WO1996028848A1 - Low-emi device circuit and its structure - Google Patents

Low-emi device circuit and its structure Download PDF

Info

Publication number
WO1996028848A1
WO1996028848A1 PCT/JP1995/000431 JP9500431W WO9628848A1 WO 1996028848 A1 WO1996028848 A1 WO 1996028848A1 JP 9500431 W JP9500431 W JP 9500431W WO 9628848 A1 WO9628848 A1 WO 9628848A1
Authority
WO
WIPO (PCT)
Prior art keywords
pad
power supply
circuit
bypass capacitor
layer
Prior art date
Application number
PCT/JP1995/000431
Other languages
French (fr)
Japanese (ja)
Inventor
Yutaka Akiba
Kazuhiko Horikoshi
Toshiyuki Arai
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP52744596A priority Critical patent/JP3909086B2/en
Priority to PCT/JP1995/000431 priority patent/WO1996028848A1/en
Publication of WO1996028848A1 publication Critical patent/WO1996028848A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/642Capacitive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • the present invention relates to an EMC-compatible slave device, which is increasingly important as the speed and density of ICs and LSI elements and circuits increase, and particularly relates to a device, a circuit board, and a device that require a means for suppressing unnecessary radiation noise.
  • EMC-compatible slave device which is increasingly important as the speed and density of ICs and LSI elements and circuits increase, and particularly relates to a device, a circuit board, and a device that require a means for suppressing unnecessary radiation noise.
  • a bypass capacitor with good frequency characteristics is inserted between the power supply terminal (pad) and ground terminal (pad) of LSI devices, etc., which are usually sources of noise, in order to suppress unnecessary radiation.
  • LSI devices etc.
  • When connecting a capacitor outside the LSI even if the capacitance of the bypass capacitor is sufficiently large, the current loop from the semiconductor chip to the package lead is large, so that unnecessary width radiation is large, and one measure is taken. There is a limit.
  • Japanese Patent Application Laid-Open No. 5-265757 discloses a method in which a bypass capacitor is built in an LSI to reduce the length (current length) of a current loop.
  • the wood invention converts the range variation (AC component) of the power supply pad with respect to the ground pad at the time of switching of an LSI element or the like into joule heat without using EMI countermeasure parts, and provides The goal is to provide a low EMI device that effectively suppresses unnecessary radiation while realizing the same. Disclosure of the invention
  • the present invention realizes high-density mounting by lowering the Q value of a bypass capacitor by equivalently connecting a bypass capacitor formed on the active surface of an LSI device (element) and a resistor in parallel. Heat fluctuation and absorption of potential fluctuations generated between the power supply pad and ground pad are suppressed by suppressing unnecessary radiation.
  • a circuit in which the second bypass capacitor C 2 and the resistor R are connected in series is connected to the impedance of the second bypass capacitor IZ c 2
  • for a required frequency range ( ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 2). ( 1 ⁇ ⁇ C 2) is made sufficiently smaller than the resistor R and equivalently given by the resistor R.
  • the DC bias component is cut in a circuit, and a low Q is achieved for the AC component (high-frequency component).
  • FIG. 1 is a cross-sectional view of a low-EMI device in which a circuit is formed on the surface of an LSI device (chip), which is an example of the present invention.
  • FIG. 2 shows a plan view of the low EMI device of FIG. 1 as viewed from above the active surface.
  • Figure 3 shows the circuit model diagram formed on the surface of the LSI device (chip).
  • FIG. 4 shows a circuit model diagram in a case where constraints are provided in the circuit model of FIG.
  • Fig. 5 is an example of Kimei, and shows a process chart of the manufacturing process of a low EML device, and (a) and (b) show a cross-sectional view and a plan view in each step, respectively.
  • FIG. 6 shows another embodiment of the wood invention, and shows a manufacturing process diagram of a low EMI device, wherein (a) and (b) show a cross-sectional view and a plan view in each step, respectively.
  • FIG. 7 shows another embodiment of the present invention and shows a process chart of a manufacturing process of a low EMI device, and (a) and (b) show a cross-sectional view and a plan view in each step, respectively.
  • FIG. 8 shows another embodiment of the present invention and shows a process chart of a manufacturing process of a low EML device, and (a) and (b) show a cross-sectional view and a plan view in each step, respectively. .
  • FIG. 9 shows another embodiment of the present invention, showing a process diagram of the manufacturing process of a low-EMl device, wherein (a) and (b) are cross-sectional views in each step, and FIG. Figure is shown.
  • FIG. 10 shows another embodiment of the wood invention, showing a process chart of a manufacturing process of a low EMI device, wherein (a) and (b) show a sectional view and a plan view in each step, respectively.
  • FIGS. 11A and 11B show another example of the present invention, in which the manufacturing process of a low EML device is shown in the form of a cross-sectional view and a plan view, respectively. The figure is shown.
  • FIG. 1 is an embodiment of the present invention, and shows a cross-sectional view of a low EMI device 1 in which a circuit is formed on a surface of an LSI device (chip) by a bypass capacitor and a resistor.
  • FIG. 2 is a plan view of the low EMI device 1 shown in FIG. 1 as viewed from above.
  • the outermost surface of the LSI chip 2 is covered with a silicon oxide passivation film, and a ground pad 11 for connection to an external circuit and a power pad 12 ( (Not shown), and electrode terminals such as signal pad 13 (not shown).
  • the first insulating film 3, the first conductive film 4, the first dielectric film 5, the resistance film 6, and the like are formed on the surface of the LSI chip 2 on which the electrode terminals are formed. It has a circuit structure in which a rest film 7 of ⁇ 2, a dielectric film 8 of ⁇ 2, a third rest film 9, and a second insulation 010 are formed. In particular, by forming a circuit inside the electrode terminal, the external shape and area of the LSI chip 2 are not affected.
  • the first bypass capacitor C 1 is formed by sandwiching the first dielectric film 5 between the first conductive film 4 and the second conductive film 7, and the second bypass capacitor C 2 is formed by ⁇ 2
  • the dielectric crotch 8 is formed so as to be sandwiched between the 52 body film 7 and the third conductor film 9.
  • the resistance R is formed by sandwiching the resistance rest film 6 between the first conductor film 4 and the third conductor film 9.
  • Grounds 14 and 15 are ground chips of LSI chip 2, respectively.
  • the pads 11 and the power supply pad 12 are taken out at the shortest distance and are connected at multiple locations.
  • the current loop length, area, And the inductance component is greatly reduced to suppress potential fluctuations due to resonance and the like.
  • FIG. 3 shows a model of a circuit formed on the surface of the SI chip 2. Viewed from Grad down Dopa' de 1 1 and power pad 1 2 LSI chip 2, the second of the bus capacitor C 2 1 8 to the first bus 0 scan capacitor C 1 1 7 and resistor R 1 9 series Are connected in parallel.
  • FIG. (A) and (b) in the figure show a sectional view and a plan view, respectively.
  • FIG. 5 shows a top view of the first insulating film 3 formed on the LSI chip 2.
  • a 1-m-thick silicon oxide film is formed by CVD on the entire surface of the LSI chip 2 as a passive junction.
  • a photo process and a dry etching method are performed; 1J, and an insulating film 3 of ⁇ 1 is formed in a region excluding an electrode pad such as a ground pad 11 of the LSI chip 2.
  • the sessionion film has a multilayer structure.
  • FIG. 6 shows a process chart of the first conductive film 4 formed after the first insulating crotch 3.
  • a 500 nm thick platinum thin layer is formed on the entire surface of the LSI chip 2 as an electrode layer of the first bypass capacitor C117 by using a sputtering method.
  • the lead pattern is connected to the ground pad 11 by a photo process and reactive dry etching. 14 and the first passivation film 4 consisting of a portion on the central passivation film of the LSI chip 2 is removed.
  • FIG. 7 shows a process chart of the resistor film 6 formed after the first insulating film 4.
  • a cermet resistance material of chromium and silicon oxide was used, and the entire surface of the LSI chip 2 was formed to a thickness of 900 nm by a sputtering method as a resistance film.
  • the resist film is applied to the rectangular shape along the four sides of the LSI chip 2 by a photo process and a jet etching method to form the resistive film 6.
  • the shape of the resistive film 6 is rectangular. The shape is not limited, but the symmetrical shape is adopted to make the TS characteristics of the bypass capacitor, as viewed from the adjacent ground pad 1 ⁇ and power supply pad 12, equal.
  • FIG. 8 shows a process chart of the first dielectric film 5 formed after the resistor film 6.
  • a 200 nm thick tantalum oxide layer is formed on the entire surface of the LSI chip 2 by sputtering. Then, a resist rest film 6 and a dielectric rest film 5 of 1 are formed on the conductor film 4 of FIG. 1 except for a region of the ground pad 11 by a photo process and a wet etching method. In this case, on the four sides adjacent to the electrode pads such as the ground pad 11 of the LSI chip 2, the induction rest 5 of ⁇ 1 is formed so as to cover the conductor film 4 of 11.
  • the length of the first invitation 5 is set in consideration of the withstand voltage and the capacitance value.
  • the 50 nm process may be repeated 2 to 4 times.
  • dielectric material As a dielectric material, there is a method of increasing the specific dielectric constant by using barrier titanate BaTi03 or strontium titanate SrTi3. As a process, spin coating is used instead of sputtering in consideration of composition control and characteristic reproduction.
  • FIG. 9 shows a process diagram of the second guide rest 7 formed after the introductory rest 5 of ⁇ 1.
  • a 500 nm thick I gold layer is formed by sputtering over the entire surface of the LSI chip 2.
  • a second conductor crotch 7 is formed on the first dielectric film 5 as an electrode layer of the first bypass capacitor C 117 and the second bypass capacitor C 218 by recess and dry etching. .
  • the second conductor film 7 has a lead pad 15 for connecting to the power supply pad 12.
  • the first bypass capacitor C 117 is divided into plural parts and formed in consideration of the arrangement condition of the power supply pad 12.
  • the first conductive film 4 is used as a common ground electrode, and the second conductive film 7 forms a plurality of power electrodes.
  • FIG. 10 shows a process chart of the second dielectric film 8 formed after the second conductive film 7.
  • a 200-nm-thick oxide thin film is formed on the entire surface of the LSI chip 2 by using a sputtering method. In some cases, the 5 O nm process is repeated 2 to 4 times as a growth process. Then, a part of the resistive film 6 and the upper surface of the electrode pad such as the ground pad 11 of the LSI chip 2 are removed by a photo-etching and a jet etching method. Further, the second dielectric film 8 is formed so as to form a break 4 of ⁇ 1 and a conduction break 7 of ⁇ 2.
  • FIG. 9 shows a process chart of the third conductive film 9 formed after the second insulating film 8.
  • a 500 nm thick gold thin film is formed on the entire surface of the LS1 chip 2 by using a sputtering method. This is converted into a second bypass capacitor C218 and a resistor R19 by a photo process and a dry etching method.
  • the 3 rest 9 of the 3 It is formed so as not to protrude outside.
  • a second insulating film 10 as a passivation film is formed.
  • a 1-m-thick silicon oxide film is formed on the entire surface of the LSI chip 2 using the CVD method. This is formed in a region excluding the electrode pad such as the ground pad 11 of the LSI chip 2 by a photo process and a dry etching method.
  • the passivation film has two layers to improve moisture resistance.
  • a circuit in which a second bypass capacitor C2 and a resistor R are connected in series is connected in parallel to a first bypass capacitor C1 connected to a power supply pad and a ground pad.
  • the DC component of the bypass capacitor circuit viewed from between the power supply pad and the ground pad is not only a DC component but also a low Q with respect to the AC component (high-frequency component).
  • it has the effect of absorbing potential fluctuations generated between the pads and greatly suppressing electromagnetic radiation from the LSI device itself and the wiring connected to it.

Abstract

A low-EMI device in which components are mounted at a high density and unnecessary radiation is effectively suppressed by converting the potential fluctuation at the power supply pad with respect to ghe ground pad which occurs on switching an LSI element, etc., into Joule's heat without using any parts used as the measure against EMI. An element is formed on the surface of the LSI device by using a thin film processing. To a first by-pass capacitor (C1) connected to the power supply and ground pads, parallely connected is a circuit in which a second by-pass capacitor (C2) and a resistor (R) are connected in series. Consequently the impedance of the capacitor (C2) is sufficiently smaller than that of the resistor (R). The dc component of the Q-factor of the by-pass capacitor circuit is cut when viewed from between the power supply and ground pads, and the Q-factor with respect to the ac (high-frequency) component is low (below 10), so that the potential fluctuation between the pads is absorbed. Thus the electromagnetic radiation from the LSI device itself and wires connected to the LSI device is remarkably suppressed.

Description

明 細 書  Specification
低 E M I デバイス回路と構造 技術分野 Low E M I device circuit and structure
本発明は、 特に I C、 L S I 素子や回路の高速化、 高密度化で増々重 要となる E M C対応の 子機器に係り、 不要輻射ノイズの抑制手段を必 要とするデバイス、 回路^板、 及び電子装置に関する。 背景技術  The present invention relates to an EMC-compatible slave device, which is increasingly important as the speed and density of ICs and LSI elements and circuits increase, and particularly relates to a device, a circuit board, and a device that require a means for suppressing unnecessary radiation noise. Related to electronic devices. Background art
不要輻射を抑制するため、 通常ノイズ発生源のもとになつている L S I デバイス等の電源端子 (パッ ド) とグラン ド端子 (パッ ド) との間に 周波数特性の良いバイパスコンデンザが抑入されている。 L S I の外部 にコンデンサを接続する場合、 バイパスコンデンザの容量を十分に大き く しても、 半導体チップからパッケ—ジリ — ドまでの電流ループが大き いため不要幅射が多く 、 対策上一 ¾の限界がある。 これに対し、 特開平 5— 2 6 7 5 5 7号公報は、 L S I の内部にバイパスコンデンサを内臓 し電流ループの長さ (而稂) を減少させる方法をとつている。 しかし、 電流ループに流れる共振 ¾流により 源パッ ドとグラン ドパッ ドとの問 に電位変動が発生するため、 パッ ドに接続された配線からの輥射を取り 除く こ とができない。 位変励を抑制、 吸収する手段が必要とされる。 木発明は、 L S I 素子等のスィ ッチング時におけるグラ ン ドパッ ドに 対する電源パッ ドの范位変動 (交流成分) を E M I 対策部品を用いずに ジュ -ル熱に変換し、 ^密 ¾突装を実現すると共に不要輻射を効果的に 抑制する低 E M I デバイスの捉供を 1的とする。 発明の開示 A bypass capacitor with good frequency characteristics is inserted between the power supply terminal (pad) and ground terminal (pad) of LSI devices, etc., which are usually sources of noise, in order to suppress unnecessary radiation. Have been. When connecting a capacitor outside the LSI, even if the capacitance of the bypass capacitor is sufficiently large, the current loop from the semiconductor chip to the package lead is large, so that unnecessary width radiation is large, and one measure is taken. There is a limit. On the other hand, Japanese Patent Application Laid-Open No. 5-265757 discloses a method in which a bypass capacitor is built in an LSI to reduce the length (current length) of a current loop. However, since the potential fluctuation occurs between the source pad and the ground pad due to the resonance current flowing in the current loop, the radiation from the wiring connected to the pad cannot be removed. There is a need for a means to suppress and absorb phase shifts. The wood invention converts the range variation (AC component) of the power supply pad with respect to the ground pad at the time of switching of an LSI element or the like into joule heat without using EMI countermeasure parts, and provides The goal is to provide a low EMI device that effectively suppresses unnecessary radiation while realizing the same. Disclosure of the invention
本発明は、 L S I デバイス (素子) の活性面上に形成したバイパスコ ンデンザと抵抗を等価的に並列接続して、 高密度実装を実現すると共に バイパスコンデンサの Q値を低下させるこ とより、 L S I デバイスの電 源パッ ドとグラ ン ドパッ ドの間に発生する電位変動を熱変換、 吸収して 不要輻射を抑制する。  The present invention realizes high-density mounting by lowering the Q value of a bypass capacitor by equivalently connecting a bypass capacitor formed on the active surface of an LSI device (element) and a resistor in parallel. Heat fluctuation and absorption of potential fluctuations generated between the power supply pad and ground pad are suppressed by suppressing unnecessary radiation.
L S I デバイスの表而上で、 電源パッ ドとグラン ドパッ ドに接続した 第 1 のバイパスコンデンサ C 1に対して、第 2のバイパスコンデンサ C 2 と抵抗 Rを直列に接続した回路を並列に接続させるこ とにより、 電源パ ッ ドとグラ ン ドパッ ドとの問から見た回路の Qに対して、 直流分カ ツ ト と同時に交流成分に対する低 Q化 ( 1 0以下の値) を得ている。  On the metaphor of the LSI device, a circuit in which a second bypass capacitor C 2 and a resistor R are connected in series is connected in parallel to the first bypass capacitor C 1 connected to the power supply pad and the ground pad. As a result, with respect to the Q of the circuit from the viewpoint of the power supply pad and the ground pad, a low Q (a value of 10 or less) for the AC component as well as the DC component cut is obtained. .
第 2のバイパスコ ンデンサ C 2 と抵抗 Rを直列に接続した回路を、 必 要とする周波数領域 ( ω \≤ ω≤ ω 2 ) に対して、 第 2のバイパスコンデ ンサのイ ンピーダンス I Z c 2 | ( = 1 Ζ ω C 2 ) を抵抗 Rに比べて十分に 小さ く して等価的に抵抗 Rで与える。 この時、 電源パッ ドとグラ ン ドパ ッ ドとの問から兒た |ΰ]路の Qは、 笫 1 のパイパスコンデンサ C 1 と抵 ί/し Rを並列に接続した等価回路の Q ( = ω C 1 R ) で与えられる。 この時、 回路的に直流バイ アス成分をカ ツ 卜 しながら交流成分 (高周波成分) に 対する低 Q化を得ている。 回路の Qを 1 0以下にするこ とにより、 電源 パッ ドとグラ ン ドパッ ドとの問に発生する電位変動 (交流成分) を効朵 的に吸収できる。  A circuit in which the second bypass capacitor C 2 and the resistor R are connected in series is connected to the impedance of the second bypass capacitor IZ c 2 | for a required frequency range (ω \ ≤ ω ≤ ω 2). (= 1 Ζ ω C 2) is made sufficiently smaller than the resistor R and equivalently given by the resistor R. At this time, from the question of the power supply pad and the ground pad, the Q of the | ΰ] path is the Q (of the equivalent circuit in which the bypass capacitor C 1 of 笫 1 and the resistor R are connected in parallel. = ω C 1 R). At this time, the DC bias component is cut in a circuit, and a low Q is achieved for the AC component (high-frequency component). By setting the Q of the circuit to 10 or less, potential fluctuations (AC components) generated between the power supply pad and the ground pad can be effectively absorbed.
一方、 誘 ^休に t a n ( δ ) の大きい材料を用いたバイパスコンデン サ単体の場合、 或は回路的にバイパスコンデンサと抵抗とを直接並列接 続した場合、 低 Q化において痕流 圧印加に対する リ ーク電流等の問题 が発生する。 本発明は、 2のバイパスコンデンサ C 2により、 この i!!J 題を解決している。 図面の簡単な説明 On the other hand, in the case of a single bypass capacitor using a material with a large tan (δ) for induction, or when a bypass capacitor and a resistor are directly connected in parallel in a circuit, Problems such as leak current occur. The present invention solves this i !! J problem by using two bypass capacitors C2. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明のー夾施例であり、 L S Iデバイス (チップ) の表 面上に回路を形成した低 EM Iデバイスの断面図を示す。 第 2図は、 第 1図の低 EM Iデバイスを活性面上から見た平面図を示す。 第 3図は、 L S Iデバイス (チップ) の表面上に形成した回路モデル図を示す。 第 4図は、 第 3図の回路モデルで制約条件を設けた場合の回路モデル 図を示す。 笫 5図は、 木 明の一 施例であり、 低 E M lデバイスの製 造プロセス工程図を示し、 ( a ) 、 ( b ) は各々各工程での断面図、 平 面図を示す。 第 6図は、 木発明の他の一実施例であり、 低 E M Iデバ イスの製造プロセスェ ¾1図を示し、 ( a ) 、 ( b ) は各々各工程での断 面図、 平面図を示す。  FIG. 1 is a cross-sectional view of a low-EMI device in which a circuit is formed on the surface of an LSI device (chip), which is an example of the present invention. FIG. 2 shows a plan view of the low EMI device of FIG. 1 as viewed from above the active surface. Figure 3 shows the circuit model diagram formed on the surface of the LSI device (chip). FIG. 4 shows a circuit model diagram in a case where constraints are provided in the circuit model of FIG. Fig. 5 is an example of Kimei, and shows a process chart of the manufacturing process of a low EML device, and (a) and (b) show a cross-sectional view and a plan view in each step, respectively. FIG. 6 shows another embodiment of the wood invention, and shows a manufacturing process diagram of a low EMI device, wherein (a) and (b) show a cross-sectional view and a plan view in each step, respectively.
第 7図は、 本発明の他の一実施例であり、 低 E M Iデバイスの製造プ ロセス工程図を示し、 ( a ) 、 ( b ) は各々各工程での断面図、 平面図 を示す。  FIG. 7 shows another embodiment of the present invention and shows a process chart of a manufacturing process of a low EMI device, and (a) and (b) show a cross-sectional view and a plan view in each step, respectively.
第 8図は、 本発明の他の一 ¾施例であり、 低 E M lデバイスの製造プ ロセス工程図を示し、 ( a ) 、 ( b ) は各々各工程での断面図、 平面図 を示す。  FIG. 8 shows another embodiment of the present invention and shows a process chart of a manufacturing process of a low EML device, and (a) and (b) show a cross-sectional view and a plan view in each step, respectively. .
第 9図は、 本発叨の他のー灾施例であり、 低 E M lデバイスの製造プ 口セスェ裎図を示し、 ( a ) 、 ( b ) は各々各工程での断面図、 平而図 を示す。  FIG. 9 shows another embodiment of the present invention, showing a process diagram of the manufacturing process of a low-EMl device, wherein (a) and (b) are cross-sectional views in each step, and FIG. Figure is shown.
第 1 0図は、 木発明の他の一実施例であり、 低 E M Iデバイスの製造 プロセス工程図を示し、 ( a ) 、 ( b ) は各々各工程での断面図、 平而 図を示す。  FIG. 10 shows another embodiment of the wood invention, showing a process chart of a manufacturing process of a low EMI device, wherein (a) and (b) show a sectional view and a plan view in each step, respectively.
第 1 1図は、 本 ¾明の他の- 突施例であり、 低 E M lデバイスの製造 プロセス工程図を示し、 ( a ) 、 ( b ) は各々各工程での断面図、 平面 図を示す。 発明を実施するための最良の形態 FIGS. 11A and 11B show another example of the present invention, in which the manufacturing process of a low EML device is shown in the form of a cross-sectional view and a plan view, respectively. The figure is shown. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の 施例を説明する。  Hereinafter, embodiments of the present invention will be described.
第 1 図は、 本発明の一実施例であり、 L S I デバイス (チップ) の表 面上にバイパスコンデンザと抵抗で回路を形成した低 E M I デバイス 1 の断面図を示す。 第 2図は、 第 1 図に示した低 E M I デバイス 1 を上部 から見た平面図を示す。  FIG. 1 is an embodiment of the present invention, and shows a cross-sectional view of a low EMI device 1 in which a circuit is formed on a surface of an LSI device (chip) by a bypass capacitor and a resistor. FIG. 2 is a plan view of the low EMI device 1 shown in FIG. 1 as viewed from above.
第 1 図において、 L S I チップ 2は最表面が酸化シリ コンのパッ シべ ーシヨ ン膜により覆われ、 周四に外部回路と接続するためのグラン ドパ ッ ド 1 1 、 電源パッ ド 1 2 (図示せず) 、 及び信号パッ ド 1 3 (図示せ ず) 等の電極端子をもつ。 低 E M I デバイス 1 は、 電極端子を形成した L S I チップ 2の面上に、 第 1 の絶縁膜 3、 第 1 の導体膜 4 、 第 1 の誘 電休膜 5、 抵抗休膜 6 、 ?Π 2の 休膜 7 、 ΙΠ 2の誘電体膜 8、 第 3の 休膜 9、 第 2の絶縁胶 1 0を形成した回路構造をもつ。 特に、 電極端子 の内側に回路を形成するこ とにより L S I チップ 2の外形形状、 面積に 影響を与えていない。  In FIG. 1, the outermost surface of the LSI chip 2 is covered with a silicon oxide passivation film, and a ground pad 11 for connection to an external circuit and a power pad 12 ( (Not shown), and electrode terminals such as signal pad 13 (not shown). In the low EMI device 1, the first insulating film 3, the first conductive film 4, the first dielectric film 5, the resistance film 6, and the like are formed on the surface of the LSI chip 2 on which the electrode terminals are formed. It has a circuit structure in which a rest film 7 of Π2, a dielectric film 8 of ΙΠ2, a third rest film 9, and a second insulation 010 are formed. In particular, by forming a circuit inside the electrode terminal, the external shape and area of the LSI chip 2 are not affected.
第 1 のバイパスコンデンサ C 1 は第 1 の誘電体膜 5を第 1 の導体膜 4 と第 2の導休膜 7 とで挾み込んで形成され、 第 2のバイパスコンデンサ C 2は笫 2の誘電体股 8を? Ϊ5 2の^体膜 7 と第 3の導体膜 9 とで挾み込 んで形成されている。 抵抗 Rは、 抵抗休膜 6を第 1 の導体膜 4 と第 3の 導体膜 9 とで挾み込みにより形成される。  The first bypass capacitor C 1 is formed by sandwiching the first dielectric film 5 between the first conductive film 4 and the second conductive film 7, and the second bypass capacitor C 2 is formed by 笫 2 The dielectric crotch 8 is formed so as to be sandwiched between the 52 body film 7 and the third conductor film 9. The resistance R is formed by sandwiching the resistance rest film 6 between the first conductor film 4 and the third conductor film 9.
第 2図に示すよう に、 ^5 1 の導体膜 4 、 第 2の導体膜 7のリ — ドパタ As shown in FIG. 2, the lead pattern of the ^ 5 1 conductive film 4 and the second conductive film 7
— ン 1 4 、 1 5は、 各々 L S I チップ 2のグラ ン ドノ、。ッ ド 1 1 、 電源パ ッ ド 1 2 に対して最短距離で取り出し、 かつ複数の箇所で接続されてい る。 バイパスコンデンサの取付け時に形成される電流ループ長さ、 面積、 及びィ ンダクタ ンス成分を大幅に減少させて共振等による電位変動を抑 制している。 — Grounds 14 and 15 are ground chips of LSI chip 2, respectively. The pads 11 and the power supply pad 12 are taken out at the shortest distance and are connected at multiple locations. The current loop length, area, And the inductance component is greatly reduced to suppress potential fluctuations due to resonance and the like.
第 3図は、 し S I チップ 2の表面上に形成した回路のモデルを示す。 L S I チップ 2のグラ ン ドパッ ド 1 1 と電源パッ ド 1 2から見ると、 第 1 のバ 0スコンデンサ C 1 1 7に第 2のバ スコンデンサ C 2 1 8 と抵抗 R 1 9 とを直列に接続した回路を並列に接続した回路となる。 第 4図は、 第 3図の回路モデルに制約条件を設けた場合の回路モデル を示す。 第 3図において、 笫 2のバイパスコンデンサ C 2 1 8のイ ンピ 一ダンス I Z c2 I ( = 1 Ζ ω C 2) を抵抗 R 1 9に比べて十分に小さ く し、 第 1 のバイパスコンデンサ C 1 1 7 と抵抗 R 1 9の並列接続で与え ている。 この回路は、 第 2のバイパスコンデンサ C 2 1 8による直流成 分カツ 卜と同時に交流成分に対する低 Q ( = ω C 1 R ) 化を得ている。 第 5図から第 1 1 図に、 低 Ε Μ I デバイス 1 の製造プロセス工程図を 示す。 図中の ( a ) 、 ( b ) は、 各々断面図、 平面図を示す。 FIG. 3 shows a model of a circuit formed on the surface of the SI chip 2. Viewed from Grad down Dopa' de 1 1 and power pad 1 2 LSI chip 2, the second of the bus capacitor C 2 1 8 to the first bus 0 scan capacitor C 1 1 7 and resistor R 1 9 series Are connected in parallel. FIG. 4 shows a circuit model in a case where constraints are provided on the circuit model of FIG. In FIG. 3, the impedance of the bypass capacitor C 2 18 of 笫 2, IZ c2 I (= 1 Ζ ω C 2), is made sufficiently smaller than the resistor R 19, and the first bypass capacitor C 2 It is given by the parallel connection of 1 17 and the resistor R 19. In this circuit, the DC component cut by the second bypass capacitor C218 and the low Q (= ωC1R) for the AC component are obtained. 5 to 11 show the manufacturing process steps of the low-profile I-device 1. FIG. (A) and (b) in the figure show a sectional view and a plan view, respectively.
第 5図は、 L S I チップ 2の而上に形成した第 1 の絶縁膜 3のェ ί呈図 を示す。 パッ シベーシ ヨ ン股として L S I チップ 2の全面に C V D法を 用いて厚さ 1 mの酸化シリ コンを成膜する。 次に、 フォ トプロセス及 び ドライエッチング法を; 1Jいて、 L S I チップ 2のグラン ドパッ ド 1 1 等の電極パッ ドを除いた領域に笫 1 の絶縁膜 3を形成する。 L S 1 チッ プ 2の而上に形成される^脱の βが L S I 活性面に及ぼす影響を吸収、 緩和するために、 。ッ シベーショ ン膜を多層構造にする場合もある。 第 6図は、 第 1 の絶縁股 3の後に形成した第 1 の導体膜 4の工程図を 示す。 第 1 の絶縁胶 3の形成後、 第 1 のバイパスコンデンサ C 1 1 7の 電極層として、 L S I チップ 2の全面にスパッタ法を用いて厚さ 5 0 0 n mの白金薄股を形成する。 これを、 フォ トプロセス及び反応性 ドライ エッチング法により、 グラ ン ドパッ ド 1 1 と接続される リ ー ドパタ― ン 1 4及び L S I チップ 2の中央パッシベ—ショ ン膜上の部分からなる第 1 の導休膜 4を残して除去する。 FIG. 5 shows a top view of the first insulating film 3 formed on the LSI chip 2. A 1-m-thick silicon oxide film is formed by CVD on the entire surface of the LSI chip 2 as a passive junction. Next, a photo process and a dry etching method are performed; 1J, and an insulating film 3 of 笫 1 is formed in a region excluding an electrode pad such as a ground pad 11 of the LSI chip 2. In order to absorb and mitigate the effect of the β on the LSI active surface formed on the LS 1 chip 2. In some cases, the sessionion film has a multilayer structure. FIG. 6 shows a process chart of the first conductive film 4 formed after the first insulating crotch 3. After the formation of the first insulation layer 3, a 500 nm thick platinum thin layer is formed on the entire surface of the LSI chip 2 as an electrode layer of the first bypass capacitor C117 by using a sputtering method. The lead pattern is connected to the ground pad 11 by a photo process and reactive dry etching. 14 and the first passivation film 4 consisting of a portion on the central passivation film of the LSI chip 2 is removed.
第 7図は、 第 1 の導休膜 4の後に形成した抵抗体膜 6の工程図を示す。 1 の ¾ (休 fl 4の形成後、 ク ロムと酸化シリ コンとのサーメ ッ 卜抵抗材 料を用い、 抵抗 膜としてスパッ夕法により 9 0 0 n mの厚さで L S I チップ 2の全面に成膜する。 これをフォ 卜プロセス及びゥエツ 卜エッチ ング法により、 L S I チップ 2の 4辺に沿った矩形形状に抵抗薄膜を加 ェし抵抗体膜 6を形成する。 抵抗体膜 6の形状は矩形形状に限らないが、 近接するグラ ン ドパッ ド 1 〗 と電源パッ ド 1 2から見込んだバイパスコ ンデンザの TS気特性を等しくするため対称形をとつている。  FIG. 7 shows a process chart of the resistor film 6 formed after the first insulating film 4. 1) (After the formation of fl 4, a cermet resistance material of chromium and silicon oxide was used, and the entire surface of the LSI chip 2 was formed to a thickness of 900 nm by a sputtering method as a resistance film. The resist film is applied to the rectangular shape along the four sides of the LSI chip 2 by a photo process and a jet etching method to form the resistive film 6. The shape of the resistive film 6 is rectangular. The shape is not limited, but the symmetrical shape is adopted to make the TS characteristics of the bypass capacitor, as viewed from the adjacent ground pad 1〗 and power supply pad 12, equal.
第 8図は、 抵抗体膜 6の後に形成した第 1 の誘電体膜 5の工程図を示 す。  FIG. 8 shows a process chart of the first dielectric film 5 formed after the resistor film 6.
抵抗休膜 6の形成後、 L S I チップ 2の全面にスパッタ法を用いて厚 さ 2 0 0 n mの酸化タ ンタル脱を成股する。 これを、 フォ トプロセス及 びウエッ トエッチング法により、 Π 1 の導体膜 4の上に抵抗休膜 6及び グラ ン ドパッ ド 1 1 の領域を除いて^ 1 の誘電休膜 5を形成する。 この 場合、 L S I チップ 2のグラ ン ドパッ ド 1 1等の電極パッ ドに隣接する 4辺において、 笫 1 の誘 ¾休股 5が^ 1 の導体膜 4を覆う よう に形成す る。 第 1 の誘 休胶 5の さは、 耐圧や容量値を考慮して設定される。 5 0 n m工程を 2 〜 4回繰り返す場合もある。 誘電体材料として、 比誘 電率を上げるためチタ ン酸バリ ウム B a T i 0 3やチタ ン酸ス トロ ンチ ゥム S r T i 〇 3を川いる 介もある。 プロセスとして、 組成制御、 特 性再現を考慮し、 スパッタ法に代わりスピンコー ト法を用いる。  After the formation of the resistive film 6, a 200 nm thick tantalum oxide layer is formed on the entire surface of the LSI chip 2 by sputtering. Then, a resist rest film 6 and a dielectric rest film 5 of 1 are formed on the conductor film 4 of FIG. 1 except for a region of the ground pad 11 by a photo process and a wet etching method. In this case, on the four sides adjacent to the electrode pads such as the ground pad 11 of the LSI chip 2, the induction rest 5 of 笫 1 is formed so as to cover the conductor film 4 of 11. The length of the first invitation 5 is set in consideration of the withstand voltage and the capacitance value. The 50 nm process may be repeated 2 to 4 times. As a dielectric material, there is a method of increasing the specific dielectric constant by using barrier titanate BaTi03 or strontium titanate SrTi3. As a process, spin coating is used instead of sputtering in consideration of composition control and characteristic reproduction.
第 9図は、 ^ 1 の誘 休股 5の後に形成した第 2の導休股 7の工程図 を示す。 第 1 の誘電休股 5の形成後、 L S I チップ 2の全面にスパッ夕 法を川いて厚さ 5 0 0 n mの I 金^股を成胶する。 これを、 フ ォ トプロ セス及び ドライエッチング法により、 第 1 のバイパスコンデンサ C 1 1 7 と第 2のバイパスコンデンサ C 2 1 8の電極層として、 第 1 の誘電体 膜 5の上に第 2の導体股 7を形成する。 この場合、 第 2の導体膜 7は電 源パッ ド 1 2 との接続を取る リ― ドパ夕ー ン 1 5を有する。 電源の種類 が複数ある場合は、 電源パッ ド 1 2の配置条件を考慮し、 第 1のバイパ スコンデンサ C 1 1 7を平而的に分割して複数個形成する。 第 1 の導休 膜 4を共通グラ ン ド電栎とし、 第 2の導体膜 7により、 複数の電源電極 を形成する。 FIG. 9 shows a process diagram of the second guide rest 7 formed after the introductory rest 5 of ^ 1. After the first dielectric break 5 is formed, a 500 nm thick I gold layer is formed by sputtering over the entire surface of the LSI chip 2. This is a photo pro A second conductor crotch 7 is formed on the first dielectric film 5 as an electrode layer of the first bypass capacitor C 117 and the second bypass capacitor C 218 by recess and dry etching. . In this case, the second conductor film 7 has a lead pad 15 for connecting to the power supply pad 12. When there are a plurality of types of power supplies, the first bypass capacitor C 117 is divided into plural parts and formed in consideration of the arrangement condition of the power supply pad 12. The first conductive film 4 is used as a common ground electrode, and the second conductive film 7 forms a plurality of power electrodes.
第 1 0図は、 第 2の導休膜 7の後に形成した第 2の誘電体膜 8の工程 図を示す。 第 2の導体股 7を形成後、 L S I チップ 2の全面にスパッ ク 法を用いて厚さ 2 0 0 n mの酸化夕 ンタル薄胶を成膜する。 成胶工程と して、 5 O n m工程を 2 〜 4 回繰り返す場合もある。 これを、 フォ トプ 口セス及びゥェッ トエツチング法により、 抵抗体膜 6の一部や L S I チ ップ 2のグラ ン ドパッ ド 1 1等の電極パッ ドの上面を除去する。 更に、 第 2の誘電休膜 8は、 ^ 1 の 休脱 4 と^ 2の導休胶 7を Sう ように形 成される。 抵抗休股 6の而上に設けられた第 2の誘電休胶 8の 1¾口部 1 6は、 その形状により抵抗 R 1 9の値を制御する手段の一つとしている c 誘電休材料として、 比誘 ίΕ率を上げるためチタ ン酸バリ ゥム B a T i 〇 3やチタ ン酸ス トロ ンチウム S r T i 0 3を川いる場合もある。 FIG. 10 shows a process chart of the second dielectric film 8 formed after the second conductive film 7. After the formation of the second conductor crotch 7, a 200-nm-thick oxide thin film is formed on the entire surface of the LSI chip 2 by using a sputtering method. In some cases, the 5 O nm process is repeated 2 to 4 times as a growth process. Then, a part of the resistive film 6 and the upper surface of the electrode pad such as the ground pad 11 of the LSI chip 2 are removed by a photo-etching and a jet etching method. Further, the second dielectric film 8 is formed so as to form a break 4 of ^ 1 and a conduction break 7 of ^ 2. 1¾ opening 1 6 of the second dielectric Kyu胶8 provided而上resistor Kyuko 6 as c dielectric rest material in one of the means for controlling the value of the resistor R 1 9 by its shape, In order to increase the specific induction rate, there is a case where a titanium titanate BaTi3 or strontium titanate SrTi03 is supplied.
第 1 1 図は、 ?ίΙ 2の誘'? E休胶 8の後に形成した第 3の導体膜 9の工程 図を示す。 第 2の誘電休胶 8を形成後、 L S 1 チップ 2の全面にスパッ タ法を用いて厚さ 5 0 0 n mの 金薄膜を成膜する。 これを、 フォ 卜プ ロセス及び ドライエッチング法により、 第 2のバイパスコ ンデンサ C 2 1 8 と抵抗 R 1 9の として、 ?ί5 2の誘電休膜 8 と抵抗体脱 6の上 に形成する。 この場合、 L S I チップ 2のグラ ン ドパッ ド 1 1等の ¾極 パッ ドに隣接する 4辺において、 3の^休胶 9が第 2の誘 ¾休脱 8の 外にはみ出さないように形成する。 Fig. 1 1 FIG. 9 shows a process chart of the third conductive film 9 formed after the second insulating film 8. After the formation of the second dielectric layer 8, a 500 nm thick gold thin film is formed on the entire surface of the LS1 chip 2 by using a sputtering method. This is converted into a second bypass capacitor C218 and a resistor R19 by a photo process and a dry etching method. ί52 Formed on the dielectric insulating film 8 of 2 and the resistor removal 6. In this case, on the four sides adjacent to the electrode pads such as the ground pad 11 of the LSI chip 2, the 3 rest 9 of the 3 It is formed so as not to protrude outside.
最後は、 第 1 図に示すよう に第 3の導体膜 9を形成後、 パッ シベーシ ヨ ン膜としての第 2の絶縁膜 1 0を形成する。 L S I チップ 2の全面に C V D法を用いて厚さ l mの酸化シリ コンを成膜する。 これを、 フォ 卜プロセス及び ドライエッチング法により、 L S I チップ 2のグラ ン ド パッ ド 1 1 等の電極パッ ドを除いた領域に形成する。 耐湿性を向上させ るため、 パッ シベーショ ン膜を 2層にする場合もある。 産業上の利用可能性  Finally, as shown in FIG. 1, after forming the third conductor film 9, a second insulating film 10 as a passivation film is formed. A 1-m-thick silicon oxide film is formed on the entire surface of the LSI chip 2 using the CVD method. This is formed in a region excluding the electrode pad such as the ground pad 11 of the LSI chip 2 by a photo process and a dry etching method. In some cases, the passivation film has two layers to improve moisture resistance. Industrial applicability
本発明は、 L S I デバイスの表面上で、 電源パッ ドとグラン ドパッ ド に接続した第 1 のバイパスコンデンサ C 1 に対して、 第 2のバイパスコ ンデンサ C 2 と抵抗 Rを直列に接続した回路を並列に接続させ、 第 2の バイパスコンデンサ C 2のイ ンピ—ダンスを抵抗 Rに対して十分に小さ く した。 これにより、 電源パッ ドとグラ ン ドパッ ドとの間から見たバイ パスコ ンデンサ回路の Qを直流成分を力 ッ 卜させる と同時に交流成分 (高周波成分) に対して低 Q化 ( 1 0以下の値) し、 パッ ド間に発生す る電位変動を吸収し L S I デバイス自身及びこれに接続された配線から の電磁放射を大幅に抑制する効果がある。  According to the present invention, on the surface of an LSI device, a circuit in which a second bypass capacitor C2 and a resistor R are connected in series is connected in parallel to a first bypass capacitor C1 connected to a power supply pad and a ground pad. To make the impedance of the second bypass capacitor C 2 sufficiently small with respect to the resistance R. As a result, the DC component of the bypass capacitor circuit viewed from between the power supply pad and the ground pad is not only a DC component but also a low Q with respect to the AC component (high-frequency component). However, it has the effect of absorbing potential fluctuations generated between the pads and greatly suppressing electromagnetic radiation from the LSI device itself and the wiring connected to it.

Claims

請求の範囲 The scope of the claims
1 . L S I デバイスの表面上に形成した低 E M I デバイス回路において、 第 1のバイパスコンデンサ C 1、第 2のバイパスコンデンサ C 2、抵抗 R、 電源ピン、 及びグラ ン ドビンを含み、 該 L S I デバイスの該電源ピンと 該グラ ン ドビンとの間に接続した該第 1 のバイパスコンデンサ C 1 に、 該第 2のバイパスコンデンサ C 2 と該抵抗 Rとを直列に接続した回路を 並列に接続したこ とを特徴とする低 E M I デバイス回路。 1. A low EMI device circuit formed on the surface of an LSI device, including a first bypass capacitor C1, a second bypass capacitor C2, a resistor R, a power supply pin, and a ground bin. A circuit in which the second bypass capacitor C2 and the resistor R are connected in series is connected in parallel to the first bypass capacitor C1 connected between the power supply pin and the ground bin. And low EMI device circuits.
2 . 請求項 1 の低 E M 1 デバイス回路において、 該第 2のバイパスコ ン デンサ C 2のイ ンピーダンス | Z c2 | ( = 1 / ω C 2 ) を該抵抗 Rに比べ て十分に小さ く したこ とを特徴とする低 E M I デバイス回路。  2. The low EM1 device circuit according to claim 1, wherein the impedance | Zc2 | (= 1 / ωC2) of the second bypass capacitor C2 is made sufficiently smaller than the resistance R. And a low EMI device circuit.
3 . 請求項 2の低 E M I デバイス回路において、 該第 1 のバイパスコ ン デンサ C 1 と該抵抗 Rとを等価的に並列に接続した回路の Q ( = ω C 1 R ) を 1 0以下にしたこ とを特徴とする低 E M I デバイス回路。  3. In the low EMI device circuit of claim 2, Q (= ω C 1 R) of a circuit in which the first bypass capacitor C 1 and the resistor R are connected in parallel equivalently is set to 10 or less. Low EMI device circuit characterized by this.
4 . L S I デバイスの表而上に形成した構造において、 第 1 の導休層、 第 1 の誘電体層、 笫 2の導休層、 抵抗休層、 笫 2の誘電体層、 第 3の導 体層、 電源パッ ド、 及びグラ ン ドパッ ドを含み、 該第 2の導体層の両面 を該第 1 の誘 休^と ¾ ίίϊ 2の誘 ¾休屑で覆い、 前記第 1 の誘 ΤΕ休; Sと 前記第 2の誘電体層の に配 i?iした前記抵抗休層を、 前記第 1 の誘電 休層と前記第 2の誘 ^休層と共に、 前記第 1 の導体層と前記第 3の導休 層の間に挟み込み、 前; E笫 1 の導休層と前記第 2の導体層を各々前記 L S I デバイスの前記グラ ン ドパッ ドと前記電源パッ ドとに接続したこ と を特徴とする低 E M I デバイス構造。 4. In the structure formed on the surface of the LSI device, the first conduction layer, the first dielectric layer, the second conduction layer, the resistance rest layer, the second dielectric layer, and the third conduction layer. A body layer, a power pad, and a ground pad, wherein both surfaces of the second conductor layer are covered with the first invitation and the second invitation, and the first invitation The first dielectric layer and the second dielectric layer together with the first dielectric layer and the second dielectric layer; and the first dielectric layer and the second dielectric layer. (3) the insulating layer of E 笫 1 and the second conductive layer are respectively connected to the ground pad and the power supply pad of the LSI device. And low EMI device structure.
5 . 請求项 4 の低 E M I デバイス構造において、 前記第 1 の導休屑と前 記第 2の導休/ iを各々 iW i L S I デバイスの— 記グラン ドパッ ドと前記 電源パッ ドとに複数の简所で接^したこ とを特徴とする低 E M I デバイ ス構造。 5. The low EMI device structure according to claim 4, wherein the first debris and the second deactivation / i are respectively connected to the ground pad and the power supply pad of an iW LSI device. Low EMI devices featuring point-of-contact Structure.
6 . 請求項 4の低 E M I デバイス構造において、 前記第 1 の導体層と前 記第 2の導体層を各々前記 L S I デバイスの前記グラン ドパッ ドと前記 電源パッ ドとに対して最短距離で接続したことを特徴とする低 E M I デ バイス構造。  6. The low EMI device structure according to claim 4, wherein the first conductor layer and the second conductor layer are respectively connected to the ground pad and the power supply pad of the LSI device with a shortest distance. Low EMI device structure.
PCT/JP1995/000431 1995-03-15 1995-03-15 Low-emi device circuit and its structure WO1996028848A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP52744596A JP3909086B2 (en) 1995-03-15 1995-03-15 Electronic equipment
PCT/JP1995/000431 WO1996028848A1 (en) 1995-03-15 1995-03-15 Low-emi device circuit and its structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000431 WO1996028848A1 (en) 1995-03-15 1995-03-15 Low-emi device circuit and its structure

Publications (1)

Publication Number Publication Date
WO1996028848A1 true WO1996028848A1 (en) 1996-09-19

Family

ID=14125740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000431 WO1996028848A1 (en) 1995-03-15 1995-03-15 Low-emi device circuit and its structure

Country Status (2)

Country Link
JP (1) JP3909086B2 (en)
WO (1) WO1996028848A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0993045A1 (en) * 1998-10-07 2000-04-12 Hewlett-Packard Company Integrated circuit die with directly coupled noise suppression
WO2007073965A1 (en) * 2005-12-23 2007-07-05 Robert Bosch Gmbh Integrated semiconductor circuit
JP2010287740A (en) * 2009-06-11 2010-12-24 Nec Corp Semiconductor integrated circuit, printed wiring board, printed wiring board power supply circuit designing device and method, and program
JP2014502428A (en) * 2010-12-07 2014-01-30 ザイリンクス インコーポレイテッド Power distribution network

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120930U (en) * 1976-03-11 1977-09-14
JPH03239357A (en) * 1990-02-16 1991-10-24 Mitsubishi Electric Corp Capacitor for microwave integrated circuit use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120930U (en) * 1976-03-11 1977-09-14
JPH03239357A (en) * 1990-02-16 1991-10-24 Mitsubishi Electric Corp Capacitor for microwave integrated circuit use

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0993045A1 (en) * 1998-10-07 2000-04-12 Hewlett-Packard Company Integrated circuit die with directly coupled noise suppression
SG73610A1 (en) * 1998-10-07 2002-01-15 Agilent Technologies Inc Integrated circuit die with directly coupled noise suppression and/or other device
WO2007073965A1 (en) * 2005-12-23 2007-07-05 Robert Bosch Gmbh Integrated semiconductor circuit
JP2010287740A (en) * 2009-06-11 2010-12-24 Nec Corp Semiconductor integrated circuit, printed wiring board, printed wiring board power supply circuit designing device and method, and program
JP2014502428A (en) * 2010-12-07 2014-01-30 ザイリンクス インコーポレイテッド Power distribution network

Also Published As

Publication number Publication date
JP3909086B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
CA2381117C (en) Improved multiple terminal capacitor structure
US5635767A (en) Semiconductor device having built-in high frequency bypass capacitor
US6624501B2 (en) Capacitor and semiconductor device
JP2772184B2 (en) Semiconductor device
EP1273017B1 (en) Distributed capacitor
KR20010021267A (en) Multilayer print substrate
EP1104026B1 (en) Ground plane for a semiconductor chip
US7078797B2 (en) Hybrid integrated circuit device
JP2000101031A (en) Method and device for reducing integrated circuit chip noise
KR100263396B1 (en) Semiconductor
WO1996028848A1 (en) Low-emi device circuit and its structure
JP2002184944A (en) Semiconductor device
Kambe et al. MCM substrate with high capacitance
JP3244623B2 (en) Low EMI package circuit and device
US5652460A (en) Integrated resistor networks having reduced cross talk
JPH09321176A (en) Semiconductor package
JPH08307063A (en) Electric circuit board and its production
JPH1079469A (en) Thin-film device, thin film lc filter device, thin-film lc filter part, and manufacture of thin-film device
JP2006005309A (en) Capacitor device
JP3081335B2 (en) Multilayer lead frame and semiconductor device using the same
JPH0416012A (en) Noise filter
KR20000048663A (en) Passive network in the form of a chip
JP3114392B2 (en) Thin-film magnetic induction element
JP2727773B2 (en) Method of manufacturing Josephson integrated circuit
JPH0888319A (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase