WO1996028381A1 - Process for producing iron carbide and equipment therefor - Google Patents

Process for producing iron carbide and equipment therefor Download PDF

Info

Publication number
WO1996028381A1
WO1996028381A1 PCT/JP1996/000608 JP9600608W WO9628381A1 WO 1996028381 A1 WO1996028381 A1 WO 1996028381A1 JP 9600608 W JP9600608 W JP 9600608W WO 9628381 A1 WO9628381 A1 WO 9628381A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
particles
oxide particles
iron oxide
fluidized bed
Prior art date
Application number
PCT/JP1996/000608
Other languages
French (fr)
Japanese (ja)
Inventor
Eiji Inoue
Yoshio Uchiyama
Junya Nakatani
Original Assignee
Kawasaki Jukogyo Kabushiki Kaisha
Mitsubishi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo Kabushiki Kaisha, Mitsubishi Corporation filed Critical Kawasaki Jukogyo Kabushiki Kaisha
Priority to DE19681132T priority Critical patent/DE19681132T1/en
Priority to AU48911/96A priority patent/AU695168B2/en
Priority to AT0902096A priority patent/ATA902096A/en
Publication of WO1996028381A1 publication Critical patent/WO1996028381A1/en
Priority to US08/896,293 priority patent/US5945083A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a method and an apparatus for producing iron carbide as iron carbide from iron oxide such as hematite.
  • iron ore containing a large amount of iron oxide such as hematite can be efficiently converted to iron carbide, iron ore can be directly used as an iron source in steelmaking furnaces such as electric furnaces. This is a powerful technique for extracting iron from steel.
  • FIG. 6 shows the change of the composition with the lapse of the reaction time shown in FIG.
  • the ferrate product to be charged at time 0, F e 3 0 4 is about 6 0%, F e 2 0 3 is contained about 4 0%.
  • Iron oxide has been charged is being converted into iron carbide (F e 3 C), in the latter stage of the reaction (4-6 hours), generation of iron carbide speed de is significantly reduced.
  • a long flow path is required to keep particles in the furnace for a long time.
  • the cross-sectional area of the flow channel must be increased. Therefore, in order to obtain a large amount of iron carbide at a high conversion, it is necessary to install a large fluidized bed reactor.
  • An object of the present invention is to provide a method and apparatus for producing an eye anchor binder which can increase the production rate of iron carbide in the latter stage of the reaction and can efficiently produce the fluidized bed reactor without increasing the size of the reactor.
  • the present invention provides a method for producing an anchor oxide, in which iron oxide particles are charged into a fluidized bed reactor and carbonized while being fluidized by a reaction gas. It is characterized in that iron (F e) particles are injected from the middle of the flow of material particles. In this way, iron oxide particles are charged into a fluidized bed reactor, and iron particles are introduced into the flow path for converting the iron force into one byte, whereby the iron particles are removed from the monoxide contained in the reaction gas. It has an action of a catalyst to promote decomposition to 2 C 0 ⁇ C + C 0 2 of the reaction of carbon (C 0), the conversion of iron oxide to iron force one by de iron carbide Promote. Thus, by introducing iron particles as a catalyst in the latter stage of the reaction, the generation rate of eye anchors can be improved.
  • the present invention is characterized in that the iron particles are charged at a plurality of locations, and the particle size of the iron particles to be charged is reduced toward the downstream side. Iron particles are injected into the flow channel from a plurality of locations, and the particle size of the input iron particles is made smaller toward the downstream side, so that it can easily act as a catalyst even in a short time until the end of the flow channel. After that, it converts itself to iron carbide. Further, the iron particles of the present invention are characterized in that the iron particles are recovered from the exhaust gas when preheating the iron oxide particles, reduced and generated. In this way, iron oxide particles are recovered from the exhaust gas generated when the iron oxide particles charged into the fluidized bed reactor are heated, reduced, and then introduced into the flow path of the fluidized bed reactor.
  • the iron oxide particles discharged in the exhaust gas during preheating are smaller in particle size than the iron oxide particles charged into the fluidized bed reactor, and Since the fine particles are reduced and injected from the middle of the flow channel, they can effectively function as a catalyst even in a short time, and then become iron carbide.
  • the present invention provides an apparatus for producing an anchor carbide in which iron oxide particles are charged into a fluidized bed reactor and carbonized while being fluidized by a reaction gas, wherein the preheating means for preheating the iron oxide particles by hot air And a collecting means for collecting the iron oxide particles from the exhaust gas of the preheating means, and a reducing means for reducing the iron oxide particles collected by the collecting means and introducing the reduced iron oxide particles into a fluidized bed reactor.
  • the iron oxide particles preheated by the preheating means are charged into a fluidized bed reactor to manufacture iron carbide.
  • Iron oxide particles are recovered from the exhaust gas of the preheating means by the recovery means, reduced by the reduction means, and fed into the fluidized bed reactor.
  • the iron oxide particles recovered from the exhaust gas have a smaller particle size than the preheated iron oxide particles charged into the fluidized bed reactor. Therefore, the iron particles reduced by the reducing means and fed into the channel of the fluidized-bed reactor have a smaller particle size than the iron oxide particles that react in the fluidized-bed reactor. After accelerating the reaction in a shorter time as a catalyst for the conversion to carbides, the iron itself becomes iron carbide.
  • the apparatus for producing an eye anchor byte wherein the reducing means and Classification means for classifying the reduced iron oxide particles into a plurality of classes according to the particle size is provided between the fluidized bed reactor and the iron oxide fed into the fluidized bed reactor. It is characterized in that reduced particles of a grade having a smaller particle diameter toward the downstream side are introduced at a plurality of positions in the middle of the particle flow path. According to the apparatus of the present invention for producing an eye anchor having such characteristics, the iron particles reduced by the reducing means are classified into a plurality of classes according to the particle size by the classification means. Reduced particles having a smaller particle diameter toward the downstream side are introduced into the flow path in the fluidized bed reactor from a plurality of locations. Small-sized iron particles are effective even in a short period of time, and after increasing the rate of iron carbide formation from iron oxide, themselves become iron carbide.
  • the present invention it is possible to improve the rate at which iron oxide is generated from iron oxide by introducing iron particles acting as a catalyst in the latter half of the reaction time of a fluidized bed reactor. it can. Since the time required to obtain the composition of the eye anchor is shortened, production efficiency is improved, and equipment such as a fluidized bed reactor can be downsized.
  • the particle size of the iron particles to be charged into the fluidized bed reactor becomes smaller toward the downstream side, it is possible to effectively improve the generation rate of the eye anchor in a short time until the end of the flow path. Can be planned.
  • the iron oxide particles contained in the exhaust gas from the preheated iron oxide particles are collected, reduced, and introduced into the flow channel of the fluidized bed reactor.
  • the iron oxide particles recovered from the exhaust gas have a smaller particle size than the iron oxide particles charged into the fluidized bed reactor. Since the particle diameter of the iron particles to be reduced is also smaller than the particle diameter of the iron oxide particles to be charged, the iron fine particles immediately after the reduction are charged to accelerate the reaction rate of the formation of the eye anchor. Can be effectively achieved.
  • the iron oxide particles are heated by hot air by preheating means.
  • preheating iron oxide particles are collected from the exhaust gas by a recovery means, reduced by a reduction means and put into a fluidized bed reactor.
  • the preheated iron oxide particles charged into the fluidized bed reactor are charged into the fluidized bed reactor, and are carbonized while flowing along the flow path to produce an anchor binder. Since iron particles are injected into this flow channel, the carbonization reaction is promoted by the catalytic action, and the production rate of the eye anchor is increased. As a result, the production time of the eye anchor binder can be shortened, and a large amount of the eye anchor binder can be produced even with a relatively small fluidized bed reactor.
  • the iron particles are classified by the classification means provided between the reduction means and the fluidized bed reactor. Iron particles of a small particle size are injected into the downstream side of the flow channel of the fluidized bed reactor, and the carbonization reaction is promoted even in a short time, and the iron particles themselves become iron carbide in a short time. [Brief description of drawings]
  • FIG. 1 is a block diagram showing a simplified configuration of a manufacturing apparatus according to one embodiment of the present invention.
  • FIG. 2 is a simplified plan sectional view of a manufacturing apparatus according to another embodiment of the present invention.
  • FIG. 3 is a simplified front sectional view of the manufacturing apparatus of the embodiment shown in FIG.
  • FIG. 4 is a schematic diagram showing an example of operating conditions of the embodiment of FIG.
  • FIG. 5 is a graph showing an example of the particle size distribution of raw materials and products.
  • C FIG. 6 is a graph showing the relationship between the reaction time and the composition of the prior art.
  • FIG. 1 shows a simplified configuration of an eye anchor binder manufacturing apparatus according to one embodiment of the present invention.
  • fluidized-bed reactor 1 to Matthew Doo (F e 2 0 3) particles by entering instrumentation as a raw material of, causing carbonization reaction to obtain particles of iron card by de (F e 3 C).
  • the hematite to be charged is preheated in a preheating furnace 2 by hot air once as powdered ore.
  • the operating conditions in the preheating furnace 2 and the fluidized bed reactor 1 are almost the same as those of the above-mentioned prior art.
  • preheating is performed by hot air at a temperature of 50,000 to 900 ° C. so that the reaction in the fluidized bed reactor 1 can be performed at 50,000 or more.
  • the hot air preheating the ore in the preheating furnace 2 is discharged as exhaust gas and guided to the dust collector 3.
  • coarse ore is charged into the fluidized bed reactor 1 through the mouth hopper 5, and fine ore scattered in the exhaust gas is collected by the dust collector 3.
  • the dust collector 3 realized by a cyclone or the like separates fine particles contained in the exhaust gas. These fine particles are iron oxide fine particles contained in the raw material ore, and the dust collector 3 collects the iron oxide fine particles from the exhaust gas as a collecting means.
  • the recovered iron oxide fine particles are fed into a reduction furnace 4 which is a reducing means. In the reduction furnace 4, iron oxide is reduced by a reducing gas containing hydrogen (H 2 ) or the like to obtain iron (F e).
  • the iron particles reduced by the reducing furnace 4 are introduced into the fluidized bed reactor 1 in the middle of the flow path.
  • the fluidized bed reactor 1 fluidizes preheated iron oxide particles with a reaction gas, carbonizes them while moving along an internal flow path, and converts them into eye anchor particles.
  • the reaction proceeds along the flow path, and iron particles are injected from the middle of the flow path corresponding to the latter half of the reaction.
  • the carbonization reaction is accelerated and the production rate is improved. Since different atmospheres are used in the fluidized bed reactor 1, the preheating furnace 2, and the reduction furnace 4, lock hoppers 5, 6, and 7 are interposed therebetween to prevent the atmosphere from being mixed. In each of the lock hoppers 5, 6, and 7, the particles are once trapped, the atmosphere is replaced with nitrogen (N 2 ), and then further replaced with the atmosphere used for downstream devices.
  • N 2 nitrogen
  • FIG. 2 and 3 show a simplified configuration of another embodiment of the present invention.
  • 2 is a plan sectional view
  • FIG. 3 is a front sectional view
  • FIG. 2 is a sectional view taken along line II-II in FIG. 3
  • FIG. 3 is a sectional line III in FIG.
  • the fluidized bed reactor 10 of the present embodiment is internally partitioned by a partition 11 in order to lengthen a flow path c having a cylindrical outer shape which is advantageous as a pressure vessel.
  • the fluidized bed is fluidized by a reaction gas ejected from a nozzle 13 provided on the dispersion plate 12.
  • the flow path of the fluidized bed is formed between the inlet 14 of the iron oxide particles as the raw material and the outlet 15 of the iron anchor carbide as the carbide.
  • the iron oxide particles move along this flow path, they are carbonized by the reaction gas.
  • iron (Fe) is generated inside the fluidized bed reactor 10 and the carbide formation reaction is promoted.
  • iron (F e) decreases and catalysis decreases.
  • a plurality of inlets 16 and 17 are provided in the latter half of the flow channel to feed iron particles.
  • the iron charged from the multiple inlets 16 and 17 reduces the iron oxide particles recovered in the reduction furnace 4 and further classifies the particles according to the particle size using a classifier 20 realized by a cyclone, etc. Classify. For example, when Matthew Bok (F e 2 03) you input instrumentation with a grain size from 1 to 0.1 negation of the from charging hole 1 4, iron is reduced is recovered (F e) is 0.1 5 Design to have a particle size of 0.1
  • the classifier 20 classifies the iron (F e) particles into a class of 0.15 to 0.13 mm and a class of 0.13 to 0.1 concealed, and the smaller particles of iron (F e) on the downstream side. From the inlet 17 of.
  • the downstream input port 1 ⁇ is closer to the discharge port 15 at the end of the flow path than the upstream input port 16 and effectively acts as a catalyst in a short period of time. It is preferable to input iron particles having a particle size.
  • a reaction gas containing carbon monoxide (CO) is introduced from a lower reaction gas inlet 21 and discharged from an upper reaction gas outlet 22.
  • a wind box part 23 is formed below the dispersion plate 12 and temporarily stores the introduced reaction gas.
  • the reaction gas in the wind box section 23 is blown out through a nozzle 13 provided on the dispersion plate 12 to form a fluidized bed 24 above the dispersion plate 12.
  • the partition 11 is higher than the height of the fluidized bed 24 to be formed.
  • the upper wind tower section 25 increases the cross-sectional area, reduces the flow rate of the reaction gas, and prevents particles from being scattered from the fluidized bed 24 c
  • Figure 4 shows the amount of F e 2 0 3 which is charged as a raw material, the operating conditions relating to the amount of you put F e later.
  • Fig. 4 (1) enter Fe 6%
  • Fig. 4 (2) enter Fe 10%. Since the inside of the fluidized bed reactor 10 is partitioned into five spaces, The amount of Fe added is
  • the amount of Fe added be within a range of 50% at the maximum and 10% at the minimum.
  • Figure 5 is a F e 2 0 3 of particle size distribution to be introduced as a raw material in a solid line, shows an example of particle size distribution of the conversion has been iron card by de by a two-dot chain line, F e 2 03 is 0.1 It is distributed in the range of ⁇ 1 mm. If it is 10%, it is 0.15 mm or less, and if it is 6%, it is 0.15 mm or less.
  • iron particles to be fed into a fluidized bed reactor are generated by reducing a part of iron oxide particles to be charged as a raw material. You may make it throw in.
  • iron particles immediately after reduction are used as in this example, particles close to pure iron with little oxidation can be introduced, and even if the amount is small, the catalytic action is sufficiently exhibited and the eye anchor is efficiently used. A byte can be manufactured. [Industrial applicability]
  • the present invention is configured as described above, it is possible to improve the iron carbide generation rate in the latter stage of the reaction and to perform iron production efficiently without increasing the size of the fluidized bed reactor. Suitable for carbide manufacturing equipment.

Abstract

A powdery ore is preheated with hot air in a preheating furnace (2) and sent into a fluidized-bed reaction furnace (1). Iron oxide particles contained in the gas discharged from the furnace (2) are recovered in a dust collector (3) and are reduced in a reduction furnace (4). The reduced iron particles are fed into the passage leading to the reaction furnace (1), where they act as a catalyst for accelerating iron carbide formation.

Description

明 細 書  Specification
『アイアンカーバイ ドの製造方法および装置』 〔技術分野〕 "Method and apparatus for manufacturing eye anchors" [Technical field]
本発明は、 へマタイ 卜などの鉄酸化物から鉄炭化物であるアイァ ンカ一バイ ドを製造する方法および装置に関する。  The present invention relates to a method and an apparatus for producing iron carbide as iron carbide from iron oxide such as hematite.
〔背景技術〕 (Background technology)
へマタイ 卜 (F e 2 03 ) 粒子を流動層型反応炉に装入し、 反応 ガスによって流動化させながらアイアンカーバイ ド (F e 3 C) 粒 子を製造する先行技術は、 たとえば特表平 6 - 5 0 1 9 8 3号公表 特許公報 (P C T/U S 9 1 / 0 5 1 9 8 ) に開示されている。 こ の先行技術では、 予熱した鉄鉱石粒子を流動層型反応炉に装入し、 —酸化炭素 (C O) などを含む反応ガスによって炭化させ、 セメ ン タイ ト (F e 3 C) などのアイアンカーバイ ド粒子を製造する。 へ マタイ 卜などの鉄酸化物を多く含む鉄鉱石を効率的に鉄炭化物に転 化させることができれば、 鉄炭化物は電気炉等の製鋼炉で鉄源とし て直接使用可能であるので、 鉄鉱石から鉄を取出す有力な技術とな る。 To charged with Matthew Bok (F e 2 0 3) particles in a fluidized bed type reaction furnace to produce iron card by de (F e 3 C) Grain child while fluidized by the reaction gas prior art, for example, Japanese It is disclosed in the Patent Gazette (PCT / US91 / 05198) published in Table 6-6-5019803. In this prior art, was charged with preheated iron ore particles in a fluidized bed type reaction furnace, - carbonized by a reaction gas including carbon oxides (CO), Seme emissions Thai preparative (F e 3 C) Iron such as Produce carbide particles. If iron ore containing a large amount of iron oxide such as hematite can be efficiently converted to iron carbide, iron ore can be directly used as an iron source in steelmaking furnaces such as electric furnaces. This is a powerful technique for extracting iron from steel.
第 6図は、 特表平 6— 5 0 1 9 8 3の第 8図として表されている 反応時間の経過に対する組成の変化を示す。 時間 0で装入する鉄酸 化物には、 F e 3 04 が約 6 0 %、 F e 2 03 が約 4 0 %含まれて いる。 装入された鉄酸化物は、 鉄炭化物 (F e 3 C) に転化される が、 反応後期 ( 4〜 6時間) においては、 鉄炭化物の生成スピー ド が著しく低下する。 F e 3 04 や F e 0などの鉄酸化物を減少させ、 鉄炭化物 (F e 3 C) を高転化率で得るためには、 さらに長時間の 反応を要することが判る。 流動層型反応炉では、 長時間にわたって 粒子を炉内に滞留させるためには、 長い流路を必要とする。 また、 多量の鉄炭化物を得るためには、 流路断面積も大き く しなければな らない。 したがって、 高転化率で鉄炭化物を多量に得るためには、 大型の流動層型反応炉を設置する必要がある。 FIG. 6 shows the change of the composition with the lapse of the reaction time shown in FIG. The ferrate product to be charged at time 0, F e 3 0 4 is about 6 0%, F e 2 0 3 is contained about 4 0%. Iron oxide has been charged is being converted into iron carbide (F e 3 C), in the latter stage of the reaction (4-6 hours), generation of iron carbide speed de is significantly reduced. Reducing the F e 3 0 4 or iron oxides such as F e 0, in order to obtain iron carbide (F e 3 C) at a high conversion rate, furthermore the long It turns out that a reaction is required. In a fluidized bed reactor, a long flow path is required to keep particles in the furnace for a long time. Also, in order to obtain a large amount of iron carbide, the cross-sectional area of the flow channel must be increased. Therefore, in order to obtain a large amount of iron carbide at a high conversion, it is necessary to install a large fluidized bed reactor.
本発明の目的は、 反応後期における鉄炭化物生成速度を向上させ、 流動層型反応炉の大型化を招かずに効率的な製造を行う ことができ るアイアンカーバイ ドの製造方法および装置を提供することである c 〔発明の開示〕 SUMMARY OF THE INVENTION An object of the present invention is to provide a method and apparatus for producing an eye anchor binder which can increase the production rate of iron carbide in the latter stage of the reaction and can efficiently produce the fluidized bed reactor without increasing the size of the reactor. C [Disclosure of the Invention]
上記目的を達成するために本発明は、 鉄酸化物粒子を流動層型反 応炉に装入し、 反応ガスによって流動化させながら炭化させるアイ アンカーバイ ドの製造方法において、 投入された鉄酸化物粒子の流 路の途中から、 鉄 (F e ) 粒子を投入することを特徴と している。 このように、 鉄酸化物粒子を流動層型反応炉に装入し、 アイアン力 一バイ ドに転化させる流路の途中に鉄粒子を投入することによって、 鉄粒子は反応ガスに含まれる一酸化炭素 (C 0 ) を分解して 2 C 0 →C + C 0 2 の反応を促進させる触媒と しての作用を有し、 鉄酸化 物から鉄炭化物であるアイアン力一バイ ドへの転化を促進させる。 このように反応後期に触媒と して鉄粒子を投入することによって、 アイアンカーバイ ドの生成速度を向上させることができる。 In order to achieve the above object, the present invention provides a method for producing an anchor oxide, in which iron oxide particles are charged into a fluidized bed reactor and carbonized while being fluidized by a reaction gas. It is characterized in that iron (F e) particles are injected from the middle of the flow of material particles. In this way, iron oxide particles are charged into a fluidized bed reactor, and iron particles are introduced into the flow path for converting the iron force into one byte, whereby the iron particles are removed from the monoxide contained in the reaction gas. It has an action of a catalyst to promote decomposition to 2 C 0 → C + C 0 2 of the reaction of carbon (C 0), the conversion of iron oxide to iron force one by de iron carbide Promote. Thus, by introducing iron particles as a catalyst in the latter stage of the reaction, the generation rate of eye anchors can be improved.
また本発明は、 前記鉄粒子の投入を複数個所で行い、 投入する鉄 粒子の粒径を、 下流側になるほど小さ くすることを特徴と している このように、 流動層型反応炉内の流路に複数個所から鉄粒子を投入 し、 投入する鉄粒子の粒径は、 下流側になるほど小さ くすることに よって、 流路の終端までの短い時間でも容易に触媒と しての作用を 果した後、 自らも鉄炭化物に転化する。 また本発明の前記鉄粒子は、 鉄酸化物粒子を予熱する際の排ガス 中から回収し、 還元して生成することを特徴としている。 このよう に、 流動層型反応炉に装入する鉄酸化物粒子を子熱する際の排ガス 中から、 鉄酸化物粒子を回収し、 還元して流動層型反応炉の流路の 途中に投入する鉄粒子を生成することにより、 予熱する際の排ガス に混じって排出される鉄酸化物粒子は、 流動層型反応炉に装入され る鉄酸化物粒子よりも粒径が小さく、 そのような微粒子を還元して 流路の途中から投入するので、 短い時間でも触媒としての作用を有 効に果した後、 鉄炭化物となる。 Further, the present invention is characterized in that the iron particles are charged at a plurality of locations, and the particle size of the iron particles to be charged is reduced toward the downstream side. Iron particles are injected into the flow channel from a plurality of locations, and the particle size of the input iron particles is made smaller toward the downstream side, so that it can easily act as a catalyst even in a short time until the end of the flow channel. After that, it converts itself to iron carbide. Further, the iron particles of the present invention are characterized in that the iron particles are recovered from the exhaust gas when preheating the iron oxide particles, reduced and generated. In this way, iron oxide particles are recovered from the exhaust gas generated when the iron oxide particles charged into the fluidized bed reactor are heated, reduced, and then introduced into the flow path of the fluidized bed reactor. By generating iron particles, the iron oxide particles discharged in the exhaust gas during preheating are smaller in particle size than the iron oxide particles charged into the fluidized bed reactor, and Since the fine particles are reduced and injected from the middle of the flow channel, they can effectively function as a catalyst even in a short time, and then become iron carbide.
さらに本発明は、 鉄酸化物粒子を流動層型反応炉に装入し、 反応 ガスによって流動化させながら炭化させるアイアンカーバイ ドの製 造装置において、 鉄酸化物粒子を熱風によって予熱する予熱手段と- 予熱手段の排ガス中から鉄酸化物粒子を回収する回収手段と、 回収 手段によって回収された鉄酸化物粒子を還元して流動層型反応炉内 に投入する還元手段とを含むことを特徵としている。 このような特 徴を有する本発明のアイアンカーバイ ドの製造装置によれば、 予熱 手段で予熱した鉄酸化物粒子を流動層型反応炉に装入し、 アイアン カーバイ ドを製造する。 予熱手段の排ガス中から回収手段によって 鉄酸化物粒子が回収され、 還元手段によって還元され、 流動層型反 応炉に投入される。 排ガス中から回収される鉄酸化物粒子は、 流動 層型反応炉に装入される予熱された鉄酸化物粒子よりも粒径が小さ レ、。 したがって、 還元手段によって還元されて流動層型反応炉の流 路に投入される鉄粒子は、 流動層型反応炉内で反応する酸化鉄粒子 よりも粒径が小さくなるので、 鉄酸化物を鉄炭化物に転化させる反 応の触媒として反応をより短時間で促進させた後、 自らも鉄炭化物 となる。  Further, the present invention provides an apparatus for producing an anchor carbide in which iron oxide particles are charged into a fluidized bed reactor and carbonized while being fluidized by a reaction gas, wherein the preheating means for preheating the iron oxide particles by hot air And a collecting means for collecting the iron oxide particles from the exhaust gas of the preheating means, and a reducing means for reducing the iron oxide particles collected by the collecting means and introducing the reduced iron oxide particles into a fluidized bed reactor. And According to the iron anchor carbide manufacturing apparatus of the present invention having such features, the iron oxide particles preheated by the preheating means are charged into a fluidized bed reactor to manufacture iron carbide. Iron oxide particles are recovered from the exhaust gas of the preheating means by the recovery means, reduced by the reduction means, and fed into the fluidized bed reactor. The iron oxide particles recovered from the exhaust gas have a smaller particle size than the preheated iron oxide particles charged into the fluidized bed reactor. Therefore, the iron particles reduced by the reducing means and fed into the channel of the fluidized-bed reactor have a smaller particle size than the iron oxide particles that react in the fluidized-bed reactor. After accelerating the reaction in a shorter time as a catalyst for the conversion to carbides, the iron itself becomes iron carbide.
また本発明のアイアンカーバイ ドの製造装置は、 前記還元手段と 流動層型反応炉との間には、 還元された鉄酸化物粒子を粒径に従つ て複数等級に分級する分級手段が設けられ、 流動層型反応炉内に、 投入される鉄酸化物粒子の流路の途中の複数個所で、 下流側になる ほど粒径が小さい等級の還元された粒子を投入することを特徴と し ている。 このような特徴を有する本発明のアイアンカーバイ ドの製 造装置によれば、 還元手段によって還元された鉄粒子は、 分級手段 によって粒径に従う複数等級に分級される。 流動層型反応炉内の流 路には、 複数個所から、 下流側になるほど粒径が小さい等級の還元 された粒子が投入される。 粒径が小さい等級の鉄粒子は、 短い時間 でも有効に作用し、 鉄酸化物から鉄炭化物を生成する速度を向上さ せた後、 自らも鉄炭化物となる。 Further, the apparatus for producing an eye anchor byte according to the present invention, wherein the reducing means and Classification means for classifying the reduced iron oxide particles into a plurality of classes according to the particle size is provided between the fluidized bed reactor and the iron oxide fed into the fluidized bed reactor. It is characterized in that reduced particles of a grade having a smaller particle diameter toward the downstream side are introduced at a plurality of positions in the middle of the particle flow path. According to the apparatus of the present invention for producing an eye anchor having such characteristics, the iron particles reduced by the reducing means are classified into a plurality of classes according to the particle size by the classification means. Reduced particles having a smaller particle diameter toward the downstream side are introduced into the flow path in the fluidized bed reactor from a plurality of locations. Small-sized iron particles are effective even in a short period of time, and after increasing the rate of iron carbide formation from iron oxide, themselves become iron carbide.
以上のように本発明によれば、 触媒と して作用する鉄粒子を流動 層型反応炉の反応時間の後期に投入し、 鉄酸化物からアイアンカー バイ ドを生成する速度を向上させることができる。 アイアンカーバ ィ ドの組成を得るに要する時間が短縮されるので、 生産効率が向上 し、 流動層型反応炉などの設備も小型化することができる。  As described above, according to the present invention, it is possible to improve the rate at which iron oxide is generated from iron oxide by introducing iron particles acting as a catalyst in the latter half of the reaction time of a fluidized bed reactor. it can. Since the time required to obtain the composition of the eye anchor is shortened, production efficiency is improved, and equipment such as a fluidized bed reactor can be downsized.
また本発明によれば、 流動層型反応炉内に投入する鉄粒子の粒径 を、 下流側ほど小さ くするので、 流路終端までの短い時間で有効に アイアンカーバイ ド生成速度の向上を図ることができる。  Further, according to the present invention, since the particle size of the iron particles to be charged into the fluidized bed reactor becomes smaller toward the downstream side, it is possible to effectively improve the generation rate of the eye anchor in a short time until the end of the flow path. Can be planned.
また本発明によれば、 予熱した鉄酸化物粒子からの排ガス中に含 まれる鉄酸化物粒子を回収し、 還元して流動層型反応炉の流路に投 入する。 排ガス中から回収される鉄酸化物粒子は、 流動層型反応炉 に装入される鉄酸化物粒子より も粒径が小さい。 還元して投入され る鉄粒子の粒径も装入される鉄酸化物粒子の粒径より も小さ く なる ので、 還元直後の鉄微粒子を投入し、 アイアンカーバイ ドの生成反 応速度の促進を有効に図ることができる。  According to the present invention, the iron oxide particles contained in the exhaust gas from the preheated iron oxide particles are collected, reduced, and introduced into the flow channel of the fluidized bed reactor. The iron oxide particles recovered from the exhaust gas have a smaller particle size than the iron oxide particles charged into the fluidized bed reactor. Since the particle diameter of the iron particles to be reduced is also smaller than the particle diameter of the iron oxide particles to be charged, the iron fine particles immediately after the reduction are charged to accelerate the reaction rate of the formation of the eye anchor. Can be effectively achieved.
さらに本発明によれば、 予熱手段で鉄酸化物粒子を熱風によって 予熱する際に、 排ガス中から鉄酸化物粒子を回収手段が回収し、 還 元手段によつて還元して流動層型反応炉内に投入する。 流動層型反 応炉に装入される予熱された鉄酸化物粒子は、 流動層型反応垆に装 入され、 流路に沿って流動しながら炭化されてアイアンカーバイ ド が製造される。 この流路に鉄粒子が投入されるので、 その触媒作用 によって炭化反応が促進され、 アイアンカーバイ ドの生成速度が向 上する。 これによつてアイアンカーバイ ドの製造時間を短縮し、 比 車交的小さな流動層型反応炉でも多量のアイアンカーバイ ドを製造す ることができる。 Furthermore, according to the present invention, the iron oxide particles are heated by hot air by preheating means. When preheating, iron oxide particles are collected from the exhaust gas by a recovery means, reduced by a reduction means and put into a fluidized bed reactor. The preheated iron oxide particles charged into the fluidized bed reactor are charged into the fluidized bed reactor, and are carbonized while flowing along the flow path to produce an anchor binder. Since iron particles are injected into this flow channel, the carbonization reaction is promoted by the catalytic action, and the production rate of the eye anchor is increased. As a result, the production time of the eye anchor binder can be shortened, and a large amount of the eye anchor binder can be produced even with a relatively small fluidized bed reactor.
また本発明によれば、 還元手段と流動層型反応炉との間に設ける 分級手段によって、 鉄粒子を分級する。 流動層型反応炉の流路の下 流側で粒径の小さな等級の鉄粒子を投入し、 短時間でも有効な炭化 反応促進作用を行わせ、 鉄粒子自らも短時間で鉄炭化物となる。 〔図面の簡単な説明〕  Further, according to the present invention, the iron particles are classified by the classification means provided between the reduction means and the fluidized bed reactor. Iron particles of a small particle size are injected into the downstream side of the flow channel of the fluidized bed reactor, and the carbonization reaction is promoted even in a short time, and the iron particles themselves become iron carbide in a short time. [Brief description of drawings]
第 1図は、 本発明の一実施例の製造装置の簡略化した構成を示す ブロック図である。  FIG. 1 is a block diagram showing a simplified configuration of a manufacturing apparatus according to one embodiment of the present invention.
第 2図は、 本発明の他の実施例の製造装置の簡略化した平面断面 図である。  FIG. 2 is a simplified plan sectional view of a manufacturing apparatus according to another embodiment of the present invention.
第 3図は、 第 2図の実施例の製造装置の簡略化した正面断面図で ある。  FIG. 3 is a simplified front sectional view of the manufacturing apparatus of the embodiment shown in FIG.
第 4図は、 第 2図の実施例の操業条件の例を示す模式図である。 第 5図は、 原料および製品の粒度分布の一例を示すグラフである c 第 6図は、 先行技術の反応時間と組成との関係を示すグラフであ る。  FIG. 4 is a schematic diagram showing an example of operating conditions of the embodiment of FIG. FIG. 5 is a graph showing an example of the particle size distribution of raw materials and products. C FIG. 6 is a graph showing the relationship between the reaction time and the composition of the prior art.
〔発明を実施するための最良の形態〕 以下、 この発明の好適な実施の形態を図面に基づいて詳細に説明 する。 [Best mode for carrying out the invention] Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
第 1図は、 本発明の一実施例によるアイアンカーバイ ド製造装置 の簡略化した構成を示す。 流動層型反応炉 1 では、 へマタイ ト (F e 2 0 3 ) の粒子を原料と して装入して、 アイアンカーバイ ド (F e 3 C ) の粒子を得る炭化反応を起こさせる。 装入するへマタイ 卜 は、 粉末状の鉱石と して、 一旦熱風によって予熱炉 2で予熱する。 予熱炉 2および流動層型反応炉 1 における操業条件は、 前述の先行 技術とほぼ同様である。 たとえば、 予熱は 5 0 0て〜 9 0 0 °Cの温 度で熱風によって行い、 流動層型反応炉 1 内での反応が 5 0 0て以 上で行えるようにする。 FIG. 1 shows a simplified configuration of an eye anchor binder manufacturing apparatus according to one embodiment of the present invention. In fluidized-bed reactor 1, to Matthew Doo (F e 2 0 3) particles by entering instrumentation as a raw material of, causing carbonization reaction to obtain particles of iron card by de (F e 3 C). The hematite to be charged is preheated in a preheating furnace 2 by hot air once as powdered ore. The operating conditions in the preheating furnace 2 and the fluidized bed reactor 1 are almost the same as those of the above-mentioned prior art. For example, preheating is performed by hot air at a temperature of 50,000 to 900 ° C. so that the reaction in the fluidized bed reactor 1 can be performed at 50,000 or more.
予熱炉 2で鉱石を予熱した熱風は、 排ガスと して排出され、 集塵 機 3に導かれる。 予熱炉 2で予熱された鉱石のうち粗い鉱石は、 口 ックホッパ 5を通って流動層型反応炉 1 に装入され、 排ガス中に飛 散する微細な鉱石は、 集塵機 3で捕集される。 サイ クロンなどによ つて実現される集塵機 3では、 排ガス中に含まれる微粒子を分離す る。 この微粒子は、 原料の鉱石に含まれている鉄酸化物微粒子であ り、 集塵機 3 は回収手段と して排ガス中から鉄酸化物微粒子を回収 することになる。 回収された鉄酸化物微粒子は、 還元手段である還 元炉 4 に投入される。 還元炉 4では、 水素 (H 2 ) などを含む還元 ガスによって鉄酸化物を還元し、 鉄 (F e ) を得る。 還元炉 4 によ つて還元された鉄粒子は流動層型反応炉 1 の流路の途中に投入され る。 The hot air preheating the ore in the preheating furnace 2 is discharged as exhaust gas and guided to the dust collector 3. Of the ore preheated by the preheating furnace 2, coarse ore is charged into the fluidized bed reactor 1 through the mouth hopper 5, and fine ore scattered in the exhaust gas is collected by the dust collector 3. The dust collector 3 realized by a cyclone or the like separates fine particles contained in the exhaust gas. These fine particles are iron oxide fine particles contained in the raw material ore, and the dust collector 3 collects the iron oxide fine particles from the exhaust gas as a collecting means. The recovered iron oxide fine particles are fed into a reduction furnace 4 which is a reducing means. In the reduction furnace 4, iron oxide is reduced by a reducing gas containing hydrogen (H 2 ) or the like to obtain iron (F e). The iron particles reduced by the reducing furnace 4 are introduced into the fluidized bed reactor 1 in the middle of the flow path.
流動層型反応炉 1 は、 予熱された鉄酸化物粒子を反応ガスによつ て流動化させ、 内部の流路に沿って移動させながら炭化させてアイ アンカーバイ ド粒子に転化させる。 反応は流路に沿って進行し、 反 応の後期に相当する流路の途中から鉄粒子を投入することによって. 炭化反応が促進され、 生成速度が向上する。 なお流動層型反応炉 1 予熱炉 2および還元炉 4では、 それぞれ異なる雰囲気を使用するの で、 これらの間にはロックホッパ 5 , 6, 7を介在させ、 雰囲気が 混じり合うことを防止する。 各ロックホッパ 5, 6, 7では、 一旦 粒子を咛留し、 雰囲気を窒素 (N2 ) などに置換した後、 さらに下 流側の装置に用いる雰囲気に置換する。 The fluidized bed reactor 1 fluidizes preheated iron oxide particles with a reaction gas, carbonizes them while moving along an internal flow path, and converts them into eye anchor particles. The reaction proceeds along the flow path, and iron particles are injected from the middle of the flow path corresponding to the latter half of the reaction. The carbonization reaction is accelerated and the production rate is improved. Since different atmospheres are used in the fluidized bed reactor 1, the preheating furnace 2, and the reduction furnace 4, lock hoppers 5, 6, and 7 are interposed therebetween to prevent the atmosphere from being mixed. In each of the lock hoppers 5, 6, and 7, the particles are once trapped, the atmosphere is replaced with nitrogen (N 2 ), and then further replaced with the atmosphere used for downstream devices.
鉄粒子を投入することによって、 流動層型反応炉 1の流路内では. 反応ガスに含まれる一酸化炭素 (CO) が分解され、 2 C 0→C十 C 02 の反応が促進されるものと考えられる。 このような触媒とし ての効果は、 たとえば、 ME T A L L URG I C A L TRANS ACT I ONS VOLUME 5, JANUARY 1 9 7 4 p. 1 1〜2 5に紹介されている。 第 6図から、 反応後期に鉄 (F e ) が少なくなるのでアイアンカーバイ ドの生成速度が低下すると 考えられ、 反応後期に触媒として作用する鉄を添加するようにした ところ、 アイアンカーバイ ドの生成速度が向上した。 By placing the iron particles, a fluidized bed type reaction furnace 1 of the flow path. Carbon monoxide contained in the reaction gas (CO) is decomposed, 2 C 0 → C tens C 0 2 of the reaction is accelerated It is considered something. The effect of such a catalyst is introduced in, for example, METAL URGICAL TRANSACTIONS VOLUME 5, JANUARY 1974 4 p. From Fig. 6, it is considered that iron (F e) decreases in the late stage of the reaction, so that the production rate of iron anchor is reduced. When iron, which acts as a catalyst, is added in the latter half of the reaction, Generation speed was improved.
第 2図および第 3図は、 本発明の他の実施例の簡略化した構成を 示す。 第 2図は平面断面図、 第 3図は正面断面図をそれぞれ示し、 第 2図は第 3図の切断面線 II - IIから見た状態、 第 3図は第 2図の 切断面線 III 一 III から見た状態にそれぞれ相当する。 本実施例の 流動層型反応炉 1 0は、 圧力容器として有利な円筒形外形を有する c 流路を長くするために、 内部を仕切 1 1で仕切る。 流動層は分散板 1 2に設けられるノズル 1 3から噴出す反応ガスによって流動化さ れる。 流動層の流路は、 原料である鉄酸化物粒子の装入口 1 4から 炭化物であるアイアンカーバイ ドの排出口 1 5までの間に形成され る。 この流路に沿って鉄酸化物粒子が移動する際に、 反応ガスによ つて炭化される。 第 6図に示すように、 原料の装入直後には流動層 型反応炉 1 0内部で鉄 (F e) が生成されて、 炭化物生成反応が促 進されるけれども、 反応の後半では鉄 (F e ) が減少し、 触媒作用 が低下する。 本実施例では、 流路の後半に複数の投入口 1 6、 1 7 を設け、 鉄粒子を投入する。 2 and 3 show a simplified configuration of another embodiment of the present invention. 2 is a plan sectional view, FIG. 3 is a front sectional view, FIG. 2 is a sectional view taken along line II-II in FIG. 3, and FIG. 3 is a sectional line III in FIG. Each corresponds to the state viewed from III. The fluidized bed reactor 10 of the present embodiment is internally partitioned by a partition 11 in order to lengthen a flow path c having a cylindrical outer shape which is advantageous as a pressure vessel. The fluidized bed is fluidized by a reaction gas ejected from a nozzle 13 provided on the dispersion plate 12. The flow path of the fluidized bed is formed between the inlet 14 of the iron oxide particles as the raw material and the outlet 15 of the iron anchor carbide as the carbide. When the iron oxide particles move along this flow path, they are carbonized by the reaction gas. As shown in Fig. 6, immediately after the raw materials are charged, iron (Fe) is generated inside the fluidized bed reactor 10 and the carbide formation reaction is promoted. However, in the second half of the reaction, iron (F e) decreases and catalysis decreases. In the present embodiment, a plurality of inlets 16 and 17 are provided in the latter half of the flow channel to feed iron particles.
複数の投入口 1 6、 1 7から投入する鉄は、 還元炉 4で回収した 鉄酸化物粒子を還元し、 さらにサイクロンなどによって実現される 分級器 2 0で粒子の粒径に従った等級に分級する。 たとえば装入口 1 4からへマタイ 卜 (F e 2 03 ) を 1〜 0. 1匪の粒径で装入す る場合、 回収されて還元される鉄 (F e ) は、 0. 1 5〜 0. 1讓 の粒径を有するように設計する。 分級器 2 0 は、 鉄 (F e ) の粒子 を、 0. 1 5 ~ 0. 1 3 mmと 0. 1 3〜 0. 1隱との等級に分級し、 小さい等級の鉄粒子を下流側の投入口 1 7から投入する。 下流側の 投入口 1 Ίが、 流路の終端である排出口 1 5 に上流側の投入口 1 6 より も近く 、 短時間で触媒と して有効に作用し、 自らも鉄炭化物と なる小さな粒径の鉄粒子を投入することが好ましい。 The iron charged from the multiple inlets 16 and 17 reduces the iron oxide particles recovered in the reduction furnace 4 and further classifies the particles according to the particle size using a classifier 20 realized by a cyclone, etc. Classify. For example, when Matthew Bok (F e 2 03) you input instrumentation with a grain size from 1 to 0.1 negation of the from charging hole 1 4, iron is reduced is recovered (F e) is 0.1 5 Design to have a particle size of 0.1 The classifier 20 classifies the iron (F e) particles into a class of 0.15 to 0.13 mm and a class of 0.13 to 0.1 concealed, and the smaller particles of iron (F e) on the downstream side. From the inlet 17 of. The downstream input port 1Ί is closer to the discharge port 15 at the end of the flow path than the upstream input port 16 and effectively acts as a catalyst in a short period of time. It is preferable to input iron particles having a particle size.
第 3図に示すように、 流動層型反応炉 1 0では、 下方の反応ガス 入口 2 1 から、 一酸化炭素 (C O) を含む反応ガスを導入し、 上方 の反応ガス出口 2 2から排出させる。 分散板 1 2の下方には風箱部 2 3が形成され、 導入された反応ガスを一旦蓄える。 風箱部 2 3内 の反応ガスは、 分散板 1 2に設けられているノズル 1 3を介して噴 出し、 分散板 1 2の上方に流動層 2 4 を形成させる。 仕切 1 1 は、 形成される流動層 2 4の高さより も高く しておく。 この上方の風塔 部 2 5は、 断面積を大き く し、 反応ガスの流速を減少させて、 流動 層 2 4から粒子が飛散することを防ぐ c  As shown in Fig. 3, in the fluidized bed reactor 10, a reaction gas containing carbon monoxide (CO) is introduced from a lower reaction gas inlet 21 and discharged from an upper reaction gas outlet 22. . A wind box part 23 is formed below the dispersion plate 12 and temporarily stores the introduced reaction gas. The reaction gas in the wind box section 23 is blown out through a nozzle 13 provided on the dispersion plate 12 to form a fluidized bed 24 above the dispersion plate 12. The partition 11 is higher than the height of the fluidized bed 24 to be formed. The upper wind tower section 25 increases the cross-sectional area, reduces the flow rate of the reaction gas, and prevents particles from being scattered from the fluidized bed 24 c
第 4図は、 原料と して装入する F e 2 03 の量と、 後から投入す る F eの量とに関する操業条件を示す。 第 4図 ( 1 ) では F eを 6 %、 第 4図 ( 2 ) では F eを 1 0 %、 それぞれ投入する。 流動層型 反応炉 1 0内が 5つの空間に仕切られているので、 各空間における F eの添加量は、 それぞれ、 Figure 4 shows the amount of F e 2 0 3 which is charged as a raw material, the operating conditions relating to the amount of you put F e later. In Fig. 4 (1), enter Fe 6%, and in Fig. 4 (2), enter Fe 10%. Since the inside of the fluidized bed reactor 10 is partitioned into five spaces, The amount of Fe added is
6 / 2  6/2
X 1 0 0 = 1 6 (.¾) … ( 1 ) X 1 0 0 = 1 6 (.¾)… (1)
1 8. 8 1 8.8
1 0 / 2  1 0/2
X 1 0 0 = 2 8 (%) … ( 2 ) 1 8  X 1 0 0 = 2 8 (%)… (2) 1 8
となる。 F e添加量は、 最大 5 0 最小 1 0 %の範囲内とするこ とが望ましい。 Becomes It is desirable that the amount of Fe added be within a range of 50% at the maximum and 10% at the minimum.
第 5図は、 実線で原料として投入する F e 2 03 の粒径分布と、 2点鎖線で転化されたアイアンカーバイ ドの粒径分布の一例を示す, F e 2 03 は 0. 1〜 1 mmに分布しており、 その 1 0 %なら 0. 1 5 mm以下、 6 %なら 0. 1 3薩以下をそれぞれカッ トし、 回収して 鉄粒子として投入すればよい。 Figure 5 is a F e 2 0 3 of particle size distribution to be introduced as a raw material in a solid line, shows an example of particle size distribution of the conversion has been iron card by de by a two-dot chain line, F e 2 03 is 0.1 It is distributed in the range of ~ 1 mm. If it is 10%, it is 0.15 mm or less, and if it is 6%, it is 0.15 mm or less.
以上説明した各実施例では、 流動層型反応炉に投入する鉄粒子を. 原料として装入する鉄酸化物粒子の一部を還元して生成しているけ れども、 予め生成した鉄粒子を投入するようにしてもよい。 本実施 例のように還元直後の鉄粒子を使用すれは、 酸化の少ない純鉄に近 い粒子を投入することができ、 投入量が少なくても触媒作用を充分 に発揮して効率よくアイアンカーバイ ドを製造することができる。 〔産業上の利用可能性〕  In each of the embodiments described above, iron particles to be fed into a fluidized bed reactor are generated by reducing a part of iron oxide particles to be charged as a raw material. You may make it throw in. When iron particles immediately after reduction are used as in this example, particles close to pure iron with little oxidation can be introduced, and even if the amount is small, the catalytic action is sufficiently exhibited and the eye anchor is efficiently used. A byte can be manufactured. [Industrial applicability]
本発明は以上説明したように構成されているので、 反応後期にお ける鉄炭化物生成速度を向上させ、 流動層型反応炉の大型化を招か ずに効率的な製造を行うことができるアイアンカーバイ ドの製造装 置として適している。  Since the present invention is configured as described above, it is possible to improve the iron carbide generation rate in the latter stage of the reaction and to perform iron production efficiently without increasing the size of the fluidized bed reactor. Suitable for carbide manufacturing equipment.

Claims

請 求 の 範 囲 . 鉄酸化物粒子を流動層型反応炉に装入し、 反応ガスによって流 動化させながら炭化させるアイァンカーバイ ドの製造方法におい て、  Scope of request In a method for producing an iron carbide in which iron oxide particles are charged into a fluidized bed reactor and carbonized while being fluidized by a reaction gas,
投入された鉄酸化物粒子の流路の途中から、 鉄粒子を投入する ことを特徴とするアイアン力一バイ ドの製造方法。  A method for manufacturing an iron force byte, comprising: charging iron particles from the middle of the flow path of the charged iron oxide particles.
. 前記鉄粒子の投入を複数個所で行い、 投入する鉄粒子の粒径を. 下流側になるほど小さくすることを特徴とする請求の範囲第 1項 記載のアイアンカーバイ ドの製造方法。The method of claim 1, wherein the iron particles are charged at a plurality of locations, and the particle size of the iron particles is reduced toward the downstream side.
. 前記鉄粒子は、 鉄酸化物粒子を予熱する際の排ガス中から回収 し、 還元して生成することを特徴とする請求の範囲第 1項または 第 2項記載のアイアンカーバイ ドの製造方法。 The method according to claim 1 or 2, wherein the iron particles are recovered from exhaust gas when preheating the iron oxide particles, and are generated by reduction. .
. 鉄酸化物粒子を流動層型反応炉に装入し、 反応ガスによって流 動化させながら炭化させるアイアンカーバイ ドの製造装置におい て、 The iron oxide particles are charged into a fluidized bed reactor, and the iron oxide particles are carbonized while being fluidized by the reaction gas.
鉄酸化物粒子を熱風によつて予熱する予熱手段と、  A preheating means for preheating the iron oxide particles by hot air;
予熱手段の排ガス中から鉄酸化物粒子を回収する回収手段と、 回収手段によって回収された鉄酸化物粒子を還元して流動層型 反応炉内に投入する還元手段とを含むことを特徴とするアイアン カーバイ ドの製造装置。  A recovery means for recovering the iron oxide particles from the exhaust gas of the preheating means, and a reduction means for reducing the iron oxide particles recovered by the recovery means and introducing the reduced iron oxide particles into a fluidized bed reactor. Iron carbide manufacturing equipment.
. 前記還元手段と流動層型反応炉との間には、 還元された鉄酸化 物粒子を粒径に従って複数等級に分級する分級手段が設けられ、 流動層型反応炉内に、 投入される鉄酸化物粒子の流路の途中の 複数個所で、 下流側になるほど粒径が小さい等級の還元された粒 子を投入することを特徽とする請求の範囲第 4項記載のアイァン カーバイ ドの製造装置。 Classification means for classifying the reduced iron oxide particles into a plurality of grades according to the particle size is provided between the reducing means and the fluidized bed type reactor, and iron fed into the fluidized bed type reactor is provided. The production of an iron carbide according to claim 4, wherein reduced particles of a grade having a smaller particle diameter toward the downstream side are introduced at a plurality of places in the flow path of the oxide particles. apparatus.
PCT/JP1996/000608 1995-03-10 1996-03-11 Process for producing iron carbide and equipment therefor WO1996028381A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE19681132T DE19681132T1 (en) 1995-03-10 1996-03-11 Method and device for producing iron carbide
AU48911/96A AU695168B2 (en) 1995-03-10 1996-03-11 Process for producing iron carbide and equipment therefor
AT0902096A ATA902096A (en) 1995-03-10 1996-03-11 METHOD AND DEVICE FOR PRODUCING IRON CARBIDE
US08/896,293 US5945083A (en) 1995-03-10 1997-07-07 Process for producing iron carbide and equipment therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7051086A JP2635945B2 (en) 1995-03-10 1995-03-10 Method and apparatus for manufacturing eye anchor hydride
JP7/51086 1995-03-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/896,293 Continuation US5945083A (en) 1995-03-10 1997-07-07 Process for producing iron carbide and equipment therefor

Publications (1)

Publication Number Publication Date
WO1996028381A1 true WO1996028381A1 (en) 1996-09-19

Family

ID=12877017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000608 WO1996028381A1 (en) 1995-03-10 1996-03-11 Process for producing iron carbide and equipment therefor

Country Status (5)

Country Link
JP (1) JP2635945B2 (en)
AT (1) ATA902096A (en)
AU (1) AU695168B2 (en)
DE (1) DE19681132T1 (en)
WO (1) WO1996028381A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945083A (en) * 1995-03-10 1999-08-31 Kawasaki Jukogyo Kabushiki Kaisha Process for producing iron carbide and equipment therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU711114B2 (en) * 1997-01-13 1999-10-07 Kawasaki Jukogyo Kabushiki Kaisha Process and apparatus for producing iron carbide
JP2948772B2 (en) 1997-02-28 1999-09-13 川崎重工業株式会社 Manufacturing method of iron carbide
JP2938825B2 (en) * 1997-02-28 1999-08-25 川崎重工業株式会社 Manufacturing method of iron carbide
KR100476813B1 (en) * 2000-12-22 2005-03-17 주식회사 포스코 Method For Producing Cementite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885023A (en) * 1973-02-15 1975-05-20 Phillips Petroleum Co Preparation of iron carbide (Fe{hd 3{b C)
JPS52886B1 (en) * 1970-12-24 1977-01-11
JPH06501983A (en) * 1990-08-01 1994-03-03 アイロン カーバイド ホールディングズ,リミテッド Method of preheating iron-containing reactor feed before processing in a fluidized bed reactor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1310050A (en) * 1970-11-11 1973-03-14 Tsnii Chernoimetallurgii Im I Carbonized iron production
US5737566A (en) * 1993-12-20 1998-04-07 Motorola, Inc. Data processing system having a memory with both a high speed operating mode and a low power operating mode and method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52886B1 (en) * 1970-12-24 1977-01-11
US3885023A (en) * 1973-02-15 1975-05-20 Phillips Petroleum Co Preparation of iron carbide (Fe{hd 3{b C)
JPH06501983A (en) * 1990-08-01 1994-03-03 アイロン カーバイド ホールディングズ,リミテッド Method of preheating iron-containing reactor feed before processing in a fluidized bed reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945083A (en) * 1995-03-10 1999-08-31 Kawasaki Jukogyo Kabushiki Kaisha Process for producing iron carbide and equipment therefor

Also Published As

Publication number Publication date
DE19681132T1 (en) 1997-12-04
JPH08245212A (en) 1996-09-24
JP2635945B2 (en) 1997-07-30
AU695168B2 (en) 1998-08-06
ATA902096A (en) 2001-12-15
AU4891196A (en) 1996-10-02

Similar Documents

Publication Publication Date Title
CN104801721B (en) A kind of device and method for preparing nano metal powder
US5674308A (en) Spouted bed circulating fluidized bed direct reduction system and method
SK115593A3 (en) Process for producing molten pig iron or molten steel preproducts and apparatus for realization of it
CN101880059A (en) Method for producing vanadium trioxide by adopting fluidized bed reactor
AU2008274647B2 (en) Process and plant for reducing solids containing iron oxide
US5647887A (en) Fluidizable bed co-processing fines in a direct reduction system
EP0316819A1 (en) Metal-making process and apparatus involving the smelting reduction of metallic oxides
WO1996028381A1 (en) Process for producing iron carbide and equipment therefor
KR100711776B1 (en) Apparatus for manufacturing molten irons
KR20180030268A (en) Method and device for producing pressed articles
US2990269A (en) Refining of ores with hydrocarbon gases
US5431711A (en) Circulating fluidized bed direct reduction system
KR101493211B1 (en) Apparatus and methods for smelting rare metal using multi-stage fluidized reaction by hydrogen reduction
EP0949338A2 (en) Fluidized bed process for the production of iron carbide
US5945083A (en) Process for producing iron carbide and equipment therefor
JP2620793B2 (en) Preliminary reduction furnace for smelting reduction
WO1998038129A1 (en) Production method of iron carbide
NL2030295B1 (en) A method for producing iron fuel.
CN87107197A (en) Reclaim the method and apparatus of metal and metal alloy
KR100356178B1 (en) Apparatus for making iron melt and iron carbide using several fluidized bed reactors
WO2023100936A1 (en) Facility for producing reduced iron and method for producing reduced iron
JP2001504548A (en) Process for recirculating fine solids discharged by a carrier gas from a reaction vessel
JPS6136573B2 (en)
US3598569A (en) Pelletizing of iron ore
CN1871366B (en) Method and apparatus for reducing metal-oxygen compounds

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU DE TT US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 08896293

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1996 9020

Country of ref document: AT

Date of ref document: 19960919

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 19969020

Country of ref document: AT

RET De translation (de og part 6b)

Ref document number: 19681132

Country of ref document: DE

Date of ref document: 19971204

WWE Wipo information: entry into national phase

Ref document number: 19681132

Country of ref document: DE