WO1996029598A1 - Waste water control system - Google Patents

Waste water control system Download PDF

Info

Publication number
WO1996029598A1
WO1996029598A1 PCT/JP1995/000483 JP9500483W WO9629598A1 WO 1996029598 A1 WO1996029598 A1 WO 1996029598A1 JP 9500483 W JP9500483 W JP 9500483W WO 9629598 A1 WO9629598 A1 WO 9629598A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
processing
monitoring
wastewater
data
Prior art date
Application number
PCT/JP1995/000483
Other languages
French (fr)
Japanese (ja)
Inventor
Tsutomu Sakamoto
Akira Okamoto
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1995/000483 priority Critical patent/WO1996029598A1/en
Publication of WO1996029598A1 publication Critical patent/WO1996029598A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Definitions

  • the present invention relates to a wastewater management system that monitors and reuses treatment liquid and wastewater inside and outside of a production line, such as after-products.
  • An object of the present invention is to provide a wastewater management system capable of preventing environmental pollution and reducing the amount of materials by reusing a treatment liquid or treated water in view of the above-mentioned problems of the related art. Disclosure of the invention In order to solve the above problems, the present invention created a database to manage various data such as processing solution monitoring data, solution replacement time management data, product processing acceleration coefficient data, and so on. An instruction algorithm for regenerating and reusing the processing solution is created based on these data, and the recycling of the processing solution is managed based on the algorithm.
  • the processing liquid monitoring data, the liquid replacement time management data, the product processing acceleration coefficient data, etc. are collected, and the replacement time of the processing liquid is determined based on the number of times the processing liquid is used and the number of products processed.
  • an alarm or the like is notified as needed, so that the processing liquid can be used up to the maximum number of times that it can be used, and it is possible to reduce the cost of materials, especially the processing solution and washing water. is there.
  • Fig. 1 shows the configuration of the system of the present invention
  • Fig. 2 shows the database table of the processing liquid monitoring data registration database
  • Fig. 3 shows the table of the spectrum of the processing liquid registered
  • Fig. 4 shows the liquid exchange.
  • Tochikan database table Fig. 5 is a database table of product processing acceleration factor
  • Fig. 6 is a configuration diagram showing an example of applying the present invention to a plant
  • Fig. 7 is a comparison of composition spectra.
  • Fig. 8 is a flow chart showing the method
  • Fig. 8 is a correlation diagram between the number of foreign substances in the processing liquid and the number of processed products
  • Fig. 9 is a block diagram showing an example of monitoring the processing liquid and performing necessary post-processing
  • Fig. 10 Fig.
  • FIG. 1 is a block diagram showing an example of monitoring washing water and performing necessary post-processing.
  • Fig. 11 is a block diagram showing an example of distributing washing water to each manufacturing process.
  • Fig. 1 2 FIG. 4 is a correlation diagram in which the deterioration of the liquid is accelerated according to the number of processed products.
  • FIG. 1 is a basic configuration diagram of the system of the present invention.
  • FIG. 1 an example in which the present invention is applied to a semiconductor manufacturing brand is shown.
  • 1 is a data analysis station
  • 2 is a display device
  • 3 is a processing liquid monitoring data registration database
  • 4 is a liquid replacement time management database
  • 5 is a product processing acceleration coefficient database
  • 6 is a processing liquid regeneration instruction database
  • 7 is a database for automatically instructing treatment liquid regeneration
  • 8 is a monitoring device installed at various points in the plant.
  • Table 3a of the treatment liquid monitoring data registration database 3 is shown.
  • the items consisted of date 9, time 10, processing tank No. 11, number of foreign substances 12, concentration 13, liquid composition 14, spectral diagram No. 15, reserve 16.
  • the spectrum diagram No. 15 in the table of the database 3 and each of the spectra are registered in the database 23 in association with each other, and an example of the spectrum 17 is shown in FIG. Shown in Figure 3.
  • FIG. 4 shows a table configuration 4a of the liquid exchange time management database 4. Items include processing tank No. 11, service period 19, last replacement date 20, product processing number 21. Although not shown, yield, product characteristics, etc. are stored in a database. You may leave.
  • the items consist of processing tank N 0.11, product processing number 21 and acceleration factor 23.
  • the acceleration coefficient 23 is a coefficient for giving an instruction to shorten the use / use period of the liquid and advance the replacement time in advance according to the number of products to be processed (2 1). This coefficient can be changed or corrected as necessary.
  • Fig. 6 shows an example of applying this invention to Brand A.
  • Manufacturing processes such as plating process 24, washing process 25, etching process 26, etc., each of which has a monitoring device 8 and each process. The status of the service is monitored.
  • an overall plant monitoring device 27 that compiles and manages each of these data, which monitors all plant A holidays, instructs liquid replacement timing, and manages product processing history. For example, in the case of the plating process 24, parameters such as the concentration of the plating solution (13), the composition of the solution (14), the number of foreign substances (12), and the number of uses of the solution (16) are monitored. These values are registered in the processing solution monitoring data registration database 3 from each monitoring device 8 via the data analysis station 1 shown in FIG. In addition, data on the number (21), yield, product characteristics, etc. of products processed with the processing solution will be collected as data on the liquid exchange time management data base 4. In addition,? In the embodiment of the plant shown in FIG. 56, these databases are provided in the whole plant monitoring device S27.
  • the value of the plating solution is measured using, for example, a concentration analyzer, and when the spectrum is obtained, it is registered in the processing solution monitoring data registration data 3 overnight. Then, the composition spectrum of the liquid is measured and compared with the spectrum of the liquid in the database to check the change of the waveform.
  • Fig. 7 shows one method of comparison. First, "measure the concentration of the processing solution" as the first step, and then "collect the spectrum data" as the second step. The third step is to search the previous spectrum from the database, and the fourth step is to compare two spectrum waveforms.
  • Fig. 8 shows a graph of the number of waste products and the number of processed products.
  • the number of foreign substances in the processing liquid is measured.
  • data on the number of processed products is also collected, and a correlation line between the number of processed products and the increase in the number of foreign particles is obtained.
  • the processing can be continued until it is arrested on the replacement line 12b.
  • the number of foreign substances deviates from the straight line 12a and increases rapidly, it is considered that an abnormality has occurred, and an instruction to stop processing is issued.
  • the above processing is executed by the data analysis station 1 in the embodiment of FIG. 1, and is executed by the all-blank monitor 27 in the embodiment of FIG.
  • the monitoring of the treatment liquid 30 is performed by the monitoring device 8, and in accordance with the type of the treatment liquid, for example, a change in the composition of the liquid or an increase in impurities, a processing method for reducing the amount is determined in advance. In advance, register them in databases 6 and 7.
  • the data analysis station 1 or the whole plant monitoring device 27 retrieves the data and displays, for example, the database 6 to display the appropriate bioinstruction information such as filtration, ion exchange and reverse osmosis on the display device 2 or the whole plant.
  • the regeneration liquid is displayed on the display of the run monitoring device 27 to prompt the regeneration. If the regeneration operation does not require any manual operation, the treatment liquid is automatically regenerated according to the instruction from the database 7.
  • component analysis is performed after the product is processed, and if the number of solid substances increases based on the results, the solution is filtered and then processed. If increases, store the liquid after performing ion exchange treatment.
  • FIG. 10 shows a processing example in the case of washing water.
  • the cleaning liquid 31 is used for washing the thorns after the product work processing. Therefore, after washing, necessary post-treatments (filtration, ion exchange, reverse permeation, etc.) are performed as in the case of the treatment liquid 30 and ⁇ ] described in FIG. After that, the water is purified (32), and if the quality is within a certain range with respect to the undiluted solution, it is returned to the original undiluted water.
  • the water is washed. If the processing solution is within a certain value, it is used repeatedly i. If it exceeds that value, a disposal instruction is issued. Monitor and reprocess the processing solution and cleaning solution every time.
  • Fig. 11 shows an example of the distribution of reprocessed water.
  • the status of the wastewater that has been monitored in each process by the monitoring device 8 and subjected to post-treatment is transmitted to the overall plant monitoring device 27. Therefore, the whole plant monitoring device 27 collects the status of the remaining treated water i in the whole plant and determines which process is lacking in the cleaning liquid 31a, 31b, 31c. Then, the reprocessed water 32 is sent to a predetermined area in a required amount as needed. In this way, the distribution and management of the reprocessed water 32 in the plant are instructed.
  • the product name, lot number, etc. of the product work processed at this time Even if a trouble occurs in the product work by registering it in the database 3, it can be analyzed by comparing the product work, when and by what type of processing, and the state of the processing liquid at that time.
  • the analysis results obtained in this way are used for product monitoring and for monitoring the condition of the processing solution in each processing step, and abnormalities are detected in real time.
  • Each of these data is registered in the database and correlated in various combinations such as the processing solution concentration : and the number of processed product workpieces, the number of foreign substances in the processing solution, the number of processed product workpieces, and the film thickness of the product workpiece. Analyzes can be performed, and the results can be used to predict the interval of replacement of the processing solution, that is, the timing of replacement. Also, if the product work is found to be defective after formation, it is possible to quickly narrow down which equipment and processing liquid were bad based on the processing data of each processing liquid. By taking countermeasures in a short period of time, it is possible to reduce the number of times when the plant is stopped and to prevent the creation of defects. Then, the analysis results are registered in the database, and updated as necessary as described above.
  • Costs required for reuse and costs required to be picked up and processed by specialist companies The data for calculating the usage is registered in the database 6. For example, if the treatment solution is used once or twice, the necessary reprocessing can be performed and reused.However, the solution is already used, and various impurities are mixed or the solution is used. If it has deteriorated, it is more efficient to dispose of it than to reprocess it, and the ⁇ 'river is cheaper. Therefore, it is possible to issue such an instruction based on the above-mentioned database and issue an instruction.
  • the use of the processing solution is monitored by monitoring the various types of the processing solution and the number of processes of the product within the manufacturing brand. Judgment of reutilization / ⁇ can be performed, and high-yield production of products, reduction of processing solution cost, and quality control can be performed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention is intended to uniformize the level of liquid and reduce the costs by retreating in a production plant for producing film products and so forth by monitoring and retreating treating liquid and waste water. More specifically, the present invention is intended to identify the degree of deterioration of liquid in accordance with the number of treated products, to realize a suitable replacing cycle, to give an instruction to do treatment for reuse and to effect reuse by providing a data analyzing station, monitoring devices for respective processes and a general plant monitoring device for collecting data from the monitoring devices and monitoring the same in a production plant so as to collect monitoring data from the respective monitoring devices to monitor the quality of treating liquid to judge whether or not the liquid can be reused, thereby making it possible to prevent environmental pollution and reduce the material costs.

Description

明 細 書  Specification
廃水管理システム 技術分野 Wastewater management system Technical field
この発明は、 ^脱製品などの製造ライ ン内外での処理液, 廃水の監視 及び再利用を図つた廃水管理システムに関する。 背景技術  The present invention relates to a wastewater management system that monitors and reuses treatment liquid and wastewater inside and outside of a production line, such as after-products. Background art
薄膜製品例えば半導体の製造においては、 製造ライン内でェッチング、 露光、 成膜等様々な工程があり、 各工程において大量の処理液及び洗浄 液を用いており、 処理後の各種廃液の処理が大きな問題となっている。 廃液処理に関しては、 「オー トメーショ ン」 第 3 9巻第 1 1号 4 4 ~ 4 7ページに下水処理システムの例が発表されている。 しかしながら、 こ の方法によると計算機を川いて各秈プロセスデータを収集し、 それを解 析してプロセスの管理、 制御を行うことができるが、 処理液、 廃水の再 利用の情報を得て、 指示を行うようにはなされていない。  In the production of thin film products such as semiconductors, there are various processes such as etching, exposure, and film formation in the production line.A large amount of processing liquid and cleaning liquid are used in each process, and the treatment of various waste liquids after processing is large. It is a problem. Regarding wastewater treatment, an example of a sewage treatment system has been published in “Automation”, Vol. 39, No. 11, page 44-47. However, according to this method, it is possible to collect and process each process data by running a computer and analyze and manage the process.However, by obtaining information on the reuse of treated liquid and wastewater, It has not been instructed to do so.
即ち従来技術では、 いったん使用した処理液や廃水等は適切な後処理 を行い、 あるものは下水などに放出され、 放出できないものは専門の業 者に回収してもらっていた。 このため回収コス トがかかり、 また環境破 壊などの問題を起こす可能性があつた。  In other words, in the prior art, once used treatment liquid and wastewater were subjected to appropriate post-treatment, some were released into sewage, etc., and those that could not be released were collected by specialized traders. As a result, recovery costs were increased, and there was a possibility of causing environmental damage and other problems.
本発明の目的は、 上記従来技術の問題点に鑑み、 処理液や処理水の再 利用を行うことにより環境 染防止及び材料费の削減を可能とする廃水 管理システムを提供することにある。 発明の開示 本発叨は、 上記の課题を解決するため、 処理液監視データ、 液交換時 期管理デ-タ、 製品処理加速係数デ-タ等、 各種データを管理するデー 夕ベースを作成し、 そしてこれらのデータをもとに処理液の再生, 再利 用を行なう指示アルゴリ ズムを作成してそれに基づき、 処理液のリサイ クル管理を行なう ものである。 SUMMARY OF THE INVENTION An object of the present invention is to provide a wastewater management system capable of preventing environmental pollution and reducing the amount of materials by reusing a treatment liquid or treated water in view of the above-mentioned problems of the related art. Disclosure of the invention In order to solve the above problems, the present invention created a database to manage various data such as processing solution monitoring data, solution replacement time management data, product processing acceleration coefficient data, and so on. An instruction algorithm for regenerating and reusing the processing solution is created based on these data, and the recycling of the processing solution is managed based on the algorithm.
即ち、 プラ ン 卜において、 処理液監視データ, 液交換時期管理データ, 製品処理加速係数デ—夕等を収集して、 処理液の使用回数や製品の処理 数からその処现液の交換時期を設定し、 それに近づく と必要に応じてァ ラーム等で知らせ、 これにより、 処理液を使用できる最大回数まで使用 でき、 材料、 特に処 31液や洗 用水等のコス ト低減が可能になるもので ある。 図面の簡単な説明  That is, at the plant, the processing liquid monitoring data, the liquid replacement time management data, the product processing acceleration coefficient data, etc. are collected, and the replacement time of the processing liquid is determined based on the number of times the processing liquid is used and the number of products processed. When the setting is approached, an alarm or the like is notified as needed, so that the processing liquid can be used up to the maximum number of times that it can be used, and it is possible to reduce the cost of materials, especially the processing solution and washing water. is there. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明のシステム ¾本構成図、 第 2図は処理液監視データ登 録データベーステーブル図、 第 3図は処理液のスペク トルを登録したテ 一ブル図、 第 4図は液交換時朋管现データベーステーブル図、 第 5図は 製品処理加速係数データベーステーブル図、 第 6図は本発明をプラ ン ト に適用した例を示す構成図、 第 7図は組成スぺク トルの比較方法を示す フローチャー ト、 第 8図は処理液異物数と製品処理数の相関図、 第 9図 は処理液をモニタ して必要な後処理を行う例を示すブロ ッ ク図、 第 1 0 図は洗净水をモニタ して必要な後処理を行う例を示すプロ ッ ク図、 第 1 1 図は洗净水の各製造プロセスへの配分を行う例を示すプロック図、 第 1 2図は製品処理数に応じて液の劣化を加速させた相関図である。 発明を実施するための最 ^の形態  Fig. 1 shows the configuration of the system of the present invention-Fig. 2 shows the database table of the processing liquid monitoring data registration database, Fig. 3 shows the table of the spectrum of the processing liquid registered, and Fig. 4 shows the liquid exchange. Tochikan database table, Fig. 5 is a database table of product processing acceleration factor, Fig. 6 is a configuration diagram showing an example of applying the present invention to a plant, and Fig. 7 is a comparison of composition spectra. Fig. 8 is a flow chart showing the method, Fig. 8 is a correlation diagram between the number of foreign substances in the processing liquid and the number of processed products, Fig. 9 is a block diagram showing an example of monitoring the processing liquid and performing necessary post-processing, and Fig. 10 Fig. 1 is a block diagram showing an example of monitoring washing water and performing necessary post-processing. Fig. 11 is a block diagram showing an example of distributing washing water to each manufacturing process. Fig. 1 2 FIG. 4 is a correlation diagram in which the deterioration of the liquid is accelerated according to the number of processed products. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明を図而に示した一実施例によって詳細に説明する。 第 1 図は本発明のシステム基本構成図であり、 ここでは半導体製造ブラン ト に本発明を適用した例を示す。 Hereinafter, the present invention will be described in detail with reference to an embodiment shown in the drawings. First The figure is a basic configuration diagram of the system of the present invention. Here, an example in which the present invention is applied to a semiconductor manufacturing brand is shown.
第 1図において、 1 はデータ解析ステーショ ン、 2は表示装置、 3は 処理液監視データ登録データベース、 4は液交換時期管理データベース、 5は製品処理加速係数データベース、 6は処理液再生指示データベース、 7は処理液再生自動指示データベース、 8はプラン ト内各所に設置され た監視装置である。  In FIG. 1, 1 is a data analysis station, 2 is a display device, 3 is a processing liquid monitoring data registration database, 4 is a liquid replacement time management database, 5 is a product processing acceleration coefficient database, 6 is a processing liquid regeneration instruction database, 7 is a database for automatically instructing treatment liquid regeneration, and 8 is a monitoring device installed at various points in the plant.
各データベースのテーブル構成について以下に述べる。 第 2 に処理 液監視データ登録データベース 3のテーブル 3 aを示す。 項目としては 日付 9、 時間 1 0、 処理漕 N o . 1 1、 異物数 1 2、 濃度 1 3、 液組成 1 4、 スぺク トル図 N o . 1 5、 予備 1 6からなる。 このデータベース 3のテーブル中のスぺク トル図 N o . 1 5 と各スぺク トルはデータべ一 ス 2 3中に関連づけて登録されており、 そのスぺク トル 1 7の一例を第 3図に示している。  The table configuration of each database will be described below. Second, Table 3a of the treatment liquid monitoring data registration database 3 is shown. The items consisted of date 9, time 10, processing tank No. 11, number of foreign substances 12, concentration 13, liquid composition 14, spectral diagram No. 15, reserve 16. The spectrum diagram No. 15 in the table of the database 3 and each of the spectra are registered in the database 23 in association with each other, and an example of the spectrum 17 is shown in FIG. Shown in Figure 3.
次に、 液交換時期管理データベース 4のテーブル構成 4 aを第 4図に 示す。 項目としては、 処现漕 N o . 1 1、 使用期間 1 9、 前回交換日 2 0、 製品処理数 2 1などがあり、 図示はしていないが、 歩留, 製品特性 などをデータベース化しておいてもよい。  Next, FIG. 4 shows a table configuration 4a of the liquid exchange time management database 4. Items include processing tank No. 11, service period 19, last replacement date 20, product processing number 21. Although not shown, yield, product characteristics, etc. are stored in a database. You may leave.
次に、 製品処理加速係数データベース 5のテーブル構成 5 aを第 5図 に示す。 項目としては、 処理漕 N 0 . 1 1、 製品処理数 2 1、 加速係数 2 3からなる。 この加速係数 2 3は、 あらかじめ製品処理数 ( 2 1 ) に 応じて液の使 /Π期問を短縮して交換時期を早める指示を出すための係数 である。 必耍に応じてこの係数は変更、 訂正を行うことができる。  Next, the table configuration 5a of the product processing acceleration coefficient database 5 is shown in FIG. The items consist of processing tank N 0.11, product processing number 21 and acceleration factor 23. The acceleration coefficient 23 is a coefficient for giving an instruction to shorten the use / use period of the liquid and advance the replacement time in advance according to the number of products to be processed (2 1). This coefficient can be changed or corrected as necessary.
第 6図に本発叨をブラン ト Aに適用した例を示す。 プラン ト Aの中に めっきプロセス 2 4、 洗净プロセス 2 5、 エッチングプロセス 2 6等の 各製造プロセスがあり、 それらにそれぞれ監視装置 8があり、 各プロセ スの状況をモニタ している。 Fig. 6 shows an example of applying this invention to Brand A. In Plant A, there are manufacturing processes such as plating process 24, washing process 25, etching process 26, etc., each of which has a monitoring device 8 and each process. The status of the service is monitored.
更にそれらの各データを集計、 管理する全体プラン 卜監視装置 2 7が あり、 それによりプラン ト A全休の 監視、 液の交換時期の指示、 製 品の処理来歴管理などを行う。 例えばめつきプロセス 2 4であれば、 め つき液の濃度 ( 1 3 ) 、 液組成 ( 1 4 ) 、 異物数 ( 1 2 ) 、 液使用回数 ( 1 6 ) などのパラメ一夕をモニタ し、 それらの値は各監視装置 8から 第 1 図に示すデータ解析ステーシ ョ ン 1 を経由して処理液監視データ登 録データベース 3に登録される。 またその処理液で処理を行った製品の 処理数 ( 2 1 ) 、 歩留、 製品特性などをデータと して液交換時期管理デ —夕ベース 4 に収¾、 する。 なお、 ?ί5 6図に示したプラ ン トの実施 例においては、 全体プラ ン ト監視装 S 2 7にこれらのデータべ一スを設 けておく ものである。  In addition, there is an overall plant monitoring device 27 that compiles and manages each of these data, which monitors all plant A holidays, instructs liquid replacement timing, and manages product processing history. For example, in the case of the plating process 24, parameters such as the concentration of the plating solution (13), the composition of the solution (14), the number of foreign substances (12), and the number of uses of the solution (16) are monitored. These values are registered in the processing solution monitoring data registration database 3 from each monitoring device 8 via the data analysis station 1 shown in FIG. In addition, data on the number (21), yield, product characteristics, etc. of products processed with the processing solution will be collected as data on the liquid exchange time management data base 4. In addition,? In the embodiment of the plant shown in FIG. 56, these databases are provided in the whole plant monitoring device S27.
そしてこれらのデータが、 あらかじめ設定した基準を越えた時点で使 用限界と判断し、 再処理あるいは廃棄の指示を出す。 このときの判定ァ ルゴリ ズ厶の例をいくつか以下に述べる。  When these data exceed the criteria set in advance, the usage limit is determined, and instructions for reprocessing or disposal are issued. Some examples of the judgment algorithm at this time are described below.
まず、 処现液の組成の変化から異 ' や 用限界を警告するァルゴリ ズ ムについて述べる。 例えばめつき液の £ を例えば濃度分析装置を用い て測定し、 そのスぺク トルが得られるとこれを処理液監視データ登録デ 一夕べ一ス 3に登録する。 そして、 次に ,¾—液の組成スぺク トルを測定し、 データベースにある該液のスぺク トルと比較して波形の変化を調べる。 第 7図に比較の 1方法を示しており、 まず第 1 ステップとして 「処理液 の濃度を測定」 し、 次に第 2のステ ッ プとして 「スぺク トルデータを収 集」 し、 第 3のステップとして 「前回のスぺク トルをデータベースから 検索」 し、 第 4のステップと して 「 2つのスぺク トル波形を比較」 する ものである。 そして^者に人きな;^いが兌られた場合、 何らかの異常が 発生したと判断し、 めっき装 fffi或いはプラ ン トの停止を指示する。 波形 がほとんど同じであれば、 液の品質はほぼ同じであると考えられ、 めつ き処理を継続する。 First, an algorithm that warns of differences and application limits from changes in the composition of the treatment solution will be described. For example, the value of the plating solution is measured using, for example, a concentration analyzer, and when the spectrum is obtained, it is registered in the processing solution monitoring data registration data 3 overnight. Then, the composition spectrum of the liquid is measured and compared with the spectrum of the liquid in the database to check the change of the waveform. Fig. 7 shows one method of comparison. First, "measure the concentration of the processing solution" as the first step, and then "collect the spectrum data" as the second step. The third step is to search the previous spectrum from the database, and the fourth step is to compare two spectrum waveforms. If the person is not available, it is judged that some abnormality has occurred, and the stop of the plating equipment fffi or the plant is instructed. Waveform If the values are almost the same, the quality of the liquid is considered to be almost the same, and the plating process is continued.
次に、 処理液中の異物数の ト レ ン ドを監視するァルゴリズムについて 述べる。 第 8図に処观液の ¾物数と製品処理数のグラフを示す。 製品ヮ ークの処理を行うたびに処理液中の異物数を測定する。 このとき、 製品 ワークの処理数のデータも収染し、 処理数と異物数の増加数の相関線を 求める。 処理の後で該液屮の異物数の增加が直線 1 2 aに載っていれば 交換ライン 1 2 bに逮するまで処理を続けることができる。 しかし、 異 物数が直線 1 2 aからはずれて急激に増加した場合は異常発生と考え、 処理の中止を指示する。 これらの結果はデータベースに登録され必要に 応じて最新データに茈づき、 51新を行うことができる。 以上の処理は、 第 1図の実施例においてはデータ解析ステーシ ョ ン 1が実行し、 第 6図 の実施例においては全休ブラン 卜監視装置 2 7が実行するものである。 次に、 処理液をモニタしてその結果から適切な処理を指示する例につ いて説明する。 第 9図に示すように、 処理液 3 0を監視装置 8にてモニ タを行い、 その秫類、 例えば液の組成変化、 不純物の増加に応じて、 そ れらを減らす処理方法をあらかじめ決めておきデータベース 6 , 7に登 録しておく。 データ解析ステーシ ョ ン 1 または全体プラン ト監視装置 2 7においては、 それを検索し、 例えばデータベース 6によって濾過、 ィ オン交換、 逆浸透などの適 ¾な丙生指示情報を表示装置 2或いは全体プ ラン ト監視装置 2 7のディ スプレイに表示せしめて再生を促したり、 人 手を必要としない再生作業であればデータベース 7からの指示により、 自動的に処理液の再生を行う ものである。 処理液の場合は、 製品を加工 した後成分分析を行い、 その結 に づいて固形興物数が増加していれ ば、 濾過処理してから ¾処£1!.液を保管し、 不純物イオンが増加していれ ば、 イオン交換処理を行った後、 該液を保管する。 また第 1 0図に洗净水の場合の処理例を示す。 洗浄液 3 1 はもつばら 製品ワーク処理後の該製 の洗净に用いられる。 そこで洗浄後、 第 9図 で説明した処理液 3 0 と ΙΠ]様に必要な後処理 (濾過、 イオン交換、 逆浸 透など) を行う。 そしてその後、 純水化 ( 3 2 ) してその品質が原液に 対して一定の範囲内であれば元の原水に戻す。 Next, an algorithm for monitoring the trend of the number of foreign substances in the processing solution will be described. Fig. 8 shows a graph of the number of waste products and the number of processed products. Each time the product peak is processed, the number of foreign substances in the processing liquid is measured. At this time, data on the number of processed products is also collected, and a correlation line between the number of processed products and the increase in the number of foreign particles is obtained. After the processing, if the increase in the number of foreign substances in the liquid is on the straight line 12a, the processing can be continued until it is arrested on the replacement line 12b. However, if the number of foreign substances deviates from the straight line 12a and increases rapidly, it is considered that an abnormality has occurred, and an instruction to stop processing is issued. These results are registered in the database and can be updated as needed based on the latest data. The above processing is executed by the data analysis station 1 in the embodiment of FIG. 1, and is executed by the all-blank monitor 27 in the embodiment of FIG. Next, an example in which the processing solution is monitored and an appropriate process is instructed based on the result will be described. As shown in Fig. 9, the monitoring of the treatment liquid 30 is performed by the monitoring device 8, and in accordance with the type of the treatment liquid, for example, a change in the composition of the liquid or an increase in impurities, a processing method for reducing the amount is determined in advance. In advance, register them in databases 6 and 7. The data analysis station 1 or the whole plant monitoring device 27 retrieves the data and displays, for example, the database 6 to display the appropriate bioinstruction information such as filtration, ion exchange and reverse osmosis on the display device 2 or the whole plant. The regeneration liquid is displayed on the display of the run monitoring device 27 to prompt the regeneration. If the regeneration operation does not require any manual operation, the treatment liquid is automatically regenerated according to the instruction from the database 7. In the case of a treatment solution, component analysis is performed after the product is processed, and if the number of solid substances increases based on the results, the solution is filtered and then processed. If increases, store the liquid after performing ion exchange treatment. FIG. 10 shows a processing example in the case of washing water. The cleaning liquid 31 is used for washing the thorns after the product work processing. Therefore, after washing, necessary post-treatments (filtration, ion exchange, reverse permeation, etc.) are performed as in the case of the treatment liquid 30 and ΙΠ] described in FIG. After that, the water is purified (32), and if the quality is within a certain range with respect to the undiluted solution, it is returned to the original undiluted water.
このようにして洗 f/り 水を ίΐ利川する。 それらを処理液が一定の値内 であれば何度も繰り返して i利用し、 その値を越えると廃棄指示を行う c このように各処?]にじ ίΜごとにその処理液や洗浄液のモニタ及び再処理を 行う。  In this way, the water is washed. If the processing solution is within a certain value, it is used repeatedly i. If it exceeds that value, a disposal instruction is issued. Monitor and reprocess the processing solution and cleaning solution every time.
第 1 1 図に再処理水の配分の例を示す。 第 6図において監視装置 8 に より各工程で監視され後処理を行った廃水の状況を全体ブラ ン ト監視装 置 2 7に送信する。 そこで全体プラ ン 卜監視装置 2 7は、 プラン 卜全体 内で処现水の残 iの状況を収集し、 どのプロセスにおける洗浄液 3 1 a , 3 1 b , 3 1 cが不足しているかを判定し、 再処理を行った水 3 2を必 要に応じて必要な量だけ所定のェ稅に送る。 このようにして、 再処理水 3 2のプラ ン ト内の配分の管理、 指示を行う。  Fig. 11 shows an example of the distribution of reprocessed water. In FIG. 6, the status of the wastewater that has been monitored in each process by the monitoring device 8 and subjected to post-treatment is transmitted to the overall plant monitoring device 27. Therefore, the whole plant monitoring device 27 collects the status of the remaining treated water i in the whole plant and determines which process is lacking in the cleaning liquid 31a, 31b, 31c. Then, the reprocessed water 32 is sent to a predetermined area in a required amount as needed. In this way, the distribution and management of the reprocessed water 32 in the plant are instructed.
次に、 異常発生監視の精^向上について述べる。 処理液の組成変化の 相関線を処理した製品数に応じて加速させる。 例えば、 第 8図に示して あるよう に日々の変化をプロッ 卜する際に、 製品の処理数を考慮する。 一日に製品ワークを 1 0 i 位処理するという前提で作成した相関線があ る場合、 第 1 2図に示すよう に、 ある EIの処理数が 3 0単位であった場 合、 !ji純に考えれば 3 日分の処理を行ったわけであるから、 液組成の変 化線を 1 2 c に示すように 3倍とし、 液の劣化を早めに正しく管理する c このよう に製品ワークの処 ]¾数を EI々データベースに登録して、 必要に 応じて與常管理線の兄 :しを う こ とができる。 Next, the improvement in the accuracy of abnormality monitoring is described. Accelerate the correlation line of the composition change of the processing solution according to the number of processed products. For example, when plotting daily changes as shown in Figure 8, consider the number of products processed. If there is a correlation line created on the premise that the product work is processed at the 10ith place per day, as shown in Fig. 12, if the number of processed EIs is 30 units,! Since ji Jun considered that the treatment was performed for three days, the variation line of the liquid composition was tripled as shown in 12c, and the deterioration of the liquid was properly managed promptly. of treatment] to register the number of ¾ to EI_々 database, of AtaeTsune management line, if necessary brother: teeth can and cormorant child.
また、 このときに処理した製品ワークの品名、 ロ ッ ト番号などをデー タベース 3に登録し、 製品ワークに トラブルが発生した場合でも、 該製 品ワークがいつどの装就により処理され、 そのときの処理液の状況はど うだったかという こ とが突き合わせて解析できる。 Also, the product name, lot number, etc. of the product work processed at this time Even if a trouble occurs in the product work by registering it in the database 3, it can be analyzed by comparing the product work, when and by what type of processing, and the state of the processing liquid at that time.
また、 このよう に処现数のデータを登録することで急に液組成が変化 した場合に、 設備側の與 ' なのか製品の大量処理による劣化なのかを明 らかにしてそれに応じた対策を正しく とるこ とができる。 もし、 設備の 異常であった場合には、 直ちに処理を停止し、 不良を作り込まないよう にし、 原因を追求して対策を行う。 更にこのときに製品ワークの処理数 だけでな く 、 各種のプロセスデータ、 例えば膜厚、 寸法、 形状及び歩留 などのデータを測定し、 データベースに登録する。 そして処理液の組成、 濃度、 不純物数、 異物数などと製品の該データとを突き合わせて解析で きるよう にする。  Also, by registering the data on the number of treatments, if the liquid composition suddenly changes, it is clarified whether it is due to the equipment side or deterioration due to mass processing of the product, and countermeasures accordingly. Can be taken correctly. If there is an abnormality in the equipment, stop the processing immediately to avoid creating defects and take measures to find the cause. Further, at this time, not only the number of processed workpieces but also various kinds of process data, for example, data such as film thickness, dimensions, shape, and yield are measured and registered in a database. Then, the composition, concentration, number of impurities, number of foreign substances, and the like of the processing solution are compared with the data of the product so that analysis can be performed.
このようにして得られた解析結果を、 製品の監視、 プラ ン トすなわち 各処理工程での処理液の状態の監視に用いるこ とで、 異常をリ アルタィ ムで検出する。 これらの各嵇データは該データベースに登録されるこ と により処理液濃度 :と製品ワーク処理数、 処理液異物数と製品ワーク処现 数や製品ワークの膜厚等のよう に様々な組み合わせで相関解析を行う こ とができ、 それらの結果から処理液の交換の問隔、 つま り交換の時期を 予測するこ とができる。 また、 製品ワークが 成後に不良であるこ とが わかった場合にも、 各 ίίί処现液の ^理データをもとにどの装置、 処理液 が悪かったのかを迅速に絞り込むこ とができ、 不良対策を短期間に行う こ とでブラ ン 卜の停止時問低減、 不良の作り込みの防止を図るこ とがで きる。 そしてそれらの解析結果を該データベースに登録し、 前述のよう に必要に応じて更新を行う。 The analysis results obtained in this way are used for product monitoring and for monitoring the condition of the processing solution in each processing step, and abnormalities are detected in real time. Each of these data is registered in the database and correlated in various combinations such as the processing solution concentration : and the number of processed product workpieces, the number of foreign substances in the processing solution, the number of processed product workpieces, and the film thickness of the product workpiece. Analyzes can be performed, and the results can be used to predict the interval of replacement of the processing solution, that is, the timing of replacement. Also, if the product work is found to be defective after formation, it is possible to quickly narrow down which equipment and processing liquid were bad based on the processing data of each processing liquid. By taking countermeasures in a short period of time, it is possible to reduce the number of times when the plant is stopped and to prevent the creation of defects. Then, the analysis results are registered in the database, and updated as necessary as described above.
次にコス トを考慮して 利 fflを行う例について述べる。 再利用するた めに必要な費用と、 専門業社に引き取って処理してもらうのに必要な費 用を算出するためのデータをデータベース 6に登録する。 例えば、 処理 液の使用回数が 1 、 2回であれば必要な再処理を行い、 もう一度利用す るこ とができるが、 既に何^も使っており、 様々な不純物が混ざってい たり、 あるいは液自体が劣化している場合は再処理を行う より も廃棄処 分する方が効率的である し、 ϊ' 川も安い。 そこで、 このような判定を前 述のデータベースに づき ^出し、 指示を行う ことも可能である。 産業上の利用可能性 Next, an example of performing profit ffl in consideration of cost will be described. Costs required for reuse and costs required to be picked up and processed by specialist companies The data for calculating the usage is registered in the database 6. For example, if the treatment solution is used once or twice, the necessary reprocessing can be performed and reused.However, the solution is already used, and various impurities are mixed or the solution is used. If it has deteriorated, it is more efficient to dispose of it than to reprocess it, and the ϊ 'river is cheaper. Therefore, it is possible to issue such an instruction based on the above-mentioned database and issue an instruction. Industrial applicability
以上説明したように、 本発 Iリ jによれば、 製造ブラ ン ト内で処理液の各 種のモニタ、 製品の処^数のモニタを行う こ とで、 処理液の利用の可否、 そして再利/ Πの判定などを行い、 製品の高歩留生産、 処理液のコス ト低 減、 及び品質管理を行う こ とができる。  As described above, according to the present invention, the use of the processing solution is monitored by monitoring the various types of the processing solution and the number of processes of the product within the manufacturing brand. Judgment of reutilization / Π can be performed, and high-yield production of products, reduction of processing solution cost, and quality control can be performed.

Claims

請求の範囲 The scope of the claims
1 . 製品ワークの製造に用いる処理液または廃液の情報を監視し、 予め 登録されているデータと上記 視結果とを比較して、 上記処理液または 廃液の品質を判定するよう になしたこ とを特徴とする廃水管理システム,1. Monitor the information of the processing liquid or waste liquid used for manufacturing the product work, compare the data registered in advance with the above-mentioned visual result, and judge the quality of the above-mentioned processing liquid or waste liquid. Wastewater management system,
2 . 上記情報は、 処 1!-液または廃液の液組成及び不純物量であるこ とを 特徴とする請求の範 1 1 記戟の廃水管理システム。 2. The wastewater management system according to claim 11, wherein the information is the liquid composition and the amount of impurities of the liquid or wastewater.
3 . 請求の範! ^ 1 記戟の廃水管现システムにおいて、 上記製品ワークの 数のパラメ一夕を加えて上記液の品質を判定するよう になしたこ とを特 徴とする廃水管理システム。  3. Claims! ^ 1 A wastewater management system characterized in that the quality of the above liquid is judged by adding the number of parameters of the product work to the wastewater pipe system of the simulation.
4 . 製品ワークの製造に用いる処理液または廃液の液組成、 不純物量を 測定し、 それらがあらかじめ設定した値となるまでは処理を継続し、 一 定量以上となった場合は該液の交換を指示するようになしたこ とを特徴 とする廃水管理システム。  4. Measure the liquid composition and the amount of impurities in the processing liquid or waste liquid used in the production of product work, and continue the processing until they reach the preset values. When the amount exceeds a certain amount, replace the liquid. A wastewater management system characterized by instructions.
5 . 製品ワークの製造に用いる処现液または廃液の情報を監視し、 予め 登録されているデータと - 記監視結果とから、 上記液の品質を判定し、 処理液または廃液の分離、 濾過等の 利用の指示を行う よう になしたこ とを特徴とする廃水管理システム。  5. Monitor the information on the treatment liquid or waste liquid used in the production of product work, judge the quality of the above liquid from the pre-registered data and the monitoring results, and separate and filter the treatment liquid or waste liquid. A wastewater management system characterized by giving instructions on the use of wastewater.
6 . 製品ワークの製造に川いる処: S1液または廃液の組成変化や不純物の 増加を監視し、 その ¾加に応じてそれを規定値に戻す処理を指示するよ うになしたこ とを特徴とする廃水管理システム。  6. Where the process goes into the production of product work: It monitors the change in the composition of S1 liquid or waste liquid and increases in impurities, and instructs processing to return it to the specified value according to the increase. And wastewater management system.
PCT/JP1995/000483 1995-03-17 1995-03-17 Waste water control system WO1996029598A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000483 WO1996029598A1 (en) 1995-03-17 1995-03-17 Waste water control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000483 WO1996029598A1 (en) 1995-03-17 1995-03-17 Waste water control system

Publications (1)

Publication Number Publication Date
WO1996029598A1 true WO1996029598A1 (en) 1996-09-26

Family

ID=14125768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000483 WO1996029598A1 (en) 1995-03-17 1995-03-17 Waste water control system

Country Status (1)

Country Link
WO (1) WO1996029598A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263597A (en) * 2001-03-06 2002-09-17 Seiko Corp Apparatus and method for washing piping system of production plant and program
WO2003081647A1 (en) * 2002-03-27 2003-10-02 Ebara Corporation Material supply system in semiconductor device manufacturing plant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163541A (en) * 1983-03-09 1984-09-14 Hitachi Ltd Flux density measuring method
JPH0228917B2 (en) * 1985-11-13 1990-06-27 Hitachi Ltd SENJOSOCHI
JPH03242536A (en) * 1990-02-20 1991-10-29 Tokico Ltd Automatic liquid managing apparatus
JPH03283488A (en) * 1990-03-30 1991-12-13 Fujitsu Ltd Post-cleaning method for printed board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163541A (en) * 1983-03-09 1984-09-14 Hitachi Ltd Flux density measuring method
JPH0228917B2 (en) * 1985-11-13 1990-06-27 Hitachi Ltd SENJOSOCHI
JPH03242536A (en) * 1990-02-20 1991-10-29 Tokico Ltd Automatic liquid managing apparatus
JPH03283488A (en) * 1990-03-30 1991-12-13 Fujitsu Ltd Post-cleaning method for printed board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263597A (en) * 2001-03-06 2002-09-17 Seiko Corp Apparatus and method for washing piping system of production plant and program
WO2003081647A1 (en) * 2002-03-27 2003-10-02 Ebara Corporation Material supply system in semiconductor device manufacturing plant
US7305275B2 (en) 2002-03-27 2007-12-04 Ebara Corporation Material supply system in semiconductor device manufacturing plant

Similar Documents

Publication Publication Date Title
Christer et al. Reducing production downtime using delay-time analysis
CN1186476C (en) Device and method for detecting and preventing arcing in RF plasma systems
CN100465829C (en) Methods and systems of offline measurement for process tool monitoring
DE112015004142T5 (en) System and method for predicting the failure of machine components
Agrawal et al. Performance analysis of the water treatment reverse osmosis plant
CN101944275A (en) Membrane pollution diagnosis and early warning decision making system of hollow fiber device
Oberoi et al. SPC (statistical process control): a quality control technique for confirmation to ability of process
Gherghea et al. Enhancing Productivity of CNC Machines by Total Productive Maintenance (TPM) implementation. A Case Study
WO1996029598A1 (en) Waste water control system
Dickinson et al. Green product manufacturing
CN104750144B (en) Method of early warning operating condition of equipment
KR20160057595A (en) Maintenance Cleaning Method of Membrane Precess by TMP and Variation Coefficient
CN116448234A (en) Power transformer running state voiceprint monitoring method and system
Al-Shayea et al. New integrated model for maintenance planning and quality control policy for multi-component system using an EWMA chart
Galan et al. Optimization strategies for the design and synthesis of distributed wastewater treatment networks
KR101127052B1 (en) Recycling method of the terminated Positive Stripper comprising multi-stage filtration process and thereof using the filtering utilities
Rahim et al. Optimal determination of production run and initial settings of process parameters for a deteriorating process
JPH08243537A (en) Method of controlling water and waste water in surface treatment plant and device therefor
CN117316836B (en) Wafer processing management system applying marangoni effect
TWI831602B (en) Tool critical life diagnosis method based on current information and system thereof
KR102705147B1 (en) Predictive maintenance system for membrane replacement time detection using AI-based functional profile monitoring
Wu et al. A Study of FMEA Approach Implementation to Wet Scrubber Management in High Tech Factory
DE102018006584B4 (en) Control device and control method for automatic filters, as well as filter system comprising an automatic filter and said control device
KR20230134054A (en) Predictive maintenance system for membrane replacement time detection using AI-based functional profile monitoring
CN113673840A (en) Third generation semiconductor mask operation method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase