WO1996031225A1 - Urinary bladder submucosa derived tissue graft - Google Patents

Urinary bladder submucosa derived tissue graft Download PDF

Info

Publication number
WO1996031225A1
WO1996031225A1 PCT/US1996/002360 US9602360W WO9631225A1 WO 1996031225 A1 WO1996031225 A1 WO 1996031225A1 US 9602360 W US9602360 W US 9602360W WO 9631225 A1 WO9631225 A1 WO 9631225A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
urinary bladder
composition
graft
warm
Prior art date
Application number
PCT/US1996/002360
Other languages
French (fr)
Inventor
Stephen F. Badylak
Sherry L. Voytik
Andrew Brightman
Matt Waninger
Original Assignee
Purdue Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23659478&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1996031225(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Purdue Research Foundation filed Critical Purdue Research Foundation
Priority to EP96907084A priority Critical patent/EP0819007B1/en
Priority to AU50256/96A priority patent/AU691411B2/en
Priority to JP8530277A priority patent/JPH11503151A/en
Priority to CA2217539A priority patent/CA2217539C/en
Priority to DE69621612T priority patent/DE69621612T2/en
Priority to DK96907084T priority patent/DK0819007T3/en
Publication of WO1996031225A1 publication Critical patent/WO1996031225A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/22Urine; Urinary tract, e.g. kidney or bladder; Intraglomerular mesangial cells; Renal mesenchymal cells; Adrenal gland
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • A61L27/3645Connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue
    • C12N2533/92Amnion; Decellularised dermis or mucosa
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/915Method or apparatus for preparing biological material

Definitions

  • the present invention relates to a tissue graft composition and methods for its preparation and use. More particularly, the present invention is directed to non- i munogenic tissue graft compositions comprising urinary bladder submucosa and use of same to promote endogenous tissue growth.
  • compositions comprising the tunica submucosa of the intestine of warm-blooded vertebrates can be used advantageously as tissue graft materials. See U.S. Patent Nos. 4,902,508 and 5,281,422.
  • the tissue graft compositions described in those patents are characterized by excellent mechanical properties, including high compliance, a high burst pressure point, and an effective porosity index which allows such compositions to be used beneficially for vascular graft and connective tissue graft constructs.
  • the graft constructs appear not only to serve as a matrix for the regrowth of the tissues replaced by the graft constructs, but, indeed, to promote or induce such regrowth of endogenous tissue.
  • Common events to this remodeling process include: widespread and very rapid neovascularization, proliferation of granulation mesenchymal cells, biodegradation/resorption of implanted intestinal submucosal tissue material, and lack of immune rejection.
  • intestinal submucosa can be fluidized by comminuting and/or protease digestion, without loss of its apparent biotropic properties, for use in less invasive methods of administration (e.g., by injection or topical application) to host tissues in need of repair. See U.S. Patent No. 5,275,826.
  • urinary bladder submucosa prepared by delamination of bladder tissue of warm-blooded vertebrates exhibits mechanical and biotropic properties similar to that which has been reported for intestinal submucosal tissue. It can be substituted for intestinal submucosa tissue in most, if not all, of the applications previously reported for intestinal submucosa.
  • the tissue graft composition of the present invention comprises urinary bladder submucosa derived from urinary bladder tissue of a warm-blooded vertebrate.
  • the wall of the urinary bladder is composed of the following layers: the tunica mucosa (including a transitional epithelium layer and the tunica basement) , a submucosa layer, up to three layers of muscle and the adventitia (a loose connective tissue layer) - listed in thickness crossection from luminal to abluminal sides.
  • Urinary bladder submucosa for use in accordance with the present invention is delaminated from the abluminal muscle layers and at least the luminal portion of the tunica mucosa of the urinary bladder tissue.
  • the present graft composition can be implanted or injected into a vertebrate host to induce the repair or replacement of damaged or defective tissues.
  • the tissue graft composition in accordance with the present invention comprises urinary bladder submucosa of a warm-blooded vertebrate delaminated from adjacent bladder tissue layers.
  • the present tissue graft composition thus comprises the bladder submucosa delaminated from abluminal muscle cell layers and at least the luminal portion of the mucosal layer of a segment of urinary bladder of a warm-blooded vertebrate.
  • the delamination technique described below provides a tissue composition consisting essentially of urinary bladder submucosa. These compositions are referred to herein generically as urinary bladder submucosa (UBS) .
  • UBS urinary bladder submucosa
  • UBS graft material is typically prepared from bladder tissue harvested from animals raised for meat production, including, for example, pigs, cattle and sheep or other warm-blooded vertebrates.
  • bladder tissue harvested from animals raised for meat production including, for example, pigs, cattle and sheep or other warm-blooded vertebrates.
  • UBS from a segment of urinary bladder is similar to the procedure for preparing intestinal submucosa detailed in U.S. Patent No. 4,902,508, the disclosure of which is expressly incorporated herein by reference.
  • a segment of urinary bladder tissue is first subjected to abrasion using a longitudinal wiping motion to remove both the outer layers (particularly the abluminal smooth muscle layers) and the luminal portions of the tunica mucosa layers - the epithelial layers) .
  • the resulting submucosa tissue has a thickness of about 80 micrometers, and consists primarily (greater than 98%) of acellular, eosinophilic staining (H&E stain) extracellular matrix material. Occasional blood vessels and spindle cells consistent with fibrocytes are scattered randomly throughout the tissue.
  • the UBS is rinsed with saline and optionally stored in a frozen hydrated state until used as described below.
  • Fluidized UBS can be prepared in a manner similar to the preparation of fluidized intestinal submucosa, as described in U.S. Patent No. 5,275,826 the disclosure of which is expressly incorporated herein by reference.
  • the UBS is comminuted by tearing, cutting, grinding, shearing and the like. Grinding the UBS in a frozen or freeze-dried state is preferred although good results can be obtained as well by subjecting a suspension of submucosa pieces to treatment in a high speed (high shear) blender and dewatering, if necessary, by centrifuging and decanting excess water.
  • the comminuted fluidized tissue can be solubilized by enzymatic digestion of the bladder submucosa with a protease, such as trypsin or pepsin, or other appropriate enzymes for a period of time sufficient to solubilize said tissue and form a substantially homogeneous solution.
  • a protease such as trypsin or pepsin
  • the present invention also contemplates the use of powder forms of UBS.
  • a powder form of UBS is prepared by pulverizing urinary bladder submucosa tissue under liquid nitrogen to produce particles ranging in size from 0.1 to 1 mm 2 .
  • the particulate composition is then lyophilized overnight and sterilized to form a solid substantially anhydrous particulate composite.
  • a powder form of UBS can be formed from fluidized UBS by drying the suspensions or solutions of comminuted UBS.
  • the UBS tissue compositions of the present invention lend themselves to a wide variety of surgical applications relating to the repair or replacement of damaged tissues, including, for example the repair of vascular and connective tissues.
  • Connective tissues for the purposes of the present invention includes bone, cartilage, muscle, tendons, ligaments, and fibrous tissue including the dermal layer of skin.
  • the graft compositions of the present invention are used advantageously to induce the formation of endogenous tissue at a desired site in a warm blooded vertebrate.
  • Compositions comprising urinary bladder submucosa can be administered to a vertebrate host in an amount effectiv ⁇ to induce endogenous tissue growth at a site in the host in need of same due to the presence of damaged or diseased tissue.
  • the UBS compositions can be administered to the host in either solid or sheet form, by surgical implantation, or in fluidized form, by injection.
  • the present UBS compositions in sheet form can be used to form vascular grafts.
  • the diameter of the graft should be about the same as the diameter of the recipient blood vessel. This is accomplished by manipulating the UBS to define a cylinder having diameter approximately the same as that of the recipient blood vessel and suturing or otherwise securing the tissue graft longitudinally to form said vascular graft.
  • a vascular graft can be prepared by selecting a sterile glass rod having an outer diameter equal to that of the recipient blood vessel, wrapping the UBS sheet around the glass rod and gathering the redundant tissue.
  • the desired lumen diameter is achieved by suturing along the length of the graft (for example, using two continuous suture lines or a simple interrupted suture line) or by using other art-recognized tissue securing techniques.
  • the vascular graft is surgically substituted for a damaged or diseased blood vessel using standard vascular surgery techniques.
  • UBS vascular graft material
  • mechanical properties highly desirable for such tissue graft materials including low porosity index, high compliance, and a high burst pressure point.
  • vascular graft material must be of low enough porosity to prevent intraoperative hemorrhage and yet of high enough porosity to allow extension of a newly-developed vasa vasorum through the graft material to nourish the luminal surf ce.
  • Porosity of a graft material is typically measured in terms of ml of water passed per cm-Tnin 1 at a pressure of 120 mm Hg.
  • UBS has a differential porosity to deionized water at 120 mm Hg pressure.
  • the "porosity index" for UBS from the luminal toward abluminal direction is approximately 6.0; whereas the porosity index in the opposite direction is approximately 50. This property of differential porosity has also been noted for intestinal submucosal tissue but the values are an order of magnitude less than those values for UBS.
  • the UBS segments can also be used in accordance with this invention as a tissue graft construct for use in the repair or replacement of connective tissues using the same procedures described for use of intestinal submucosa in U.S. Patent Nos. 5,281,422 and 5,352,463, expressly incorporated herein by reference.
  • the UBS composition can be used in its delaminated natural sheet form or it can be cut longitudinally or laterally to form elongated tissue segments.
  • Such segments or sheets have an intermediate portion, and opposite end portions and opposite lateral portions which can be formed for surgical attachment to existing physiological structures, using surgically acceptable techniques.
  • the grafts formed and used in accordance with this invention upon implantation, undergo biological remodelling. They serve as a rapidly vascularized matrix for support and growth of new endogenous connective tissue.
  • UBS tissue graft material
  • the graft material has been found to be remodelled (re ⁇ orbed and replaced with autogenous differentiated tissue) to assume the characterizing features of the tissue(s) with which it is associated at the site of implantation.
  • tendon and ligament replacement studies the graft appears to develop a surface that is synovialized. Additionally, the boundaries between the graft and endogenous tissue are no longer discernible.
  • UBS graft constructs are typically preconditioned by stretching longitudinally to a length longer than the length of the urinary bladder submucosa from which the graft construct was formed.
  • One method of "pre-conditioning” involves application of a given load to the urinary bladder submucosa for three to five cycles. Each cycle consists of applying a load to the graft material for five seconds, followed by a ten second relaxation phase. Three to five cycles produces a stretch-conditioned graft material with reduced strain. The graft material does not return to its original size; it remains in a "stretched" dimension.
  • a UBS segment can be conditioned by suspending a weight from said segment, for a period of time sufficient to allow about 10 to about 20% or more elongation of the tissue segment.
  • the graft material can be preconditioned by stretching in the lateral dimension. The graft material exhibits similar viscoelastic properties in the longitudinal and lateral dimensions.
  • the graft segment is then formed in a variety of shapes and configurations, for example, to serve as a ligament or tendon replacement or a patch for a broken or severed tendon or ligament.
  • the segment is shaped and formed to have a layered or even a multilayered configuration with at least the opposite end portions and/or opposite lateral portions being formed to have multiple layers of the graft material to provide reinforcement for attachment to physiological structures, including bone, tendon, ligament, cartilage and muscle.
  • opposite ends are attached using standard surgical technique to first and second bones, respectively, the bones typically being articulated as in the case of a knee joint.
  • the end portions of the UBS material can be formed, manipulated or shaped to be attached, for example, to a bone structure in a manner that will reduce the possibility of graft tearing at the point of attachment.
  • the material can be folded or partially exerted to provide multiple layers for gripping, for example, with spiked washers or staples.
  • the UBS material may be folded back on itself to join the end portions to provide a first connective portion to be attached, for example, to a first bone and a bend in the intermediate portion to provide a second connective portion to be attached to a second bone articulated with respect to the first bone.
  • one of the end portions may be adapted to be pulled through a tunnel in, for example, the femur and attached thereto, while the other of the end portions may be adapted to be pulled through a tunnel in the tibia and attached thereto to provide a substitute for the natural cruciate ligament, the segment being adapted to be placed under tension between the tunnels to provide a ligament function, i.e., a tensioning and positioning function provided by a normal ligament.
  • the present UBS composition may be sterilized using conventional sterilization techniques including tanning with qlutaraldehyde, formaldehyde tanning at acidic pH, ethylene oxide treatment, propylene oxide treatment, gas plasma sterilization, gamma radiation, and peracetic acid sterilization.
  • a sterilization technique which does not significantly weaken the mechanical strength and biotropic properties of the graft is preferably used. For instance, it is believed that strong gamma radiation may cause loss of strength in the graft material. Because one of the most attractive features of these intestinal submucosa grafts is their ability to induce host- remodelling responses, it is desirable not to use a sterilization approach which will detract from that property.
  • Preferred sterilization techniques include exposing the graft to peracetic acid, low dose gamma irradiation and gas plasma sterilization; peracetic acid sterilization being the most preferred method.
  • peracetic acid sterilization being the most preferred method.
  • the composition is wrapped in a porous plastic wrap and sterilized again using electron beam or gamma irradiation sterilization techniques.

Abstract

A tissue graft composition comprising bladder submucosal tissue delaminated from abluminal muscle layers and at least the luminal portion of the tunica mucosa of a segment of vertebrate urinary bladder is described. The graft composition can be implanted to replace or support damaged or diseased tissues.

Description

ϋRINARY BLADDER SϋBMUCOSA DERIVED TISSUE GRAFT
Field of the Invention
The present invention relates to a tissue graft composition and methods for its preparation and use. More particularly, the present invention is directed to non- i munogenic tissue graft compositions comprising urinary bladder submucosa and use of same to promote endogenous tissue growth.
Background and Summary of the Invention
It is known that compositions comprising the tunica submucosa of the intestine of warm-blooded vertebrates can be used advantageously as tissue graft materials. See U.S. Patent Nos. 4,902,508 and 5,281,422. The tissue graft compositions described in those patents are characterized by excellent mechanical properties, including high compliance, a high burst pressure point, and an effective porosity index which allows such compositions to be used beneficially for vascular graft and connective tissue graft constructs. When used in such applications the graft constructs appear not only to serve as a matrix for the regrowth of the tissues replaced by the graft constructs, but, indeed, to promote or induce such regrowth of endogenous tissue. Common events to this remodeling process include: widespread and very rapid neovascularization, proliferation of granulation mesenchymal cells, biodegradation/resorption of implanted intestinal submucosal tissue material, and lack of immune rejection.
It' is also known that intestinal submucosa can be fluidized by comminuting and/or protease digestion, without loss of its apparent biotropic properties, for use in less invasive methods of administration (e.g., by injection or topical application) to host tissues in need of repair. See U.S. Patent No. 5,275,826.
There has been much additional research effort directed to finding other natural and synthetic materials having the requisite properties for use as tissue grafts. Surprisingly, it has been found that urinary bladder submucosa (UBS) prepared by delamination of bladder tissue of warm-blooded vertebrates exhibits mechanical and biotropic properties similar to that which has been reported for intestinal submucosal tissue. It can be substituted for intestinal submucosa tissue in most, if not all, of the applications previously reported for intestinal submucosa.
The tissue graft composition of the present invention comprises urinary bladder submucosa derived from urinary bladder tissue of a warm-blooded vertebrate. The wall of the urinary bladder is composed of the following layers: the tunica mucosa (including a transitional epithelium layer and the tunica propria) , a submucosa layer, up to three layers of muscle and the adventitia (a loose connective tissue layer) - listed in thickness crossection from luminal to abluminal sides. Urinary bladder submucosa for use in accordance with the present invention is delaminated from the abluminal muscle layers and at least the luminal portion of the tunica mucosa of the urinary bladder tissue. The present graft composition can be implanted or injected into a vertebrate host to induce the repair or replacement of damaged or defective tissues.
Detailed Description of the Invention
The tissue graft composition in accordance with the present invention comprises urinary bladder submucosa of a warm-blooded vertebrate delaminated from adjacent bladder tissue layers. The present tissue graft composition thus comprises the bladder submucosa delaminated from abluminal muscle cell layers and at least the luminal portion of the mucosal layer of a segment of urinary bladder of a warm-blooded vertebrate. Typically the delamination technique described below provides a tissue composition consisting essentially of urinary bladder submucosa. These compositions are referred to herein generically as urinary bladder submucosa (UBS) . UBS graft material is typically prepared from bladder tissue harvested from animals raised for meat production, including, for example, pigs, cattle and sheep or other warm-blooded vertebrates. Thus, there is an inexpensive commercial source of urinary bladder tissue for use in preparation of the tissue compositions in accordance with the present invention.
The preparation of UBS from a segment of urinary bladder is similar to the procedure for preparing intestinal submucosa detailed in U.S. Patent No. 4,902,508, the disclosure of which is expressly incorporated herein by reference. A segment of urinary bladder tissue is first subjected to abrasion using a longitudinal wiping motion to remove both the outer layers (particularly the abluminal smooth muscle layers) and the luminal portions of the tunica mucosa layers - the epithelial layers) . The resulting submucosa tissue has a thickness of about 80 micrometers, and consists primarily (greater than 98%) of acellular, eosinophilic staining (H&E stain) extracellular matrix material. Occasional blood vessels and spindle cells consistent with fibrocytes are scattered randomly throughout the tissue. Typically the UBS is rinsed with saline and optionally stored in a frozen hydrated state until used as described below.
Fluidized UBS can be prepared in a manner similar to the preparation of fluidized intestinal submucosa, as described in U.S. Patent No. 5,275,826 the disclosure of which is expressly incorporated herein by reference. The UBS is comminuted by tearing, cutting, grinding, shearing and the like. Grinding the UBS in a frozen or freeze-dried state is preferred although good results can be obtained as well by subjecting a suspension of submucosa pieces to treatment in a high speed (high shear) blender and dewatering, if necessary, by centrifuging and decanting excess water. Additionally, the comminuted fluidized tissue can be solubilized by enzymatic digestion of the bladder submucosa with a protease, such as trypsin or pepsin, or other appropriate enzymes for a period of time sufficient to solubilize said tissue and form a substantially homogeneous solution.
The present invention also contemplates the use of powder forms of UBS. In one embodiment a powder form of UBS is prepared by pulverizing urinary bladder submucosa tissue under liquid nitrogen to produce particles ranging in size from 0.1 to 1 mm2. The particulate composition is then lyophilized overnight and sterilized to form a solid substantially anhydrous particulate composite.
Alternatively, a powder form of UBS can be formed from fluidized UBS by drying the suspensions or solutions of comminuted UBS.
The UBS tissue compositions of the present invention lend themselves to a wide variety of surgical applications relating to the repair or replacement of damaged tissues, including, for example the repair of vascular and connective tissues. Connective tissues for the purposes of the present invention includes bone, cartilage, muscle, tendons, ligaments, and fibrous tissue including the dermal layer of skin.
In accordance with the present invention, the graft compositions of the present invention are used advantageously to induce the formation of endogenous tissue at a desired site in a warm blooded vertebrate. Compositions comprising urinary bladder submucosa can be administered to a vertebrate host in an amount effectiv< to induce endogenous tissue growth at a site in the host in need of same due to the presence of damaged or diseased tissue. The UBS compositions can be administered to the host in either solid or sheet form, by surgical implantation, or in fluidized form, by injection.
In one embodiment the present UBS compositions in sheet form can be used to form vascular grafts. The diameter of the graft should be about the same as the diameter of the recipient blood vessel. This is accomplished by manipulating the UBS to define a cylinder having diameter approximately the same as that of the recipient blood vessel and suturing or otherwise securing the tissue graft longitudinally to form said vascular graft. Thus, for example, a vascular graft can be prepared by selecting a sterile glass rod having an outer diameter equal to that of the recipient blood vessel, wrapping the UBS sheet around the glass rod and gathering the redundant tissue. The desired lumen diameter is achieved by suturing along the length of the graft (for example, using two continuous suture lines or a simple interrupted suture line) or by using other art-recognized tissue securing techniques. The vascular graft is surgically substituted for a damaged or diseased blood vessel using standard vascular surgery techniques.
Consistent with the use of UBS as a vascular graft material, UBS possesses mechanical properties highly desirable for such tissue graft materials, including low porosity index, high compliance, and a high burst pressure point. Those skilled in the art will appreciate that vascular graft material must be of low enough porosity to prevent intraoperative hemorrhage and yet of high enough porosity to allow extension of a newly-developed vasa vasorum through the graft material to nourish the luminal surf ce. Porosity of a graft material is typically measured in terms of ml of water passed per cm-Tnin1 at a pressure of 120 mm Hg. UBS has a differential porosity to deionized water at 120 mm Hg pressure. The "porosity index" for UBS from the luminal toward abluminal direction is approximately 6.0; whereas the porosity index in the opposite direction is approximately 50. This property of differential porosity has also been noted for intestinal submucosal tissue but the values are an order of magnitude less than those values for UBS.
The UBS segments can also be used in accordance with this invention as a tissue graft construct for use in the repair or replacement of connective tissues using the same procedures described for use of intestinal submucosa in U.S. Patent Nos. 5,281,422 and 5,352,463, expressly incorporated herein by reference. The UBS composition can be used in its delaminated natural sheet form or it can be cut longitudinally or laterally to form elongated tissue segments. Such segments or sheets have an intermediate portion, and opposite end portions and opposite lateral portions which can be formed for surgical attachment to existing physiological structures, using surgically acceptable techniques.
The grafts formed and used in accordance with this invention, upon implantation, undergo biological remodelling. They serve as a rapidly vascularized matrix for support and growth of new endogenous connective tissue. When used as a tissue graft material UBS has been found to be trophic for host tissues with which it is attached or otherwise associated in its implanted environment. The graft material has been found to be remodelled (reεorbed and replaced with autogenous differentiated tissue) to assume the characterizing features of the tissue(s) with which it is associated at the site of implantation. In tendon and ligament replacement studies the graft appears to develop a surface that is synovialized. Additionally, the boundaries between the graft and endogenous tissue are no longer discernible. Indeed, where a single graft "sees" multiple microenviron ents as implanted, it is differentially remodeled along its length. Thus, for example, when used in cruciate ligament replacement experiments, not only does the portion of the graft traversing the joint become vascularized and actually grow to look and function like the original ligament, but the portion of the graft in the femoral and tibial bone tunnels rapidly incorporates into and promotes development of the cortical and cancellous bone in those tunnels.
For tendon and ligament replacement applications, and other connective tissue repair applications UBS graft constructs are typically preconditioned by stretching longitudinally to a length longer than the length of the urinary bladder submucosa from which the graft construct was formed. One method of "pre-conditioning" involves application of a given load to the urinary bladder submucosa for three to five cycles. Each cycle consists of applying a load to the graft material for five seconds, followed by a ten second relaxation phase. Three to five cycles produces a stretch-conditioned graft material with reduced strain. The graft material does not return to its original size; it remains in a "stretched" dimension. For example, a UBS segment can be conditioned by suspending a weight from said segment, for a period of time sufficient to allow about 10 to about 20% or more elongation of the tissue segment. Optionally, the graft material can be preconditioned by stretching in the lateral dimension. The graft material exhibits similar viscoelastic properties in the longitudinal and lateral dimensions.
The graft segment is then formed in a variety of shapes and configurations, for example, to serve as a ligament or tendon replacement or a patch for a broken or severed tendon or ligament. Preferably, the segment is shaped and formed to have a layered or even a multilayered configuration with at least the opposite end portions and/or opposite lateral portions being formed to have multiple layers of the graft material to provide reinforcement for attachment to physiological structures, including bone, tendon, ligament, cartilage and muscle. In a ligament replacement application, opposite ends are attached using standard surgical technique to first and second bones, respectively, the bones typically being articulated as in the case of a knee joint.
The end portions of the UBS material can be formed, manipulated or shaped to be attached, for example, to a bone structure in a manner that will reduce the possibility of graft tearing at the point of attachment.
Preferably the material can be folded or partially exerted to provide multiple layers for gripping, for example, with spiked washers or staples.
Alternatively, the UBS material may be folded back on itself to join the end portions to provide a first connective portion to be attached, for example, to a first bone and a bend in the intermediate portion to provide a second connective portion to be attached to a second bone articulated with respect to the first bone. For example, one of the end portions may be adapted to be pulled through a tunnel in, for example, the femur and attached thereto, while the other of the end portions may be adapted to be pulled through a tunnel in the tibia and attached thereto to provide a substitute for the natural cruciate ligament, the segment being adapted to be placed under tension between the tunnels to provide a ligament function, i.e., a tensioning and positioning function provided by a normal ligament.
The present UBS composition may be sterilized using conventional sterilization techniques including tanning with qlutaraldehyde, formaldehyde tanning at acidic pH, ethylene oxide treatment, propylene oxide treatment, gas plasma sterilization, gamma radiation, and peracetic acid sterilization. A sterilization technique which does not significantly weaken the mechanical strength and biotropic properties of the graft is preferably used. For instance, it is believed that strong gamma radiation may cause loss of strength in the graft material. Because one of the most attractive features of these intestinal submucosa grafts is their ability to induce host- remodelling responses, it is desirable not to use a sterilization approach which will detract from that property. Preferred sterilization techniques include exposing the graft to peracetic acid, low dose gamma irradiation and gas plasma sterilization; peracetic acid sterilization being the most preferred method. Typically, after the tissue graft composition has been sterilized, the composition is wrapped in a porous plastic wrap and sterilized again using electron beam or gamma irradiation sterilization techniques.

Claims

CLAIMS :
1. A composition comprising urinary bladder submucosa delaminated from both the abluminal muscle layers and at least the luminal portion of the tunica mucosa of a segment of a urinary bladder of a warm blooded vertebrate.
2. The tissue graft composition of claim 1 wherein the urinary bladder submucosa is fluidized.
3. The tissue graft composition of claim 1 wherein the urinary bladder submucosa is digested with a protease for a period of time sufficient to solubilize the tissue and provide a substantially homogenous solution.
4. The tissue graft composition of claim 1, wherein the urinary bladder submucosa is dried and in powder form.
5. The tissue graft composition of claim 1 formed into a cylinder having a predetermined luminal diameter and sutured along the length of the cylinder.
6. The tissue graft composition of claim 1 conditioned for use as a connective tissue substitute by stretching to produce a graft construct longer than the segment of urinary bladder tissue from which it is formed.
7. A composition useful for preparation of non- immunogenic tissue grafts capable of inducing endogenous tissue growth when implanted in warm-blooded vertebrates, said composition comprising urinary bladder submucosa delaminated from both the abluminal muscle layers and at least the luminal portion of the tunica mucosa of a segment of a urinary bladder of a warm-blooded vertebrate.
8. A method for inducing the formation of endogenous tissue at a site in need of endogenous tissue growth in a warm blooded vertebrate, said method comprising transplanting a graft composition comprising urinary bladder submucosa in an amount effective to induce endogenous tissue growth at the site the composition is administered.
9. The method of claim 8, wherein the graft composition is fluidized and is administered by injection into the warm-blooded vertebrate.
10. The method of claim 8, wherein the graft composition is administered by surgically implanting the composition into the warm-blooded vertebrate.
PCT/US1996/002360 1995-04-07 1996-02-22 Urinary bladder submucosa derived tissue graft WO1996031225A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP96907084A EP0819007B1 (en) 1995-04-07 1996-02-22 Urinary bladder submucosa derived tissue graft
AU50256/96A AU691411B2 (en) 1995-04-07 1996-02-22 Urinary bladder submucosa derived tissue graft
JP8530277A JPH11503151A (en) 1995-04-07 1996-02-22 Tissue graft derived from bladder submucosa
CA2217539A CA2217539C (en) 1995-04-07 1996-02-22 Urinary bladder submucosa derived tissue graft
DE69621612T DE69621612T2 (en) 1995-04-07 1996-02-22 TISSUE TRANSPLANT FROM THE SUBMUCOSA OF THE URBAN BLADDER
DK96907084T DK0819007T3 (en) 1995-04-07 1996-02-22 Tissue transplant derived from urinary bladder submucosa

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/418,763 1995-04-07
US08/418,763 US5554389A (en) 1995-04-07 1995-04-07 Urinary bladder submucosa derived tissue graft

Publications (1)

Publication Number Publication Date
WO1996031225A1 true WO1996031225A1 (en) 1996-10-10

Family

ID=23659478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/002360 WO1996031225A1 (en) 1995-04-07 1996-02-22 Urinary bladder submucosa derived tissue graft

Country Status (10)

Country Link
US (1) US5554389A (en)
EP (1) EP0819007B1 (en)
JP (2) JPH11503151A (en)
AR (1) AR001487A1 (en)
AU (1) AU691411B2 (en)
CA (1) CA2217539C (en)
DE (1) DE69621612T2 (en)
DK (1) DK0819007T3 (en)
ES (1) ES2177768T3 (en)
WO (1) WO1996031225A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1378257A2 (en) * 1996-08-23 2004-01-07 Cook Biotech, Inc. Collagen-based graft prosthesis
US7699895B2 (en) 1996-08-23 2010-04-20 Cook Biotech Incorporated Multi-formed collagenous biomaterial medical device
US7713552B2 (en) 1998-12-01 2010-05-11 Cook Biotech Incorporated Radiopaque implantable collagenous biomaterial device
US8647677B2 (en) * 1996-12-10 2014-02-11 Purdue Research Foundation Gastric submucosal tissue as a novel diagnostic tool
US8882850B2 (en) 1998-12-01 2014-11-11 Cook Biotech Incorporated Multi-formed collagenous biomaterial medical device
US11638724B2 (en) 2017-05-05 2023-05-02 University of Pittsburgh—of the Commonwealth System of Higher Education Ocular applications of matrix bound vesicles (MBVs)

Families Citing this family (342)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6653291B1 (en) * 1992-11-13 2003-11-25 Purdue Research Foundation Composition and method for production of transformed cells
US6334872B1 (en) 1994-02-18 2002-01-01 Organogenesis Inc. Method for treating diseased or damaged organs
US6475232B1 (en) 1996-12-10 2002-11-05 Purdue Research Foundation Stent with reduced thrombogenicity
US6485723B1 (en) * 1995-02-10 2002-11-26 Purdue Research Foundation Enhanced submucosal tissue graft constructs
US20020095218A1 (en) * 1996-03-12 2002-07-18 Carr Robert M. Tissue repair fabric
US6171344B1 (en) * 1996-08-16 2001-01-09 Children's Medical Center Corporation Bladder submucosa seeded with cells for tissue reconstruction
AU780110B2 (en) * 1996-08-16 2005-03-03 Children's Medical Center Corporation Bladder submucosa seeded with cells for tissue reconstruction
ES2197360T3 (en) * 1996-08-16 2004-01-01 The Children's Medical Center Corporation VESICAL SUBMUCOSA SEED WITH CELLS FOR THE RECONSTRUCTION OF THE FABRIC
US20010048949A1 (en) * 1996-08-16 2001-12-06 Children's Medical Center Corporation Isolated bladder submucosa for tissue reconstruction
US8716227B2 (en) * 1996-08-23 2014-05-06 Cook Biotech Incorporated Graft prosthesis, materials and methods
US5881733A (en) * 1996-09-13 1999-03-16 Depuy Orthopaedic Technology, Inc. Technique for osteocartilaginous transplantation in a mammalian joint
US5964805A (en) * 1997-02-12 1999-10-12 Stone; Kevin R. Method and paste for articular cartilage transplantation
AU5696798A (en) 1996-12-10 1998-07-03 Cook Biotech, Inc. Stent grafts containing purified submucosa
JP2001505912A (en) * 1996-12-10 2001-05-08 パーデュー・リサーチ・ファウンデーション Inhibition of neoplastic cell proliferation by submucosal tissue
JP4046358B2 (en) 1996-12-10 2008-02-13 パーデュー・リサーチ・ファウンデーション Submucosa extract
WO1998025546A1 (en) 1996-12-10 1998-06-18 Cook Biotech, Inc. Tubular grafts from purified submucosa
JP2001505807A (en) * 1996-12-10 2001-05-08 パーデュー・リサーチ・ファウンデーション Artificial vascular valve
US6110209A (en) * 1997-08-07 2000-08-29 Stone; Kevin R. Method and paste for articular cartilage transplantation
JP2001515706A (en) * 1997-09-11 2001-09-25 パーデュー・リサーチ・ファウンデーション Galactosidase-modified submucosal tissue
US6371992B1 (en) * 1997-12-19 2002-04-16 The Regents Of The University Of California Acellular matrix grafts: preparation and use
US7070607B2 (en) * 1998-01-27 2006-07-04 The Regents Of The University Of California Bioabsorbable polymeric implants and a method of using the same to create occlusions
CA2321117C (en) * 1998-02-27 2014-07-15 Purdue Research Foundation Submucosa gel compositions
CA2334364C (en) * 1998-06-05 2011-01-04 Organogenesis Inc. Bioengineered flat sheet graft prostheses
WO1999062427A1 (en) * 1998-06-05 1999-12-09 Organogenesis Inc. Bioengineered vascular graft support prostheses
JP4341050B2 (en) * 1998-06-05 2009-10-07 オルガノジェネシス インク. Vascular graft prosthesis made by bioengineering
AU754437B2 (en) * 1998-06-05 2002-11-14 Organogenesis Inc. Bioengineered tubular graft prostheses
US6458109B1 (en) 1998-08-07 2002-10-01 Hill-Rom Services, Inc. Wound treatment apparatus
US6918396B1 (en) 1998-12-01 2005-07-19 Purdue Research Foundation Method for vocal cord reconstruction
WO2000032112A1 (en) 1998-12-01 2000-06-08 Washington University Embolization device
EP1207819B1 (en) * 1999-08-06 2009-03-04 Cook Biotech, Inc. Tubular graft construct
US6764462B2 (en) 2000-11-29 2004-07-20 Hill-Rom Services Inc. Wound treatment apparatus
US6824533B2 (en) 2000-11-29 2004-11-30 Hill-Rom Services, Inc. Wound treatment apparatus
DE60031461T2 (en) 1999-12-22 2007-08-23 Acell, Inc., Cambridge Composition for tissue regeneration
US6576265B1 (en) 1999-12-22 2003-06-10 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US20040043006A1 (en) * 2002-08-27 2004-03-04 Badylak Stephen F. Tissue regenerative composition
US6579538B1 (en) 1999-12-22 2003-06-17 Acell, Inc. Tissue regenerative compositions for cardiac applications, method of making, and method of use thereof
EP1254479A1 (en) 2000-01-18 2002-11-06 XROS, Inc., Nortel Networks Wafer bonding techniques to minimize built-in stress of silicon microstructures and micro-mirrors
MXPA02007426A (en) * 2000-01-31 2003-10-14 Cook Biotech Inc Stent valves and uses of same.
US20050267560A1 (en) * 2000-02-03 2005-12-01 Cook Incorporated Implantable bioabsorbable valve support frame
AU2001261595A1 (en) 2000-05-22 2001-12-03 Arthur C. Coffey Combination sis and vacuum bandage and method
US6638312B2 (en) * 2000-08-04 2003-10-28 Depuy Orthopaedics, Inc. Reinforced small intestinal submucosa (SIS)
US8366787B2 (en) 2000-08-04 2013-02-05 Depuy Products, Inc. Hybrid biologic-synthetic bioabsorbable scaffolds
AU2001291092B2 (en) * 2000-09-18 2007-08-23 Organogenesis Inc. Bioengineered flat sheet graft prosthesis and its use
US6685681B2 (en) 2000-11-29 2004-02-03 Hill-Rom Services, Inc. Vacuum therapy and cleansing dressing for wounds
US6855135B2 (en) 2000-11-29 2005-02-15 Hill-Rom Services, Inc. Vacuum therapy and cleansing dressing for wounds
CA2446362A1 (en) * 2001-05-07 2002-11-14 Crosscart, Inc. Submucosal xenografts
US7993365B2 (en) * 2001-06-08 2011-08-09 Morris Innovative, Inc. Method and apparatus for sealing access
US20070038244A1 (en) * 2001-06-08 2007-02-15 Morris Edward J Method and apparatus for sealing access
US20060004408A1 (en) * 2001-06-08 2006-01-05 Morris Edward J Method and apparatus for sealing access
US6702744B2 (en) 2001-06-20 2004-03-09 Advanced Cardiovascular Systems, Inc. Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
CA2452033C (en) * 2001-06-28 2011-11-08 Cook Biotech Incorporated Graft prosthesis devices containing renal capsule collagen
US8877233B2 (en) * 2001-06-29 2014-11-04 Cook Biotech Incorporated Porous sponge matrix medical devices and methods
EP1416866A4 (en) 2001-07-16 2007-04-18 Depuy Products Inc Devices form naturally occurring biologically derived
US8025896B2 (en) 2001-07-16 2011-09-27 Depuy Products, Inc. Porous extracellular matrix scaffold and method
JP2004535245A (en) 2001-07-16 2004-11-25 デピュイ・プロダクツ・インコーポレイテッド Porous extracellular matrix scaffold materials and methods
AU2002313694B2 (en) 2001-07-16 2007-08-30 Depuy Products, Inc. Cartilage repair apparatus and method
AU2002320512B2 (en) 2001-07-16 2008-01-31 Depuy Products, Inc. Cartilage repair and regeneration device and method
JP4294474B2 (en) 2001-07-16 2009-07-15 デピュイ・プロダクツ・インコーポレイテッド Meniscus reproduction device
US7819918B2 (en) 2001-07-16 2010-10-26 Depuy Products, Inc. Implantable tissue repair device
WO2003007788A2 (en) 2001-07-16 2003-01-30 Depuy Products, Inc. Unitary surgical device and method
WO2003007786A2 (en) 2001-07-16 2003-01-30 Depuy Products, Inc. Porous delivery scaffold and method
US7914808B2 (en) 2001-07-16 2011-03-29 Depuy Products, Inc. Hybrid biologic/synthetic porous extracellular matrix scaffolds
WO2003030966A1 (en) 2001-10-11 2003-04-17 Hill-Rom Services, Inc. Waste container for negative pressure therapy
CA2464661C (en) * 2001-10-26 2011-11-29 Cook Biotech Incorporated Medical graft device with meshed structure
US8608661B1 (en) 2001-11-30 2013-12-17 Advanced Cardiovascular Systems, Inc. Method for intravascular delivery of a treatment agent beyond a blood vessel wall
WO2003057071A2 (en) 2001-12-26 2003-07-17 Hill-Rom Services, Inc. Vacuum bandage packing
CA2468309A1 (en) 2001-12-26 2003-07-17 Robert Petrosenko Wound vacuum therapy dressing kit
CA2468912A1 (en) 2001-12-26 2003-07-17 Hill-Rom Services, Inc. Vented vacuum bandage and method
US8529956B2 (en) * 2002-03-18 2013-09-10 Carnell Therapeutics Corporation Methods and apparatus for manufacturing plasma based plastics and bioplastics produced therefrom
US20100254900A1 (en) * 2002-03-18 2010-10-07 Campbell Phil G Biocompatible polymers and Methods of use
US8168848B2 (en) 2002-04-10 2012-05-01 KCI Medical Resources, Inc. Access openings in vacuum bandage
WO2003092604A2 (en) * 2002-05-02 2003-11-13 Purdue Research Foundation Vascularization enhanced graft constructs
NZ536611A (en) 2002-05-02 2006-04-28 Purdue Research Foundation Vascularization enhanced intestinal submucosa tissue graft constructs prepared by seeding intestinal submucosa tissue in vitro with endothelial cells or endothelial cell precursors
CN1684589A (en) * 2002-05-02 2005-10-19 普渡研究基金会 Vascularization enhanced graft constructs
AU2003231209B2 (en) * 2002-05-02 2009-08-06 Cook Biotech Incorporated Cell-seeded extracellular matrix grafts
US7160326B2 (en) * 2002-06-27 2007-01-09 Depuy Products, Inc. Method and apparatus for implantation of soft tissue implant
US7361368B2 (en) * 2002-06-28 2008-04-22 Advanced Cardiovascular Systems, Inc. Device and method for combining a treatment agent and a gel
US7550004B2 (en) * 2002-08-20 2009-06-23 Cook Biotech Incorporated Endoluminal device with extracellular matrix material and methods
US7896856B2 (en) 2002-08-21 2011-03-01 Robert Petrosenko Wound packing for preventing wound closure
WO2004022107A2 (en) * 2002-09-06 2004-03-18 Cook Biotech Incorporated Tissue graft prosthesis devices containing juvenile or small diameter submucosa
US20040176855A1 (en) * 2003-03-07 2004-09-09 Acell, Inc. Decellularized liver for repair of tissue and treatment of organ deficiency
US20040175366A1 (en) * 2003-03-07 2004-09-09 Acell, Inc. Scaffold for cell growth and differentiation
US7524332B2 (en) * 2003-03-17 2009-04-28 Cook Incorporated Vascular valve with removable support component
EP1610728B1 (en) * 2003-04-01 2011-05-25 Cook Incorporated Percutaneously deployed vascular valves
US8038991B1 (en) 2003-04-15 2011-10-18 Abbott Cardiovascular Systems Inc. High-viscosity hyaluronic acid compositions to treat myocardial conditions
US8821473B2 (en) 2003-04-15 2014-09-02 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
US7641643B2 (en) * 2003-04-15 2010-01-05 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
US7067123B2 (en) 2003-04-29 2006-06-27 Musculoskeletal Transplant Foundation Glue for cartilage repair
US7901457B2 (en) 2003-05-16 2011-03-08 Musculoskeletal Transplant Foundation Cartilage allograft plug
US7105001B2 (en) * 2003-05-21 2006-09-12 Mandelbaum Jon A Surgical method and composition utilizing submucosal tissue to prevent incisional hernias
JP2007526017A (en) 2003-06-25 2007-09-13 エイセル インコーポレイテッド Matrix composition tailored for tissue repair
GB2424586B (en) 2003-08-25 2008-05-28 Cook Biotech Inc Graft materials containing bioactive substances, and methods for their manufacture
AU2004270239C1 (en) * 2003-09-04 2011-07-07 Cook Biotech Incorporated Extracellular matrix composite materials, and manufacture and use thereof
US7645229B2 (en) * 2003-09-26 2010-01-12 Armstrong David N Instrument and method for endoscopic visualization and treatment of anorectal fistula
ATE515245T1 (en) 2003-12-11 2011-07-15 Isto Technologies Inc PARTICLE CARTILAGE SYSTEM
US20060074447A2 (en) 2004-01-21 2006-04-06 Cook Incorporated Implantable graft to close a fistula
GB2430626B (en) * 2004-02-09 2008-09-24 Cook Biotech Inc Stent graft devices having collagen coating
GB2451777B (en) 2004-02-17 2009-04-08 Cook Biotech Inc Medical devices and methods useful for applying bolster material
US7840263B2 (en) 2004-02-27 2010-11-23 Cardiac Pacemakers, Inc. Method and apparatus for device controlled gene expression
GB2451785B (en) * 2004-03-29 2009-03-25 Cook Biotech Inc Medical graft products with differing regions
US7449027B2 (en) * 2004-03-29 2008-11-11 Cook Incorporated Modifying fluid flow in a body vessel lumen to promote intraluminal flow-sensitive processes
US20080274184A1 (en) * 2004-03-31 2008-11-06 Hunt James B Ecm-Based Graft Material
ATE464855T1 (en) * 2004-03-31 2010-05-15 Cook Inc TRANSPLANT MATERIAL AND VASCULAR PROSTHESIS WITH EXTRACELLULAR COLLAGEN MATRIX AND PRODUCTION METHOD THEREOF
US7569233B2 (en) 2004-05-04 2009-08-04 Depuy Products, Inc. Hybrid biologic-synthetic bioabsorbable scaffolds
US7764995B2 (en) 2004-06-07 2010-07-27 Cardiac Pacemakers, Inc. Method and apparatus to modulate cellular regeneration post myocardial infarct
US20050288796A1 (en) * 2004-06-23 2005-12-29 Hani Awad Native soft tissue matrix for therapeutic applications
WO2006014592A1 (en) * 2004-07-07 2006-02-09 Cook Incorporated Graft, stent graft and method for manufacture
AU2005267826A1 (en) 2004-07-30 2006-02-09 Cook Biotech Incorporated Graft with increased resistance to enzymatic degradation
US8257715B1 (en) 2004-08-26 2012-09-04 University Of Notre Dame Tissue vaccines and uses thereof
US7837740B2 (en) * 2007-01-24 2010-11-23 Musculoskeletal Transplant Foundation Two piece cancellous construct for cartilage repair
GB2434105B (en) * 2004-10-15 2009-11-04 Cook Biotech Inc Fibronectin-modified ECM tissue graft constructs and methods for preparation and use thereof
US7442206B2 (en) * 2004-10-28 2008-10-28 Cook Incorporated Methods and systems for modifying vascular valves
US7458987B2 (en) * 2004-10-29 2008-12-02 Cook Incorporated Vascular valves having implanted and target configurations and methods of preparing the same
US7513866B2 (en) 2004-10-29 2009-04-07 Depuy Products, Inc. Intestine processing device and associated method
US7905826B2 (en) * 2004-11-03 2011-03-15 Cook Incorporated Methods for modifying vascular vessel walls
US8329202B2 (en) * 2004-11-12 2012-12-11 Depuy Products, Inc. System and method for attaching soft tissue to an implant
US7744621B2 (en) * 2004-12-06 2010-06-29 Cook Incorporated Inflatable occlusion devices, methods, and systems
WO2006062976A2 (en) 2004-12-07 2006-06-15 Cook Incorporated Methods for modifying vascular vessel walls
US7981065B2 (en) 2004-12-20 2011-07-19 Cardiac Pacemakers, Inc. Lead electrode incorporating extracellular matrix
US8874204B2 (en) * 2004-12-20 2014-10-28 Cardiac Pacemakers, Inc. Implantable medical devices comprising isolated extracellular matrix
US8060219B2 (en) 2004-12-20 2011-11-15 Cardiac Pacemakers, Inc. Epicardial patch including isolated extracellular matrix with pacing electrodes
US7354627B2 (en) 2004-12-22 2008-04-08 Depuy Products, Inc. Method for organizing the assembly of collagen fibers and compositions formed therefrom
WO2006074060A2 (en) * 2004-12-30 2006-07-13 Cook Incorporated Inverting occlusion devices and systems
US8287583B2 (en) * 2005-01-10 2012-10-16 Taheri Laduca Llc Apparatus and method for deploying an implantable device within the body
US8128680B2 (en) * 2005-01-10 2012-03-06 Taheri Laduca Llc Apparatus and method for deploying an implantable device within the body
US20060206139A1 (en) * 2005-01-19 2006-09-14 Tekulve Kurt J Vascular occlusion device
US8303647B2 (en) * 2005-03-03 2012-11-06 Cook Medical Technologies Llc Medical valve leaflet structures with peripheral region receptive to tissue ingrowth
US9138445B2 (en) * 2005-03-09 2015-09-22 Cook Biotech Incorporated Medical graft materials with adherent extracellular matrix fibrous mass
US8454678B2 (en) * 2005-03-19 2013-06-04 Cook Biotech Incorporated Prosthetic implants including ECM composite material
US9539410B2 (en) 2005-04-19 2017-01-10 Abbott Cardiovascular Systems Inc. Methods and compositions for treating post-cardial infarction damage
US8303972B2 (en) 2005-04-19 2012-11-06 Advanced Cardiovascular Systems, Inc. Hydrogel bioscaffoldings and biomedical device coatings
US8187621B2 (en) 2005-04-19 2012-05-29 Advanced Cardiovascular Systems, Inc. Methods and compositions for treating post-myocardial infarction damage
US8828433B2 (en) * 2005-04-19 2014-09-09 Advanced Cardiovascular Systems, Inc. Hydrogel bioscaffoldings and biomedical device coatings
US20080125745A1 (en) 2005-04-19 2008-05-29 Shubhayu Basu Methods and compositions for treating post-cardial infarction damage
AU2006270499B2 (en) 2005-04-29 2011-10-06 Cook Biotech Incorporated Fistula graft with deformable sheet-form material
CA2606445C (en) 2005-04-29 2014-09-16 Cook Biotech Incorporated Volumetric grafts for treatment of fistulae and related methods and systems
AU2006244393B2 (en) * 2005-05-05 2012-06-21 Cook Biotech Incorporated Implantable materials and methods for inhibiting tissue adhesion formation
US8048446B2 (en) * 2005-05-10 2011-11-01 Drexel University Electrospun blends of natural and synthetic polymer fibers as tissue engineering scaffolds
US8518436B2 (en) * 2005-05-16 2013-08-27 Purdue Research Foundation Engineered extracellular matrices
US8475512B2 (en) * 2005-05-17 2013-07-02 Cook Medical Technologies Llc Prosthetic valve devices and methods of making and using such devices
EP1903947B1 (en) 2005-06-21 2015-12-30 Cook Medical Technologies LLC Implantable graft to close a fistula
US20060292227A1 (en) * 2005-06-23 2006-12-28 Mcpherson Timothy B Extracellular matrix material particles and methods of preparation
US9271817B2 (en) * 2005-07-05 2016-03-01 Cook Biotech Incorporated Tissue augmentation devices and methods
US7850985B2 (en) 2005-07-05 2010-12-14 Cook Biotech Incorporated Tissue augmentation devices and methods
US7815926B2 (en) * 2005-07-11 2010-10-19 Musculoskeletal Transplant Foundation Implant for articular cartilage repair
WO2007011644A2 (en) * 2005-07-15 2007-01-25 Cormatrix Cardiovascular, Inc. Compositions for regenerating defective or absent tissue
US20070014868A1 (en) * 2005-07-15 2007-01-18 Cormatrix Cardiovascular, Inc. Patch for reconstruction, replacement or repair of the pericardial sac
US20070014869A1 (en) * 2005-07-15 2007-01-18 Cormatrix Cardiovascular, Inc. Compositions for reconstruction, replacement or repair of intracardiac tissue
US8568761B2 (en) * 2005-07-15 2013-10-29 Cormatrix Cardiovascular, Inc. Compositions for regenerating defective or absent myocardium
WO2007126411A2 (en) 2005-07-28 2007-11-08 Carnegie Mellon University Biocompatible polymers and methods of use
US7595062B2 (en) 2005-07-28 2009-09-29 Depuy Products, Inc. Joint resurfacing orthopaedic implant and associated method
US20070038295A1 (en) * 2005-08-12 2007-02-15 Cook Incorporated Artificial valve prosthesis having a ring frame
US8771340B2 (en) * 2005-08-25 2014-07-08 Cook Medical Technologies Llc Methods and devices for the endoluminal deployment and securement of prostheses
EP1916964A4 (en) 2005-08-26 2015-11-04 Zimmer Inc Implants and methods for repair, replacement and treatment of joint disease
US8470022B2 (en) * 2005-08-31 2013-06-25 Cook Biotech Incorporated Implantable valve
EP1928512B1 (en) * 2005-09-01 2012-11-14 Cook Medical Technologies LLC Attachment of material to an implantable frame by cross-linking
WO2007035778A2 (en) 2005-09-19 2007-03-29 Histogenics Corporation Cell-support matrix and a method for preparation thereof
US20070082021A1 (en) * 2005-09-30 2007-04-12 Bates Brian L Coated vaso-occlusion device
US7503928B2 (en) * 2005-10-21 2009-03-17 Cook Biotech Incorporated Artificial valve with center leaflet attachment
US7563277B2 (en) 2005-10-24 2009-07-21 Cook Incorporated Removable covering for implantable frame projections
US8778362B2 (en) 2005-10-27 2014-07-15 University Of Notre Dame Anti-tumor/cancer heterologous acellular collagenous preparations and uses thereof
US8778360B2 (en) * 2005-10-27 2014-07-15 University Of Notre Dame Extracellular matrix cancer vaccine adjuvant
US8802113B2 (en) * 2005-10-27 2014-08-12 University Of Notre Dame Extracellular matrix cancer vaccine adjuvant
US9308252B2 (en) * 2005-10-27 2016-04-12 Cook Biotech, Inc. Extracellular matrix materials as vaccine adjuvants for diseases associated with infectious pathogens or toxins
CA2630452C (en) * 2005-12-02 2011-02-22 Cook Incorporated Devices, systems, and methods for occluding a defect
US7815923B2 (en) 2005-12-29 2010-10-19 Cook Biotech Incorporated Implantable graft material
DE602006014204D1 (en) * 2005-12-29 2010-06-17 Med Inst Inc ENDOLUMINAL DEVICE COMPRISING A MECHANISM FOR PROXIMAL OR DISTAL FASTENING AND CLOSURE AND USE METHOD THEREFOR
WO2007081530A2 (en) * 2006-01-03 2007-07-19 Med Institute, Inc. Endoluminal medical device for local delivery of cathepsin inhibitors
US20070166396A1 (en) * 2006-01-06 2007-07-19 University Of Pittsburgh Extracellular matrix based gastroesophageal junction reinforcement device
CA2637450A1 (en) * 2006-01-31 2007-08-09 Cook Biotech Incorporated Fistula grafts and related methods and systems for treating fistulae
US7648527B2 (en) * 2006-03-01 2010-01-19 Cook Incorporated Methods of reducing retrograde flow
US20070269476A1 (en) 2006-05-16 2007-11-22 Voytik-Harbin Sherry L Engineered extracellular matrices control stem cell behavior
WO2007136634A1 (en) * 2006-05-16 2007-11-29 Purdue Research Foundation Three dimensional purified collagen matrices
EP2478872B1 (en) 2006-05-30 2018-07-04 Cook Medical Technologies LLC Artificial valve prosthesis
US9307995B2 (en) * 2006-06-15 2016-04-12 Cook Medical Technologies Llc Methods, systems and devices for the delivery of endoluminal prostheses
US9149262B2 (en) * 2006-06-21 2015-10-06 Cook Biotech Incorporated Fistula grafts and related methods and systems useful for treating gastrointestinal fistulae
US8974542B2 (en) 2006-06-27 2015-03-10 University of Pittsburgh—of the Commonwealth System of Higher Education Biodegradable elastomeric patch for treating cardiac or cardiovascular conditions
US8535719B2 (en) * 2006-07-07 2013-09-17 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Biohybrid elastomeric scaffolds and methods of use thereof
US7732190B2 (en) 2006-07-31 2010-06-08 Advanced Cardiovascular Systems, Inc. Modified two-component gelation systems, methods of use and methods of manufacture
US20080109070A1 (en) * 2006-08-10 2008-05-08 Wagner William R Biodegradable elastomeric scaffolds containing microintegrated cells
US9242005B1 (en) 2006-08-21 2016-01-26 Abbott Cardiovascular Systems Inc. Pro-healing agent formulation compositions, methods and treatments
US20080051831A1 (en) * 2006-08-24 2008-02-28 Wilson-Cook Medical Inc. Devices And Methods For Occluding A Fistula
US20080063627A1 (en) * 2006-09-12 2008-03-13 Surmodics, Inc. Tissue graft materials containing biocompatible agent and methods of making and using same
GB2455041B (en) 2006-09-21 2012-03-07 Purdue Research Foundation Collagen preparation and method of isolation
US8529961B2 (en) 2006-10-17 2013-09-10 Carmell Therapeutics Corporation Methods and apparatus for manufacturing plasma based plastics and bioplastics produced therefrom
WO2008067085A2 (en) 2006-10-23 2008-06-05 Cook Biotech Incorporated Processed ecm materials with enhanced component profiles
US9005672B2 (en) 2006-11-17 2015-04-14 Abbott Cardiovascular Systems Inc. Methods of modifying myocardial infarction expansion
US8741326B2 (en) 2006-11-17 2014-06-03 Abbott Cardiovascular Systems Inc. Modified two-component gelation systems, methods of use and methods of manufacture
US8192760B2 (en) 2006-12-04 2012-06-05 Abbott Cardiovascular Systems Inc. Methods and compositions for treating tissue using silk proteins
US7871440B2 (en) 2006-12-11 2011-01-18 Depuy Products, Inc. Unitary surgical device and method
US8163549B2 (en) 2006-12-20 2012-04-24 Zimmer Orthobiologics, Inc. Method of obtaining viable small tissue particles and use for tissue repair
WO2008086469A1 (en) * 2007-01-10 2008-07-17 Cook Biotech Incorporated Implantable devices useful for reinforcing a surgically created stoma
US8343536B2 (en) 2007-01-25 2013-01-01 Cook Biotech Incorporated Biofilm-inhibiting medical products
WO2008098252A2 (en) 2007-02-09 2008-08-14 Taheri Laduca Llc Vascular implants and methods of fabricating the same
EP2114506A4 (en) 2007-02-09 2014-11-05 Taheri Laduca Llc Apparatus and method for deploying an implantable device within the body
US20080260794A1 (en) * 2007-02-12 2008-10-23 Lauritzen Nels J Collagen products and methods for producing collagen products
US9056151B2 (en) * 2007-02-12 2015-06-16 Warsaw Orthopedic, Inc. Methods for collagen processing and products using processed collagen
EP2120795B1 (en) 2007-02-15 2011-07-06 Cook Incorporated Artificial valve prostheses with a free leaflet portion
WO2008109407A2 (en) 2007-03-02 2008-09-12 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Extracellular matrix-derived gels and related methods
US8435551B2 (en) 2007-03-06 2013-05-07 Musculoskeletal Transplant Foundation Cancellous construct with support ring for repair of osteochondral defects
WO2008124361A2 (en) * 2007-04-06 2008-10-16 Cook Biotech Incorporated Fistula plugs having increased column strength and fistula plug delivery apparatuses and methods
CA2684040C (en) 2007-04-12 2016-12-06 Isto Technologies, Inc. Method of forming an implant using a mold that mimics the shape of the tissue defect site and implant formed therefrom
EP2150283B1 (en) * 2007-04-27 2011-10-12 Cook Biotech Incorporated Growth factor modified extracellular matrix material and methods for preparation and use thereof
US9283302B2 (en) 2011-12-16 2016-03-15 Cormatrix Cardiovascular, Inc. Extracellular matrix encasement structures and methods
US20080279833A1 (en) * 2007-05-10 2008-11-13 Matheny Robert G Laminate sheet articles for tissue regeneration
AU2008260187A1 (en) 2007-05-29 2008-12-11 Christopher B. Reid Methods for production and uses of multipotent cell populations
WO2008151040A2 (en) * 2007-05-31 2008-12-11 Cook Biotech Incorporated Analgesic coated medical product
US8535349B2 (en) * 2007-07-02 2013-09-17 Cook Biotech Incorporated Fistula grafts having a deflectable graft body portion
US20090024106A1 (en) * 2007-07-17 2009-01-22 Morris Edward J Method and apparatus for maintaining access
US9113851B2 (en) 2007-08-23 2015-08-25 Cook Biotech Incorporated Fistula plugs and apparatuses and methods for fistula plug delivery
US20090069843A1 (en) * 2007-09-10 2009-03-12 Agnew Charles W Fistula plugs including a hydration resistant component
US8029560B2 (en) 2007-09-12 2011-10-04 Cook Medical Technologies Llc Enhanced remodelable materials for occluding bodily vessels
US20090082816A1 (en) 2007-09-20 2009-03-26 Graham Matthew R Remodelable orthopaedic spacer and method of using the same
WO2009042768A1 (en) * 2007-09-25 2009-04-02 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Triggerably dissolvable hollow fibers for controlled delivery
US9023342B2 (en) 2007-09-27 2015-05-05 Carlos A. Alvarado Tissue grafting method
WO2009040768A2 (en) * 2007-09-27 2009-04-02 Carlos Alvarado Tissue grafting method
US10500309B2 (en) 2007-10-05 2019-12-10 Cook Biotech Incorporated Absorbable adhesives and their formulation for use in medical applications
US20090112238A1 (en) * 2007-10-26 2009-04-30 Vance Products Inc., D/B/A Cook Urological Inc. Fistula brush device
JP5214223B2 (en) * 2007-11-15 2013-06-19 船井電機株式会社 projector
US7846199B2 (en) 2007-11-19 2010-12-07 Cook Incorporated Remodelable prosthetic valve
US8057532B2 (en) * 2007-11-28 2011-11-15 Cook Medical Technologies Llc Implantable frame and valve design
AU2008335152B2 (en) * 2007-12-10 2013-09-12 Indiana University Research And Technology Corporation Collagen-based matrices with stem cells
US8679176B2 (en) 2007-12-18 2014-03-25 Cormatrix Cardiovascular, Inc Prosthetic tissue valve
US8257434B2 (en) 2007-12-18 2012-09-04 Cormatrix Cardiovascular, Inc. Prosthetic tissue valve
US20090157170A1 (en) * 2007-12-18 2009-06-18 Matheny Robert G Trileaflet Semi-Lunar Prosthetic Tissue Valve
US20090157177A1 (en) * 2007-12-18 2009-06-18 Matheny Robert G Sewing Ring for a Prosthetic Tissue Valve
US8211165B1 (en) 2008-01-08 2012-07-03 Cook Medical Technologies Llc Implantable device for placement in a vessel having a variable size
US9283266B2 (en) * 2008-02-28 2016-03-15 University Of Notre Dame Metastasis inhibition preparations and methods
WO2009111306A2 (en) * 2008-02-29 2009-09-11 Cook Biotech Incorporated Coated embolization device
EP2265220A1 (en) 2008-03-05 2010-12-29 Musculoskeletal Transplant Foundation Cancellous constructs, cartilage particles and combinations of cancellous constructs and cartilage particles
US20100008965A1 (en) * 2008-04-01 2010-01-14 Pavalko Fredrick M Biocompatible medical products having enhanced anti-thrombogenic properties
US8128686B2 (en) * 2008-04-18 2012-03-06 Cook Medical Technologies Llc Branched vessel prosthesis
GB2471632B (en) * 2008-05-02 2012-04-18 Cook Biotech Inc Self deploying SIS in needle
WO2009137755A2 (en) * 2008-05-09 2009-11-12 University Of Pittsburgh- Commonwealth System Of Higher Education Biologic matrix for cardiac repair
CN102046095A (en) * 2008-05-29 2011-05-04 库克生物科技公司 Devices and methods for treating rectovaginal and other fistulae
BRPI0914996B1 (en) * 2008-06-10 2018-10-30 Cook Biotech Inc surgical graft and method for manufacturing a surgical graft
US9295757B2 (en) * 2008-06-10 2016-03-29 Cook Biotech Incorporated Quilted implantable graft
US8118832B1 (en) 2008-06-16 2012-02-21 Morris Innovative, Inc. Method and apparatus for sealing access
CA2728553C (en) 2008-07-01 2016-08-16 Cook Biotech Incorporated Isolated extracellular matrix material including subserous fascia
JP5518066B2 (en) 2008-07-30 2014-06-11 メシンセス リミテッド Tissue scaffold derived from the pregastric extracellular matrix
US20110190680A1 (en) 2008-09-29 2011-08-04 Yoram Vodovotz Self-Regulating Device for Modulating Inflammation
WO2010065843A2 (en) 2008-12-05 2010-06-10 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Biologic scaffold for prevention of pulmonary fibrosis
WO2010078478A1 (en) 2008-12-31 2010-07-08 Cook Biotech Incorporated Tissue adjuvants and medical products including the same
US20100274362A1 (en) * 2009-01-15 2010-10-28 Avner Yayon Cartilage particle tissue mixtures optionally combined with a cancellous construct
WO2010088678A2 (en) 2009-02-02 2010-08-05 Cook Biotech Incorporated Medical bead products
DK2398502T3 (en) 2009-02-18 2015-11-23 Cormatrix Cardiovascular Inc FORMATIONS AND PROCESSES FOR PREVENTING cardiac arrhythmia
US9277999B2 (en) 2009-02-27 2016-03-08 University of Pittsburgh—of the Commonwealth System of Higher Education Joint bioscaffolds
CA2760889C (en) 2009-05-06 2017-09-19 Hansa Medical Products, Inc. Self-adjusting medical device
US8298586B2 (en) 2009-07-22 2012-10-30 Acell Inc Variable density tissue graft composition
US8652500B2 (en) 2009-07-22 2014-02-18 Acell, Inc. Particulate tissue graft with components of differing density and methods of making and using the same
WO2011031827A2 (en) 2009-09-09 2011-03-17 Cook Biotech Incorporated Manufacture of extracellular matrix products using supercritical or near supercritical fluids
US8663086B2 (en) * 2009-09-28 2014-03-04 Cook Biotech Incorporated Medical reinforcement graft
US8716438B2 (en) 2009-10-09 2014-05-06 University of Pittsburgh—of the Commonwealth System of Higher Education Matricryptic ECM peptides for tissue reconstruction
US8846059B2 (en) 2009-12-08 2014-09-30 University Of Notre Dame Extracellular matrix adjuvant and methods for prevention and/or inhibition of ovarian tumors and ovarian cancer
US20110150934A1 (en) * 2009-12-18 2011-06-23 University Of Notre Dame Ovarian Tumor Tissue Cell Preparations/Vaccines for the Treatment/Inhibition of Ovarian Tumors and Ovarian Cancer
US8329219B2 (en) 2009-12-22 2012-12-11 Cook Biotech Incorporated Methods for producing ECM-based biomaterials
WO2011087743A2 (en) 2009-12-22 2011-07-21 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Decellularized adipose cell growth scaffold
US8790699B2 (en) 2010-04-23 2014-07-29 Warsaw Orthpedic, Inc. Foam-formed collagen strand
US8460691B2 (en) 2010-04-23 2013-06-11 Warsaw Orthopedic, Inc. Fenestrated wound repair scaffold
WO2011150328A1 (en) 2010-05-27 2011-12-01 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Wet-electrospun biodegradable scaffold and uses therefor
US20130197893A1 (en) 2010-06-07 2013-08-01 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Methods for modeling hepatic inflammation
EP2598181B1 (en) 2010-07-31 2021-04-21 Cook Medical Technologies LLC Collagenous tissue pocket for an implantable medical device, and manufacturing method therefor
US9101455B2 (en) 2010-08-13 2015-08-11 Cook Medical Technologies Llc Preloaded wire for endoluminal device
CA2747610C (en) 2010-08-13 2014-09-16 Cook Medical Technologies Llc Precannulated fenestration
US9421307B2 (en) 2010-08-17 2016-08-23 University of Pittsburgh—of the Commonwealth System of Higher Education Biohybrid composite scaffold
WO2012027514A2 (en) 2010-08-24 2012-03-01 The Regents Of The University Of California Compositions and methods for cardiac therapy
CN103200973B (en) 2010-09-28 2015-07-08 库克生物技术股份有限公司 Devices and methods for treating fistulae and other bodily openings and passageways
BR112013006938A2 (en) 2010-10-01 2016-07-19 Cook Biotech Inc tissue reconstruction kits, components and methods
CA2835862A1 (en) 2011-05-27 2012-12-06 Cormatrix Cardiovascular, Inc. Extracellular matrix material valve conduit and methods of making thereof
JP2014519379A (en) 2011-05-27 2014-08-14 コーマトリックス カーディオバスキュラー, インコーポレイテッド Extracellular matrix material conduit and methods for making and using the same
WO2012170538A2 (en) 2011-06-06 2012-12-13 Cook Medical Technologies Llc Vascular occlusion devices and methods
WO2012174234A2 (en) 2011-06-14 2012-12-20 Cook Medical Technologies Llc Fistula closure devices and methods
EP2731561B1 (en) 2011-07-14 2016-03-23 Cook Medical Technologies LLC A sling to be used in the treatment of obstructive sleep apnea
EP2750614B1 (en) 2011-09-01 2015-04-29 Cook Medical Technologies LLC Aneurysm closure clip
WO2013036708A2 (en) 2011-09-07 2013-03-14 The Regents Of The University Of California Compositions and methods for tissue repair with extracellular matrices
US8728148B2 (en) 2011-11-09 2014-05-20 Cook Medical Technologies Llc Diameter reducing tie arrangement for endoluminal prosthesis
US20130138219A1 (en) 2011-11-28 2013-05-30 Cook Medical Technologies Llc Biodegradable stents having one or more coverings
CA2856553C (en) 2011-12-09 2017-08-29 Acell, Inc. Hemostatic device
EP2606851B1 (en) 2011-12-22 2015-11-04 Cook Medical Technologies LLC Preloaded wire for endoluminal device
WO2013119630A1 (en) 2012-02-06 2013-08-15 Cook Medical Technologies Llc Artificial device deployment apparatus
EP2811939B8 (en) 2012-02-10 2017-11-15 CVDevices, LLC Products made of biological tissues for stents and methods of manufacturing
US9504458B2 (en) 2012-02-17 2016-11-29 Cook Biotech Incorporated Methods and systems for treating complex fistulae
US9308107B2 (en) 2012-08-27 2016-04-12 Cook Medical Technologies Llc Endoluminal prosthesis and delivery device
US20140121750A1 (en) 2012-10-31 2014-05-01 Cook Medical Technologies Llc Fixation Process For Nesting Stents
US9669190B2 (en) * 2012-11-28 2017-06-06 Cook Medical Technologies Llc Selectively positionable catheter cuff
EP2745813A1 (en) 2012-12-18 2014-06-25 Cook Medical Technologies LLC Preloaded wire for endoluminal device
US20140178343A1 (en) 2012-12-21 2014-06-26 Jian Q. Yao Supports and methods for promoting integration of cartilage tissue explants
US9861466B2 (en) 2012-12-31 2018-01-09 Cook Medical Technologies Llc Endoluminal prosthesis
KR101874819B1 (en) 2013-02-08 2018-07-05 아셀, 인크. Methods of manufacturing bioactive gels from extracellular matrix material
EP2953580A2 (en) 2013-02-11 2015-12-16 Cook Medical Technologies LLC Expandable support frame and medical device
EP2964162B1 (en) 2013-03-07 2018-01-17 Cook Medical Technologies LLC Tissue ingrowth intestinal bypass sleeve
US9993330B2 (en) 2013-03-13 2018-06-12 Cook Medical Technologies Llc Endoluminal prosthesis system
WO2014144188A1 (en) 2013-03-15 2014-09-18 Cook Medical Technologies Llc Drug eluting graft constructs and methods
JP6448615B2 (en) 2013-03-15 2019-01-09 クック・バイオテック・インコーポレイテッドCook Biotech Incorporated ECM transplant compositions and methods
DK2983616T3 (en) 2013-04-08 2019-01-21 Regentys Corp METHOD AND COMPOSITION FOR TREATMENT OF INFLAMMATORY GAS WITHOUT COLECTOMY
US9861662B2 (en) 2013-07-03 2018-01-09 University of Pittsburgh—of the Commonwealth System of Higher Education Bone-derived extra cellular matrix gel
CA2919504A1 (en) 2013-08-01 2015-02-05 Christine BRONIKOWSKI Tissue adjustment implant
US20150080940A1 (en) 2013-09-13 2015-03-19 Cook Medical Technologies Llc Anti-tumor macrophage m1 morphology inducer
US9878071B2 (en) 2013-10-16 2018-01-30 Purdue Research Foundation Collagen compositions and methods of use
CN104758089B (en) 2014-01-08 2018-03-30 库克医学技术有限责任公司 For clogging the ECM bands of percutaneous heart valve leakage
US10286119B2 (en) 2014-01-24 2019-05-14 University of Pittsburgh—of the Commonwealth System of Higher Education Extracellular matrix mesh coating
CA2943182A1 (en) 2014-03-21 2015-09-24 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Methods for preparation of a terminally sterilized hydrogel derived from extracellular matrix
EP2988130A1 (en) 2014-08-20 2016-02-24 Eppendorf Ag Method for coating a solid support
US20160089477A1 (en) 2014-09-25 2016-03-31 Acell, Inc. Porous foams derived from extracellular matrix, porous foam ecm medical devices, and methods of use and making thereof
US10077420B2 (en) 2014-12-02 2018-09-18 Histogenics Corporation Cell and tissue culture container
US10183152B2 (en) 2014-12-12 2019-01-22 Cook Medical Technologies Llc Cinching peritoneal dialysis catheter
NZ771263A (en) 2014-12-22 2024-02-23 Aroa Biosurgery Ltd Laminated tissue graft product
US9238090B1 (en) 2014-12-24 2016-01-19 Fettech, Llc Tissue-based compositions
US11129711B2 (en) 2015-02-27 2021-09-28 University of Pittsburgh—of the Commonwealth System of Higher Education Double component mandrel for electrospun stentless, multi-leaflet valve fabrication
US10583004B2 (en) 2015-02-27 2020-03-10 University of Pittsburgh — Of the Commonwealth System of Higher Education Retrievable self-expanding non-thrombogenic low-profile percutaneous atrioventricular valve prosthesis
US11919941B2 (en) 2015-04-21 2024-03-05 Purdue Research Foundation Cell-collagen-silica composites and methods of making and using the same
RU2610000C2 (en) * 2015-07-24 2017-02-07 Федеральное государственное бюджетное учреждение "Государственный научный центр Российской Федерации - Федеральный медицинский биофизический центр имени А.И. Бурназяна" Method of residual urinary incontinence treatment after implantation of artificial urinary sphincter
WO2017049167A1 (en) 2015-09-18 2017-03-23 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Non-gelling soluble extracellular matrix with biological activity
WO2017062762A2 (en) 2015-10-07 2017-04-13 Sigmon John C Methods, medical devices and kits for modifying the luminal profile of a body vessel
WO2017096188A1 (en) 2015-12-02 2017-06-08 Cook Biotech Incorporated Filamentous graft implants and methods of their manufacture and use
EP3386558B1 (en) 2015-12-10 2023-10-04 Cook Biotech Incorporated Sterilisation methods for a poly(ester urea) fiber material
WO2017151862A1 (en) 2016-03-02 2017-09-08 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Matrix bound nanovesicles and their use
US11389566B2 (en) * 2016-03-14 2022-07-19 Regentys Corporation Method and composition for treating inflammatory bowel disease
US11331348B2 (en) 2016-04-28 2022-05-17 University of Pittsburgh—of the Commonwealth System of Higher Education Compositions comprising extracellular matrix of primitive animal species and related methods
US20170354500A1 (en) 2016-06-08 2017-12-14 Cook Medical Technologies Llc Mitral prolapse valve restrictor
WO2018017611A1 (en) 2016-07-18 2018-01-25 Cook Biotech Incorporated Implantable pouch with segmental lamination structure, and related methods of manufacture and use
EP3308829B1 (en) 2016-09-10 2020-04-29 Cook Biotech Incorporated Electrostimulative graft products
US11191632B2 (en) 2016-11-10 2021-12-07 Cook Medical Technologies Llc Temporary diameter reduction constraint arrangement for a stent graft in combination with a stent graft
EP3320881B1 (en) 2016-11-10 2019-09-04 Cook Medical Technologies LLC Diameter reduction constraint arrangement for a stent graft in combination with a stent graft
WO2018156856A1 (en) 2017-02-23 2018-08-30 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Stentless biopolymer heart valve replacement capable of living tissue regeneration
EP4252842A3 (en) 2017-03-02 2023-10-25 University of Pittsburgh- Of the Commonwealth System of Higher Education Ecm hydrogel for treating esophageal inflammation
KR20190121840A (en) 2017-03-02 2019-10-28 유니버시티 오브 피츠버그 - 오브 더 커먼웰쓰 시스템 오브 하이어 에듀케이션 Extracellular Matrix (ECM) Hydrogels and Soluble Fractions thereof for Cancer Treatment
US11389569B2 (en) 2017-04-03 2022-07-19 University of Pittsburgh—of the Commonwealth System of Higher Education Biodegradable, porous, thermally responsive injectable hydrogel as soft tissue defect filler
US11739291B2 (en) 2017-04-25 2023-08-29 Purdue Research Foundation 3-dimensional (3D) tissue-engineered muscle for tissue restoration
EP3644911A1 (en) 2017-06-29 2020-05-06 Cook Medical Technologies, LLC Implantable medical devices for tissue repositioning
US11634716B2 (en) 2017-10-16 2023-04-25 University of Pittsburgh—of the Commonwealth System of Higher Education Genetically modified mesenchymal stem cells for use in cardiovascular prosthetics
AU2018214103B1 (en) 2018-08-09 2018-10-04 Cook Medical Technologies Llc A stent-graft
SG11202104401RA (en) 2018-11-19 2021-05-28 The United States Of America As Represented By The Secretary Biodegradable tissue replacement implant and its use
US20220143265A1 (en) 2019-03-13 2022-05-12 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Acoustic extracellular matrix hydrogels and their use
CN115361963A (en) 2020-03-16 2022-11-18 生物探索有限公司 Biocomposites comprising probiotics, collagen and bacterial exopolysaccharides and uses thereof
AU2021315935A1 (en) 2020-07-27 2023-03-30 Cook Biotech Incorporated Adhesive for surgical staple line reinforcement
AU2021318195A1 (en) 2020-07-27 2023-03-30 Cook Biotech Incorporated System and methods for supplying surgical staple line reinforcement
US11826490B1 (en) 2020-12-29 2023-11-28 Acell, Inc. Extracellular matrix sheet devices with improved mechanical properties and method of making
WO2022251499A1 (en) 2021-05-28 2022-12-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods to generate macular, central and peripheral retinal pigment epithelial cells
AU2022282379A1 (en) 2021-05-28 2023-11-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Biodegradable tissue scaffold with secondary matrix to host weakly adherent cells
WO2023215885A1 (en) 2022-05-05 2023-11-09 Cook Biotech Incorporated Subtissue implant material
WO2023215883A1 (en) 2022-05-05 2023-11-09 Cook Biotech Incorporated Photocrosslinkable synthetic polymers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902508A (en) * 1988-07-11 1990-02-20 Purdue Research Foundation Tissue graft composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956178A (en) * 1988-07-11 1990-09-11 Purdue Research Foundation Tissue graft composition
SU1644914A1 (en) * 1989-03-24 1991-04-30 Научно-Исследовательский Институт Педиатрии Амн Ссср Infant uretheroneocystostomy method
US5281422A (en) * 1991-09-24 1994-01-25 Purdue Research Foundation Graft for promoting autogenous tissue growth
WO1993007913A1 (en) * 1991-10-24 1993-04-29 Children's Medical Center Corporation Neomorphogenesis of urological structures in vivo from cell culture
US5352463A (en) * 1992-11-13 1994-10-04 Badylak Steven F Tissue graft for surgical reconstruction of a collagenous meniscus and method therefor
US5275826A (en) * 1992-11-13 1994-01-04 Purdue Research Foundation Fluidized intestinal submucosa and its use as an injectable tissue graft

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902508A (en) * 1988-07-11 1990-02-20 Purdue Research Foundation Tissue graft composition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1378257A2 (en) * 1996-08-23 2004-01-07 Cook Biotech, Inc. Collagen-based graft prosthesis
EP1378257A3 (en) * 1996-08-23 2004-02-04 Cook Biotech, Inc. Collagen-based graft prosthesis
EP1955721A1 (en) * 1996-08-23 2008-08-13 Cook Biotech, Inc. Collagen-based graft prosthesis
US7699895B2 (en) 1996-08-23 2010-04-20 Cook Biotech Incorporated Multi-formed collagenous biomaterial medical device
US8920515B2 (en) 1996-08-23 2014-12-30 Cook Biotech Incorporated Graft prosthesis, materials and methods
US8920516B2 (en) 1996-08-23 2014-12-30 Cook Biotech Incorporated Graft prosthesis, material and methods
US9138444B2 (en) 1996-08-23 2015-09-22 Cook Biotech Incorporated Dried collagenous biomaterial medical device
US8647677B2 (en) * 1996-12-10 2014-02-11 Purdue Research Foundation Gastric submucosal tissue as a novel diagnostic tool
US7713552B2 (en) 1998-12-01 2010-05-11 Cook Biotech Incorporated Radiopaque implantable collagenous biomaterial device
US8882850B2 (en) 1998-12-01 2014-11-11 Cook Biotech Incorporated Multi-formed collagenous biomaterial medical device
US9089626B2 (en) 1998-12-01 2015-07-28 Cook Biotech Incorporated Radiopaque implantable collagenous biomaterial device
US11638724B2 (en) 2017-05-05 2023-05-02 University of Pittsburgh—of the Commonwealth System of Higher Education Ocular applications of matrix bound vesicles (MBVs)

Also Published As

Publication number Publication date
DE69621612D1 (en) 2002-07-11
CA2217539C (en) 2012-01-03
DK0819007T3 (en) 2002-09-30
DE69621612T2 (en) 2003-01-02
JP2008156368A (en) 2008-07-10
JPH11503151A (en) 1999-03-23
EP0819007A4 (en) 1998-07-08
EP0819007B1 (en) 2002-06-05
AU691411B2 (en) 1998-05-14
EP0819007A1 (en) 1998-01-21
AU5025696A (en) 1996-10-23
ES2177768T3 (en) 2002-12-16
CA2217539A1 (en) 1996-10-10
US5554389A (en) 1996-09-10
AR001487A1 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
AU691411B2 (en) Urinary bladder submucosa derived tissue graft
CA2267310C (en) Stomach submucosa derived tissue graft
US5372821A (en) Graft for promoting autogenous tissue growth
AU742457B2 (en) Graft prosthesis, materials and methods
RU2148379C1 (en) Method for producing tissular transplant, tissue compositions, surgical method for repairing collagen meniscus, method for stimulating wound cohesion, tissular transplant structure, method for inducing endogenous tissue production, method for stimulating sphincter functions in animals
US20020091444A1 (en) Vascular tissue composition
EP1300154B1 (en) Stomach submucosa derived tissue graft
AU783305B2 (en) Graft prosthesis, materials and methods
MXPA99001763A (en) Graft prosthesis, materials and methods

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2217539

Country of ref document: CA

Ref country code: CA

Ref document number: 2217539

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1996 530277

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996907084

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996907084

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1996907084

Country of ref document: EP