetic resin, the integrated value (ΔΗ) of the value of (mold surface temperature-plasticization temperature of the synthetic resin) is 2 seconds
• °C以上の成形条件、 及び 又は、 型表面温度が (合成樹脂の軟化温度一 1 0°C ) 以上にある間の (型表面温度一 (合成樹脂の钦化温度一 1 0°C) } 値の積分値• Molding conditions of more than ° C and / or while the mold surface temperature is (Synthetic resin softening temperature-10 ° C) or more (Mold surface temperature-(Synthetic resin softening temperature-10 ° C) } Integral value
(A h) が 1 0秒 · °C以上の成形条件と、 更に、 (A h) is more than 10 seconds
( 3 ) 成形される合成樹脂が型表面に接触して 5秒後に、 型表面温度が合成樹脂 の軟化温度以下に低下する成形条件で成形する合成樹脂の成形法。  (3) A synthetic resin molding method in which molding is performed under molding conditions such that the mold surface temperature falls below the softening temperature of the synthetic resin 5 seconds after the synthetic resin to be molded contacts the mold surface.
2. 合成樹脂の射出成形法に於いて、  2. In the injection molding method of synthetic resin,
( 1 ) 金属からなる主金型の型キヤビティを構成する型表面に、 該型表面に密着 した耐熱性重合体からなる 0. 1 mmを越え 0. 5 mm未満の断熱層が存在し、 且つ前記断熱層の上に該断熱層厚みの 1 3以下で、 且つ 0. 0 0 1〜0. l m mの厚みの金属層が存在する断熱層被覆金型を用い、  (1) A heat insulating layer of more than 0.1 mm and less than 0.5 mm made of a heat-resistant polymer adhered to the mold surface is present on the mold surface constituting the mold cavity of the metal main mold, and Using a heat-insulating-layer-coated mold having a metal layer with a thickness of 13 to 13 mm or less on the heat-insulating layer, and a thickness of 0.001 to 0.1 mm,
( 2 ) 主金型温度を 1 5°C以上、 1 0 0°C以下で、 且つ合成樹脂の钦化温度から 2 (TCを減じた温度以下に設定した成形条件と、  (2) Molding conditions in which the temperature of the main mold is 15 ° C or more and 100 ° C or less and the synthetic resin is set to a temperature equal to or less than 2 (TC minus the curing temperature,
( 3 ) 成形される合成樹脂が型表面に接触後、 型表面温度が合成樹脂の钦化温度 以上にある間の (型表面温度一合成樹脂の钦化温度) 値の積分値 (ΔΗ) が 2秒 (3) After the synthetic resin to be molded comes into contact with the mold surface, the integral value (Δ () of the value of (mold surface temperature-synthetic resin's curing temperature) while the mold surface temperature is equal to or higher than the curing temperature of the synthetic resin is obtained. 2 seconds
• °C以上の成形条件、 及び Z又は、 型表面温度が (合成樹脂の钦化温度一 1 0 °C ) 以上にある間の (型表面温度一 (合成樹脂の軟化温度一 1 0 °C) } 値の積分値 (Δ h) が 1 0秒 · °C以上の成形条件と、 更に、 • Molding conditions of more than ° C, and Z or while the mold surface temperature is (Synthetic resin tempering temperature-10 ° C) or more (Mold surface temperature-(Softening temperature of synthetic resin-10 ° C) )} Molding conditions where the integrated value (Δh) of the value is 10 seconds · ° C or more,
( 4 ) 成形される合成樹脂が型表面に接触して 5秒後に、 型表面温度が合成樹脂 の軟化温度以下に低下する成形条件で成形する合成樹脂の射出成形法。  (4) A synthetic resin injection molding method in which molding is performed under molding conditions such that the mold surface temperature falls below the softening temperature of the synthetic resin 5 seconds after the molded resin contacts the mold surface.
3. 合成樹脂の射出成形法に於いて、  3. In the injection molding method of synthetic resin,
( 1 ) 金属からなる主金型の型キヤビティを構成する型表面に、 該型表面に密着 した耐熱性重合体からなる 0. 1 を越ぇ 0. 5 mm未満の断熱層が存在し、 更に前記断熱層の上に、 凸部の金属層厚みが断熱層厚みの 1 3以下で、 且つ、 0. 0 1〜 0. 1 mmであり、 また凹部の深さが 0. 0 0 1〜 0. 0 9 mmで、 且つ凸部の厚みより小さいしぼ状表面を有する金属層が存在する断熱層被覆金型 を用い、 (1) Close contact with the surface of the mold that constitutes the mold cavity of the main mold made of metal A heat-insulating layer having a thickness exceeding 0.1 and less than 0.5 mm, which is made of a heat-resistant polymer, and a metal layer having a thickness of 13 or less on the heat-insulating layer, and 0.01 to 0.1 mm, the depth of the recess is 0.01 to 0.09 mm, and a metal layer having a grain-like surface smaller than the thickness of the projection exists. Using a layer coating mold,
( 2 ) 主金型温度を 1 5 °C以上、 1 0 0 °C以下で、 且つ合成樹脂の钦化温度から 2 0 °Cを減じた温度以下に設定した成形条件と、  (2) Molding conditions in which the main mold temperature is set to 15 ° C or higher and 100 ° C or lower and a temperature equal to or lower than the curing temperature of synthetic resin minus 20 ° C,
( 3 ) 成形される合成樹脂が型表面に接触後、 型表面温度が合成樹脂の钦化温度 以上にある間の (型表面温度一合成樹脂の軟化温度) 値の積分値 (ΔΗ) が 2秒 · °C以上の成形条件、 及びノ又は、 型表面温度が (合成樹脂の軟化温度一 1 0 °C ) 以上にある間の {型表面温度一 (合成樹脂の軟化温度一 1 0 °C) } 値の積分値 (A h ) が 1 0秒 ·て以上の成形条件と、 更に、  (3) After the synthetic resin to be molded comes into contact with the mold surface, while the mold surface temperature is equal to or higher than the softening temperature of the synthetic resin, the integral value (ΔΗ) of (the mold surface temperature minus the softening temperature of the synthetic resin) is 2 Molding conditions of seconds · ° C or more, and / or while the mold surface temperature is (synthetic resin softening temperature-10 ° C) or more, the (mold surface temperature-(softening temperature of synthetic resin-10 ° C) )} Molding conditions where the integrated value (A h) of the value is more than 10 seconds ·
( 4 ) 成形される合成樹脂が型表面に接触して 5秒後に、 型表面温度が合成樹脂 の軟化温度以下に低下する成形条件で成形する合成樹脂の射出成形法。  (4) A synthetic resin injection molding method in which molding is performed under molding conditions such that the mold surface temperature falls below the softening temperature of the synthetic resin 5 seconds after the molded resin contacts the mold surface.
4. 断熱層の厚みが 0. 1 mmを越え 0. 4 mm未満であり、 金属層の厚みが断 熱層厚みの 1 3以下で、 且つ 0. 0 0 1〜 0. 0 7 mmであり、 積分値 (ΔΗ ) が 2秒 ·て以上 5 0秒 ·て以下、 及びノ又は積分値 (Δ h) が 1 0秒 · °C以上 1 0 0秒 * °C以下であり、 且つ合成樹脂が型表面に接触して 5秒後に、 型表面温 度が (合成樹脂の軟化温度一 1 0 °C) 以下に低下している成形条件で射出成形す る請求項 2に記載の合成樹脂の射出成形法。  4. The thickness of the heat insulation layer is more than 0.1 mm and less than 0.4 mm, the thickness of the metal layer is 13 or less of the thickness of the heat insulation layer, and 0.01 to 0.07 mm. , The integral value (ΔΗ) is 2 seconds or more and 50 seconds or less, and the or the integral value (Δh) is 10 seconds · ° C or more and 100 seconds or less * ° C and synthetic resin 5 minutes after contact with the mold surface, the injection molding is carried out under molding conditions in which the mold surface temperature has decreased to (the softening temperature of the synthetic resin −10 ° C.) or less. Injection molding method.
5. 断熱層の厚みが 0. 1 2 mmを越え 0. 3 mm未満であり、 金属層の厚みが 断熱層厚みの 1 Z 5以下 1 Z 1 0 0以上で、 且つ 0. 0 0 2〜 0. 0 6 mmであ り、 積分値 (Δ Η) が 5秒 ·て以上 4 0秒 · °C以下、 及びノ又は積分値 (Δ ΐι) が 1 2秒 · °C以上 7 0秒 · °C以下であり、 且つ合成樹脂が型表面に接触して 5秒 後に、 型表面温度が (合成樹脂の钦化温度一 1 0 °C) 以下に低下している成形条 件で射出成形する請求項 2に記載の合成樹脂の射出成形法。  5. The thickness of the heat insulation layer is more than 0.12 mm and less than 0.3 mm, and the thickness of the metal layer is 1 Z5 or less of the heat insulation layer, 1 Z100 or more, and 0.02 to 0.06 mm and the integral value (ΔΗ) is 5 seconds or more and 40 seconds or less and ° C, and the integrated value (Δΐι) is 12 seconds or more and ° C or more and 70 seconds 5 ° C after the synthetic resin comes into contact with the surface of the mold and the mold surface temperature drops to (the temperature of the synthetic resin minus 10 ° C) 5 ° C or less. An injection molding method of the synthetic resin according to claim 2.
6. 断熱層の厚みが 0. 1 mmを越え 0. 4 mm未満であり、 凸部の金属層厚み が断熱層厚みの 1 / 3以下で、 且つ 0. 0 1〜 0. 0 7 mmであり、 しぼ形状凹 部の深さが 0. 0 0 5〜 0. 0 6 mmであり、 積分値 (Δ Η) が 2秒 .。 C以上 5 0秒 · °C以下、 及び Z又は積分値 (Δ h ) が 1 0秒 ·。(:以上 1 0 0秒 .。(以下で あり、 且つ合成樹脂が型表面に接触して 5秒後に、 型表面温度が (合成樹脂の軟 化温度一 1 0 °C) 以下に低下している成形条件で射出成形する請求項 3に記載の 合成樹脂の射出成形法。 6. When the thickness of the heat insulation layer is more than 0.1 mm and less than 0.4 mm, the thickness of the metal layer at the protrusion is 1/3 or less of the thickness of the heat insulation layer, and the thickness is between 0.01 and 0.07 mm. Yes, the depth of the grain-shaped recess is 0.005 to 0.06 mm, and the integral value (ΔΗ) is 2 seconds. C or more 5 0 seconds · ° C or less, and Z or integrated value (Δh) is 10 seconds ·. (: More than 100 seconds .. (and less than 5 seconds after the synthetic resin comes into contact with the mold surface, the mold surface temperature drops below (the softening temperature of the synthetic resin-10 ° C) or less) The injection molding method for a synthetic resin according to claim 3, wherein the injection molding is performed under certain molding conditions.
7. 断熱層の厚みが 0. 1 2を越え 0. 3 mm未満であり、 凸部の金属層厚みが 断熱層厚みの 1ノ 5以下で、 且つ 0. 0 1 ~ 0. 0 6 mmであり、 しぼ形状凹部 の深さが 0. 0 0 5〜 0. 0 4 mmであり、 積分値 (Δ H) が 5秒 · °C以上 4 0 秒 · 以下、 及び 又は積分値 (Δ h ) が 1 2秒 · °C以上 7 0秒 ·て以下であり、 且つ合成樹脂が型表面に接触して 5秒後に、 型表面温度が (合成樹脂の钦化温度 一 1 0 °C) 以下に低下している成形条件で射出成形する請求項 3に記載の合成樹 脂の射出成形法。 7. The thickness of the heat insulating layer is more than 0.12 and less than 0.3 mm, and the thickness of the metal layer at the protrusion is 1-5 or less of the thickness of the heat insulating layer, and it is between 0.01 and 0.06 mm. Yes, the depth of the grain-shaped recess is 0.005 to 0.04 mm, and the integrated value (ΔH) is 5 seconds · ° C or more and 40 seconds or less, and / or the integrated value (Δh) 5 seconds after the synthetic resin comes into contact with the mold surface, and the mold surface temperature falls below (the synthetic resin's curing temperature-10 ° C). The injection molding method for a synthetic resin according to claim 3, wherein the injection molding is performed under reduced molding conditions.
8. 合成樹脂の型内平均流動速度が 2 0 ~ 3 0 0 mmZ秒で射出成形する請求項 2、 3、 4、 5、 6又は 7に記載の合成樹脂の射出成形法。  8. The injection molding method for a synthetic resin according to claim 2, 3, 4, 5, 6, or 7, wherein the synthetic resin is injection-molded at an average flow velocity in a mold of 20 to 300 mmZ seconds.
9. 合成樹脂のブロー成形法に於いて、  9. In the blow molding method of synthetic resin,
( 1 ) 金属からなる主金型の型キヤビティを構成する型表面に、 該型表面に密着 した耐熱性重合体からなる 0. 1 mmを越え 0. 5 mm未満の断熱層が存在し、 且つ前記断熱層の上に該断熱層厚みの 1 3以下で、 且つ 0. 0 0 2〜0. l m mの厚みの金属層が存在する断熱層被覆金型を用い、  (1) A heat insulating layer of more than 0.1 mm and less than 0.5 mm made of a heat-resistant polymer adhered to the mold surface is present on the mold surface constituting the mold cavity of the metal main mold, and Using a heat-insulating layer-coated mold having a metal layer with a thickness of 13 to 13 mm or less of the heat-insulating layer and a thickness of 0.02 to 0.1 mm on the heat-insulating layer,
( 2 ) 主金型温度を 1 5 °C以上、 1 0 0 °C以下で、 且つ合成樹脂の軟化温度から 2 0 °Cを減じた温度以下に設定した成形条件と、  (2) Molding conditions in which the temperature of the main mold is set to not less than 15 ° C and not more than 100 ° C, and not more than a temperature obtained by subtracting 20 ° C from the softening temperature of the synthetic resin,
( 3 ) 成形される合成樹脂が型表面に接触後、 型表面温度が合成樹脂の钦化温度 以上にある間の (型表面温度一合成樹脂の钦化温度) 値の積分値 (ΔΗ) が 1 0 秒 ·て以上 2 0 0秒 ·て以下の成形条件、 及び Z又は、 型表面温度が (合成樹脂 の軟化温度一 1 0 °C) 以上にある間の {型表面温度一 (合成樹脂の钦化温度一 1 0 °C) } 値の積分値 (A h ) が 2 0秒 · °C以上 4 0 0秒 ·て以下の成形条件と、 更に、  (3) After the synthetic resin to be molded comes into contact with the mold surface, the integral value (Δ () of the value of (mold surface temperature-synthetic resin's curing temperature) while the mold surface temperature is equal to or higher than the curing temperature of the synthetic resin is obtained. Molding conditions of 10 seconds or more and 200 seconds or less, and Z or while the mold surface temperature is (softening temperature of synthetic resin-10 ° C) or more, {mold surface temperature-(synthetic resin The integrated value (A h) of the temperature is 20 seconds · ° C or more and 400 seconds · The following molding conditions,
( 4 ) 成形される合成樹脂が型表面に接触して 5秒後に、 型表面温度が合成樹脂 の軟化温度以下に低下する成形条件で成形する合成樹脂のブロー成形法。  (4) A blow molding method for synthetic resin in which molding is performed under molding conditions such that the mold surface temperature drops below the softening temperature of the synthetic resin 5 seconds after the synthetic resin to be molded contacts the mold surface.
1 0. 断熱層の厚みが 0. 2 mm以上 0. 5 mm未満であり、 金属層の厚みが断 熱層厚みの 1 5以下 1 / 1 0 0以上で、 且つ 0. 0 0 4〜0. 0 6 mmであり、 積分値 (Δ Η) が 2 0秒 ' °C以上 1 0 0秒 ·て以下、 及び/又は積分値 (Δ ΐι) が 3 0秒 ·て以上 3 0 0秒 ·て以下の成形条件でブロー成形する請求項 9に記載 の合成樹脂のブロー成形法。 1 0. The thickness of the heat insulation layer is 0.2 mm or more and less than 0.5 mm, and the thickness of the metal layer is The thickness of the thermal layer is 15 or less 1/100 or more, and 0.04 to 0.06 mm, and the integral value (ΔΗ) is 20 seconds or more than ° C and 100 seconds or more. The blow molding method for a synthetic resin according to claim 9, wherein the blow molding is performed under the following molding conditions in which and / or the integral value (Δΐι) is 30 seconds or more and 300 seconds or less.
1 1. 合成樹脂のブロー成形法に於いて、  1 1. In synthetic resin blow molding,
( 1 ) 金属からなる主金型の型キヤビティを構成する型表面に、 該型表面に密着 した耐熱性重合体からなる 0. l mmを越ぇ 0. 5 mm未満の断熱層が存在し、 更に前記断熱層の上に、 凸部の金属層厚みが断熱層厚みの 1 3以下で、 且つ、 0. 0 1〜 0. 1 mmであり、 また凹部の深さが 0. 0 0 5〜0. 0 9 mmであ るしぼ状表面を有する金属層が存在する断熱層被覆金型を用い、  (1) On the surface of the mold constituting the mold cavity of the main mold made of metal, there is a heat insulation layer of more than 0.1 mm and less than 0.5 mm made of a heat-resistant polymer adhered to the mold surface, Further, on the heat insulating layer, the thickness of the metal layer of the convex portion is 13 or less of the thickness of the heat insulating layer, and is 0.01 to 0.1 mm, and the depth of the concave portion is 0.05 to 5 mm. Using a heat-insulating layer-coated mold with a metal layer having a grain-like surface of 0.09 mm,
( 2 ) 主金型温度を 1 5 °C以上、 1 0 0 °C以下で、 且つ合成樹脂の软化温度から (2) Main mold temperature is not less than 15 ° C and not more than 100 ° C, and from the curing temperature of synthetic resin.
2 0 °Cを減じた温度以下に設定した成形条件と、 Molding conditions set at a temperature of 20 ° C or less, and
( 3 ) 成形される合成樹脂が型表面に接触後、 型表面温度が合成樹脂の钦化温度 以上にある間の (型表面温度一合成樹脂の钦化温度) 値の積分値 (Δ Η) が 1 0 秒 ·て以上 2 0 0秒 · °C以下、 及び Z又は、 型表面温度が (合成樹脂の軟化温度 一 1 0 °C) 以上にある間の {型表面温度一 (合成樹脂の钦化温度一 1 0 °C) } 値 の積分値 (Δ h) が 2 0秒 · °C以上 4 0 0秒 · °C以下の成形条件と、 更に、  (3) After the synthetic resin to be molded comes into contact with the mold surface, the integral value (Δ 値) of the value of (mold surface temperature minus synthetic resin's curing temperature) while the mold surface temperature is equal to or higher than the curing temperature of the synthetic resin Is less than 10 seconds and less than 200 seconds · ° C, and Z or while the mold surface temperature is (softening temperature of synthetic resin-10 ° C) or more, Molding temperature (10 ° C)) The integral value (Δh) of the value is 20 seconds · ° C or more and 400 seconds · ° C or less.
( 4 ) 成形される合成樹脂が型表面に接触して 5秒後に、 型表面温度が合成樹脂 の軟化温度以下に低下する成形条件で成形する合成樹脂のブロー成形法。  (4) A blow molding method for synthetic resin in which molding is performed under molding conditions such that the mold surface temperature drops below the softening temperature of the synthetic resin 5 seconds after the synthetic resin to be molded contacts the mold surface.
1 2. 断熱層の厚みが 0. 2 mm以上 0. 5 mm未満であり、 凸部の金属層厚み が断熱層厚みの 1 5以下 1 Z 1 0 0以上で、 且つ 0. 0 1〜0. 0 8 mmであ り、 しぼ形状凹部の深さが 0. 0 0 5 ~ 0. 0 7 mmであり、 積分値 (Δ H) 力 1 2. The thickness of the heat-insulating layer is 0.2 mm or more and less than 0.5 mm, and the thickness of the metal layer of the projection is 15 or less of the heat-insulating layer thickness, 1 Z 100 or more, and 0.0 1 to 0. 0.8 mm, the depth of the grain-shaped recess is 0.05 mm to 0.07 mm, and the integral (ΔH) force
2 0秒 · °C以上 1 0 0秒 · °C以下、 及び 又は積分値 (Δ h ) が 3 0秒 · °C以上20 seconds · ° C or more 100 seconds · ° C or less, and / or integral value (Δh) 30 seconds · ° C or more
3 0 0秒 · °C以下の成形条件でブロー成形する請求項 1 1に記載の合成樹脂の成 形法。 12. The method for molding a synthetic resin according to claim 11, wherein the molding is performed under a molding condition of 300 seconds · ° C. or less.
1 3. パリソンが型表面に接触してから、 ブロー圧力が成形品内面に十分にかか るまでの時間が 1〜 5秒である成形条件でブロー成形する請求項 9、 1 0、 1 1 又は 1 2に記載の合成樹脂のブロー成形法。  1 3. Blow molding under the molding conditions in which the time from when the parison contacts the mold surface until the blow pressure is sufficiently applied to the inner surface of the molded product is 1 to 5 seconds. Or the blow molding method of the synthetic resin according to 12.
1 4. 断熱層と金属層は微細凹凸界面で密着している請求項 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1、 1 2又は 1 3に記載の合成樹脂の成形法。 1 4. Claim 1, 2, 3, 4, 5, 6. The method for molding a synthetic resin according to 6, 7, 8, 9, 10, 10, 11, 12, or 13.
1 5. 断熱層を形成する耐熱性重合体が直鎖型高分子量ポリイ ミ ドからなる請求 項 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1、 1 2、 1 3又は 1 4に記 載の合成樹脂の成形法。  1 5. The heat-resistant polymer forming the heat-insulating layer is made of a linear high-molecular-weight polyimide. Claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11, 2. Molding method of synthetic resin described in 1, 13 or 14.
1 6. 断熱層の最表面層を微粉末状エッチング助剤が 1〜 3 0重量%配合された 耐熱性重合体で形成した後に、 該断熱層の最表面層を化学ェッチング処理を行い 微細凹凸状にし、 その表面に化学メ ツキを行い、 更に必要に応じて化学メ ツキ及 びノ又は電解メ ッキの 1 つ以上を行うことにより金属層を形成し、 該金属層の密 着力が 0. 3 k g/ 1 0 mm以上の金属層を彼覆してなる金型を用いる請求項 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1、 1 2、 1 3、 1 4又は 1 5に記 載の合成樹脂の成形法。  1 6. After forming the outermost surface layer of the heat insulating layer with a heat-resistant polymer containing 1 to 30% by weight of a fine powdered etching aid, the outermost surface layer of the heat insulating layer is subjected to chemical etching to obtain fine irregularities. The metal layer is formed by subjecting the surface to a chemical plating and, if necessary, performing one or more of a chemical plating and a metal plating or an electrolytic plating. Claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 1, 1, 2, 1 using a mold with a metal layer over 3 kg / 10 mm or more The molding method of the synthetic resin described in 3, 14 or 15.
1 7. 金属層表面あるいは金属層表面の一部が、 鏡面状である金型を用いる請求 項 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1、 1 2、 1 3、 1 4、 1 5 又は 1 6に記載の合成樹脂の成形法。  1 7. The metal layer surface or a part of the metal layer surface uses a mirror-shaped mold. Claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11, 2. The method for molding a synthetic resin according to 2, 13, 14, 15, or 16.
1 8. 金属層表面あるいは金属層表面の一部が、 レンズ様の凹凸状である金型を 用いる請求項 1、 2、 4、 5、 8、 1 4、 1 5又は 1 6に記載の合成樹脂の成形 法。  1 8. The composition according to claim 1, 2, 4, 5, 5, 8, 14, 14, 15 or 16, wherein a metal layer surface or a part of the metal layer surface is a lens-shaped irregular mold. Resin molding method.
1 9. 金属層表面あるいは金属層表面の一部が、 微細凹凸酷消し状である金型を 用いる請求項 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1、 1 2、 1 3、 1 4、 1 5又は 1 6に記載の合成樹脂の成形法。  1 9. Claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 1 in which a metal layer surface or a part of the metal layer surface uses a mold having a finely rugged shape. The molding method of the synthetic resin according to 1, 12, 13, 14, 15, or 16.
2 0. 金属層表面の凸部と凹部のうち一方が鏡面伏であり、 他方が艷消し状であ る金型を用いる請求項 1、 3、 6、 7、 8、 1 1、 1 2、 1 3、 1 4、 1 5又は 1 6に記載の合成樹脂の成形法。  20. Claims 1, 3, 6, 7, 8, 11, 1 and 12 using a mold in which one of the projections and depressions on the surface of the metal layer has a mirror surface and the other has a matte shape. 13. The method for molding a synthetic resin according to 13, 14, 15, or 16.
2 1. 金属層表面あるいは金属層表面の一部が、 多段サン ドブラス ト処理及びノ 又は多段エツチング処理により形成された艷消し状表面を有する金型を用いる請 求項 1 9又は 2 0に記載の合成樹脂の成形法。  2 1. Claims 19 or 20, wherein the metal layer surface or a part of the metal layer surface uses a mold having an opaque surface formed by multi-stage sand blasting and / or multi-stage etching. Molding method of synthetic resin.
2 2. 金属層が、 金型キヤ ビティ側表面金属層がその内側金属層に比較して硬度 が小さい、 及び 又はェッチング性が大きい、 少なく とも 2層を有する金属層で ある金型を用いる請求項 2 1 に記載の合成樹脂の成形法。 2 2. A request to use a mold in which the metal layer is a metal layer having at least two layers, wherein the surface metal layer on the mold cavity side has lower hardness and / or greater etching properties than the inner metal layer. Item 21. The method for molding a synthetic resin according to Item 21.
2 3. 金属層の金型キヤ ビティ側表面金属層のェッチング速度がその内側金属層 のエッチング速度の 2倍以上であり、 上記金属層を多段エッチング処理により艷 消し状表面にした金型を用いる請求項 2 2に記載の合成樹脂の成形法。 2 3. The mold speed of the metal layer on the cavity side of the metal layer is more than twice the etching speed of the inner metal layer, and a metal mold is used in which the above metal layer has a matte surface by multi-stage etching. A method for molding the synthetic resin according to claim 22.
2 4. 成形する合成樹脂が、 ポリ スチレン、 ゴム強化ポリ スチレン、 スチレン一 ァク リ ロ二 ト リル共重合体、 A B S樹脂、 スチレン—メチルメタク リ レー ト共重 合体等のスチレン系樹脂、 ポリ メチルメタク リ レー ト、 ゴム強化ポリ メチルメタ ク リ レー ト等のメ タク リル樹脂、 ポリカーボネー トから選択される非結晶性樹脂 である請求項 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1、 1 2、 1 3、 1 4、 1 5、 1 6、 1 7、 1 8、 1 9、 2 0、 2 1、 2 2又は 2 3に記載の合成 樹脂の成形法。 2 4. Synthetic resin to be molded is polystyrene, rubber-reinforced polystyrene, styrene-acrylonitrile copolymer, ABS resin, styrene-based resin such as styrene-methyl methacrylate copolymer, or polymethyl methacrylate. Claims 1, 2, 3, 4, 5, 6, 7, 8, and 9 are non-crystalline resins selected from methacrylate resins such as relays, rubber-reinforced polymethyl methacrylate, and polycarbonate. Molding of synthetic resin described in 9, 10, 11, 12, 13, 13, 14, 15, 15, 16, 17, 18, 19, 20, 20, 21, 22, or 23 Law.
2 5. 合成樹脂が繊維状、 粉末状等の無機充塡材を 5〜 6 5重量%含有する合成 樹脂であり、 金型最表面の金属層の硬さが合成樹脂中の無機充塡材の硬さと同等、 あるいは大きい金型を用いる請求項 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1、 1 2、 1 3、 1 4、 1 5、 1 6、 1 7、 1 8、 1 9、 2 0、 2 1、 2 2、 2 3又は 2 4 に記載の合成樹脂の成形法。  2 5. The synthetic resin is a synthetic resin containing 5 to 65% by weight of a fibrous or powdery inorganic filler, and the hardness of the metal layer on the outermost surface of the mold is determined by the inorganic filler in the synthetic resin. Claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11, 12, 13, 14, 15, 15, 1 6. The method for molding a synthetic resin described in 6, 17, 18, 19, 20, 20, 21, 22, 23 or 24.
2 6. 合成樹脂が無機充塡材を 2 0重量%を越え 6 5重量%以下含有する合成樹 脂である請求項 ' 2 5に記載の合成樹脂の成形法。  26. The method for molding a synthetic resin according to claim 25, wherein the synthetic resin is a synthetic resin containing more than 20% by weight and not more than 65% by weight of an inorganic filler.
2 7. 合成樹脂が無機充塡材を 3 0〜5 0重量%含有する合成樹脂である請求項 2 5に記載の合成樹脂の成形法。  27. The method according to claim 25, wherein the synthetic resin is a synthetic resin containing 30 to 50% by weight of an inorganic filler.
PCT/JP1996/002074 1995-07-25 1996-07-24 Process for molding synthetic resins WO1997004938A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP20847895 1995-07-25
JP7/208478 1995-07-25
JP33664895 1995-12-25
JP7/336648 1995-12-25

Publications (1)

Publication Number Publication Date
WO1997004938A1 true WO1997004938A1 (en) 1997-02-13

Family

ID=26516855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002074 WO1997004938A1 (en) 1995-07-25 1996-07-24 Process for molding synthetic resins

Country Status (3)

Country Link
CN (1) CN1098763C (en)
MY (1) MY141391A (en)
WO (1) WO1997004938A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110869707A (en) * 2017-06-21 2020-03-06 朝日英达科株式会社 Magnetic azimuth/position measuring device
CN114652157A (en) * 2020-12-23 2022-06-24 武汉苏泊尔炊具有限公司 Pot and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101648185B1 (en) * 2010-06-14 2016-08-12 포리프라스틱 가부시키가이샤 Manufacturing method for mold
CN104473711A (en) * 2014-12-23 2015-04-01 薛剑 Tool matched with condom

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3734449A (en) * 1970-10-14 1973-05-22 Tokyo Shibaura Electric Co Metal mold for injection molding
JPH0358809A (en) * 1989-07-28 1991-03-14 Nippon G Ii Plast Kk Die
JPH04314506A (en) * 1990-12-03 1992-11-05 General Electric Co <Ge> Adiabatic mold structure with multilayer metal surface layers
JPH06143278A (en) * 1992-11-02 1994-05-24 Asahi Chem Ind Co Ltd Forming method for recovered resin
JPH0661897B2 (en) * 1992-04-27 1994-08-17 ゼネラル・エレクトリック・カンパニイ Halogenated polyimide composition having improved adhesion and product manufactured using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143278A (en) * 1984-08-06 1986-03-01 Takeshi Murakami Composite apparatus utilizing sea-water
JP3058809B2 (en) * 1995-02-22 2000-07-04 ライト工業株式会社 Reinforcing bar formwork

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3734449A (en) * 1970-10-14 1973-05-22 Tokyo Shibaura Electric Co Metal mold for injection molding
JPH0358809A (en) * 1989-07-28 1991-03-14 Nippon G Ii Plast Kk Die
JPH04314506A (en) * 1990-12-03 1992-11-05 General Electric Co <Ge> Adiabatic mold structure with multilayer metal surface layers
JPH0661897B2 (en) * 1992-04-27 1994-08-17 ゼネラル・エレクトリック・カンパニイ Halogenated polyimide composition having improved adhesion and product manufactured using the same
JPH06143278A (en) * 1992-11-02 1994-05-24 Asahi Chem Ind Co Ltd Forming method for recovered resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110869707A (en) * 2017-06-21 2020-03-06 朝日英达科株式会社 Magnetic azimuth/position measuring device
CN110869707B (en) * 2017-06-21 2022-02-25 朝日英达科株式会社 Magnetic azimuth/position measuring device
CN114652157A (en) * 2020-12-23 2022-06-24 武汉苏泊尔炊具有限公司 Pot and manufacturing method thereof
CN114652157B (en) * 2020-12-23 2024-03-29 武汉苏泊尔炊具有限公司 Pot and manufacturing method thereof

Also Published As

Publication number Publication date
CN1098763C (en) 2003-01-15
MY141391A (en) 2010-04-30
CN1195312A (en) 1998-10-07

Similar Documents

Publication Publication Date Title
US6077472A (en) Dull-surfaced, injection molded synthetic resin articles and a method of shaping them
CA2703041C (en) Process for the production of coated mouldings
US9062211B2 (en) Reactive mixture for coating molded objects by means of reaction injection molding and coated molded object
KR970000922B1 (en) Mold for synthetic resin molding
JP5883814B2 (en) Mold for molding, manufacturing method thereof, and method for matching glossiness
TW201141676A (en) Process for producing coated mouldings
WO1997004938A1 (en) Process for molding synthetic resins
JPH09234740A (en) Molding of synthetic resin
JPH09262837A (en) Production of matte mold and molding method using matte mold
JPH10138252A (en) Mold coated with heat insulating layer and molding method of synthetic resin using this mold
JP2003154591A (en) Fiber-reinforced thermoplastic resin
JP2002067070A (en) Molded article of fiber reinforced plastic and manufacturing method therefor
JPH09141757A (en) Synthetic resin molded product having high transmissivity and high diffusibility and its molding method
JPH0866927A (en) Matte synthetic resin injection-molded article and manufacture thereof
US20070252300A1 (en) Novel aesthetics in surfaces
JPH09220746A (en) Injection molding of synthetic resin
JP3396254B2 (en) Mold and its manufacturing method
CN108114873A (en) A kind of face coat structure, its preparation method and application
JP2001181515A (en) Resin composition
JPH0929753A (en) Heat insulating layer coated mold for molding synthetic resin
JPH08187732A (en) Mold for molding synthetic resin and manufacture thereof
JPH10175222A (en) Manufacture of heat insulating layer coated mold and method for molding synthetic resin using the mold
JPH0919928A (en) Heat insulating layer clad mold and manufacture thereof
JPS61263728A (en) Roughening of surface of resin molding
JPH08187731A (en) Mold for molding synthetic resin and manufacture thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96196764.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase