WO1996039266A1 - On-site generation of ultra-high-purity buffered-hf for semiconductor processing - Google Patents
On-site generation of ultra-high-purity buffered-hf for semiconductor processing Download PDFInfo
- Publication number
- WO1996039266A1 WO1996039266A1 PCT/US1996/010388 US9610388W WO9639266A1 WO 1996039266 A1 WO1996039266 A1 WO 1996039266A1 US 9610388 W US9610388 W US 9610388W WO 9639266 A1 WO9639266 A1 WO 9639266A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ammonia
- flow
- vapor
- purity
- ultra
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 31
- 238000012545 processing Methods 0.000 title description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 128
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims abstract description 91
- 238000004519 manufacturing process Methods 0.000 claims abstract description 35
- 229910021529 ammonia Inorganic materials 0.000 claims description 56
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 239000007788 liquid Substances 0.000 claims description 19
- 239000012535 impurity Substances 0.000 claims description 18
- 239000008367 deionised water Substances 0.000 claims description 12
- 229910021641 deionized water Inorganic materials 0.000 claims description 12
- 239000007864 aqueous solution Substances 0.000 claims description 9
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 7
- 239000012498 ultrapure water Substances 0.000 claims description 5
- 238000001704 evaporation Methods 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims description 4
- 230000003134 recirculating effect Effects 0.000 claims description 4
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims description 2
- 239000000908 ammonium hydroxide Substances 0.000 claims description 2
- 238000005389 semiconductor device fabrication Methods 0.000 claims 2
- 230000002378 acidificating effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 37
- 230000008569 process Effects 0.000 abstract description 23
- 239000002253 acid Substances 0.000 abstract description 8
- 238000005201 scrubbing Methods 0.000 abstract description 7
- 230000003139 buffering effect Effects 0.000 abstract description 4
- 238000001739 density measurement Methods 0.000 abstract 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 59
- 239000000126 substance Substances 0.000 description 28
- 238000000746 purification Methods 0.000 description 25
- 238000004821 distillation Methods 0.000 description 20
- 239000000356 contaminant Substances 0.000 description 18
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 17
- 238000011109 contamination Methods 0.000 description 17
- 239000000243 solution Substances 0.000 description 17
- 229910052785 arsenic Inorganic materials 0.000 description 16
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 15
- 238000004140 cleaning Methods 0.000 description 12
- 235000012431 wafers Nutrition 0.000 description 12
- 239000007789 gas Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- LDDQLRUQCUTJBB-UHFFFAOYSA-N ammonium fluoride Chemical compound [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000012856 packing Methods 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 238000001914 filtration Methods 0.000 description 7
- 150000004678 hydrides Chemical class 0.000 description 7
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 7
- 230000001590 oxidative effect Effects 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 150000001450 anions Chemical class 0.000 description 6
- 238000010923 batch production Methods 0.000 description 6
- 150000001768 cations Chemical class 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000007800 oxidant agent Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 150000004820 halides Chemical class 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 238000001020 plasma etching Methods 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 4
- 229910052788 barium Inorganic materials 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910052745 lead Inorganic materials 0.000 description 4
- 239000003595 mist Substances 0.000 description 4
- 229910052712 strontium Inorganic materials 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 229910052987 metal hydride Inorganic materials 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 238000005660 chlorination reaction Methods 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 238000001471 micro-filtration Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- FHHJDRFHHWUPDG-UHFFFAOYSA-N peroxysulfuric acid Chemical group OOS(O)(=O)=O FHHJDRFHHWUPDG-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000012286 potassium permanganate Substances 0.000 description 2
- VBKNTGMWIPUCRF-UHFFFAOYSA-M potassium;fluoride;hydrofluoride Chemical compound F.[F-].[K+] VBKNTGMWIPUCRF-UHFFFAOYSA-M 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000001577 simple distillation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 231100000481 chemical toxicant Toxicity 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- OSVXSBDYLRYLIG-UHFFFAOYSA-N chlorine dioxide Inorganic materials O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- AYBCUKQQDUJLQN-UHFFFAOYSA-N hydridoberyllium Chemical compound [H][Be] AYBCUKQQDUJLQN-UHFFFAOYSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910012375 magnesium hydride Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 150000004968 peroxymonosulfuric acids Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000009287 sand filtration Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 229910000045 transition metal hydride Inorganic materials 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000007704 wet chemistry method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B7/00—Cleaning by methods not provided for in a single other subclass or a single group in this subclass
- B08B7/04—Cleaning by methods not provided for in a single other subclass or a single group in this subclass by a combination of operations
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
- C01C1/024—Purification
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/19—Fluorine; Hydrogen fluoride
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/19—Fluorine; Hydrogen fluoride
- C01B7/191—Hydrogen fluoride
- C01B7/195—Separation; Purification
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/19—Fluorine; Hydrogen fluoride
- C01B7/191—Hydrogen fluoride
- C01B7/195—Separation; Purification
- C01B7/197—Separation; Purification by adsorption
- C01B7/198—Separation; Purification by adsorption by solid ion-exchangers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/16—Halides of ammonium
- C01C1/162—Ammonium fluoride
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/30604—Chemical etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
Definitions
- the present invention relates to systems and methods for supplying ultra-high-purity buffered-HF (buffered hydrofluoric acid) and or ammonium fluoride (NH 4 F) for semiconductor manufacture.
- ultra-high-purity buffered-HF buffered hydrofluoric acid
- NH 4 F ammonium fluoride
- Contamination is generally an overwhelmingly important concern in integrated circuit manufacturing.
- cleanup steps of one kind or another such cleanup steps may need to remove organic con- taminants, metallic contaminants, photoresist (or inorganic residues thereof), byproducts of etching, native oxides, etc.
- the present inventors have developed a method for preparing ultra-high-purity ammonia, in an on-site system located at the semiconductor wafer production site, by: drawing ammonia vapor from a liquid ammonia reservoir, passing the ammonia vapor through a microfiltration filter, and scrubbing the filtered vapor with high-pH purified water (preferably deionized water which has been allowed to equilibrate with the ammonia stream).
- high-pH purified water preferably deionized water which has been allowed to equilibrate with the ammonia stream.
- the drawing of the ammonia vapor from the supply reservoir serves by itself as a single-stage distillation, eliminating nonvolatile and high-boiling impurities, such as alkali and alkaline earth metal oxides, carbonates and hydrides, transition metal halides and hydrides, and high-boiling hydrocarbons and halocarbons.
- nonvolatile and high-boiling impurities such as alkali and alkaline earth metal oxides, carbonates and hydrides, transition metal halides and hydrides, and high-boiling hydrocarbons and halocarbons.
- the reactive volatile impurities that could be found in commercial grade ammonia, such as certain transition metal halides, Group III metal hydrides and halides, certain Group IV hydrides and halides, and halogens, previously thought to require distillation for removal, were discovered to be capable of removal by scrubbing to a degree which is adequate for high-precision operations. This is a very surprising discovery, since scrub
- Plasma etching has many attractive capabilities, but it is not adequate for cleanup. There is simply no available chemistry to remove some of the most undesirable impurities, such as gold. Thus wet cleanup processes are essential to modern semiconductor processing, and are likely to remain so for the foreseeable future.
- Plasma etching is performed with photoresist in place, and is not directly followed by high-temperature steps. Instead the resist is stripped, and a cleanup is then necessary.
- the materials which the cleanup must remove may include: photoresist residues (organic polymers); sodium; Alkaline earths (e.g. calcium or magnesium); and heavy metals (e.g. gold). Many of these do not form volatile halides, so plasma etching cannot carry them away. Cleanups using wet chemistries are required.
- Integrated circuit structures use only a few dopant species (boron, arsenic, phosphorus, and sometimes antimony) to form the required p-type and n-type doped regions.
- dopant species boron, arsenic, phosphorus, and sometimes antimony
- many other species are electrically active dopants, and are highly undesirable contaminants. Many of these contaminants can have deleterious effects, such as increased junction leakage, at concentrations well below 10 cm "3 .
- some of the less desirable contaminants segregate into silicon, i.e. where silicon is in contact with an aqueous solution the equilibrium concentration of the contaminants will be higher in the silicon than in the solution.
- some of the less desirable contaminants have very high diffusion coefficients, so that introduction of such dopants into any part of the silicon wafer will tend to allow these contaminants to diffuse throughout, including junction locations where these contaminants will cause leakage.
- all liquid solutions which will be used on a semiconductor wafer should preferably have extremely low levels of all metal ions.
- concentration of all metals combined should be less than 300 ppt (parts per trillion), and less than 10 ppt for any one metal, and less would be better.
- contamination by both anions and cations must also be controlled. (Some anions may have adverse effects, e.g. complexed metal ions may reduce to mobile metal atoms or ions in the silicon lattice.)
- Front end facilities normally include on-site purification systems for preparation of high- purity water (referred to as "Dl” water, i.e. deionized water). However, it is more difficult to obtain process chemicals in the purities needed.
- Dl high- purity water
- the present application discloses systems and methods for preparation of ultrapure chemicals on-site at a semiconductor manufac turing facility, so that they can be piped directly to the points of use.
- the disclosed systems are very compact units which can be located in the same building as a front end (or in an adjacent building), so that handling is avoided.
- Anhydrous HF is typically manufactured by the addition of sulfuric acid to fluorspar, CaF 2 -
- fluorspars contain arsenic, which leads to contamination of the resulting HF.
- arsenic contamination is a dominant problem with HF purification.
- One source (from China) contains minimal As and is the optimal raw material for Ultra high purity HF.
- HF manufactured from this material is available from Allied Chemical in the US.
- Other impurities, in conventional systems, are contributed by the HF generation and handling system. These impurities result from degradation of these systems; these systems were designed for applications much less demanding than the semiconductor industry. These contaminants must be removed in order to achieve good semiconductor performance.
- the HF process flow includes a batch process arsenic removal and evaporation stage, a fractionating column to remove most other impurities, an Ionic Purifier column to suppress contaminants not removed by the fractionating column, and finally the HF or NH 4 F Supplier (HFS or NH 4 FS).
- Arsenic will be converted to the +5 state and held in the evaporator during distillation by the addition of an oxidant (KMnO 4 or (NH 4 ) 2 S 2 O 8 ) and a cation source such as KHF 2 to form the salt K 2 AsF 7 .
- an oxidant KMnO 4 or (NH 4 ) 2 S 2 O 8
- KHF 2 a cation source
- This process requires contact times of approximately 1 hr at nominal temperatures. To achieve complete reaction in a continuous process would require high temperatures and pressures (undesirable for safety) or very large vessels and piping.
- the HF would be introduced into a batch process evaporator vessel and would be treated with an oxidant while stirring for a suitable reaction time. The HF is then distilled in a fractionating column with reflux thus removing the bulk of the metallic impurities.
- Elements showing significant reduction at this step include: Group 1 (I) Na, Group 2 (II) Ca, Sr, Ba,
- Groups 3 - 12 (III A - II A) Cr, W, Mo, Mn, Fe, Cu, Zn
- This fractionating column acts as a series of many simple distillations; this is achieved by packing the column with a high surface area material with a counter current liquid flow thus ensuring complete equilibrium between the descending liquid and rising vapor. Only a partial condenser will be installed in this column to provide reflux and the purified gaseous HF will then be conducted to the HF Ionic Purifier (HF IP).
- HF IP HF Ionic Purifier
- the HF IP will be utilized as an additional purity guarantee prior to introduction of the HF gas into the supplier systems. These elements may be present in the treatment solution or introduced in the IP to absorb sulfate carried over in the HF stream. IP testing has demonstrated significant reductions in the HF gas stream contamination for the following elements:
- hydrofluoric acid is an extremely important process chemical in semiconductor manufacturing. It is often used in a buffered form, to reduce shifts in pH as the acid solution becomes loaded by etching by-products. (Reaction of HF with silicon produces fluosilicilic acid; this strong acid will shift the pH of the solution and hence the etch rate.) Buffering of acids for such reasons is extremely well-known; but with ultra-high-purity chemicals the requirement for buffering presents further problems, since the buffering agent too is a source of contaminants, and must be sufficiently pure to not degrade the system. In buffered hydrofluoric acid (buffered-HF), the buffering in the acid solution is usually provided by an ammonium component. According to the disclosed innovative embodiments, buffered hydrofluoric acid can be prepared by bubbling ammonia into an acid solution.
- This process includes both buffered HF and ammonium fluoride, the only process difference being the NH 3 to HF mole ratio.
- NH 4 F solutions have a mole ratio of 1.00 while the buffered HF has a mole excess of HF.
- the same equipment is used for both solutions, except that the set point on the concentration instrumentation would be set to achieve the desired mole ratio.
- Figure 1 is an engineering flow diagram of one example of a unit for the production of ultrapure ammonia.
- Figure 2 is a block diagram of a semiconductor fabrication line to which the generator of Figure 4 may be connected.
- Figure 3A shows an overview of the process flow in a generation unit in which ultrapure ammonia is introduced into hydrofluoric acid to produce buffered-HF
- Figures 3B1-3B3 show detailed P&ID diagrams of a sample implementation of the process flow of Figure 3A.
- Figure 4 shows an on-site HF purifier according to a sample embodiment of the disclosed innovations.
- ammonia vapor is first drawn from the vapor space in a liquid ammonia supply reservoir. Drawing vapor in this manner serves as a single-stage distillation, leaving certain solid and high-boiling impurities behind in the liquid phase.
- the supply reservoir can be any conventional supply tank or other reservoir suitable for containing ammonia, and the ammonia can be in anhydrous form or an aqueous solution.
- the reservoir can be maintained at atmospheric pressure or at a pressure above atmospheric if desired to enhance the flow of the ammonia through the system.
- the reservoir is preferably heat controlled, so that the temperature is within the range of from about 10° to about 50°C, preferably from about 15° to about 35°C, and most preferably from about 20° to about 25°C.
- Impurities that will be removed as a result of drawing the ammonia from the vapor phase include metals of Groups I and II of the Periodic Table, as well as aminated forms of these metals which form as a result of the contact with ammonia. Also rejected will be oxides and carbonates of these metals, as well as hydrides such as beryllium hydride and magnesium hydride; Group III elements and their oxides, as well as ammonium adducts of hydrides and halides of these elements; transition metal hydrides; and heavy hydrocarbons and halocarbons such as pump oil.
- the ammonia drawn from the reservoir is passed through a filtration unit to remove any solid matter entrained with the vapor.
- Microfiltration and ultrafiltration units and membranes are commercially available and can be used.
- the grade and type of filter will be selected according to need.
- the presently preferred embodiment uses a gross filter, followed by a 0.1 micron filter, in front of the ionic purifier, and no filtration after the ionic purifier.
- the filtered vapor is then passed to a scrubber in which the vapor is scrubbed with high-pH purified (preferably deionized) water.
- the high-pH water is preferably an aqueous ammonia solution, with the concentration raised to saturation by recycling through the scrubber.
- the scrubber may be conveniently operated as a conventional scrubbing column in countercurrent fashion.
- the column is preferably run at a temperature ranging from about 10° to about 50°C, preferably from about 15° to about 35°C.
- the operating pressure is not critical, although preferred operation will be at a pressure of from about atmospheric pressure to about 30 psi above atmospheric.
- the column will typically contain a conventional column packing to provide for a high degree of contact between liquid and gas, and preferably a mist removal section as well. In one presently preferred example, the column has a packed height of approximately
- packing materials for a column of this description are those which have a nominal dimension of less than one-eighth of the column diameter.
- the mist removal section of the column will have a similar or more dense packing, and is otherwise conventional in construction. It should be understood that all descriptions and dimensions in this paragraph are examples only. Each of the system parameters may be varied.
- startup is achieved by first saturating deionized water with ammonia to form a solution for use as the starting scrubbing medium.
- a small amount of liquid in the column sump is drained periodically to remove accumulated impurities.
- impurities that will be removed by the scrubber include reactive volatiles such as silane (SiH 4 ) and arsine (AsH 3 ); halides and hydrides of phosphorus, arsenic, and antimony; transition metal halides in general; and Group III and Group VI metal halides and hydrides.
- reactive volatiles such as silane (SiH 4 ) and arsine (AsH 3 ); halides and hydrides of phosphorus, arsenic, and antimony; transition metal halides in general; and Group III and Group VI metal halides and hydrides.
- the units described up to this point may be operated in either batchwise, continuous, or semi-continuous manner. Continuous or semi-continuous operation is preferred.
- the volumetric processing rate of the ammonia purification system is not critical and may vary widely. In most operations for which the present invention is contemplated for use, however, the flow rate of ammonia through the system will be within the range of about 200 cc/h to thousands of liters per hour.
- the ammonia leaving the scrubber can be further purified prior to use, depending on the particular type of manufacturing process for which the ammonia is being purified.
- the ammonia is intended for use in chemical vapor deposition, for example, the inclusion of a dehydration unit and a distillation unit in the system will be beneficial.
- the distillation column may also be operated in either batchwise, continuous, or semi-continuous manner. In a batch operation, a typical operating pressure might be 300 pounds per square inch absolute (2,068 kPa), with a batch size of 100 pounds (45.4 kg).
- the column in this example has a diameter of 8 inches (20 cm), a height of 72 inches (183 cm), operating at 30% of flood, with a vapor velocity of 0.00221 feet per second (0.00067 meter per second), a height equivalent to a theoretical plate of 1.5 inches (3.8 cm), and 48 equivalent plates.
- the boiler size in this example is about 18 inches (45.7 cm) in diameter and 27 inches (68.6 cm) in length, with a reflux ratio of 0.5, and recirculating chilled water enters at 60°F (15.6°C) and leaves at 90°F (32.2°C). Again, this is merely an example; distillation columns varying widely in construction and operational parameters can be used.
- the purified ammonia may be used as a purified gas or as an aqueous solution, in which case the purified ammonia is dissolved in purified (preferably deionized) water.
- purified preferably deionized
- FIG. 1 A flow chart depicting one example of an ammonia purification unit in accordance with this invention is shown in Figure 1.
- Liquid ammonia is stored in a reservoir 11.
- Ammonia vapor 12 is drawn from the vapor space in the reservoir, then passed through a shutoff valve 13, then through a filter 14.
- the filtered ammonia vapor 15, whose flow is controlled by a pressure regulator 16, is then directed to a scrubbing column 17 which contains a packed section 18 and a mist removal pad 19.
- Saturated aqueous ammonia 20 flows downward as the ammonia vapor flows upward, the liquid being circulated by a circulation pump 21, and the liquid level controlled by a level sensor 22.
- Waste 23 is drawn off periodically from the retained liquid in the bottom of the scrubber.
- Deionized water 24 is supplied to the scrubber 17, with elevated pressure maintained by a pump 25.
- the scrubbed ammonia 26 is directed to one of three alternate routes. These are: (1) A distillation column 27 where the ammonia is purified further. The resulting distilled ammonia 28 is then directed to the point of use.
- a dissolving unit 29 where the ammonia is combined with deionized water 30 to form an aqueous solution 31, which is directed to the point of use.
- the aqueous solution can be collected in a holding tank from which the ammonia is drawn into individual lines for a multitude of point-of-use destinations at the same plant.
- a transfer line 32 which carries the ammonia in gaseous form to the point of use.
- the second and third of these alternatives, which do not utilize the distillation column 27, are suitable for producing ammonia with less than 100 parts per trillion of any metallic impurity.
- the inclusion of the distillation column 27 is preferred. Examples are furnace or chemical vapor deposition (CVD) uses of the ammonia. If the ammonia is used for CVD, for example, the distillation column would remove non-condensables such as oxygen and nitrogen, that might interfere with CVD.
- CVD chemical vapor deposition
- a dehydration unit may be incorporated into the system between the scrubber 17 and the distillation column 27, as an option, depending on the characteristics and efficiency of the distillation column.
- the resulting stream be it gaseous ammonia or an aqueous solution, may be divided into two or more branch streams, each directed to a different use station, the purification unit thereby supplying purified ammonia to a number of use stations simultaneously.
- FIG. 4 shows an on-site HF purifier according to a sample embodiment of the disclosed innovations.
- HF purification is accomplished by first oxidizing arsenic into the +5 oxidation state and fractionation to remove the As +5 and metallic impurities.
- a variety of oxidizing reagents have been used for this purpose, as shown in the literature; see e.g.
- An alternative secondarily preferred embodiment uses ammonium persulfate ((NH 4 ) 2 S 2 O 8 ), which is conveniently available in ultra-high purity.
- oxidizers which do not introduce metal atoms are preferred.
- other candidates include H,O 2 and O 3 .
- a less preferred candidate is Caro's acid (persulfuric acid, H 2 SO 5 , which produces H 2 O 2 in solution).
- Another option is ClO 2 , but this has the severe disadvantage of being explosive.
- Other options include HNO 3 and Cl 2 , but both of these introduce anions which must be separated out. (Reduction of non-metallic anions is not as critical as reduction of metal cations, but it is still desirable to achieve anion levels of 1 ppb or less. Initial introduction of anions thus adds to the load on the ionic purification stage.)
- MnO 4 is the most conventional oxidant, and is predicted to be useable for ultrapurification if followed by the disclosed ionic purifier and HF stripping process. However, this reagent imposes a substantial burden of cations on the purifier, so a metal-free oxidizer is preferred.
- high-purity 49% HF which is essentially arsenic-free can be used.
- Such low-arsenic material is expected to be available from Allied as of the third quarter of 1995, and can used, in combination with an on-site ionic purification process which does NOT include an arsenic oxidation reagent, to produce ultrapure HF on-site.
- the HF process flow includes a batch process arsenic removal and evaporation stage, a fractionating column to remove most other impurities, an Ionic Purifier column to suppress contaminants not removed by the fractionating column, and finally the HF Supplier (HFS).
- a batch process arsenic removal and evaporation stage includes a fractionating column to remove most other impurities, an Ionic Purifier column to suppress contaminants not removed by the fractionating column, and finally the HF Supplier (HFS).
- Arsenic will be converted to the +5 state and held in the evaporator during distillation by the addition of an oxidant (KMnO 4 or (NH 4 ) 2 S 2 O 8 ) and a cation source such as KHF 2 to form the salt K 2 AsF 7 .
- an oxidant KMnO 4 or (NH 4 ) 2 S 2 O 8
- a cation source such as KHF 2
- This process requires contact times of approximately 1 hr at nominal temperatures. To achieve complete reaction in a continuous process would require high temperatures and pressures (undesirable for safety) or very large vessels and piping.
- the HF would be introduced into a batch process evaporator vessel and would be treated with an oxidant while stirring for a suitable reaction time. The HF is then distilled in a fractionating column with reflux thus removing the bulk of the metallic impurities. Elements showing significant reduction at this step include:
- Group 2 (II) Ca, Sr, Ba, Groups 3 - 12 (III A - II A) Cr, W, Mo, Mn, Fe, Cu, Zn
- This fractionating column acts as a series of many simple distillations; this is achieved by packing the column with a high surface area material with a counter current liquid flow thus ensuring complete equilibrium between the descending liquid and rising vapor. Only a partial condenser will be installed in this column to provide reflux and the purified gaseous HF will then be conducted to the HF Ionic Purifier (HF IP).
- HF IP HF Ionic Purifier
- the HF IP will be utilized as an additional purity guarantee prior to introduction of the HF gas into the supplier systems. These elements may be present in the treatment solution or introduced in the IP to absorb sulfate carried over in the HF stream. IP testing has demonstrated significant reductions in the HF gas stream contamination for the following elements: Group 2 (II) Sr, and Ba,
- the on-site purifier can use high-purity arsenic-reduced hydrofluoric acid as the bulk starting material. In this embodiment no oxidation step is needed.
- FIG. 3A shows an overview of the process flow in a generation unit in which ultrapure ammonia is introduced into hydrofluoric acid to produce buffered-HF
- Figures 3B1-3B3 show detailed P&ID diagrams of a sample implementation of the process flow of Figure 3A.
- the liquid volume of the ammonia purifier is 10 I, and the maximum gas flow rate is about 10 standard I /min.
- the scrubbing liquid is purged - continuous or incrementally - sufficiently to turn over at least once in 24 hrs
- Product concentration (at both generation steps) is measured using acoustic velocity measurement equipment (from Mesa Labs) to measure concentration - but alternatively measurements could be performed using conductivity, density, index of refraction, or IR spectroscopy.
- the on-site purifier can use high-purity arsenic-reduced hydrofluoric acid as the bulk starting material. In this embodiment no oxidation step is needed.
- HF is dissolved in 600 g of water or 26.5% by weight.
- the on-board instrumentation is sent to add HF to their concentration. Alternatively, 49% HF can be diluted to this concentration.
- HF solution is formed 189 g of N H 3 is added to form the 40% NH 4 F solution.
- concentration and mole ratios may be set by the concentration instrumentation for different application by adjustment of the concentration instrumentation.
- the first unit in the cleaning line is a resist stripping station 41 where aqueous hydrogen peroxide 42 and sulfuric acid 43 are combined and applied to the semiconductor surface to strip off the resist. This is succeeded by a rinse station 44 where deionized water is applied to rinse off the stripping solution. Immediately downstream of the rinse station 44 is a cleaning station 45 where an aqueous solution of ammonia and hydrogen peroxide are applied. This solution is supplied in one of two ways. In the first, aqueous ammonia 31 is combined with aqueous hydrogen peroxide 46, and the resulting mixture 47 is directed to the cleaning station 45.
- pure gaseous ammonia 32 is bubbled into an aqueous hydrogen peroxide solution 48 to produce a similar mixture 49, which is likewise directed to the cleaning station 45.
- the semiconductor passes to a second rinse station 50 where deionized water is applied to remove the cleaning solution.
- the next station is a further cleaning station 54 where aqueous solutions of hydrochloric acid 55 and hydrogen peroxide 56 are combined and applied to the semiconductor surface for further cleaning.
- This is followed by a final rinse station 57 where deionized water is applied to remove the HC1 and H 2 O 2 .
- dilute buffered HF is applied to the wafer (for removal of native or other oxide film).
- the dilute buffered hydrofluoric acid is supplied directly, through sealed piping, from the generator 70.
- the reservoir 72 holds anhydrous HF, from which a stream of gaseous HF is fed through the ionic purifier 71 into generator 70.
- gaseous ammonia is also bubbled into generator 70 to provide a buffered solution, and ultrapure deionized water is added to achieve the desired dilution. This is followed by a rinse in ultrapure deionized water (at station 60), and drying at station 58.
- the wafer or wafer batch 61 will be held on a wafer support 52, and conveyed from one workstation to the next by a robot 63 or some other conventional means of achieving sequential treatment.
- the means of conveyance may be totally automated, partially automated or not automated at all.
- the system shown in FIG. 2 is just one example of a cleaning line for semiconductor fabrication.
- cleaning lines for high-precision manufacture can vary widely from that shown in FIG. 2, either eliminating one or more of the units shown or adding or substituting units not shown.
- the concept of the on-site preparation of high-purity aqueous ammonia, however, in accordance with this invention is applicable to all such systems.
- the use of ammonia and hydrogen peroxide as a semiconductor cleaning medium at workstations such as the cleaning station 45 shown in FIG. 2 is well known throughout the industry.
- a nominal system would consist of deionized water, 29% ammonium hydroxide (weight basis) and 30% hydrogen peroxide (weight basis), combined in a volume ratio of 6:1:1.
- This cleaning agent is used to remove organic residues, and, in conjunction with ultrasonic agitation at frequencies of approximately 1 MHz, removes particles down to the submicron size range.
- the purification (or purification and generation) system is positioned in close proximity to the point of use of the ultrapure chemical in the production line, leaving only a short distance of travel between the purification unit and the production line.
- the ultrapure chemical from the purification (or purification and generation) unit may pass through an intermediate holding tank before reaching the points of use. Each point of use will then be fed by an individual outlet line from the holding tank.
- the ultrapure chemical can therefore be directly applied to the semiconductor substrate without packaging or transport and without storage other than a small in-line reservoir, and thus without contact with the potential sources of contamination normally encountered when chemicals are manufactured and prepared for use at locations external to the manufacturing facility.
- the distance between the point at which the ultrapure chemical leaves the purification system and its point of use on the production line will generally be a few meters or less. This distance will be greater when the purification system is a central plant-wide system for piping to two or more use stations, in which case the distance may be two thousand feet or greater. Transfer can be achieved through an ultra-clean transfer line of a material which does not introduce contamination. In most applications, stainless steel or polymers such as high density polyethylene or fluorinated polymers can be used successfully.
- the water used in the unit can be purified in accordance with semiconductor manufacturing standards. These standards are commonly used in the semiconductor industry and well known among those skilled in the art and experienced in the industry practices and standards. Methods of purifying water in accordance with these standards include ion exchange and reverse osmosis.
- Ion exchange methods typically include most or all of the following units: chemical treatment such as chlorination to kill organisms; sand filtration for particle removal; activated charcoal filtration to remove chlorine and traces of organic matter: diatomaceous earth filtration; anion exchange to remove strongly ionized acids; mixed bed polishing, containing both cation and anion exchange resins to remove further ions; sterilization, involving chlorination or ultraviolet light; and filtration through a filter of 0.45 micron or less.
- Reverse osmosis methods will involve, in place of one or more of the units in the ion exchange process, the passage of the water under pressure through a selectively permeable membrane which does not pass many of the dissolved or suspended substances.
- Typical standards for the purity of the water resulting from these processes are a resistivity of at least about 15 megohm-cm at 25 °C (typically 18 megohm-cm at 25°C), less than about 25ppb of electrolytes, a particulate content of less than about 150/cm 3 and a particle size of less than 0.2 micron, a microorganism content of less than about 10/cm 3 , and total organic carbon of less than lOOppb.
- the innovative concepts described in the present application can be modified and varied over a tremendous range of applications, and accordingly the scope of patented subject matter is not limited by any of the specific exemplary teachings given.
- the disclosed innovative techniques are not strictly limited to manufacture of integrated circuits, but can also be applied to manufacturing discrete semiconductor components, such as optoelectronic and power devices.
- the disclosed innovative techniques can also be adapted to manufacture of other technologies where integrated circuit manufacturing methods have been adopted, such as in thin-film magnetic heads and active-matrix liquid-crystal displays; but the primary application is in integrated circuit manufacturing, and applications of the disclosed techniques to other areas are secondary.
- additives can be introduced into the purification water if desired, although this is not done in the presently preferred embodiment.
- the primary embodiment is an on-site purification system.
- the disclosed purification system can also be adapted to operate as a part of a manufacturing unit to produce ultra-high-purity chemicals for shipment; however, this alternative embodiment does not provide the advantages of on-site purification as discussed above.
- Such applications encounter the inherent risks of handling ultra-high-purity chemicals, as discussed above; but for customers who require packaged chemicals (with the attendant handling), the disclosed innovations at least give a way to achieve an initial purity which is higher than that available by other techniques.
- a dryer stage may also be used after the ionic purifier.
- the primary embodiment is directed to providing ultrapure aqueous chemicals, which are most critical for semiconductor manufacturing.
- the disclosed system and method embodiments can also be used for supply of purified gas streams. (In many cases, use of a dryer downstream from the purifier will be useful for this.)
- piping for ultrapure chemical routing in semiconductor front ends may include in-line or pressure reservoirs.
- references to "direct" piping in the claims do not preclude use of such reservoirs, but do preclude exposure to uncontrolled atmospheres.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Analytical Chemistry (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP96922477A EP0836536A4 (en) | 1995-06-05 | 1996-06-05 | On-site generation of ultra-high-purity buffered-hf for semiconductor processing |
AU63338/96A AU6333896A (en) | 1995-06-05 | 1996-06-05 | On-site generation of ultra-high-purity buffered-hf for semi conductor processing |
JP50228497A JP2001527697A (en) | 1995-06-05 | 1996-06-05 | On-site generation of ultra-high purity buffered HF for semiconductor processing |
US08/881,747 US6350425B2 (en) | 1994-01-07 | 1997-06-24 | On-site generation of ultra-high-purity buffered-HF and ammonium fluoride |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1995/007649 WO1996039358A1 (en) | 1995-06-05 | 1995-06-05 | Point-of-use ammonia purification for electronic component manufacture |
USPCT/US95/07649 | 1995-06-05 | ||
US49942795A | 1995-07-07 | 1995-07-07 | |
US08/499,427 | 1995-07-07 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1995/007649 Continuation-In-Part WO1996039358A1 (en) | 1994-01-07 | 1995-06-05 | Point-of-use ammonia purification for electronic component manufacture |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/179,001 Continuation-In-Part US5496778A (en) | 1994-01-07 | 1994-01-07 | Point-of-use ammonia purification for electronic component manufacture |
US08/674,130 A-371-Of-International US5722442A (en) | 1994-01-07 | 1996-07-01 | On-site generation of ultra-high-purity buffered-HF for semiconductor processing |
US08/881,747 Continuation-In-Part US6350425B2 (en) | 1994-01-07 | 1997-06-24 | On-site generation of ultra-high-purity buffered-HF and ammonium fluoride |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996039266A1 true WO1996039266A1 (en) | 1996-12-12 |
Family
ID=26789686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1996/010388 WO1996039266A1 (en) | 1994-01-07 | 1996-06-05 | On-site generation of ultra-high-purity buffered-hf for semiconductor processing |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0836536A4 (en) |
JP (1) | JP2001527697A (en) |
KR (1) | KR100379886B1 (en) |
AU (1) | AU6333896A (en) |
WO (1) | WO1996039266A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0970744A2 (en) | 1998-07-07 | 2000-01-12 | Air Products And Chemicals, Inc. | Chemical generator with controlled mixing and concentration feedback and adjustment |
EP1028087A1 (en) * | 1999-02-12 | 2000-08-16 | Bayer Ag | Method for preparing pure hydrofluoric acid |
US6271188B1 (en) * | 1998-08-14 | 2001-08-07 | Messer Griesheim Gmbh | Production of ready-to-use solutions |
WO2002078820A1 (en) * | 2001-03-28 | 2002-10-10 | Merck Patent Gmbh | Method for the purification of corrosive gases |
FR2834045A1 (en) * | 2001-12-20 | 2003-06-27 | Air Liquide Electronics Sys | Production of an ultrapure solution from an industrial quality chemical product by separating the gaseous and liquid phases in a storage vessel and dissolving the gas in deionised water |
US6799883B1 (en) | 1999-12-20 | 2004-10-05 | Air Liquide America L.P. | Method for continuously blending chemical solutions |
US7871249B2 (en) | 1998-04-16 | 2011-01-18 | Air Liquide Electronics U.S. Lp | Systems and methods for managing fluids using a liquid ring pump |
US7980753B2 (en) | 1998-04-16 | 2011-07-19 | Air Liquide Electronics U.S. Lp | Systems and methods for managing fluids in a processing environment using a liquid ring pump and reclamation system |
US10739795B2 (en) | 2016-06-17 | 2020-08-11 | Air Liquide Electronics U.S. Lp | Deterministic feedback blender |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100475272B1 (en) * | 2002-06-29 | 2005-03-10 | 주식회사 하이닉스반도체 | Manufacturing Method of Semiconductor Device |
CN108609585A (en) * | 2018-08-08 | 2018-10-02 | 宣城亨泰电子化学材料有限公司 | A kind of hydrofluoric acid arsenic removal process |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4756899A (en) * | 1987-02-12 | 1988-07-12 | Allied-Signal Inc. | Manufacture of high purity low arsenic anhydrous hydrogen fluoride |
US4828660A (en) * | 1986-10-06 | 1989-05-09 | Athens Corporation | Method and apparatus for the continuous on-site chemical reprocessing of ultrapure liquids |
US4929435A (en) * | 1987-02-12 | 1990-05-29 | Allied-Signal Inc. | Manufacture of high purity low arsenic anhydrous hydrogen fluoride |
US4952386A (en) * | 1988-05-20 | 1990-08-28 | Athens Corporation | Method and apparatus for purifying hydrogen fluoride |
US4980032A (en) * | 1988-08-12 | 1990-12-25 | Alameda Instruments, Inc. | Distillation method and apparatus for reprocessing sulfuric acid |
US5164049A (en) * | 1986-10-06 | 1992-11-17 | Athens Corporation | Method for making ultrapure sulfuric acid |
US5288333A (en) * | 1989-05-06 | 1994-02-22 | Dainippon Screen Mfg. Co., Ltd. | Wafer cleaning method and apparatus therefore |
US5346557A (en) * | 1991-10-29 | 1994-09-13 | Hi-Silicon, Co., Ltd. | Process for cleaning silicon mass and the recovery of nitric acid |
US5362469A (en) * | 1991-10-31 | 1994-11-08 | Solvay Fluor Und Derivate Gmbh | Preparation of ultrapure hydrogen fluoride |
US5496778A (en) * | 1994-01-07 | 1996-03-05 | Startec Ventures, Inc. | Point-of-use ammonia purification for electronic component manufacture |
US5500098A (en) * | 1993-08-05 | 1996-03-19 | Eco-Tec Limited | Process for regeneration of volatile acids |
-
1996
- 1996-06-05 EP EP96922477A patent/EP0836536A4/en not_active Withdrawn
- 1996-06-05 KR KR1019970708706A patent/KR100379886B1/en not_active IP Right Cessation
- 1996-06-05 AU AU63338/96A patent/AU6333896A/en not_active Abandoned
- 1996-06-05 JP JP50228497A patent/JP2001527697A/en not_active Ceased
- 1996-06-05 WO PCT/US1996/010388 patent/WO1996039266A1/en not_active Application Discontinuation
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4828660A (en) * | 1986-10-06 | 1989-05-09 | Athens Corporation | Method and apparatus for the continuous on-site chemical reprocessing of ultrapure liquids |
US5164049A (en) * | 1986-10-06 | 1992-11-17 | Athens Corporation | Method for making ultrapure sulfuric acid |
US4756899A (en) * | 1987-02-12 | 1988-07-12 | Allied-Signal Inc. | Manufacture of high purity low arsenic anhydrous hydrogen fluoride |
US4929435A (en) * | 1987-02-12 | 1990-05-29 | Allied-Signal Inc. | Manufacture of high purity low arsenic anhydrous hydrogen fluoride |
US4952386A (en) * | 1988-05-20 | 1990-08-28 | Athens Corporation | Method and apparatus for purifying hydrogen fluoride |
US4980032A (en) * | 1988-08-12 | 1990-12-25 | Alameda Instruments, Inc. | Distillation method and apparatus for reprocessing sulfuric acid |
US5288333A (en) * | 1989-05-06 | 1994-02-22 | Dainippon Screen Mfg. Co., Ltd. | Wafer cleaning method and apparatus therefore |
US5346557A (en) * | 1991-10-29 | 1994-09-13 | Hi-Silicon, Co., Ltd. | Process for cleaning silicon mass and the recovery of nitric acid |
US5362469A (en) * | 1991-10-31 | 1994-11-08 | Solvay Fluor Und Derivate Gmbh | Preparation of ultrapure hydrogen fluoride |
US5500098A (en) * | 1993-08-05 | 1996-03-19 | Eco-Tec Limited | Process for regeneration of volatile acids |
US5496778A (en) * | 1994-01-07 | 1996-03-05 | Startec Ventures, Inc. | Point-of-use ammonia purification for electronic component manufacture |
Non-Patent Citations (1)
Title |
---|
See also references of EP0836536A4 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7871249B2 (en) | 1998-04-16 | 2011-01-18 | Air Liquide Electronics U.S. Lp | Systems and methods for managing fluids using a liquid ring pump |
US8702297B2 (en) | 1998-04-16 | 2014-04-22 | Air Liquide Electronics U.S. Lp | Systems and methods for managing fluids in a processing environment using a liquid ring pump and reclamation system |
US7980753B2 (en) | 1998-04-16 | 2011-07-19 | Air Liquide Electronics U.S. Lp | Systems and methods for managing fluids in a processing environment using a liquid ring pump and reclamation system |
US6224252B1 (en) | 1998-07-07 | 2001-05-01 | Air Products And Chemicals, Inc. | Chemical generator with controlled mixing and concentration feedback and adjustment |
EP0970744A2 (en) | 1998-07-07 | 2000-01-12 | Air Products And Chemicals, Inc. | Chemical generator with controlled mixing and concentration feedback and adjustment |
US6271188B1 (en) * | 1998-08-14 | 2001-08-07 | Messer Griesheim Gmbh | Production of ready-to-use solutions |
US6346227B1 (en) | 1999-02-12 | 2002-02-12 | Bayer Aktiengesellschaft | Process for preparing pure hydrofluoric acid |
EP1028087A1 (en) * | 1999-02-12 | 2000-08-16 | Bayer Ag | Method for preparing pure hydrofluoric acid |
US6799883B1 (en) | 1999-12-20 | 2004-10-05 | Air Liquide America L.P. | Method for continuously blending chemical solutions |
US8317388B2 (en) | 1999-12-20 | 2012-11-27 | Air Liquide Electronics U.S. Lp | Systems for managing fluids in a processing environment using a liquid ring pump and reclamation system |
US7108737B2 (en) | 2001-03-28 | 2006-09-19 | Basf Aktiengesellschaft | Method for the purification of corrosive gases |
KR100856187B1 (en) * | 2001-03-28 | 2008-09-03 | 바스프 에스이 | Process for the purification of corrosive gases |
WO2002078820A1 (en) * | 2001-03-28 | 2002-10-10 | Merck Patent Gmbh | Method for the purification of corrosive gases |
EP1323974A1 (en) * | 2001-12-20 | 2003-07-02 | Air Liquide Electronics Systems | Method and device for obtaining a solution of chemical products from their gas phase |
FR2834045A1 (en) * | 2001-12-20 | 2003-06-27 | Air Liquide Electronics Sys | Production of an ultrapure solution from an industrial quality chemical product by separating the gaseous and liquid phases in a storage vessel and dissolving the gas in deionised water |
US10739795B2 (en) | 2016-06-17 | 2020-08-11 | Air Liquide Electronics U.S. Lp | Deterministic feedback blender |
Also Published As
Publication number | Publication date |
---|---|
EP0836536A1 (en) | 1998-04-22 |
EP0836536A4 (en) | 1999-12-15 |
KR19990022227A (en) | 1999-03-25 |
KR100379886B1 (en) | 2003-06-19 |
JP2001527697A (en) | 2001-12-25 |
AU6333896A (en) | 1996-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5722442A (en) | On-site generation of ultra-high-purity buffered-HF for semiconductor processing | |
US5785820A (en) | On-site manufacture of ultra-high-purity hydrofluoric acid for semiconductor processing | |
US6050283A (en) | System and method for on-site mixing of ultra-high-purity chemicals for semiconductor processing | |
EP0831978B1 (en) | On-site ammonia purification for semiconductor manufacture | |
US5755934A (en) | Point-of-use ammonia purification for electronic component manufacture | |
USRE37972E1 (en) | Manufacture of high precision electronic components with ultra-high purity liquids | |
US6350425B2 (en) | On-site generation of ultra-high-purity buffered-HF and ammonium fluoride | |
CN1082402C (en) | On-site generation of ultra-high-purity buffered-HF for semiconductor processing | |
US6001223A (en) | On-site ammonia purification for semiconductor manufacture | |
US5846386A (en) | On-site ammonia purification for semiconductor manufacture | |
EP0836536A1 (en) | On-site generation of ultra-high-purity buffered-hf for semiconductor processing | |
WO1996039651A1 (en) | System and method for on-site mixing of ultra-high-purity chemicals for semiconductor processing | |
WO1996041687A1 (en) | On-site manufacture of ultra-high-purity hydrofluoric acid for semiconductor processing | |
WO1996039263A1 (en) | On-site manufacture of ultra-high-purity nitric acid for semiconductor processing | |
US6214173B1 (en) | On-site manufacture of ultra-high-purity nitric acid | |
EP0833705A1 (en) | On-site manufacture of ultra-high-purity hydrofluoric acid for semiconductor processing | |
KR19990022280A (en) | Method for producing ultra-high purity hydrofluoric acid for semiconductor processing in situ | |
EP0836719A1 (en) | System and method for on-site mixing of ultra-high-purity chemicals for semiconductor processing | |
TW382004B (en) | An on-site device, in a semiconductor device fabrication facility, for providing ultra-high-purity buffered ammonium fluoride or hydrofluoric acid to a semiconductor manufacturing operation | |
Tsukamoto et al. | Development of ozonated ultrapure water supplying system using direct-dissolving method | |
EP0836524A1 (en) | On-site generation of ultra-high-purity buffered hf for semiconductor processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 96194535.4 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 1996 674110 Country of ref document: US Date of ref document: 19960701 Kind code of ref document: A Ref document number: 1996 674130 Country of ref document: US Date of ref document: 19960701 Kind code of ref document: A |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 1997 881747 Country of ref document: US Date of ref document: 19970624 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1019970708706 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1996922477 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1996922477 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWP | Wipo information: published in national office |
Ref document number: 1019970708706 Country of ref document: KR |
|
WWG | Wipo information: grant in national office |
Ref document number: 1019970708706 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1996922477 Country of ref document: EP |