WO1997000426A1 - Sensorchip zur bestimmung der bewegung eines magnetfeldes - Google Patents

Sensorchip zur bestimmung der bewegung eines magnetfeldes Download PDF

Info

Publication number
WO1997000426A1
WO1997000426A1 PCT/EP1996/002538 EP9602538W WO9700426A1 WO 1997000426 A1 WO1997000426 A1 WO 1997000426A1 EP 9602538 W EP9602538 W EP 9602538W WO 9700426 A1 WO9700426 A1 WO 9700426A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor chip
chip according
bridge
magnet
bridges
Prior art date
Application number
PCT/EP1996/002538
Other languages
English (en)
French (fr)
Inventor
Uwe Loreit
Fritz Dettmann
Wulf ANDRÄ
Original Assignee
Institut Für Mikrostrukturtechnologie Und Optoelektronik E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Für Mikrostrukturtechnologie Und Optoelektronik E.V. filed Critical Institut Für Mikrostrukturtechnologie Und Optoelektronik E.V.
Priority to AU62241/96A priority Critical patent/AU6224196A/en
Priority to US08/973,608 priority patent/US6011390A/en
Publication of WO1997000426A1 publication Critical patent/WO1997000426A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices

Definitions

  • the present invention relates to a sensor chip with magnetic field-dependent resistance layers, for use in non-contact angle and position measurement.
  • the bridge output signal however always speaks the direction of internal magnetization. Deviations thus occur, which are noticeable as corresponding errors in the angle measurement. Correcting these errors in the evaluation is extremely complicated by the fact that magnetoresistive layer strips with different longitudinal directions and different lengths are used. The deviations in each magnetoresistive layer strip are therefore of a different size. Therefore, in the arrangements described, only the elimination of the errors by using magnets with a very high field strength remains. This means that magnets with a considerable volume made of magnetic materials which supply high field strengths must be used and there must be only relatively small distances between the magnet and the sensor orchip. The former leads to high costs, the latter to small assembly tolerances.
  • a directional distribution is also present when using circular-shaped resistance strips instead of the circular ones. This causes the output voltage amplitude to drop by a factor ⁇ / 2 compared to the maximum possible.
  • the shape anisotropy also has a considerable value, so that larger deviations occur between the field direction to be measured and the magnetization of the layer.
  • utilization of the chip area as a sensitive sensor area is only possible to a small extent.
  • the object of the invention is therefore to specify the arrangement and use of a sensor chip when determining the sine and cosine value of the angle between a magnetic field and a line on the sensor chip, as is used for measuring angles and positions, and specifically under Conditions that only low field strengths are required, that the chip area can be minimized, that large output signal amplitudes are supplied by the sensor chip and that large distances between the magnet and the sensor chip are permissible.
  • the bridge resistors are made up of a large number of magnetoresistive layer elements. These layer elements contain highly conductive thin-film surfaces, each with two opposite edges, by means of which the current direction is determined in the layer elements. The fact that the current directions in the resistors of the same bridge are rotated by 90 ° relative to one another makes the necessary for the bridges the opposite change in resistance of the resistors in each bridge branch is obtained. The angle of 45 ° between the edges of the layer elements of the sine and cosine bridges is the prerequisite for the phase shift of 45 °, which exists between the two output signals of the bridges.
  • the layer elements are designed such that they have only negligible shape anisotropies.
  • the overall anisotropies are the same everywhere and there are no angle-dependent systematic deviations with the angular rotation of the sensor chip with respect to the magnetic field.
  • the formation of the magnetoresistive layer elements as squares has the advantage that a deviation in the adjustment of the structure of the highly conductive thin-film surfaces compared to the magnetoresistive squares in the four different layers rotated with respect to one another does not cause any change in the resistance of the magnetoresistive layer elements and therefore the bridges are very small even during layer production Offset voltage arise.
  • the arrangement of all contact surfaces for the connection of the operating voltage and the output voltages along one edge of the sensor chip leads to the advantage that the magnetic field-sensitive surface of the sensor is located near the opposite edge and thus at a short distance from parts producing magnetic fields how coils or permanent magnets can be positioned. There are far greater magnetic field strengths here than at larger distances, so that the measurement of the sine and cosine value of the angle to the magnetic field takes place with a smaller error.
  • the sensor chip arrangement described is suitable for measuring an angle which is enclosed between an edge of the sensor chip and the direction of a magnet.
  • the sensor is arranged above a bar magnet so that the perpendicular to the sensitive surface of the sensor chip is in line with the perpendicular to the bar magnet and the direction of magnetization of the bar magnet is perpendicular to this perpendicular.
  • a full sine and cosine period is measured at the two bridge outputs when the bar magnet is rotated through 180 °.
  • the tangent of the angle to be measured arises from the sine and cosine signal by forming the ratio.
  • the result of the ratio formation is independent of both the temperature of the sensor chip and the temperature of the magnet.
  • the sensor chip is arranged in the vicinity of the circumference of a magnet wheel, which is magnetized alternately in the opposite direction at least on its surface. Since the magnetic field emerges vertically from the north poles of the magnet wheel and vertically into the south poles occurs, there is a rotation of the magnetic field direction by 180 ° between the two poles. This results in an entire period of the sine and cosine signals at the outputs of the sensor chip. The number of poles moved past the sensor is determined using known incremental counting methods. The exact angular position between the poles is again obtained by forming the ratio between the two output signals.
  • the angle-determining sensor chip is advantageously suitable for measurement with the most varied pole distances of pole wheels.
  • a magnetic field generating arrangement which can be a coil or a bar magnet, among other things, is moved in one direction relative to the sensor chip. If, for example, the sensor chip is arranged in such a way that it moves on a parallel of the axis of the bar magnet, in the direction of which the magnet is also magnetized, the position from the angle of the magnetic field against this parallel, which the sensor measures, can be clearly determined. It also has the advantage here that the temperature of the magnet and also of the sensor chip has no influence on the measurement result. In addition, a linear assignment of the measured angle to the position is possible with little error.
  • the distance between the magnet and the sensor chip can be half the magnet length. Distance fluctuations do not lead to a position error if the path to be measured is restricted to approximately half the magnet length.
  • FIG.l the circuit of two parallel Wheatstone bridges according to the prior art, which is also used in the invention
  • 2 shows a special embodiment of the sensor chip according to the invention
  • FIG. 3 shows a marked section from FIG. 2
  • Fig. 4 shows a sensor chip according to the invention with a
  • FIG. 6 a sensor chip according to the invention with a linearly movable magnet for position measurement and FIG. 7 the dependence of the position error on the measured position of an arrangement with sensor chip and bar magnet.
  • Figure 1 shows the circuit diagram of two Wheatstone bridges connected in parallel.
  • the first bridge consists of resistors 1.1; 1.2; 1.3 and 1.4, and is referred to as a sine bridge
  • the second consists of resistors 1.5; 1.6; 1.7 and 1.8. and is the cosine bridge.
  • This circuit is implemented both in the known and in the sensor chip according to the invention.
  • FIG. 1 A special embodiment of the sensor chip 12 according to the invention is shown schematically in FIG. All bridge resistors 1.1 to 1.8 are constructed here from the same magnetoresistive layer elements 2. Such a layer element 2 can be seen enlarged in FIG. 3.
  • the magnetoresistive layer element 2 contains, in addition to a square surface of a layer with an anisotropic magnetoresistive effect for electrical contacting, highly conductive thin-layer surfaces 3, the surfaces of which are directed towards the inside of the squares. 1 tete edges 4 run parallel.
  • the magnetoresistive layer elements 2 are each arranged in rows as linear resistance regions 7, only two of which are framed and identified by dashed lines.
  • each bridge 5 associated with two resistors 1.1 and 1.2, 1.3 and 1.4, 1.5 and 1.6 as well as 1.7 and 1.8 are on the Sensor ⁇ chip 12 are each symmetrical to the centerline 10 of the Chipflä ⁇ surface.
  • ! 0 ken are connected in series to form a bridge branch, form angles 5 of 90 ° with one another.
  • Each resistor 1.1 to 1.8 consists of two linear resistance regions 7 connected in series, which are arranged in a meandering manner in such a way that in each meandering branch 9 the linear resistance regions 7 lying next to one another alternately belong to the sine and cosine bridges.
  • the dimensions of the sensor chip 12 are in the range of a few millimeters, those of the magnetoresistive layer elements 2 in the range of approximately 10 micrometers.
  • the contact surfaces 13 for the output signals of the two bridges and the operating voltage contacts 8 are all close to a chip edge 14. Adjustment surfaces 11 for setting the zero voltage of both bridges are also accommodated here.
  • the sensitive surface 17 of the sensor chip 12, 5, in which the magnetic field-dependent magnetoresistive layer elements 2 are arranged, is thus displaced to the edge opposite this edge 14.
  • Figure 4 shows an arrangement for angle measurement.
  • a permanent magnet 15 with the poles N and S and with the central perpendicular 18 of its surface facing the sensor chip 12 is rotatably located above the sensor chip 12, the sensitive surface 17 and the central perpendicular 16 of which are shown.
  • the two perpendiculars 16 and 18 must be brought into agreement.
  • FIG. 5 shows the arrangement for a high-resolution angle measurement using the sensor chip 12.
  • the plane of the pole wheel 19 which is magnetized alternately in the opposite direction at least on its circumference 20, there is also the plane of the sensor chip 12.
  • the edge 21 opposite the edge 14, in the vicinity of which the contact surfaces 13 are accommodated, is for Magnet wheel aligned.
  • the pole wheel is rotated by an angle which corresponds to the distance of a south pole S from the north pole N
  • the field direction at the location of the sensor chip 12 rotates by 180 ° and the output signals of the sine and cosine bridges pass through a whole period.
  • This results in a sensitivity of the angle measurement which is higher by the number of poles of the pole wheel 19 than when using a bar magnet 15 according to FIG. 4.
  • the number of poles already moved past the sensor chip 12 can be determined by known incremental measuring methods. so that the total change in angle from an initial value is always known.
  • FIG. 6 shows the arrangement of the sensor chip 12 during the measurement of a linear change in position relative to a permanent magnet 22, which can be moved back and forth in the direction of the arrow.
  • the magnet contains a plurality of regions 23 in the direction of movement, which are magnetized alternately in the opposite direction.
  • the edge of the sensor chip 12 is aligned parallel to the direction of movement of the permanent magnet.
  • the field direction at the location of the sensor chip 12 changes at The magnet 22 moves past the distance of a north pole N from the south pole S by an entire period. This means that both sensor output signals go through an entire period.
  • the assignment of the field direction angle determined to the position is largely linear.
  • the counting of the magnetic poles that have already moved past the sensor chip 12 from a starting position can again be carried out by known incremental measuring methods.
  • the extensive linearity of the assignment of the field direction angle determined with the sensor orchip to the change in position is shown in FIG.
  • the results shown here have been determined in the event that the magnet 22 consists of only one area 23. It has a length of 20 mm and a cross section of 10 »10 mm 2 .
  • the graphic shows the error that results when the measured angle is linearly assigned to the position in the direction of movement.
  • Curve 24 applies to a distance between sensor chip 12 and magnet 22 of 10 mm, curve 25 for 10.7 mm distance and curve 26 for 12 mm distance. With a total measuring length of 20 mm, the error remains at an optimal distance of 10.7 mm below 0.1 mm.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

Es wird eine Anordnung für ein magnetoresistives Sensorchip mit zwei Wheatstone-Brücken zur Bestimmung des Sinus- und Cosinus des Winkels einer Chipkante zur Magnetfeldrichtung angegeben. Alle Widerstände der Brücken bestehen aus einer Vielzahl von magnetoresistiven Schichtelementen (2) mit Stromanschlüssen aus hochleitfähigen Dünnschichtflächen mit parallelen Kanten. Bei in einer Brücke direkt elektrisch miteinander verbundenen Widerständen bilden diese Kanten Winkel (5) von jeweils 90°. Die parallelen Kanten der einander entsprechenden Widerstände der Sinus- und der Cosinusbrücke sind um Winkel von 45° gegeneinander gedreht. Die Verteilung der magnetoresistiven Schichtelemente (2) auf der Chipfläche erfolgt so, daß die Winkelmessung mit minimalem Fehler erfolgen kann. Anordnungen für den Einsatz des Sensorchips in der Winkel- und Positionsmessung werden angegeben. Die Anordnung des Sensorchips wird wesentlich durch die Figur wiedergegeben.

Description

SENSORCHIP ZUR BESTIMMUNG DER BEWEGUNG EINES MAGNETFELDES.
Beschreibung
Gegenstand der vorliegenden Erfindung ist ein Sensorchip mit magnetfeldabhängigen Widerstandsschichten, zur Verwendung in der berührungslosen Winkel- und Positionsmessung.
Die Vorteile der Anwendung von Sensorchips, deren Dünn¬ schichtwiderstände den anisotropen magnetorersistiven Effekt zeigen, werden beispielsweise in der Schrift von A. Petersen und T. Rinschede "Berührungslose Winkelmessung mit magnetore- sistiven Sensoren" in der Elektronik 6/1994, S. 91-93 für solche Messungen bereits herausgestellt. Nachteilig bei der Verwendung einer einzigen Sensorbrücke erweist sich der stark begrenzte Meßbereich und die starke Temperaturabhängigkeit des Ausgangssignales der Brücke. Deshalb werden bereits in der Patentschrift DE 43 17 512 und in dem Aufsatz von A. Petersen "Berührungslose Winkelmessung" in Design & Elektro¬ nik Sensortechnik, Mai 1995, S. 64 -66 Sensorchips mit zwei Brücken für die Bestimmung des Sinus- und Cosinuswertes des Winkels eines Magnetfeldes zu einer Kante des Sensorchips beschrieben. Der Winkel wird hier aus dem Verhältnis beider Brückenausgangssignale erhalten. Da beide Sensorbrücken auf demselben Chip angeordnet sind, ist ihre Temperatur von nur geringer Differenz, und damit wird das Verhältnis beider Ausgangssignale weitgehend temperaturunabhäήgig. Als nachtei- lig bei beiden Sensorchips erweist sich jedoch, daß die ma¬ gnetoresistiven Streifenleiter, die die Brückenwiderstände bilden, eine Formanisotropie haben, die die Eigenanisotropie der unendlich ausgedehnten Schicht bei weitem übertrifft. Je größer die Gesamtanisotropie des jeweiligen Schichtstreifens ist, desto größer ist auch die Abweichung der Richtung des äußeren Magnetfeldes von der Magnetisierungsrichtung im Inne¬ ren des Schichtmaterials. Das Brückenausgangssignal ent- spricht jedoch immer der Richtung der inneren Magnetisierung. Damit treten Abweichungen auf, die sich als entsprechende Fehler in der Winkelmessung bemerkbar machen. Eine Korrektur dieser Fehler in der Auswertung wird dadurch äußerst kompli- ziert, daß magnetoresistive Schichtstreifen mit unterschied¬ licher Längsrichtung und unterschiedlicher Länge benutzt werden. Damit sind die Abweichungen in jedem magnetoresisti¬ ven Schichtstreifen von anderer Größe. Deshalb bleibt bei den beschriebenen Anordnungen nur die Beseitigung der Fehler durch den Einsatz von Magneten mit sehr hoher Feldstärke. Das bedeutet, daß Magnete mit erheblichem Volumen aus Magnetmate¬ rialien, die hohe Feldstärken liefern, benutzt werden müssen und nur relativ geringe Abstände zwischen Magnet und Sens¬ orchip bestehen dürfen. Ersteres führt zu hohen Kosten, letz- teres zu geringen Montagetoleranzen.
Ein weiterer Mangel der Anwendung von langen Magnetschicht¬ streifen unterschiedlicher Längsrichtung auf der Chipfläche ist rein geometrisch bedingt. Die gesamte Chipfläche kann wegen der Winkel von etwa 45° zwischen den Streifen nicht zur Unterbringung der Schicht mit magnetfeldabhängigem Wider¬ stand genutzt werden. Damit ist eine größere Chipfläche er¬ forderlich, was unbedingt zu höheren Chipkosten führt.
Der Einfluß der Anisotropie der Schichten wird bei einer in der Patentschrift EP 0 217 478 Bl beschriebenen Anordnung, die den planaren Hall-Effekt in magnetoresistiven Schichten nutzt, weitgehend vermieden. Hier ergibt sich jedoch der Nachteil, daß nur sehr geringe Elementewiderstände realisier- bar sind. Das führt unmittelbar auch zu geringen Ausgangs¬ spannungen der Meßelemente, da diese den angelegten Betriebs¬ spannungen proportional sind. Dazu kommt, daß bei Verwendung von kreisförmigen Dünnschichtbereichen mit näherungsweise punktförmiger Stromeinspeisung am Kreisumfang die Richtung der Stromlinien nicht parallel ist. So ist immer eine Rich¬ tungsverteilung des Stromes gegenüber der Richtung der Magne¬ tisierung vorhanden und die bei parallelen Stromlinien maxi- male Widerstandsänderung der Magnetschicht wird bei weitem nicht erreicht. Entsprechend der so verringerten Widerstands¬ änderung ist auch das Ausgangssignal verkleinert. Auch bei Anwendung von kreisbogenförmigen Widerstandsstreifen anstelle der kreisförmigen ist eine Richtungsverteilung vorhanden. Dadurch wird ein Abfall der Ausgangsspannungsamplitude gegen¬ über der maximal möglichen um einen Faktor π/2 bewirkt. Bei schmalen Leiterzügen, wie sie für die kreisbogenförmigen Schichtleiter verwendet werden, hat darüber hinaus die Formanisotropie schon wieder einen erheblichen Wert, so daß größere Abweichungen zwischen der zu messenden Feldrichtung und der Magnetisierung der Schicht auftreten. Im Falle dieser schmalen Schichtleiter bei der vorgeschlagenen rotationssym¬ metrischen Anordnung ist weiterhin eine Ausnutzung der Chip- fläche als empfindliche Sensorfläche nur in geringem Maße möglich.
Aufgabe der Erfindung ist es daher, die Anordnung und Ver¬ wendung eines Sensorchips bei der Bestimmung des Sinus- und Cosinuswertes des Winkels zwischen einem Magnetfeld und einer Linie auf dem Sensorchip, wie sie zur Messung von Winkeln und Positionen genutzt wird, anzugeben und zwar unter Bedingun¬ gen, daß nur geringe Feldstärken benötigt werden, daß die Chipfläche minimiert werden kann, daß große Ausgangssignalam- plituden vom Sensorchip geliefert werden und große Abstände zwischen Magnet und Sensorchip zulässig sind.
Diese Aufgabe wird durch die Anordnung mit den in dem Anspruch 1 angegebenen Merkmalen gelöst. Zusätzlich vorteil- hafte Merkmale ergeben sich aus den weiteren Ansprüchen. Die Brückenwiderstände sind aus einer Vielzahl von magnetoresi¬ stiven Schichtelementen aufgebaut. Diese Schichtelemente beinhalten hochleitfähige Dünnschichtflächen mit jeweils zwei gegenüberliegenden Kanten, durch die die Stromrichtung in den Schichtelementen festgelegt wird. Dadurch, daß die Stromrich¬ tungen in den Widerständen derselben Brücke um 90° gegenein¬ ander verdreht sind, wird die für die Brücken notwendige gegenläufige Widerstandsänderung der Widerstände in jedem Brückenzweig erhalten. Der Winkel von 45° zwischen den Kanten der Schichtelemente der Sinus- und der Cosinusbrücke ist die Voraussetzung für die Phasenverschiebung von 45°, die zwi- sehen den beiden Ausgangssignalen der Brücken besteht. Die Schichtelemente sind so gestaltet, daß sie nur vernachlässig¬ bare Formanisotropien aufweisen. Das ergibt sich schon allein aus der Tatsache, daß ihre Länge sich nicht wesentlich von ihrer Breite unterscheidet. Solche Schichtelemente können nur einen sehr begrenzten Widerstand haben. Deshalb wird eine Vielzahl von ihnen in Reihe geschaltet. An den sich damit ergebenden hohen Widerstand kann ohne hohe Wärmeerzeugung auf der Chipfläche eine große Betriebsspannung angelegt werden. Damit werden hohe AusgangsSpannungen der Brücken ermöglicht, da diese der angelegten Betriebsspannung proportional sind. Die hier mögliche geringe Formanisotropie und eine geringe Eigenanisotropie der magnetoresistiven Schicht ergeben eine geringe Abweichung der Richtung der inneren Magnetisierung der Schichtelemente von der äußeren Feldrichtung, so daß die Feldrichtung mit hoher Genauigkeit aus den Ausgangssignalen der beiden Sensorbrücken ermittelt werden kann.
Durch die Verwendung der gleichen geometrischen Figur und der gleichen Abmessungen für alle magnetoresistiven Schichtele- mente sind die Gesamtanisotropien derselben überall gleich und es treten mit der Winkelverdrehung des Sensorchips gegen¬ über dem Magnetfeld keine winkelabhängigen systematischen Abweichungen auf.
Die Ausbildung der magnetoresistiven Schichtelemente als Quadrate hat den Vorteil, daß eine Abweichung bei der Justage der Struktur der hochleitfähigen Dünnschichtflächen gegenüber den magnetoresistiven Quadraten in den vier unterschiedlichen gegeneinander verdrehten Lagen keine Widerstandsänderung der magnetoresistiven Schichtelemente bewirkt und dadurch die Brücken schon bei der Schichtherstellung mit sehr geringer Offset-Spannung entstehen. Die Anordnung aller Kontaktflächen für den Anschluß der Be¬ triebsspannung und der Ausgangsspannungen entlang einer Kante des Sensorchips führt zu dem Vorteil, daß sich die magnet¬ feldempfindliche Fläche des Sensors nahe der gegenüberliegen- den Kante befindet und so mit geringem Abstand zu magnetfeld¬ erzeugenden Teilen wie Spulen oder Dauermagneten positioniert werden kann. Hier sind weit größere Magnetfeldstärken vorhan¬ den als in größeren Abständen, so daß die Messung des Sinus- und Cosinuswertes des Winkels zum Magnetfeld mit kleinerem Fehler erfolgt.
Die Anordnung aller magnetoresistiven Schichtelemente, der Verbindungsleitungen und der Kontaktflächen in einer Ebene vermeidet Leitungsüberkreuzungen und damit die Notwendigkeit der Herstellung von Isolationsschichten.
*
Die beschriebene Sensorchipanordnung ist zur Messung eines Winkels geeignet, der zwischen einer Kante des Sensorchips und der Richtung eines Magneten eingeschlossen ist. Im spe- ziellen Fall ist der Sensor über einem Stabmagneten so an¬ geordnet, daß die Mittelsenkrechte der empfindlichen Fläche des Sensorchips in einer Linie mit der Mittelsenkrechten des Stabmagneten ist und die Magnetisierungsrichtung des Stabma¬ gneten senkrecht zu dieser Mittelsenkrechten steht. Wie bei bekannten magnetoresistiven Sensoren wird bei einer Drehung des Stabmagneten um 180° eine volle Sinus- und Cosinusperiode an den beiden Brückenausgängen gemessen. Aus dem Sinus- und Cosinussignal entsteht durch Verhältnisbildung der Tangens des zu messenden Winkels. Durch die Verhältnisbildung wird das Ergebnis sowohl von der Temperatur des Sensorchips als auch von der Temperatur des Magneten unabhängig.
Für hohe Winkelauflösungen wird der Sensorchip in der Nähe des Umfangs eines Polrades angeordnet, das mindestens auf seiner Oberfläche abwechselnd in entgegengesetzter Richtung magnetisiert ist. Da das Magnetfeld aus den Nordpolen des Polrades senkrecht austritt und in die Südpole senkrecht eintritt, liegt jeweils zwischen den zwei Polen eine Drehung der Magnetfeldrichtung um 180° vor. Damit ergibt sich an den Ausgängen des Sensorchips jeweils eine ganze Periode des Sinus- und des Cosinussignales. Die Zahl der am Sensor vorbei bewegten Pole wird nach bekannten inkrementalen Zählverfahren ermittelt. Die genaue Winkelposition zwischen den Polen wird wieder durch Verhältnisbildung beider Ausgangssignale erhal¬ ten. Vorteilhafterweise ist der winkelbestimmende Sensorchip für die Messung bei den unterschiedlichsten Polabständen von Polrädern geeignet.
Zur Messung einer Position wird eine magnetfelderzeugende Anordnung, die unter anderem eine Spule oder ein Stabmagnet sein kann, gegenüber dem Sensorchip in einer Richtung bewegt. Ist beispielsweise der Sensorchip so angeordnet, daß er sich auf einer Parallelen der Achse des Stabmagneten, in deren Richtung dieser auch magnetisiert ist, bewegt, ist die Posi¬ tion aus dem Winkel des Magnetfeldes gegen diese Parallele, den der Sensor mißt, eindeutig bestimmbar. Als Vorteil ergibt sich auch hier, daß die Temperatur des Magneten und auch des Sensorchips keinen Einfluß auf das Meßergebnis hat. Dazu kommt, daß eine lineare Zuordnung des gemessenen Winkels zur Position mit geringem Fehler möglich ist. Der Abstand zwi¬ schen Magnet und Sensorchip kann von der Größe der halben Magnetlänge sein. Abstandsschwankungen führen bei Einschrän¬ kung des zu messenden Weges auf etwa die halbe Magnetlänge zu keinem Positionsfehler.
Wird statt des einfachen Stabmagneten ein Magnet eingesetzt, der in Bereichen, die in Bewegungsrichtung eine bestimmte Länge haben, in abwechselnder Richtung magnetisiert sind, so ist analog zur oben beschriebenen Winkelmessung mit Polrad eine hochauflösende inkrementale Längenmessung möglich. Als Vorteil für den Einsatz des erfindungsgemäßen Sensorchips ergibt sich wieder, daß er für alle Periodenlängen des in abwechselnder Richtung magnetisierten Magneten geeignet ist. Die Erfindung wird nachstehend anhand der Zeichnung mit sie¬ ben Figuren näher erläutert, in der Ausführungsbeispiele dargestellt sind. Es zeigen
Fig.l die Schaltung von zwei parallelen Wheatstone- Brücken entsprechend dem Stand der Technik, die auch bei der Erfindung verwendet wird; Fig.2 eine spezielle Ausführung des erfindungsgemä¬ ßen Sensorchips Fig. 3 einen gekennzeichneten Ausschnitt aus Fig.2; Fig. 4 einen erfindungsgemäßen Sensorchip mit einem
Stabmagneten zur Winkelmessung; Fig. 5 einen erfindungsgemäßen Sensorchip mit einem
Polrad zur hochauflösenden Winkelmessung: Fig.6 einen erfindungsgemäßen Sensorchip mit einem linear beweglichen Magneten zur Positionsmes¬ sung und Fig.7 die Abhängigkeit des Positionsfehlers von der gemessenen Position einer Anordnung mit Sen¬ sorchip und Stabmagnet.
Figur 1 zeigt das Schaltbild von zwei parallel geschalteten Wheatstone-Brücken. Die erste Brücke besteht aus den Wider¬ ständen 1.1; 1.2; 1.3 und 1.4, und wird als Sinusbrücke be¬ zeichnet, die zweite besteht aus den Widerständen 1.5; 1.6; 1.7 und 1.8. und ist die Cosinusbrücke. Diese Schaltung ist sowohl bei den bekannten als auch bei dem erfindungsgemäßen Sensorchip realisiert.
Eine spezielle Ausführungsform des erfindungsgemäßen Sens- orchips 12 ist in Figur 2 schematisch dargestellt. Alle Brückenwiderstände 1.1 bis 1.8 sind hier aus gleichen magne¬ toresistiven Schichtelementen 2 aufgebaut. Ein solches Schichtelement 2 ist in Figur 3 vergrößert zu sehen. Das magnetoresistive Schichtelement 2 enthält außer einer guadra- tischen Fläche einer Schicht mit anisotropem magnetoresisti¬ ven Effekt zur elektrischen Kontaktierung hochleitfahige Dünnschichtflächen 3, deren zum Inneren der Quadrate gerich- 1 tete Kanten 4 parallel verlaufen. Die magnetoresistiven Schichtelemente 2 sind jeweils in Reihen als lineare Wider¬ standsbereiche 7, von denen nur zwei gestrichelt eingerahmt und gekennzeichnet sind, angeordnet. Die zu jedem Brücken- 5 zweig gehörenden beiden Widerstände 1.1 und 1.2, 1.3 und 1.4, 1.5 und 1.6 sowie 1.7 und 1.8 befinden sich auf dem Sensor¬ chip 12 jeweils symmetrisch zur Mittellinie 10 der Chipflä¬ che. Die Kanten 4 der magnetoresistiven Schichtelemente 2, die in der elektrischen Schaltung der beiden einzelnen Brük-
!0 ken jeweils zu einem Brückenzweig in Reihe geschaltet sind, bilden Winkel 5 von 90° miteinander. Die Kanten 4 der magne¬ toresistiven Schichtelemente 2, der einander entsprechenden Widerstände der Sinus- und Cosinusbrücke 1.1 und 1.5; 1.2 und 1.6; 1.3 und 1.7; 1.4 und 1.8 bilden Winkel von 45° mitein-
15 ander. Beide Brücken sind mit den Betriebsspanungskontakten 8 verbunden. Die mit demselben Betriebsspannungskontakt 8 verbundenen linearen Widerstandsbereiche 7 gehören abwech¬ selnd zur Sinus- und zur Cosinusbrücke. Jeder Widerstand 1.1 bis 1.8 besteht aus zwei in Reihe geschalteten linearen Wi- 0 derstandsbereichen 7, die so mäanderförmig angeordnet sind, daß in jedem Mäanderzweig 9 die nebeneinanderliegenden linea¬ ren Widerstandsbereiche 7 jeweils abwechselnd zur Sinus- und zur Cosinusbrücke gehören. In realen Anordnungen des Sens¬ orchips sind gegenüber der Figur 2 auf dem Sensorchip 12
25 nicht nur drei magnetoresistive Schichtelemente 2, sondern eine Vielzahl davon und nicht nur zwei Mäanderzweige, sondern wesentlich mehr angeordnet. Die Abmessungen des Sensorchips 12 liegen im Bereich von einigen Millimetern, die der magne¬ toresistiven Schichtelemente 2 im Bereich von etwa 10 Mikro- 0 metem. Die Kontaktflächen 13 für die Ausgangssignale der beiden Brücken und die Betriebsspannungskontakte 8 liegen alle nahe an einer Chipkante 14. Hier sind auch Abgleichflä¬ chen 11 für die Einstellung der Nullspannung beider Brücken untergebracht. Die empfindliche Fläche 17 des Sensorchips 12, 5 in der die magnetfeldabhängigen magnetoresistiven Schicht¬ elemente 2 angeordnet sind, ist also zum dieser Kante 14 gegenüberliegenden Rand verschoben. Figur 4 zeigt eine Anordnung zur Winkelmessung. Über dem Sensorchip 12, dessen empfindliche Fläche 17 und deren Mit¬ telsenkrechte 16 eingezeichnet sind, befindet sich drehbar ein Dauermagnet 15 mit den Polen N und S und mit der Mittel¬ senkrechten 18 seiner zum Sensorchip 12 zeigenden Fläche. Für eine Messung des Winkels zwischen der Kante 14 des Sensor¬ chips 12 und einer Längskante des Magneten 15 mit möglichst geringem Fehler sind beide Mittelsenkrechte 16 und 18 in Übereinstimmung zu bringen.
In Figur 5 ist die Anordnung für eine hochauflösende Winkel¬ messung mit dem Sensorchip 12 dargestellt. In der Ebene des Polrades 19, das mindestens an seinem Umfang 20 abwechselnd in entgegengesetzter Richtung magnetisiert ist, befindet sich auch die Ebene des Sensorchips 12. Dabei ist die der Kante 14, in der Nähe derer die Kontaktflächen 13 untergebracht sind, gegenüberliegende Kante 21 zum Polrad hin ausgerichtet. Bei Drehung des Polrades um einen Winkel, der dem Abstand eines Südpols S vom Nordpol N entspricht, dreht sich die Feldrichtung am Ort des Sensorchips 12 um 180° und die Aus¬ gangssignale der Sinus- und der Cosinusbrücke durchlaufen eine ganze Periode. Damit wird eine Empfindlichkeit der Win¬ kelmessung erhalten, die um die Anzahl der Pole des Polrades 19 höher ist als bei Anwendung eines Stabmagneten 15 nach Figur 4. Die Zählung der bereits am Sensorchip 12 vorbeibe¬ wegten Pole kann nach bekannten inkrementalen Meßverfahren ermittelt werden, so daß die Gesamtwinkeländerung gegenüber einem Anfangswert immer bekannt ist.
Figur 6 zeigt die Anordnung des Sensorchips 12 bei der Mes¬ sung einer linearen Positionsänderung gegenüber einem Dauer¬ magneten 22, der in Pfeilrichtung hin und her bewegt werden kann. Der Magnet enthält in Bewegungsrichtung mehrere Berei¬ che 23, die abwechselnd in entgegen gesetzter Richtung magne- tisiert sind. Der Sensorchip 12 ist mit seiner Kante 21 par¬ allel zur Bewegungsrichtung des Dauermagneten ausgerichtet. Die Feldrichtung am Ort des Sensorchips 12 ändert sich bei Vorbeibewegung des Magneten 22 um den Abstand eines Nordpols N vom Südpol S um eine ganze Periodenlänge. Damit durchlaufen beide Sensorausgangssignale eine ganze Periode. Vorteilhaf¬ terweise ist die Zuordnung des dabei ermittelten Feldrich- tungswinkels zur Position weitgehend linear. Die Zählung der von einer Ausgangsposition aus bereits am Sensorchip 12 vor¬ beibewegten Magnetpole kann wieder durch bekannte inkrementa- le Meßverfahren erfolgen.
Die weitgehende Linearität der Zuordnung des mit dem Sens¬ orchip ermittelten Feldrichtungswinkels zur Positionsänderung wird in Figur 7 gezeigt. Die hier dargestellten Ergebnisse sind für den Fall ermittelt worden, daß der Magnet 22 nur aus einem Bereich 23 besteht. Er hat eine Länge von 20 mm und einen Querschnitt von 10»10 mm2. Aufgetragen ist in der Grafik der Fehler, der sich bei linearer Zuordnung des gemessenen Winkels zur Position in Bewegungsrichtung ergibt. Kurve 24 gilt für einen Abstand zwischen Sensorchip 12 und Magnet 22 von 10 mm, Kurve 25 für 10,7 mm Abstand und Kurve 26 für 12 mm Abstand. Bei einer Gesamtmeßlänge von 20 mm bleibt der Fehler im optimalen Abstand von 10,7 mm unter 0,1 mm. Wird nur eine Meßlänge von 10 mm bei dem 20 mm langen Magneten genutzt, ist der Meßfehler auch dann noch kleiner als 0,1 mm, wenn der Abstand zwischen Sensorchip 12 und Magnet um 2 mm geändert wird. Es soll hier betont werden, daß diese Ergeb¬ nisse weder von der Temperatur des Sensorchips 12 noch der des Magneten 22 abhängig sind.
Sensorchip zur Bestimmung eines Sinus- und eines Cosinuswer¬ tes
Liste der Bezugszeichen 1.1 bis 1.8 Widerstände
2 magnetoresistive Schichtelemente
3 hochleitfahige Dünnschichtflächen
4 Kanten
5 Winkel 6 Winkel
7 lineare Widerstandsbereiche
8 Betriebsspannungskontakte
9 Mäanderzweig
10 Mittellinie des Chips 11 Abgleichfläche
12 Sensorchip
13 Kontaktflächen
14 Chipkante (nahe den Anschlüssen)
15 Dauermagnet
16 Mittelsenkrechte der empfindlichen Fläche
17 empfindliche Fläche
18 Mittelsenktrechte des Dauermagneten
19 Polrad
20 Umfang des Polrades
21 Chipkante (gegenüber den Kontaktflächen)
22 Magnet
23 Bereich (des Magneten)

Claims

Patentansprüche
1. Sensorchip zur Bestimmung eines Sinus- und eines Cosi¬ nuswertes des Winkels der Magnetfeldrichtung gegen eine Linie auf der Chipfläche, die beispielsweise mit einer Chipkante übereinstimmt, mit zwei magnetoresistiven Wheatstone-Brücken, deren Widerstände (1.1 bis 1.8) aus einer Reihenschaltung einer Vielzahl von magnetoresisti¬ ven Schichtelementen (2) bestehen, deren jeweils zwei Stromanschlüsse aus elektrisch hochleitfähigen Dünn¬ schichtflächen (3) gebildet sind, die die Schichtelemen¬ te (2) von zwei gegenüberliegenden Rändern her bedecken und die in Richtung zueinander von jeweils einer Kante (4) begrenzt werden, und alle diese Kanten (4) jedes Widerstandes zueinander parallel sind d a d u r c h g e k e n n z e i c h n e t, daß der Rand der magnetoresistiven Schichtelemente (2) durch eine beliebige geschlossene, ebene geometrische
Figur gebildet ist, daß die parallelen Kanten (4) der elektrisch hochleitfä¬ higen Dünnschichtstreifen (3) auf den magnetoresistiven Schichtelementen (2) der Widerstände, die jeweils in einem Brückenzweig in Reihe geschaltet sind (1.1 und 1.2; 1.3 und 1.4; 1.5 und 1.6; 1.7 und 1.8), um Winkel von (5) von jeweils 90° gegeneinander verdreht sind, daß die zueinander parallelen Kanten (4) der hochleifä- higen Dünnschichtflächen (3) auf den magnetoresistiven Schichtelementen (2) der einander entsprechende Wider¬ stände der Sinusbrücke (1.1; 1.2; 1.3 und 1.4) und der der Cosinusbrücke (1.5; 1.6; 1.7 und 1.8) jeweils einen Winkel von 45° einschließen, und daß die zueinander parallelen Kanten (4) , die zur Sinusbrücke gehören, gegen die Linie auf der Chipfläche, die beispielsweise mit der Chipkante übereinstimmt, um Winkel (6) von 45° geneigt sind.
2. Sensorchip nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß der Rand aller magnetoresistiven Schichtelemente (2) die gleiche geschlossene, ebene geometrische Figur ist und daß alle Schichtelemente (2) aus gleichem Material bestehen.
3. Sensorchip nach Anspruch 1 oder 2 , d a d u r c h g e k e n n z e i c h n e t, daß die geschlossene, ebene geometrische Figur ein Qua¬ drat ist.
4. Sensorchip nach Anspruch 1 , 2 oder 3 , d a d u r c h g e k e n n z e i c h n e t, daß die Widerstände (1.1 bis 1.8) der Brücken aus einem oder mehreren linearen Widerstandsbereichen (7) beste¬ hen, die aus geometrisch in einer Linie angeordneten magnetoresistiven Schichtelementen (2) zusammengesetzt sind.
Sensorchip nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, daß beide Brücken mit denselben Betriebsspannungskon¬ takten (8) verbunden sind.
6. Sensorchip nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, daß an demselben Betriebsspannungskontakt (8) die neben¬ einanderliegenden linearen Widerstandsbereiche (7) ab- wechselnd zur Sinus- und der Cosinus-Brücke gehören.
7. Sensorchip nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t, daß die vier jeweils nebeneinanderliegenden linearen Widerstandsbereiche (7) die abwechselnd zur Sinus- und der Cosinus-Brücke gehören, gemeinsam eine Mäanderzweig
(9) bilden und die Widerstandsbereiche (7) , die zu je- weils demselben Widerstand gehören, in den aufeinander¬ folgenden Mäanderzweigen in Reihe geschaltet sind.
8. Sensorchip nach Anspruch 6 oder 7, d a d u r c h g e k e n n z e i c h n e t, daß die Zahl der Mäanderzweige (9) geradzahlig ist.
9. Sensorchip nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, daß die beiden Widerstände (1.1 und 1.2, 1.3 und 1.4, 1.5 uns 1.6, 1.7 und 1.8)) jedes Brückenzweiges beider Brücken symmetrisch zur Mittellinie (10) des Sensorchips (12) angeordnet sind.
io. Sensorchip nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, daß alle Kontaktflächen (13) zum Anschluß der Brücken entlang einer Chipkante (14) angeordnet sind.
11. Sensorchip nach Anspruch 9 oder 10, d a d u r c h g e k e n n z e i c h n e t, daß alle magnetoresistiven Schichtelemente (2) und die Verbindungsleitungen, alle Kontaktflächen (13) zum An¬ schluß der Brücken und alle Verbindungsleitungen in einer Ebene liegen.
12. Sensorchip nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t, daß zum Abgleich der beiden Brückennullspannungen Ab- gleichflächen (11) vorgesehen sind.
13. Verwendung eines Sensorchips nach einem der Ansprüche 1 bis 12 zum Messen eines Winkels, d a d u r c h g e k e n n z e i c h n e t, daß ein gegenüber dem Sensorchip (12) drehbarer Magnet vorhanden ist.
14. Verwendung eines Sensorchips nach einem der Ansprüche 1 bis 12 zum Messen eines Winkel nach Anspruch 13, d a d u r c h g e k e n n z e i c h n e t, daß über oder unter der Chipebene mit der Mittelsenk¬ rechten (16) der empfindlichen Fläche (17) als Achse ein Dauermagnet (15) , der in Richtung parallel zur Chipf¬ läche magnetisiert ist und dessen Mittelsenkrechte (18) mit der der empfindlichen Fläche (17) übereinstimmt, drehbar gelagert ist.
15. Verwendung eines Sensorchips nach einem der Ansprüche 1 bis 12 zum hochauflösenden Messen eines Winkel nach Anspruch 13, d a d u r c h g e k e n n z e i c h n e t, daß sich in der Ebene eines magnetischen Polrades (19) , das mindestens auf seinem Umfang (20) abwechselnd in entgegengesetzter Richtung magnetisiert ist, in der Nähe des Umfanges (20) die Ebene des Sensorchips (12) befin¬ det und die Chipkante (21) des Sensorchips (12) , die der Chipkante (14) , entlang derer sich die Kontaktflächen (13) zum Brückenanschluß befinden, gegenüberliegt, zum Zentrum des Polrades (19) gerichtet ist.
16. Verwendung eines Sensorchips nach einem der Ansprüche 1 bis 12 zum Messen einer Position, d a d u r c h g e k e n n z e i c h n e t, daß ein gegenüber dem Sensorchip (12) linear beweglicher
Magnet vorhanden ist.
17. Verwendung eines Sensorchips nach einem der Ansprüche 1 bis 12 zum hochauflösenden Messen einer Position nach Anspruch, d a d u r c h g e k e n n z e i c h n e t, daß über einem in bestimmten Bereichen (23) abwechselnd in entgegengesetzter Richtung magnetisierten geraden und ebenen Magneten (22) ein dagegen in Magnetlängsrichtung beweglicher Sensorchip (12) mit der Chipebene in Bewe- gungsrichtung und senkrecht zur Oberfläche des Magneten (22) angeordnet ist.
PCT/EP1996/002538 1995-06-14 1996-06-11 Sensorchip zur bestimmung der bewegung eines magnetfeldes WO1997000426A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU62241/96A AU6224196A (en) 1995-06-14 1996-06-11 Sensor chip for determining the displacement of a magnetic field
US08/973,608 US6011390A (en) 1995-06-14 1996-06-11 Sensor chip with magnetoresistive wheatstone bridges for determining magnetic field directions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19521617A DE19521617C1 (de) 1995-06-14 1995-06-14 Sensorchip zur Bestimmung eines Sinus- und eines Cosinuswertes sowie seine Verwendung zum Messen eines Winkels und einer Position
DE19521617.2 1995-06-14

Publications (1)

Publication Number Publication Date
WO1997000426A1 true WO1997000426A1 (de) 1997-01-03

Family

ID=7764352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/002538 WO1997000426A1 (de) 1995-06-14 1996-06-11 Sensorchip zur bestimmung der bewegung eines magnetfeldes

Country Status (4)

Country Link
US (1) US6011390A (de)
AU (1) AU6224196A (de)
DE (1) DE19521617C1 (de)
WO (1) WO1997000426A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998057188A1 (en) * 1997-06-13 1998-12-17 Koninklijke Philips Electronics N.V. Sensor comprising a wheatstone bridge
EP1001248A2 (de) * 1998-11-13 2000-05-17 Philips Corporate Intellectual Property GmbH Verfahren zur Offset-Kalibrierung eines magnetoresistiven Winkelsensors
CN112577531A (zh) * 2020-11-05 2021-03-30 北京麦格纳材科技有限公司 一种磁传感器芯片抗电磁干扰结构及其制备方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19733885A1 (de) * 1997-08-05 1999-02-11 Horst Nahr Ges Fuer Elektronis Verfahren zum Messen von Wegen und Drehwinkeln an bewegten Gegenständen mit einer hartmagnetischen Oberfläche und Vorrichtung zur Durchführung des Verfahrens
DE19746199B4 (de) * 1997-10-18 2007-08-30 Sensitec Gmbh Magnetoresistiver Winkelsensor, der aus zwei Wheatstonebrücken mit je vier Widerständen besteht
US6529114B1 (en) * 1998-05-27 2003-03-04 Honeywell International Inc. Magnetic field sensing device
DE19839450B4 (de) * 1998-08-29 2004-03-11 Institut für Mikrostrukturtechnologie und Optoelektronik (IMO) e.V. Magnetoresistiver Sensorchip mit mindestens zwei als Halb- oder Vollbrücke ausgebildeten Meßelementen
DE19910636A1 (de) 1999-03-10 2000-09-14 Inst Mikrostrukturtechnologie Längenmeßsystem, bestehend aus einem oder mehreren magnetischen Maßstäben
US6201466B1 (en) * 2000-03-29 2001-03-13 Delphi Technologies, Inc. Magnetoresistor array
CN1237323C (zh) * 2000-06-27 2006-01-18 特莎有限公司 具有磁阻电极的测量装置及其测量方法
US6633462B2 (en) * 2000-07-13 2003-10-14 Koninklijke Philips Electronics N.V. Magnetoresistive angle sensor having several sensing elements
JP2007516415A (ja) * 2003-06-25 2007-06-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 磁界依存角度センサを備える装置
DE10340065A1 (de) * 2003-08-28 2005-04-07 Lenord, Bauer & Co. Gmbh Verfahren und Winkelgeber zur Messung der absoluten Winkelposition
DE102006007463B3 (de) * 2006-02-17 2007-06-21 Jumo Gmbh & Co. Kg Brückenschaltung und Verfahren zum Abgleichen einer Brückenschaltung
US7635974B2 (en) 2007-05-02 2009-12-22 Magic Technologies, Inc. Magnetic tunnel junction (MTJ) based magnetic field angle sensor
US9207291B2 (en) 2007-11-16 2015-12-08 Infineon Technologies Ag XMR angle sensors
DE102008039425B4 (de) 2008-08-23 2019-08-22 Sensitec Gmbh Biosensor-Anordnung zur Messung einer elektrischen Eigenschaft einer Anzahl N von elektrischen Widerstandsbauelementen
DE102010034482A1 (de) 2010-08-10 2012-04-19 Carl Zeiss Industrielle Messtechnik Gmbh Sensoranordnung und Verfahren zum Bestimmen einer räumlichen Position eines ersten Teils relativ zu einem zweiten Teil
US8760153B2 (en) * 2011-02-24 2014-06-24 Dexter Magnetic Technologies, Inc. High resolution absolute orientation rotary magnetic encoder
US8947082B2 (en) 2011-10-21 2015-02-03 University College Cork, National University Of Ireland Dual-axis anisotropic magnetoresistive sensors
JP6308784B2 (ja) * 2014-01-08 2018-04-11 アルプス電気株式会社 磁気センサ
JP2015129700A (ja) * 2014-01-08 2015-07-16 アルプス電気株式会社 磁界回転検知センサ及び磁気エンコーダ
GB201519905D0 (en) 2015-11-11 2015-12-23 Analog Devices Global A thin film resistive device for use in an integrated circuit, an integrated cicruit including a thin film resistive device
EP3450926B1 (de) * 2016-06-02 2022-02-23 Koganei Corporation Positionserfassungsvorrichtung und aktuator
US10782154B2 (en) 2017-06-26 2020-09-22 Texas Instruments Incorporated Tilted segmented anisotropic magneto-resistive angular sensor
CN110631611B (zh) * 2019-09-20 2022-05-13 贵州雅光电子科技股份有限公司 一种amr传感器芯片敏感单元结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0093870A2 (de) * 1982-03-29 1983-11-16 Kangyo Denkikiki Kabushiki Kaisha Magnetresistives Element
US4533872A (en) * 1982-06-14 1985-08-06 Honeywell Inc. Magnetic field sensor element capable of measuring magnetic field components in two directions
DE4014885A1 (de) * 1989-05-13 1990-11-15 Aisan Ind Drehwinkelaufnehmer
DE4233331A1 (de) * 1992-10-05 1994-04-07 Inst Mikrostrukturtechnologie Anordnung zur Bestimmung von Positionen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4317512C2 (de) * 1993-05-26 1995-03-30 Univ Schiller Jena Vorrichtung zur berührungslosen Nullpunkt-, Positions- und Drehwinkelmessung
DE4319146C2 (de) * 1993-06-09 1999-02-04 Inst Mikrostrukturtechnologie Magnetfeldsensor, aufgebaut aus einer Ummagnetisierungsleitung und einem oder mehreren magnetoresistiven Widerständen
DE4336482A1 (de) * 1993-10-26 1995-04-27 Bosch Gmbh Robert Verfahren zum Abgleichen eines magnetoresistiven Sensors
DE4408078A1 (de) * 1994-03-10 1995-09-14 Philips Patentverwaltung Winkelsensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0093870A2 (de) * 1982-03-29 1983-11-16 Kangyo Denkikiki Kabushiki Kaisha Magnetresistives Element
US4533872A (en) * 1982-06-14 1985-08-06 Honeywell Inc. Magnetic field sensor element capable of measuring magnetic field components in two directions
DE4014885A1 (de) * 1989-05-13 1990-11-15 Aisan Ind Drehwinkelaufnehmer
DE4233331A1 (de) * 1992-10-05 1994-04-07 Inst Mikrostrukturtechnologie Anordnung zur Bestimmung von Positionen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998057188A1 (en) * 1997-06-13 1998-12-17 Koninklijke Philips Electronics N.V. Sensor comprising a wheatstone bridge
EP1001248A2 (de) * 1998-11-13 2000-05-17 Philips Corporate Intellectual Property GmbH Verfahren zur Offset-Kalibrierung eines magnetoresistiven Winkelsensors
EP1001248A3 (de) * 1998-11-13 2001-12-12 Philips Corporate Intellectual Property GmbH Verfahren zur Offset-Kalibrierung eines magnetoresistiven Winkelsensors
CN112577531A (zh) * 2020-11-05 2021-03-30 北京麦格纳材科技有限公司 一种磁传感器芯片抗电磁干扰结构及其制备方法

Also Published As

Publication number Publication date
AU6224196A (en) 1997-01-15
DE19521617C1 (de) 1997-03-13
US6011390A (en) 2000-01-04

Similar Documents

Publication Publication Date Title
DE19521617C1 (de) Sensorchip zur Bestimmung eines Sinus- und eines Cosinuswertes sowie seine Verwendung zum Messen eines Winkels und einer Position
EP1597535B1 (de) Magnetoresistiver sensor zur bestimmung eines winkels oder einer position
EP0607595B1 (de) Sensorchip
EP2396666B1 (de) Anordnung zur messung mindestens einer komponente eines magnetfeldes
DE4319146C2 (de) Magnetfeldsensor, aufgebaut aus einer Ummagnetisierungsleitung und einem oder mehreren magnetoresistiven Widerständen
DE19510579C2 (de) Drehwinkel- oder Drehzahlgeber
DE102009050427B4 (de) Magnetsensorsystem und Verfahren
EP1049908B1 (de) Anordnung zur drehwinkelerfassung eines drehbaren elements
WO2017097285A1 (de) Magnetischer umdrehungszähler und verfahren zur bestimmung von mit diesem umdrehungszähler ermittelbaren umdrehungszahlen
DE10342260B4 (de) Magnetoresistiver Sensor in Form einer Halb- oder Vollbrückenschaltung
EP3025162A1 (de) Mehrkomponenten-magnetfeldsensor
DE19849613A1 (de) Anordnung zur Messung einer relativen linearen Position
EP0290811B1 (de) Vorrichtung zur Erfassung von Stärke und Richtung eines Magnetfeldes, insbesondere des Erdmagnetfeldes
DE4208927A1 (de) Magnetischer sensor und damit ausgeruesteter positionsdetektor
EP2992342B1 (de) Magnetfeldsensorvorrichtung
DE3426785A1 (de) Magnetoresistiver sensor zur messung von magnetfeldaenderungen und verfahren zu seiner herstellung
DE19722834B4 (de) Magnetoresistives Gradiometer in Form einer Wheatstone-Brücke zur Messung von Magnetfeldgradienten sowie dessen Verwendung
DE10255327A1 (de) Magnetoresistives Sensorelement und Verfahren zur Reduktion des Winkelfehlers eines magnetoresistiven Sensorelements
DE4233331C2 (de) Anordnung zur Bestimmung von Positionen
DE4438715C1 (de) Magnetfeldsensorchip
DE19810218A1 (de) Magnetfeldsensor auf Basis des magnetoresistiven Effektes
DE4118773C2 (de) Positionsdetektor
DE4327458A1 (de) Sensorchip zur hochauflösenden Messung der magnetischen Feldstärke
EP1204843A1 (de) Vorrichtung und verfahren zur winkelmessung
DE10145300C1 (de) Sensorelement, insbesondere für einen Drehzahlgeber oder einen Winkelgeber

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08973608

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA