WO1996032620A1 - Antiballistischer schutzhelm - Google Patents

Antiballistischer schutzhelm Download PDF

Info

Publication number
WO1996032620A1
WO1996032620A1 PCT/EP1996/001476 EP9601476W WO9632620A1 WO 1996032620 A1 WO1996032620 A1 WO 1996032620A1 EP 9601476 W EP9601476 W EP 9601476W WO 9632620 A1 WO9632620 A1 WO 9632620A1
Authority
WO
WIPO (PCT)
Prior art keywords
layers
helmet
knitted fabric
fibers
fabric
Prior art date
Application number
PCT/EP1996/001476
Other languages
English (en)
French (fr)
Inventor
Dieter Hans Peter Schuster
Achim Gustav Fels
Original Assignee
Akzo Nobel N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akzo Nobel N.V. filed Critical Akzo Nobel N.V.
Priority to JP53069296A priority Critical patent/JP3771938B2/ja
Priority to DK96914879T priority patent/DK0820576T3/da
Priority to AT96914879T priority patent/ATE198794T1/de
Priority to AU56860/96A priority patent/AU5686096A/en
Priority to EP96914879A priority patent/EP0820576B1/de
Priority to CA002217445A priority patent/CA2217445C/en
Priority to DE59606345T priority patent/DE59606345D1/de
Priority to KR1019970707061A priority patent/KR100436948B1/ko
Publication of WO1996032620A1 publication Critical patent/WO1996032620A1/de
Priority to NO974523A priority patent/NO308970B1/no
Priority to US08/947,403 priority patent/US6012178A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H1/00Personal protection gear
    • F41H1/04Protection helmets
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/06Impact-absorbing shells, e.g. of crash helmets
    • A42B3/062Impact-absorbing shells, e.g. of crash helmets with reinforcing means
    • A42B3/063Impact-absorbing shells, e.g. of crash helmets with reinforcing means using layered structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H1/00Personal protection gear
    • F41H1/04Protection helmets
    • F41H1/08Protection helmets of plastics; Plastic head-shields
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0471Layered armour containing fibre- or fabric-reinforced layers
    • F41H5/0485Layered armour containing fibre- or fabric-reinforced layers all the layers being only fibre- or fabric-reinforced layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/10Fibres of continuous length
    • B32B2305/18Fabrics, textiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • B32B2437/04Caps, helmets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • B32B2571/02Protective equipment defensive, e.g. armour plates or anti-ballistic clothing

Definitions

  • the invention relates to a helmet, in particular an anti-ballistic protective helmet, consisting of several layers of textile fabrics embedded in a matrix and connected to one another via this matrix.
  • Military and police force helmets are usually antiballistic helmets, i.e. that these helmets are bullet and splinter-retardant and thus protect the helmet wearer from head injuries as a result of projectile impact.
  • Such helmets mostly contain fabrics made of antiballistically active fibers, such as aramid fibers, as the actual protective layers.
  • Kevlar is the brand name for an aramid fiber from this manufacturer
  • antiballistic protective clothing which also includes helmets, with the aim of improving the protective effect against the effects of projectiles, splinters, etc. is a permanent task of those involved in the development of such clothing, since every achievable advance in the preservation of human life and serves to protect against injuries. Therefore, the task was to further improve the protective effect of antiballistic helmets.
  • the outer protective layers contained in the helmet and made of textile fabrics ie the protective layers on the side facing away from the wearer, that is to say the side exposed to the fire, are made of multiaxial knitwear made from antiballistically active Fibers are formed.
  • Textile fabrics are to be understood to mean all fabrics made from fiber materials, such as woven fabrics, knitted fabrics, nonwovens, laid scrims, etc. Of particular importance are knitted goods and fabrics for the helmet according to the invention.
  • Antiballistically active fibers are to be understood as all fiber materials which, in the form of textile fabrics, stop or significantly slow down moving pieces such as bullets, fragments and the like.
  • antiballistic fibers examples include aramid fibers, polyethylene fibers, glass fibers or metal fibers spun by the gel spinning process. Aramid fibers are preferred for the production of the helmet according to the invention.
  • Aramid fibers which are sometimes also referred to as aromatic polyamide fibers, are generally known in the textile industry for the production of protective clothing. They are in trade under names such as Twaron.
  • the aramid fibers can be present in the multiaxial knitted fabric and in the fabric alone or in mixtures with other fibers. In the interest of good antiballistic effectiveness, when mixtures are used, the mixture of aramid fibers with other antiballistically active fibers is preferred.
  • the yarns to be used for the production of the multiaxial knitted fabric or the fabric can be filament or spun fiber yarns. Because of the higher strengths that can be achieved with filament yarns, these are preferred. There are no restrictions on the threads of the yarns to be used. These can be, for example, between 500 and 4,000 dtex.
  • Multiaxial knitted fabrics are to be understood as meaning multi-axis laid scrims which have at least two thread systems and which are connected to one another by means of knitting technology by means of a stitch thread or a binding chain.
  • the multiaxial knitwear is mostly considered to be a knitwear. However, this is a structure that is located in the border area between knitwear and laid scrim. The multiaxial knitted fabric is therefore sometimes referred to as a forfeited multiaxial laid scrim.
  • the multiaxial knitted fabric In the manufacture of the multiaxial knitted fabric, up to eight thread systems can be used on the currently known machines. A multiaxial knitted fabric with three to four thread systems is preferred for the production of the helmet according to the invention. However, the invention is not intended to remain limited to a specific type of multiaxial knitted fabric or to a specific number of thread systems, but rather to encompass all variants of this material class.
  • the multiaxial knitted fabric offers a further setting option by the arrangement of the systems, which is characterized by the specification of an angle.
  • a 0 ° line is assumed. This forms the longitudinal axis of the goods in the direction of production. Below this 0 ° line is to be understood the axis running in the middle of the web at equal distances from the two edges of the web.
  • the arrangement of the other thread systems is given in angles to this longitudinal axis or 0 ° line, the, in Seen the direction of travel of the goods, the thread systems arranged to the right of the 0 ° line are normally provided with a positive sign in the angle indication and the thread systems arranged on the left are usually provided with a negative sign. Angles between 30 and 60 ° are possible. Other thread systems can run transversely to the longitudinal axis and thus form an angle of 90 ° by which they are identified.
  • the thread layers produced in this way are consolidated by a knitting thread, which usually runs in the direction of the 0 ° axis. If mixtures of antiballistically active fibers with non-antiballistically active fibers are used in the production of the multi-axial knitted fabric, it is expedient to provide the antiballistically ineffective fiber material for the knitted thread and to use antiballistically active fibers for the other thread systems.
  • the multiaxial knitted fabric is produced on the machines known for this in the textile industry, which are usually referred to as warp knitting machines with multiaxial weft insertion systems.
  • the weight per unit area of the multiaxial knitted fabric should be in the range between 200 and 600 g / m 2 , a range between 300 and 500 g / m 2 is preferred.
  • the multiaxial knitted fabric is used in the layers of the outer helmet area, i.e. on the side of the helmet facing away from the wearer. In these situations, the advantage of the multiaxial knitwear comes into its own, as will be shown in the exemplary embodiments.
  • a helmet consists of a total of 15 layers of a textile fabric made of antiballistically active fibers.
  • layers 1 - 10 or 1 - 12 consist of multiaxial knitwear and layers 11 - 15 or 13 - 15 consist of fabrics.
  • Both textile fabrics are made from antiballistically active fibers, for example from aramid fibers.
  • the total proportion of the multiaxial knitted fabric in the reinforcement layers is 50-90% by weight, preferably 60-80% by weight.
  • Both the fabric layers and the layers of multiaxial knitted fabric are equipped with a polymer, which then forms the matrix in the helmet.
  • this can be a phenolic resin.
  • the amount of the matrix material applied is usually 10 to 30%, preferably 10 to 20%, based on the dry weight of the textile fabric to be finished.
  • a phenolic resin layer of 55 g / m 2 can be applied to a multiaxial knitted fabric with a basis weight of 410 g / m 2 , which corresponds to an order quantity of 13.4%.
  • phenolic resin In addition to phenolic resin, other polymers can also be used as matrix material for antiballistic helmets. A large number of polymers from the field of thermosets, elastomers and thermoplastics is suitable for this. Examples of usable products are vinyl esters, epoxy resins, acrylic resins, unsaturated polyesters or alkyd resins. Because of their good suitability for antiballistic articles and because of their non-flammability, phenolic resins are preferred.
  • the positive effect of the multiaxial knitted fabric is particularly surprising when this item is in Combination with a conventional fabric is used in the helmet, that is, when the outer layers of the helmet are made of multiaxial knitwear and the inner layers are made of fabric.
  • the antiballistic properties are significantly better in this combination than in helmets, in which only multiaxial knitwear or only woven goods, each made from antiballistically active fibers, are used.
  • the arrangement according to the invention of the layers of textile fabrics which are embedded in a matrix and connected to one another via this matrix shows a particularly favorable antiballistic effectiveness in the case of splinter bombardment of helmets.
  • other antiballistic materials such as vehicle armor, bullet-resistant partitions, etc., can also be constructed in a similar manner, the multiaxial knitted fabric being arranged on the side on which bullets or fragments are expected to hit.
  • a possible cause could be that when firing at a helmet which contains multiaxial knitted fabric in the outer layers, the deformation waves, which transport the energy absorbed by the textile fabric, can spread undisturbed due to the alignment of the thread layers, which is not possible with a fabric due to its construction due to the mutual wrapping of the thread systems.
  • the helmet according to the invention can achieve a significant improvement in the antiballistic effect over the conventional helmets and thus make an important contribution the increased safety of the wearer of such helmets is achieved.
  • This example describes the production of the tissues used for the tests.
  • a filament yarn made of aramid fibers with a titer of 3,360 dtex with thread counts of 6.2 / cm each in warp and weft in plain weave was processed into a fabric.
  • the weight per unit area of the fabric obtained was 412 g / m 2 .
  • the fabric produced in this way was impregnated with a phenolic resin.
  • the resin coating was 12%, that is to say that the weight per unit area of the impregnated and dried fabric was 461 g / m 2 .
  • This example describes the manufacture of the multiaxial knitwear.
  • a warp knitting machine with a multiaxial weft insertion system System Liba, filament yarn made of aramid fibers with a titer of 3,360 dtex was processed into a multi-axial knitted fabric.
  • three thread systems were used, which were arranged at angles of + 45 °, -45 ° and 90 °. All three systems and the knitting thread consisted of the same yarn.
  • the weight per unit area of the goods obtained was 409 g / m 2 .
  • the multiaxial knitted fabric produced in this way was impregnated with a phenolic resin.
  • the resin coating was 12% This means that the weight per unit area of the impregnated and dried multiaxial knitted fabric was 458 g / m 2 .
  • the fabric produced according to embodiment 1 and the multiaxial knitted fabric produced according to embodiment 2 were processed together to form a helmet.
  • cuts suitable for helmet manufacture were made from 11 layers of the multiaxial knitted fabric and from 4 layers of the fabric.
  • a so-called round blank is formed from each layer. This is a blank aligned to the shape of the helmet with a round or oval middle part and several side parts, which can have approximately the shape of a trapezoid, for example.
  • the individual circular blanks are inserted into the mold for helmet manufacture in such a way that the interfaces of the side parts do not lie exactly one above the other, but rather the side part of the upper layer somewhat covers the interface of the layer below and thus overlaps the neighboring cut.
  • the individual layers are then pressed together, the polymer applied to the textile fabric forming the matrix. This type of manufacture of antiballistic helmets is well known in the helmet industry.
  • the individual layers were arranged in such a way that initially 11 layers of multiaxial knitted fabric, produced according to embodiment 2, and then 4 fabric layers, manufactured according to embodiment 1, were present in the helmet from the outside inwards.
  • This helmet was subjected to a splinter bombardment according to the conditions of STANAG 2920.
  • the bombardment was done with 1.1 g fragments.
  • the V50 value obtained was 720 ⁇ / sec. This value means that the above Fire rate there is a penetration probability of 50%.
  • Embodiment 3 was repeated, using 10 layers of the multiaxial knitted fabric manufactured according to embodiment 2 and 5 layers of woven fabric manufactured according to embodiment 1. From the outside in, the helmet produced according to the method of manufacture described in exemplary embodiment 3 then had 10 layers of multi-axile knitwear and then 5 layers of fabric.
  • the helmet formed in this way was subjected to a splinter bombardment in accordance with the conditions of STANAG 2920.
  • the bombardment was carried out with 1.1 g splitters.
  • the V50 value obtained was 710 m / sec.
  • Embodiment 3 was repeated, using 12 layers of the multiaxial knitted fabric manufactured according to embodiment 2 and 3 layers of woven fabric manufactured according to embodiment 1. From the outside in, the helmet produced in accordance with the method of manufacture described in exemplary embodiment 3 then had 12 layers of multi-axile knitwear and then 3 layers of fabric.
  • the helmet formed in this way was subjected to a splinter bombardment in accordance with the conditions of STANAG 2920.
  • the bombardment was carried out with 1.1 g splitters.
  • the V50 value obtained was 710 m / sec. Comparative Example 1
  • a helmet was formed from 15 layers of a fabric, produced according to embodiment 1.
  • This helmet was subjected to a splinter bombardment according to the conditions of STANAG 2920.
  • the bombardment was carried out with 1.1 g fragments.
  • the V50 value obtained was 640 m / sec.
  • This helmet was subjected to a splinter bombardment according to the conditions of STANAG 2920.
  • the bombardment was carried out with 1.1 g fragments.
  • the V50 value obtained was 675 m / sec.
  • a helmet made from a combination of fabric and multiaxial knitted fabric according to examples 3-5 does not only have a significantly better antiballi ⁇ tical effectiveness than a helmet made solely from fabric, but also better antiballistic effectiveness as a helmet made solely from multi-axial knitted fabric.
  • Filament yarn made of aramid fibers with a titer of 3,360 dtex was processed on a knitting machine to form a knitted fabric with a weight per unit area of 458 g / m 2 . This was followed by impregnation with phenolic resin. After this treatment and the subsequent drying, the knitted fabric had a weight per unit area of 513 g / m 2 .
  • a helmet was formed from a total of 13 layers of the knitted fabric using the method described in exemplary embodiment 3.
  • the number of layers was reduced compared to embodiment 3 or comparative examples 1 and 2, since the use of 15 layers would have resulted in an overall weight that was too high and thus the comparability would no longer be guaranteed.
  • the helmet produced in this way was subjected to a fragmentation bombardment in accordance with the conditions of STANAG 2920.
  • the bombardment was carried out with 1.1 g fragments.
  • the V50 value obtained was 465 m / sec.
  • Filament yarn made of aramid fibers with a titer of 3,360 dtex was processed on a warp knitting machine to form warp knitted fabric with a monoaxial structure and a weight per unit area of 462 g / m 2 . This was then impregnated with phenolic resin. After this treatment and the subsequent drying, the knitted fabric had a weight per unit area of 517 g / m 2 .
  • a helmet was formed from a total of 13 layers of this warp-knitted fabric using the method described in exemplary embodiment 3. As in Comparative Example 3, the number of layers was also reduced compared to Example 3 or Comparative Examples 1 and 2, since the use of 15 layers would have resulted in an overall weight that was too high.
  • the helmet produced in this way was subjected to a fragmentation bombardment in accordance with the conditions of STANAG 2920.
  • the bombardment was carried out with 1.1 g fragments.
  • the V50 value obtained was 630 m / sec.
  • Comparative examples 3 and 4 show that with other types of knitted fabrics, such as here with a knitted fabric or with a warp knitted fabric, the favorable result of the multi-axial knitted fabric (comparative example 2) cannot be achieved.
  • L. layer
  • MA multiaxial knitted fabric, manufactured according to embodiment 2
  • warp warp knitted fabric, as in Comparative Example 4 described.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Textile Engineering (AREA)
  • Helmets And Other Head Coverings (AREA)
  • Moulding By Coating Moulds (AREA)
  • Knitting Of Fabric (AREA)
  • Laminated Bodies (AREA)
  • Gloves (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Ein Helm, besonders ein antiballistischer Schutzhelm, enthält als Schutzlagen textile Flächengebilde aus antiballistisch wirksamen Fasern. Dabei bestehen die Lagen, die an der dem Träger abgewandten Seite angeordnet sind, aus multiaxialer Wirkware. Auf der dem Träger zugewandten Seite bestehen diese Lagen aus Geweben. Der Anteil multiaxialer Wirkware in den gesamten Verstärkungslagen beträgt bevorzugt 60 - 80 %. Bei den antiballistisch wirksamen Fasern handelt es sich um Aramidfasern, nach dem Gelspinnverfahren ersponnenen Polyethylenfasern, Glasfasern, Metallfasern oder deren Mischungen. Aramidfasern werden bevorzugt.

Description

Antiballistischer Schutzhelm
Beschreibung:
Die Erfindung betrifft einen Helm, insbesondere einen anti¬ ballistischen Schutzhelm, bestehend aus mehreren, in eine Matrix eingebetteten und über diese Matrix miteinander ver¬ bundenen Lagen textiler Flächengebilde.
Helme für Militär- und Polizeikräfte sind normalerweise antiballistische Helme, d.h. daß diese Helme kugel- und splitterhemmend wirken und so den Träger des Helmes vor Kopfverletzungen als Folge einer Geschoßeinwirkung schüt¬ zen.
Solche Helme enthalten als eigentliche Schutzlagen meistens Gewebe aus antiballistisch wirksamen Fasern, wie beispiels¬ weise Aramidfasem. So sind Helme, die 15 Lagen Aramidgewe- be, die mit Phenolharz imprägniert und nach einem für die Helmherstellung geeigneten Zuschnitt miteinander verpreßt wurden, als antiballistischer Kopfschutz sehr häufig anzu¬ treffen.
Üblicherweise sind die eigentlichen Schutzlagen solcher Helme Gewebe, es wurde aber hierfür auch schon der Einsatz von Maschenwaren vorgeschlagen. So werden in DE-A 38 06 204 "Gewebe und Gewirke mit loser Fadenbindung" für die Her¬ stellung von Helmen genannt. Ebenso erwähnt US-A 4 343 047 gestrickte oder gewebte textile Flächengebilde für die Her¬ stellung von Helmen.
Schließlich werden auch in einer Zeitschriftenpublikation eines Herstellers von Aramidfasem (Du Pont-Magazin, 1988, Nr. 1, Seiten 10 - 13) "aus Kevlar gestrickte Kappen" (Kevlar ist der Markenname für eine Aramidfaser dieses Her¬ stellers) als Vorprodukte für Helme genannt.
Alle diese Publikationen sehen die Maschenware, worunter Gewirke und Gestricke zusammengefaßt werden, als eine Al¬ ternative zum Gewebe, das heißt, daß aus diesen Publika¬ tionen die Lehre abzuleiten ist, daß die Verstärkungslagen eines antiballistischen Helmes entweder aus Geweben oder aus Maschenwaren hergestellt werden sollen. Die Möglichkeit einer gemeinsamen Verarbeitung von Geweben und Maschenwaren in einem Helm erwähnen sie nicht, ebensowenig läßt sich aus diesen Dokumenten ableiten, welche Art von Maschenware für den Einsatz im Helm besonders geeignet erscheint.
Die Weiterentwicklung antiballistischer Schutzkleidung, wozu auch Helme zu zählen sind, mit dem Ziel der Verbesse¬ rung der Schutzwirkung gegen die Einwirkung von Geschossen, Splittern etc. ist eine Daueraufgabe der an der Entwicklung solcher Kleidung beteiligten Stellen, da jeder erreichbare Fortschritt dem Erhalt von Menschenleben und dem Schutz vor Verletzungen dient. Deshalb bestand die Aufgabe, auch die Schutzwirkung von antiballistischen Helmen weiter zu ver¬ bessern.
Überraschend wurde gefunden, daß dies in besonders vorteil¬ hafter Weise gelingt, wenn die im Helm enthaltenen, aus textilen Flächengebilden bestehenden äußeren Schutzlagen, d.h. die Schutzlagen auf der dem Träger abgewandten, also der dem Beschüß zuerst ausgesetzten Seite, aus multiaxialer Wirkware aus antiballistisch wirksamen Fasern gebildet wer¬ den. Unter textilen Flächengebilden sind alle aus Fasermate¬ rialien entstehenden Flächengebilde wie Gewebe, Maschen¬ waren, Vliesstoffe, Fadengelege etc. zu verstehen. Von be¬ sonderer Bedeutung sind für den erfindungsgemäßen Helm Ma¬ schenwaren und Gewebe.
Unter antiballistisch wirksamen Fasern sind alle Faser¬ materialien zu verstehen, die in Form von textilen Flächen¬ gebilden mit hoher Geschwindigkeit sich bewegende Stücke wie beispielsweise Geschosse, Splitter und dgl. aufhalten oder deutlich abbremsen.
Beispiele antiballistischer Fasern sind Aramidfase , nach dem Gelspinnverfahren ersponnene Polyethylenfasern, Glas¬ fasern oder Metallfasern. Aramidfasem werden für die Her¬ stellung des erfindungungsgemäßen Helmes bevorzugt.
Aramidfasem, die teilweise auch als aromatische Polyamid¬ fasern bezeichnet werden, sind in der Textilindustrie für die Herstellung von Schutzkleidung allgemein bekannt. Sie sind unter Bezeichnungen wie beispielsweise Twaron im Han¬ del.
Die Aramidfasem können in der multiaxialen Wirkware und im Gewebe alleine oder in Mischungen mit anderen Fasern vor¬ liegen. Im Interesse einer guten antiballistischen Wirk¬ samkeit wird bei Verwendung von Mischungen die Mischung von Aramidfasem mit anderen antiballistisch wirksamen Fasern bevorzugt.
Die für die Herstellung der multiaxialen Wirkware bzw. des Gewebes einzusetzenden Garne können Filament- oder Spinn¬ fasergarne sein. Wegen der mit Filamentgarnen erreichbaren höheren Festigkeiten, werden diese bevorzugt. Bei den Ti¬ tern der einzusetzenden Garne bestehen keine Beschränkun¬ gen. Diese können beispielsweise zwischen 500 und 4 000 dtex liegen. Unter multiaxialer Wirkware sind mehrachsige Fadengelege, die mindestens zwei Fadensysteme aufweisen und die mittels Wirktechnik durch einen Maschenfaden bzw. eine Bindekette miteinander verbunden sind, zu verstehen. Die multiaxiale Wirkware wird meistens als zu den Maschenwaren gehörend betrachtet. Es handelt sich hier aber um eine Struktur, die sich im Grenzbereich zwischen Maschenware und Fadengelege befindet. Die multiaxiale Wirkware wird deshalb teilweise auch als verwirktes multiaxiales Fadengelege bezeichnet.
Prinzipiell ist es auch möglich, monoaxiale Strukturen, also beispielsweise eine normale Kettwirkware, zur Herstel¬ lung des erfindungsgemäßen Helmes einzusetzen. Multiaxiale Strukturen haben sich aber als geeigneter erwiesen.
Bei der Herstellung der multiaxialen Wirkware können auf den gegenwärtig bekannten Maschinen bis zu acht Fadensy¬ steme eingesetzt werden. Für die Herstellung des erfin¬ dungsgemäßen Helmes wird eine multiaxiale Wirkware mit drei bis vier Fadensystemen bevorzugt. Die Erfindung soll jedoch nicht auf eine bestimmte Art von multiaxialer Wirkware bzw. auf eine bestimmte Zahl von Fadensystemen beschränkt blei¬ ben, sondern alle Varianten dieser Material-Klasse umfas¬ sen.
Neben Variationsmöglichkeiten in der Zahl der Fadensysteme bietet die multiaxiale Wirkware eine weitere Einstellungs¬ möglichkeit durch die Anordnung der Systeme, die durch die Angabe eines Winkels charakterisiert wird. Hierbei wird von einer 0°-Linie ausgegangen. Diese bildet die Längsachse der Ware in Produktionsrichtung. Unter dieser 0°-Linie ist so¬ mit die in der Mitte der Warenbahn in gleichen Abständen zu den beiden Rändern der Warenbahn verlaufende Achse zu ver¬ stehen.
Die Anordnung der anderen Fadensysteme wird in Winkeln zu dieser Längsachse oder 0°-Linie angegeben, wobei die, in Laufrichtung der Ware gesehen, rechts von der 0°-Linie an¬ geordneten Fadensysteme normalerweise mit einem positiven Vorzeichen bei der Winkelangabe und die links angeordneten Fadensysteme üblicherweise mit einem negativen Vorzeichen versehen werden. Hierbei sind Winkel zwischen 30 und 60° möglich. Weitere Fadensysteme können quer zur Längsachse verlaufen und bilden somit dann einen Winkel von 90°, durch den sie gekennzeichnet werden.
Die Verfestigung dieser so erzeugten Fadenlagen erfolgt durch einen Wirkfaden, der meistens in Richtung der 0°-Achse verläuft. Wenn bei der Herstellung der multi¬ axialen Wirkware Mischungen von antiballistisch wirksamen Fasern mit nicht antiballistisch wirksamen Fasern zum Ein¬ satz kommen, so ist es zweckmäßig, das antiballistisch nicht wirksame Fasermaterial für den Wirkfaden vorzusehen und für die anderen Fadensysteme bevorzugt antiballistisch wirksame Fasern einzusetzen.
Die Herstellung der multiaxialen Wirkware erfolgt auf den in der Textilindustrie hierfür bekannten Maschinen, die üblicherweise als Kettenwirkmaschinen mit multiaxialen Schußeintragssystemen bezeichnet werden.
Das Flächengewicht der multiaxialen Wirkware sollte in dem Bereich zwischen 200 und 600 g/m2 liegen, bevorzugt wird ein Bereich zwischen 300 und 500 g/m2.
Die multiaxiale Wirkware wird in den Lagen des äußeren Helmbereiches, also auf der dem Träger abgewandten Seite des Helmes, eingesetzt. In diesen Lagen kommt der Vorteil der multiaxialen Wirkware voll zur Geltung, wie in den Aus¬ führungsbeispielen noch gezeigt wird.
Beispielsweise besteht ein Helm aus insgesamt 15 Lagen ei¬ nes textilen Flächengebildes aus antiballistisch wirksamen Fasern. Von diesen Lagen können zum Beispiel, von außen nach innen, die Lagen 1 - 10 oder 1 - 12 aus multiaxialer Wirkware und die Lagen 11 - 15 oder 13 - 15 aus Geweben bestehen. Beide textilen Flächengebilde werden aus antibal¬ listisch wirksamen Fasern, zum Beispiel aus Aramidfasem, hergestellt. Der Gesamtanteil der multiaxialen Wirkware an den Verstärkungslagen beträgt 50 - 90 Gewichts%, bevorzugt 60 - 80 Gewichts%.
Es ist auch möglich, den Helm mit Anteilen unter 50 %, be¬ zogen auf die Gesamtmenge der Verstärkungslagen, herzustel¬ len, bessere Ergebnisse wurden aber erzielt, wenn der Ge¬ wichtsanteil der Lagen aus multiaxialer Wirkware denjenigen der Lagen aus Geweben übersteigt.
Sowohl die Gewebelagen als auch die Lagen aus multiaxialer Wirkware werden mit einem Polymer, das dann im Helm die Matrix bildet, ausgerüstet. Beispielsweise kann dies ein Phenolharz sein. Die Menge des aufgebrachten Matrixmate¬ rials beträgt üblicherweise 10 bis 30%, bevorzugt 10 bis 20 %, bezogen auf das Trockengewicht des auszurüstenden textilen Flächengebildes. So kann beispielsweise auf eine multiaxiale Wirkware mit einem Flächengewicht von 410 g/m2 eine Phenolharzauflage von 55 g/m2 aufgebracht werden, was einer Auftragsmenge von 13,4% entspricht.
Neben Phenolharz können auch andere Polymere als Matrixma¬ terial für antiballistische Helme Einsatz finden. Hierfür geeignet ist eine große Zahl von Polymeren aus dem Bereich der Duromeren, Elastomeren und Thermoplaste. Beispiele ein¬ satzfähiger Produkte sind Vinylester, Epoxyharze, Acryl- harze, ungesättigte Polyester oder Alkydharze. Wegen ihrer guten Eignung für antiballistische Artikel und wegen ihrer Nichtbrennbarkeit werden Phenolharze bevorzugt.
Wie in den Ausführungsbeispielen noch gezeigt wird, kommt der positive Effekt der multiaxialen Wirkware überraschen¬ derweise besonders dann zur Geltung, wenn diese Ware in Kombination mit einem herkömmlichen Gewebe im Helm zum Ein¬ satz kommt, das heißt, wenn die äußeren Lagen des Helmes aus multiaxialer Wirkware und die inneren Lagen aus Gewebe gebildet werden. Die antiballistischen Eigenschaften sind in dieser Kombination deutlich besser als bei Helmen, bei denen nur multiaxiale Wirkware oder nur Webware, jeweils aus antiballistisch wirksamen Fasern hergestellt, zum Ein¬ satz kommt.
Die erfindungsgemäße Anordnung der in eine Matrix einge¬ betteten und über diese Matrix miteinander verbundenen La¬ gen textiler Flächengebilde zeigt eine besonders günstige antiballistische Wirksamkeit beim Splitterbeschuß von Hel¬ men. Außer Helmen können aber auch andere antiballistische Materialien wie beispielsweise Fahrzeugpanzerungen, ge¬ schoßhemmende Stellwände etc. in ähnlicher Weise aufgebaut werden, wobei die multiaxiale Wirkware jeweils auf der Sei¬ te angeordnet ist, auf der ein Auftreffen von Geschossen oder Splittern erwartet wird.
Bis jetzt ist es nicht gelungen, eine ausreichende Erklä¬ rung für die sehr überraschende antiballistische Wirkung des erfindungsgemäßen Helmes zu finden. Eine mögliche Ursa¬ che könnte sein, daß sich beim Beschüß eines Helmes, der in den äußeren Lagen multiaxiale Wirkware enthält, die Defor¬ mationswellen, die die vom textilen Flächengebilde aufge¬ nommene Energie transportieren, aufgrund der Ausrichtung der Fadenlagen besonders ungestört ausbreiten können, was bei einem Gewebe auf Grund von dessen Konstruktion wegen der gegenseitigen Umschlingungen der Fadensysteme nicht möglich ist.
Wie in den Ausführungsbeispielen noch näher gezeigt wird, kann mit dem erfindungsgemäßen Helm gegenüber den herkömm¬ lichen Helmen eine deutliche Verbesserung des antiballisti¬ schen Effektes erzielt und somit ein wichtiger Beitrag zu der erhöhten Sicherheit der Träger von solchen Helmen ge¬ leistet werden.
Ausführungsbeispiele
Ausführungsbeispiel 1
Dieses Beispiel beschreibt die Herstellung der für die Ver¬ suche eingesetzten Gewebe. Hierzu wurde ein Filamentgarn aus Aramidfasem mit einem Titer von 3 360 dtex mit Faden¬ zahlen von je 6,2/cm in Kette und Schuß in Leinwandbindung zu einem Gewebe verarbeitet. Das Flächengewicht des erhal¬ tenen Gewebes betrug 412 g/m2.
Das so hergestellte Gewebe wurde mit einem Phenolharz im¬ prägniert. Die Harzauflage betrug 12 %, das heißt, das Flä¬ chengewicht des imprägnierten und getrockneten Gewebes be¬ trug 461 g/m2.
Ausführungsbeispiel 2
Dieses Beispiel beschreibt die Herstellung der multiaxialen Wirkware. Auf einer Kettenwirkmaschine mit multiaxialem Schußeintragssystem, System Liba, wurde Filamentgarn aus Aramidfasem mit einem Titer von 3 360 dtex zu einer multi¬ axialen Wirkware verarbeitet. Hierzu wurde mit drei Faden¬ systemen gearbeitet, die in Winkeln von +45°, -45° und 90° angeordnet wurden. Alle drei Systeme und der Wirkfaden be¬ standen aus dem gleichen Garn. Das Flächengewicht der er¬ haltenen Ware betrug 409 g/m2.
Die so hergestellte multiaxiale Wirkware wurde mit einem Phenolharz imprägniert. Die Harzauflage betrug 12 %, das heißt, das Flächengewicht der imprägnierten und getrockne¬ ten multiaxialen Wirkware betrug 458 g/m2.
Ausführungsbeispiel 3
Das nach Ausführungsbeispiel 1 hergestellte Gewebe und die nach Ausführungsbeispiel 2 hergestellte multiaxiale Wirkwa¬ re wurden miteinander zu einem Helm verarbeitet. Hierzu wurden aus 11 Lagen der multiaxialen Wirkware und aus 4 La¬ gen des Gewebes für die Helmherstellung geeignete Zuschnit¬ te angefertigt. Aus jeder Lage wird dabei eine sogenannte Ronde gebildet. Dies ist ein auf die Helmform ausgerichte¬ ter Zuschnitt mit einem runden oder ovalen Mittelteil und mehreren Seitenteilen, die beispielsweise ungefähr die Form eines Trapezes aufweisen können.
Die einzelnen Ronden werden so in die Form für die Helmher¬ stellung eingelegt, daß die Schnittstellen der Seitenteile nicht genau übereinander liegen, sondern das Seitenteil der oberen Lage die Schnittstelle der darunterliegenden Lage etwas abdeckt und somit den Nachbarzuschnitt überlappt. Die einzelnen Lagen werden dann miteinander verpreßt, wobei das auf das textile Flächengebilde aufgebrachte Polymer die Matrix bildet. Diese Art der Herstellung antiballistischer Helme ist in der Helmindustrie allgemein bekannt.
Die Anordnung der einzelnen Lagen erfolgte so, daß von außen nach innen zunächst 11 Lagen multiaxialer Wirkware, hergestellt nach Ausführungsbeispiel 2, und danach 4 Gewe¬ belagen, hergestellt nach Ausführungsbeispiel 1, im Helm vorhanden waren.
Dieser Helm wurde einem Splitterbeschuß nach den Bedingun¬ gen von STANAG 2920 unterzogen. Der Beschüß erfolgte mit 1,1 g- Splittern. Der hierbei erhaltene V50-Wert lag bei 720 ιτι/sec . Dieser Wert bedeutet, daß bei der genannten Beschußgeschwindigkeit eine Penetrationswahrscheinlichkeit von 50 % besteht.
Ausführungsbeispiel 4
Ausführungsbeispiel 3 wurde wiederholt, wobei 10 Lagen der multiaxialen Wirkware, hergestellt nach Ausführungsbei¬ spiel 2, und 5 Lagen Gewebe, hergestellt nach Ausführungs¬ beispiel 1, zum Einsatz kamen. Von außen nach innen wies der gemäß der in Ausführungsbeispiel 3 beschriebenen Her¬ stellungsweise angefertigte Helm dann also 10 Lagen multi- axiler Wirkware und danach 5 Lagen Gewebe auf.
Der so gebildete Helm wurde einem Splitterbeschuß nach den Bedingungen von STANAG 2920 unterzogen. Der Beschüß erfolg¬ te mit 1,1 g- Splittern. Der hierbei erhaltene V50-Wert lag bei 710 m/sec.
Ausführungsbeispiel 5
Ausführungsbeispiel 3 wurde wiederholt, wobei 12 Lagen der multiaxialen Wirkware, hergestellt nach Ausführungsbei¬ spiel 2, und 3 Lagen Gewebe, hergestellt nach Ausführungs¬ beispiel 1, zum Einsatz kamen. Von außen nach innen wies der gemäß der in Ausführungsbeispiel 3 beschriebenen Her¬ stellungsweise angefertigte Helm dann also 12 Lagen multi- axiler Wirkware und danach 3 Lagen Gewebe auf.
Der so gebildete Helm wurde einem Splitterbeschuß nach den Bedingungen von STANAG 2920 unterzogen. Der Beschüß erfolg¬ te mit 1,1 g- Splittern. Der hierbei erhaltene V50-Wert lag bei 710 m/sec. Vergleichsbeispiel 1
Unter Anwendung des in Ausführungsbeispiel 3 beschriebenen Verfahrens wurde ein Helm aus 15 Lagen eines Gewebes, her¬ gestellt nach Ausführungsbeispiel 1, geformt.
Dieser Helm wurde einem Splitterbeschuß nach den Bedingun¬ gen von STANAG 2920 unterzogen. Der Beschüß erfolgte mit 1,1 g- Splittern. Der hierbei erhaltene V50-Wert lag bei 640 m/sec.
Der Vergleich des Ergebnisses dieses Beispiels mit den Er¬ gebnissen der Ausführungsbeispiele 3 - 5 zeigt, daß ein aus einer Kombination von Gewebe und multiaxialer Wirkware ge¬ mäß Beispiel 3 - 5 hergestellter Helm eine deutlich bessere antiballistische Wirksamkeit aufweist als ein alleine aus Gewebe hergestellter Helm.
Vergleichsbeispiel 2
15 Lagen multiaxialer Wirkware, hergestellt nach Ausfüh¬ rungsbeispiel 2, wurden nach dem in Ausführungsbeispiel 3 beschriebenen Verfahren zu einem Helm verarbeitet.
Dieser Helm wurde einem Splitterbeschuß nach den Bedingun¬ gen von STANAG 2920 unterzogen. Der Beschüß erfolgte mit 1,1 g- Splittern. Der hierbei erhaltene V50-Wert lag bei 675 m/sec.
Der Vergleich des Ergebnisses dieses Beispiels mit den Er¬ gebnissen der Ausführungsbeispiele 3 - 5 und von Ver¬ gleichsbeispiel 1 zeigt, daß ein aus einer Kombination von Gewebe und multiaxialer Wirkware gemäß Beispiel 3 - 5 her¬ gestellter Helm nicht nur eine deutlich bessere antiballi¬ stische Wirksamkeit aufweist als ein alleine aus Gewebe hergestellter Helm, sondern auch eine bessere antiballistische Wirksamkeit als ein alleine aus multi¬ axialer Wirkware hergestellter Helm.
Vergleichsbeispiel 3
Filamentgarn aus Aramidfasem mit einem Titer von 3 360 dtex wurde auf einer Strickmaschine zu einem Gestrick mit einem Flächengewicht von 458 g/m2 verarbeitet. An¬ schließend erfolgte eine Imprägnierung mit Phenolharz. Nach dieser Behandlung und dem anschließenden Trocknen hatte das Gestrick ein Flächengewicht von 513 g/m2.
Aus insgesamt 13 Lagen des Gestricks wurde nach dem in Aus¬ führungsbeispiel 3 beschriebenen Verfahren ein Helm ge¬ formt. Die Lagenzahl wurde gegenüber Ausführungsbeispiel 3 bzw. Vergleichsbeispiel 1 und 2 verringert, da der Einsatz von 15 Lagen ein zu hohes Gesamtgewicht ergeben hätte und damit die Vergleichbarkeit nicht mehr gewährleistet wäre.
Der so hergestellte Helm wurde einem Splitterbeschuß nach den Bedingungen von STANAG 2920 unterzogen. Der Beschüß erfolgte mit 1,1 g- Splittern. Der hierbei erhaltene V50-Wert lag bei 465 m/sec.
Vergleichsbeispiel 4
Filamentgarn aus Aramidfasem mit einem Titer von 3 360 dtex wurde auf einer Kettenwirkmaschine zu einer Ket- tenwirkware mit monoaxialer Struktur mit einem Flächenge¬ wicht von 462 g/m2 verarbeitet. Anschließend erfolgte eine Imprägnierung mit Phenolharz. Nach dieser Behandlung und dem anschließenden Trocknen hatte die Wirkware ein Flächen¬ gewicht von 517 g/m2. Aus insgesamt 13 Lagen dieser Kettenwirkware wurde nach dem in Ausführungsbeispiel 3 beschriebenen Verfahren ein Helm geformt. Wie bei Vergleichsbeispiel 3 wurde auch hier die Lagenzahl gegenüber Ausführungsbeispiel 3 bzw. Vergleichs¬ beispiel 1 und 2 verringert, da der Einsatz von 15 Lagen ein zu hohes Gesamtgewicht ergeben hätte.
Der so hergestellte Helm wurde einem Splitterbeschuß nach den Bedingungen von STANAG 2920 unterzogen. Der Beschüß erfolgte mit 1,1 g-Splittern. Der hierbei erhaltene V50-Wert lag bei 630 m/sec.
Die Vergleichsbeispiele 3 und 4 zeigen, daß mit anderen Arten von Maschenwaren, wie hier mit einem Gestrick oder mit einer Kettenwirkware, das günstige Ergebnis der multi¬ axialen Wirkware (Vergleichsbeispiel 2) nicht erreichbar ist.
Die in den Ausführungs- und Vergleichsbeispielen erhaltenen Ergebnisse sind in der nachfolgenden Tabelle nochmals zu¬ sammengestellt:
Helmaufbau V50-Wert m/sec
Ausf. beisp. 3 11 L. MA+ 720
4 L. Gew.
Ausf. beisp. 4 10 L. MA+ 710
5 L. Gew.
Ausf. beisp. 5 12 L. MA+ 710
3 L. Gew.
Vergl. beisp. 1 15 L. Gew. 640
Vergl. beisp. 2 15 L. MA 675
Vergl. beisp. 3 13 L. Gestr. 465
Vergl. beisp. 4 13 L. Kettw. 630
Hierbei bedeuten: L.=Lage, MA=Multiaxiale Wirkware, herge¬ stellt gemäß Ausführungsbeispiel 2, Gew.=Gewebe, herge¬ stellt gemäß Ausführungsbeispiel 1, Gestr.=Gestrick, wie in Vergleichsbeispiel 3 beschrieben, Kettw.=Kettenwirkware, wie in Vergleichsbeispiel 4 beschrieben.

Claims

Antiballistischer SchutzhelmPatentansprüche:
1. Helm, besonders antiballistischer Schutzhelm, bestehend aus mehreren, in eine Matrix eingebetteten und über diese Matrix miteinander verbundenen Lagen textiler Flächengebilde, dadurch gekennzeichnet, daß die Lagen auf der dem Träger abgewandten Seite aus multiaxialer Wirkware aus antiballistisch wirksamen Fasern bestehen.
2. Helm nach Anspruch 1, dadurch gekennzeichnet, daß die Lagen auf der dem Träger zugewandten Seite aus Geweben aus antiballistisch wirksamen Fasern bestehen.
3. Helm nach mindestens einem der Ansprüche 1 - 2, dadurch gekennzeichnet, daß der Anteil der Lagen aus multi¬ axialer Wirkware 50 - 90 Gewichts% der gesamten Ver¬ stärkungslagen beträgt.
4. Helm nach mindestens einem der Ansprüche 1 - 2, dadurch gekennzeichnet, daß der Anteil der Lagen aus multi¬ axialer Wirkware 60 - 80 Gewichts% der gesamten Ver¬ stärkungslagen beträgt. Helm nach mindestens einem der Ansprüche 1 - 4, dadurch gekennzeichnet, daß die antiballistisch wirksamen Fa¬ sern Aramidfasem, nach dem Gelspinnverfahren erspon- nene Polyethylenfasern, Glasfasern, Metallfasern oder deren Mischungen sind.
Helm nach mindestens einem der Ansprüche 1 - 5, dadurch gekennzeichnet, daß die antiballistisch wirksamen Fa¬ sern Aramidfasem sind.
PCT/EP1996/001476 1995-04-08 1996-04-04 Antiballistischer schutzhelm WO1996032620A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP53069296A JP3771938B2 (ja) 1995-04-08 1996-04-04 防弾ヘルメット
DK96914879T DK0820576T3 (da) 1995-04-08 1996-04-04 Antiballistisk beskyttelseshjelm
AT96914879T ATE198794T1 (de) 1995-04-08 1996-04-04 Antiballistischer schutzhelm
AU56860/96A AU5686096A (en) 1995-04-08 1996-04-04 Anti-ballistic protective helmet
EP96914879A EP0820576B1 (de) 1995-04-08 1996-04-04 Antiballistischer schutzhelm
CA002217445A CA2217445C (en) 1995-04-08 1996-04-04 Antiballistic protective helmet
DE59606345T DE59606345D1 (de) 1995-04-08 1996-04-04 Antiballistischer schutzhelm
KR1019970707061A KR100436948B1 (ko) 1995-04-08 1996-04-04 방탄용헬멧
NO974523A NO308970B1 (no) 1995-04-08 1997-09-30 Antiballistisk beskyttende hjelm
US08/947,403 US6012178A (en) 1995-04-08 1997-10-08 Antiballistic protective helmet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19513473 1995-04-08
DE19513473.7 1995-04-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/947,403 Continuation-In-Part US6012178A (en) 1995-04-08 1997-10-08 Antiballistic protective helmet

Publications (1)

Publication Number Publication Date
WO1996032620A1 true WO1996032620A1 (de) 1996-10-17

Family

ID=7759323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/001476 WO1996032620A1 (de) 1995-04-08 1996-04-04 Antiballistischer schutzhelm

Country Status (13)

Country Link
EP (1) EP0820576B1 (de)
JP (1) JP3771938B2 (de)
KR (2) KR19980703662A (de)
CN (1) CN1072795C (de)
AT (1) ATE198794T1 (de)
AU (1) AU5686096A (de)
CA (1) CA2217445C (de)
DE (2) DE19613583C2 (de)
DK (1) DK0820576T3 (de)
ES (1) ES2153575T3 (de)
IL (1) IL117791A (de)
NO (1) NO308970B1 (de)
WO (1) WO1996032620A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6401262B2 (en) * 2000-05-18 2002-06-11 Benetton Group S.P.A. Protection implement, particularly for use in sports practice
CN101946151A (zh) * 2007-12-20 2011-01-12 霍尼韦尔国际公司 防步枪子弹的头盔
DE102010021125A1 (de) * 2010-05-21 2011-11-24 Isola Gmbh Ballistisches Schutzmaterial, Verfahren zu dessen Herstellung und dessen Verwendung
EP2972058B1 (de) 2013-03-15 2019-05-08 Honeywell International Inc. Traumareduktion ohne verminderung der ballistischen leistung

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030013888A (ko) * 2001-08-10 2003-02-15 이강수 하이브리드 방탄헬멧
CA2520480C (en) * 2003-03-28 2013-12-24 Med-Eng Systems Inc. Head protector
CN104930919A (zh) * 2015-06-03 2015-09-23 王济川 军用旋转双层防弹头盔
CN109183426A (zh) * 2018-08-28 2019-01-11 深圳市辰越科技有限公司 一种非晶合金防刺服及其制备方法
CN113103683A (zh) * 2021-04-16 2021-07-13 厦门琅硕体育用品有限公司 防弹成型头盔及制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989001123A1 (en) * 1987-08-03 1989-02-09 Allied-Signal Inc. Impact resistant helmet
DE3806204A1 (de) * 1988-02-26 1989-09-07 Ver Deutsche Nickel Werke Ag Helm und verfahren zu dessen herstellung
US5018220A (en) * 1990-02-23 1991-05-28 Firequip Helmets, Inc. Firefighter's helmet
FR2697626A1 (fr) * 1992-11-03 1994-05-06 Gallet Sa Blindage de protection balistique, et son application.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2651238A1 (de) * 1976-11-10 1978-05-18 Ver Seidenwebereien Ag Verfahren zur herstellung eines kugel- und schlagfesten textilen flaechengebildes
US4199388A (en) * 1978-05-15 1980-04-22 Geonautics, Inc. Method for making a multi-ply continuous filament ballistic helmet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989001123A1 (en) * 1987-08-03 1989-02-09 Allied-Signal Inc. Impact resistant helmet
DE3806204A1 (de) * 1988-02-26 1989-09-07 Ver Deutsche Nickel Werke Ag Helm und verfahren zu dessen herstellung
US5018220A (en) * 1990-02-23 1991-05-28 Firequip Helmets, Inc. Firefighter's helmet
FR2697626A1 (fr) * 1992-11-03 1994-05-06 Gallet Sa Blindage de protection balistique, et son application.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6401262B2 (en) * 2000-05-18 2002-06-11 Benetton Group S.P.A. Protection implement, particularly for use in sports practice
CN101946151A (zh) * 2007-12-20 2011-01-12 霍尼韦尔国际公司 防步枪子弹的头盔
CN101946151B (zh) * 2007-12-20 2016-02-17 霍尼韦尔国际公司 防步枪子弹的头盔
DE102010021125A1 (de) * 2010-05-21 2011-11-24 Isola Gmbh Ballistisches Schutzmaterial, Verfahren zu dessen Herstellung und dessen Verwendung
EP2972058B1 (de) 2013-03-15 2019-05-08 Honeywell International Inc. Traumareduktion ohne verminderung der ballistischen leistung

Also Published As

Publication number Publication date
NO974523L (no) 1997-09-30
JPH11503512A (ja) 1999-03-26
AU5686096A (en) 1996-10-30
IL117791A0 (en) 1996-08-04
NO308970B1 (no) 2000-11-20
ATE198794T1 (de) 2001-02-15
CA2217445C (en) 2005-06-14
EP0820576A1 (de) 1998-01-28
CA2217445A1 (en) 1996-10-17
CN1072795C (zh) 2001-10-10
ES2153575T3 (es) 2001-03-01
JP3771938B2 (ja) 2006-05-10
IL117791A (en) 1998-04-05
DE19613583C2 (de) 1998-07-09
DE19613583A1 (de) 1996-10-31
NO974523D0 (no) 1997-09-30
DK0820576T3 (da) 2001-01-29
KR19980703662A (ko) 1998-12-05
KR100436948B1 (ko) 2004-09-16
DE59606345D1 (de) 2001-02-22
EP0820576B1 (de) 2001-01-17
CN1181132A (zh) 1998-05-06

Similar Documents

Publication Publication Date Title
DE69623475T2 (de) Schussfester gegenstand und herstellungsverfahren
EP0655600B1 (de) Material für antiballistischen Körperschutz
DE69717626T3 (de) Antiballistischer formteil
DE3851844T2 (de) Kugelfestes kompositerzeugnis.
DE69433083T2 (de) Hochfester Verbundwerkstoff
EP0773869B1 (de) Kleidung zum schutz gegen stich- und geschossverletzungen
DE3689884T2 (de) Mehrschichtige, flexible, faserhaltige gegenstände.
DE2839151C2 (de)
DE69320537T2 (de) Beschussfeste Verbundpanzerung
DE3687357T2 (de) Mehrfach zusammengesetztes material mit beschussfestigkeit.
US6012178A (en) Antiballistic protective helmet
EP0169432B1 (de) Geschosshemmendes Laminat
DE60308223T2 (de) Verfahren zur herstellung eines geformten schussfesten gegenstandes
DE60314264T2 (de) Penetrationsresistente personenschutzartikel
DE69410375T2 (de) Hochfester Verbundwerkstoff
DE19613583C2 (de) Antiballistischer Schutzhelm
DE69425962T2 (de) Schussfester gegenstand
EP2187161A1 (de) Durchdringungshemmendes Material
EP2958737B1 (de) Zweilagige gewebestruktur mit hochfesten und thermoplastischen fasern
DE3887146T2 (de) Flexible mehrschichtpanzerung.
EP0769128B2 (de) Schutzkleidung, besonders antiballistische damen-schutzkleidung
WO1996001406A1 (de) Verfahren zur herstellung von ausformungen in flächengebilden aus aramiden
EP2324320B1 (de) Penetrationshemmender artikel
DE69703800T2 (de) Verfahren zur herstellung eines filz, dadurch hergestellte filz, und antiballistisch-formteile, hergestellt gemäss diesem verfahren
EP0265550A1 (de) Mehrschichtiges schusssicheres Gebilde

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96193160.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CZ EE FI HU JP KR LT LV NO PL SG SI SK TR US AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996914879

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2217445

Country of ref document: CA

Ref document number: 2217445

Country of ref document: CA

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 1996 530692

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019970707061

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 08947403

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996914879

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970707061

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996914879

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970707061

Country of ref document: KR