WO1996037003A1 - Application d'un catalyseur par voie photoelectrique - Google Patents

Application d'un catalyseur par voie photoelectrique Download PDF

Info

Publication number
WO1996037003A1
WO1996037003A1 PCT/DE1996/000791 DE9600791W WO9637003A1 WO 1996037003 A1 WO1996037003 A1 WO 1996037003A1 DE 9600791 W DE9600791 W DE 9600791W WO 9637003 A1 WO9637003 A1 WO 9637003A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst material
photoconductive layer
electrode carrier
mixture
polymer material
Prior art date
Application number
PCT/DE1996/000791
Other languages
German (de)
English (en)
Inventor
Peter Suchy
Roland Kircher
Christoph NÖLSCHER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1996037003A1 publication Critical patent/WO1996037003A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8853Electrodeposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a method for applying catalyst material to an electrode carrier.
  • Fuel cells can play an important role for stationary and mobile energy generation.
  • a solid electrolyte such as polymer electrolyte and solid oxide
  • a liquid electrolyte such as potassium hydroxide solution, phosphoric acid and molten carbonate
  • the object of the invention is to provide a method which permits inexpensive and mass-production-compatible catalyst application and can therefore be used in particular in fuel cells, but also in electrolysers, polymer batteries and supercapacitors. This is achieved according to the invention (variant A)
  • the mixture of catalyst material and polymer material is electrostatically transferred to the correspondingly negatively or positively charged or polarized electrode carrier; and that the mixture of catalyst material and polymer material is fixed on the electrode carrier by a temperature treatment.
  • the method according to the invention also allows the catalyst material to be applied in the form of a pattern (structured coating), the edge region of the electrode carrier, for example, not being coated.
  • the photoconductive layer is first exposed at the points which are not to be coated with catalyst material, and then the mixture of catalyst material and polymer material is applied to the exposed points.
  • variant B the entire surface of the photoconductive layer is exposed in the case of an unstructured coating, and partial exposure in the case of a structured coating, ie only those locations which are to be coated are exposed.
  • the exposure of the photoconductive layer is preferably carried out with a laser beam (very homogeneous exposure), but it can also be carried out with light.
  • an electrolyte membrane for fuel cells with solid electrolyte
  • a current collector for fuel cells with solid or liquid electrolyte
  • the electrode carrier can also be an electrolyte matrix.
  • the mixture of catalyst material and polymer material is advantageously fixed on the electrode carrier by electromagnetic radiation or by hot pressing.
  • the catalyst material is preferably platinum or iridium or a platinum or iridium compound or alloy.
  • other metals can also be used, such as palladium, ruthenium, gold, nickel and tungsten, and also metal compounds and alloys such as NiO and La ⁇ _ x Sr x Mn ⁇ 3.
  • the catalyst material can be used either directly as a powder or on a support material, such as carbon black or carbon powder.
  • the catalyst material or the electrode Additives that are used in electrodes, such as NiO and ZrC> 2 can also be added to the material.
  • the polymer material can be a polymer electrolyte, such as poly (perfluoroalkylene) sulfonic acid and polyether ether ketone ketone (PEEKK), or a hydrophobic or hydrophilic material on the cathode or anode side, for example polytetrafluoroethylene for low-temperature fuel cells (polymer electrolyte and alkaline and phosphoric acid fumes). fabric cells), polymer batteries and supercapacitors.
  • the binder materials usually used there can be used for high-temperature fuel cells.
  • an ionic polymer i.e. a polymer which contains ionic groups as a constituent of the main chain or at the side thereof.
  • variant A is followed in detail, for example, as follows (see FIG. 1):
  • a photoconductive layer is evenly charged negatively.
  • the photoconductive layer which consists of inorganic substances such as selenium and arsenic compounds, or of non-toxic organic substances, is located on an electrically conductive, in particular on a metallic substrate, which is generally a metal drum, for example made of aluminum. Charging takes place in particular by corona discharge or spray or spray discharge. For this purpose, a negative is made on a tungsten wire running parallel to the metal drum
  • High voltage is applied, for example approx. -7000 V.
  • the air surrounding the tungsten wire is thereby ionized and the photoconductive layer is negatively charged.
  • a uniform distribution of the charge is achieved by means of a grid which is arranged between the tungsten wire and the metal drum, or by means of a brush.
  • the photoconductive layer is exposed in a targeted manner, specifically at the points which should not be coated with catalyst material here - and later on the electrode carrier.
  • the exposure is carried out in particular with a laser beam. Since the photoconductor becomes conductive at the exposed areas, the previously applied charge flows off via the grounded metal drum and an invisible image is created, which is characterized by the charge distribution.
  • developer the invisible image a mixture of catalyst material and polymer material, ie the electrode material, is applied to the photoconductive layer. This is done in such a way that the electrode material is charged in the opposite manner to the metal drum, in the present case thus positively, for example to approximately +400 V.
  • the electrode material is, for example, in a brush.
  • the electrode material - due to the potential difference (approx. 7400 V) - is electrostatically transferred to the charged, ie unexposed areas.
  • the exposed areas remain omitted, since the potential difference of approx. 400 V is too small for a transmission of the electrode material in the selected geometrical arrangement. 4.
  • the electrode material is electrostatically transferred to the electrode carrier.
  • the electrode carrier is guided over the metal drum or the metal drum is rolled over the electrode carrier. At the same time, the electrode carrier is negatively charged or polarized in a manner corresponding to the charge of the electrode material.
  • a negative high voltage is applied, for example, to a so-called transfer charger, which is, for example, a tungsten wire, on the side of the electrode carrier facing away from the metal drum approx. -5000 V.
  • a so-called transfer charger which is, for example, a tungsten wire
  • the electrode material is preferably fixed on the electrode carrier by electromagnetic
  • Radiation in particular by infrared or microwave radiation, i.e. by heat radiation on the front or back, or by hot pressing, for example between two rollers at a temperature of 120 to 280 ° C; this can also be done in several steps, as well as by combining heat radiation and hot pressing.
  • Chemical or physical modifications can take place, for example by partial fusion of the polymer material with the electrode carrier and / or the catalyst material, by diffusion of the
  • Polymer material or the material of the electrode carrier in particular above the softening points, and by polymerization processes in the case of material which was originally not completely polymerized.
  • a component is present in the polymer material which volatilizes during the heat treatment.
  • Such a component can advantageously also serve to largely encapsulate conductive components of the electrode material, i.e. to envelop, and in this way to facilitate the application to the electrode carrier.
  • the metal drum is finally cleaned, for example by means of a mechanical scraper.
  • the remaining electrode material removed from the drum is collected and can be reused.
  • the metal drum is subsequently completely discharged, for example by means of an extinguishing lamp.
  • the remaining charge flows off, so that a new coating process can be started.
  • the procedure for a structured coating is, for example, as follows (see FIG. 2):
  • the photoconductive layer on the metal drum is charged uniformly positively (high voltage), for example to approximately +7000 V.
  • the electrode material i.e. the mixture of catalyst material and polymer material is charged in the same way as the metal drum, in the present case thus positively, but to a lower value, for example to approx. +400 V. Therefore electrode material only reaches the exposed, i.e. discharged areas of the photoconductive layer, in the other areas there is a repulsive electric field. Discharge of the photoconductor or the metal drum is therefore not necessary.
  • the latter In order to transfer the electrode material to the electrode carrier, the latter is negatively charged or polarized (high voltage), for example to approximately -5000 V, in a manner corresponding to the charge of the electrode material. In this way, a pattern-preserving transfer takes place.
  • high voltage for example to approximately -5000 V
  • the electrode material is fixed on the electrode carrier by means of heat radiation or hot pressing.
  • the method according to the invention is also suitable for an endless roll coating.
  • this process can be used to produce hydrophobic and / or hydrophilic structures.
  • multi-layer electrodes can be produced, ie several layers are applied one above the other, and the electrode carrier is also coated on both sides possible, if necessary with different materials.
  • the layers can differ in terms of geometry, structure and composition.
  • the first layer can be relatively coarse-grained and consist of polytetrafluoroethylene (PTFE), an ionomer and carbon and contain little or no platinum, while the second layer can contain a lot of platinum and no PTFE.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)

Abstract

Pour appliquer un matériau catalyseur sur un porte-électrodes, on procède de la manière suivante: une couche photoconductrice située sur un substrat électroconducteur mis à la terre, est chargée négativement ou positivement; un mélange d'un matériau catalyseur et d'un matériau polymère, chargé positivement ou négativement en conséquence, est appliqué par voie électrostatique sur la couche photoconductrice; la couche photoconductrice est exposée et déchargée; le mélange du matériau catalyseur et du matériau polymère est transposé par voie électrostatique sur le porte-électrodes chargé ou polarisé négativement ou positivement en conséquence; le mélange du matériau catalyseur et du matériau polymère est fixé par traitement thermique sur le porte-électrodes.
PCT/DE1996/000791 1995-05-19 1996-05-07 Application d'un catalyseur par voie photoelectrique WO1996037003A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19518535 1995-05-19
DE19518535.8 1995-05-19

Publications (1)

Publication Number Publication Date
WO1996037003A1 true WO1996037003A1 (fr) 1996-11-21

Family

ID=7762421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/000791 WO1996037003A1 (fr) 1995-05-19 1996-05-07 Application d'un catalyseur par voie photoelectrique

Country Status (1)

Country Link
WO (1) WO1996037003A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0948071A2 (fr) * 1998-03-31 1999-10-06 Matsushita Electric Industrial Co., Ltd. Electrode pour pile à combustible et procédé de fabrication
WO2006005493A1 (fr) * 2004-07-12 2006-01-19 Sartorius Ag Procede et dispositif pour appliquer une couche catalytique sur une membrane
US7022638B2 (en) 2001-09-17 2006-04-04 Toyota Jidosha Kabushiki Kaisha Method and apparatus for manufacturing a fuel cell electrode
US7455888B2 (en) 2004-02-19 2008-11-25 Toyota Jidosha Kabushiki Kaishi Method and apparatus for forming catalyst layer on substrate constituting membrane electrode assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109257A (ja) * 1984-11-01 1986-05-27 Fuji Electric Co Ltd 燃料電池の燃料電極

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109257A (ja) * 1984-11-01 1986-05-27 Fuji Electric Co Ltd 燃料電池の燃料電極

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 289 (E - 442) 2 October 1986 (1986-10-02) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0948071A2 (fr) * 1998-03-31 1999-10-06 Matsushita Electric Industrial Co., Ltd. Electrode pour pile à combustible et procédé de fabrication
US6455109B1 (en) 1998-03-31 2002-09-24 Matsushita Electric Industrial Co., Ltd. Electrode for fuel cell and method of producing the same
EP0948071A3 (fr) * 1998-03-31 2002-11-13 Matsushita Electric Industrial Co., Ltd. Electrode pour pile à combustible et procédé de fabrication
US7022638B2 (en) 2001-09-17 2006-04-04 Toyota Jidosha Kabushiki Kaisha Method and apparatus for manufacturing a fuel cell electrode
DE10243100B4 (de) * 2001-09-17 2008-05-15 Toyota Jidosha Kabushiki Kaisha, Toyota Verfahren und Vorrichtungen zur Herstellung von Membranelektroden für Brennstoffzellen
DE10243100C5 (de) * 2001-09-17 2013-12-12 Toyota Jidosha Kabushiki Kaisha Verfahren und Vorrichtung zur Herstellung von Membranelektroden für Brennstoffzellen
US7455888B2 (en) 2004-02-19 2008-11-25 Toyota Jidosha Kabushiki Kaishi Method and apparatus for forming catalyst layer on substrate constituting membrane electrode assembly
WO2006005493A1 (fr) * 2004-07-12 2006-01-19 Sartorius Ag Procede et dispositif pour appliquer une couche catalytique sur une membrane

Similar Documents

Publication Publication Date Title
DE10007990B4 (de) Verfahren zum Herstellen eines Elektrodenaufbaus und eines kombinierten Elektrolyt- und Elektrodenaufbaus sowie ein Elektrodenaufbau und ein kombinierter Elektrolyt- und Elektrodenaufbau für elektrochemische Zellen
DE10243100C5 (de) Verfahren und Vorrichtung zur Herstellung von Membranelektroden für Brennstoffzellen
DE19812592B4 (de) Membran-Elektroden-Einheit für Polymer-Elektrolyt-Brennstoffzellen, Verfahren zu ihrer Herstellung sowie Tinte
DE102010020288B4 (de) Diffusionsmediumschicht für eine brennstoffzelle
DE10392800B4 (de) Verfahren zur Herstellung einer Membranelektrodenanordnung einer PEM- oder einer SPE-Brennstoffzelle
DE112006002453T5 (de) Katalysatorschichten zum Verbessern der Gleichmäßigkeit der Stromdichte in Membranelektrodenanordnungen
DE10058337A1 (de) Blechprodukt, Platte für eine Brennstoffzelle und Verfahren zur Herstellung derselben
DE10112585A1 (de) Composit-Katalysator für eine Brennstoffzelle vom festen Polymer-Elektrolyt-Typ und Verfahren zu seiner Herstellung
DE112007000670T5 (de) Brennstoffzelle und Herstellungsverfahren für eine Brennstoffzelle
DE19837669A1 (de) Katalysatorschicht für Polymer-Elektrolyt-Brennstoffzellen
DE112009001684B4 (de) Brennstoffzellenseparator und Brennstoffzelle
DE3835336A1 (de) Composit-elektrode zur verwendung in elektrochemischen zellen
DE112004001842T5 (de) Verfahren zum Herstellen von Membranelektrodenanordnungen
DE102009004196A1 (de) Verfahren zum Regenerieren eines Separators für eine Brennstoffzelle, regenerierter Separator für eine Brennstoffzelle und Brennstoffzelle
DE102018202513B4 (de) Verfahren zur Metallisierung eines Bauelements
DE10001170A1 (de) Gasdiffusionselektrode, Verfahren zu ihrer Herstellung und Brennstoffzelle, die eine solche Elektrode enthält
DE112011102465T5 (de) Poröse Elektrode für eine Sekundärbatterie
WO1996037003A1 (fr) Application d'un catalyseur par voie photoelectrique
DE3015362A1 (de) Solarbatterie
DE2612542C3 (de) Verfahren zur Herstellung eines mit photoleitfähigem Selen beschichteten Gegenstandes fur die elektrophotographische Herstellung von Kopien
EP3063799A1 (fr) Dépôt de couches photoactives organiques par frittage
DE4142712C2 (fr)
EP2399312B1 (fr) Couche de catalyseur à utiliser dans une pile à combustible et son procédé de réalisation
DE102018114334A1 (de) Thermische steuerung von substraten zur verhinderung der permeation von ionomeren
DE102021000956A1 (de) Verfahren zur Metallisierung eines Bauelements sowie auf diese Weise hergestellte Bauelemente

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA