WO1996026161A1 - Catalytic filtering material for water purifier of catalytic oxidation type - Google Patents

Catalytic filtering material for water purifier of catalytic oxidation type Download PDF

Info

Publication number
WO1996026161A1
WO1996026161A1 PCT/JP1995/001843 JP9501843W WO9626161A1 WO 1996026161 A1 WO1996026161 A1 WO 1996026161A1 JP 9501843 W JP9501843 W JP 9501843W WO 9626161 A1 WO9626161 A1 WO 9626161A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
strand
carbon
biofilm
shape
Prior art date
Application number
PCT/JP1995/001843
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Kojima
Norihiko Hirano
Original Assignee
Akira Kojima
Norihiko Hirano
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akira Kojima, Norihiko Hirano filed Critical Akira Kojima
Priority to AU34852/95A priority Critical patent/AU3485295A/en
Publication of WO1996026161A1 publication Critical patent/WO1996026161A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/32Packing elements in the form of grids or built-up elements for forming a unit or module inside the apparatus for mass or heat transfer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/103Textile-type packing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a contact furnace material which is a biofilm carrier used in a method for purifying water from water and sewage, rivers, lakes and marshes using a biofilm (hereinafter referred to as a catalytic oxidation method).
  • a contact furnace material which is a biofilm carrier used in a method for purifying water from water and sewage, rivers, lakes and marshes using a biofilm (hereinafter referred to as a catalytic oxidation method).
  • a contact oxidation method that removes BOD and COD-fine organic SS and turbidity components in wastewater by contacting wastewater with the biofilm composed of bacteria, protozoa and metazoans formed on the biofilm carrier. It has been known.
  • FIG. 7 shows an example of a river water purification system using the catalytic oxidation method.
  • the water of the river 1 is sent to the sand basin 3 after the suspended matter is removed by the screen 2, where pebbles and sand are removed, and then sent to the contact oxidation channel 4 by the bomb P.
  • the contact oxidation water channel 4 has a structure in which a number of plastic corrugated plates 5 as biofilm carriers are stacked in parallel with a predetermined gap in a meandering water channel, and a contact material is disposed.
  • the water flows through the gap between the corrugated sheets 5, 5 the water comes into contact with the biofilm formed on the surface of the corrugated sheets 5 and is purified.
  • the water purified by passing through the contact oxidation channel 4 is discharged to the river 1 from the drain channel 6.
  • biofilm carrier constituting the conventional contact base material described above
  • a synthetic resin that is lightweight and easy to process is widely used, but the synthetic resin has low biocompatibility and biocompatibility, and If these are left in large quantities, they can become industrial waste and cause pollution problems, Is not preferred.
  • Conventional biofilm carriers are corrugated in order to increase the contact surface area, but the surface area of corrugated sheets (the area on which biofilms are formed) is inevitably limited.
  • carbon material which is a hardly decomposable substance existing in nature.
  • carbon materials are extremely excellent in biocompatibility and biocompatibility.
  • carbon materials have a brass compress, it is considered to be a very easily established place for microorganisms with mainly negative loads.
  • carbon materials such as various graphite materials, glassy carbon materials, carbon black, activated carbon, charcoal, and coke.
  • carbon fiber is widely used in the aerospace and aviation industries, sports equipment, etc. because of its excellent specific strength, specific elastic modulus, and chemical resistance.
  • carbon fibers can be formed by combining them with resin and concrete, and of course, carbon fibers alone can be formed into any shape because the carbon fibers themselves are interchangeable, and are durable. Also excellent in nature. Furthermore, when the degree of colonization of microorganisms (biofilm) on the biofilm carrier formed by carbon fiber was examined by experiments, very good results were obtained. Based on these results, the inventors proposed the present invention. That's what it is.
  • the present invention has been made based on the problems of the prior art and the consideration by the inventor described above, and its object is to have excellent biocompatibility and biocompatibility, to be inexpensive and durable, and to have a purifying action.
  • An object of the present invention is to provide a contact oxidation material in a contact oxidation type water purification apparatus which is excellent in terms of quality. Disclosure of the invention
  • the contact oxidation material in the catalytic oxidation water purifying apparatus wherein the biofilm carrier is made of carbon fiber.
  • the carbon fiber constituting the biofilm carrier has high biocompatibility and biocompatibility, and does not go against the natural environment.
  • carbon fibers are easily charged with a positive charge, and microorganisms that are easily charged with a negative load are easily attached. Therefore, the degree of biofilm fixation on carbon fibers is high.
  • the biofilm carrier is formed by binding a large number of flexible and flexible carbon fiber filaments, by pressing a crucible, It is made up of a molded product that is formed into a predetermined shape that can be swung under water or delicate and oscillates under water. A flexible and interchangeable carbon arrowhead filament is bound or compressed.
  • the molded body that has been formed into a predetermined shape by being knitted or retained can oscillate underwater like natural seagrass or algae, promoting the activity of the microorganisms that make up the biofilm. Supply essential oxygen.
  • the molded body composed of carbon fiber filaments is formed into a strand having both ends bound, For example, braided strands, strands with tufts, strands with tricks, lanterns, brooms, Akita's flexible strands, filters, etc.
  • the carbon fiber filaments that make up the molded body oscillate, and the exposed surface area of the carbon male fiber filament is increased. The area on which the biofilm can settle) increases.
  • FIG. 1 is a schematic diagram of a biofilm carrier constituting a contact base material according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of various biofilm carriers constituting a contact substrate of the present invention.
  • Fig. 3 shows carbon fiber strands, nylon strings and boletilles.
  • Fig. 4 (a) is a graph showing the change in settled sludge amount between carbon fiber strand and boletylene tape, and (b) is the COD change between carbon arrowhead strand and polyethylene tape.
  • Fig. 5 (c) is a graph showing the change in weight between carbon fiber strands and polyethylene tape, Fig.
  • FIG. 5 (a) is a graph showing the change in the amount of settled sludge by carbon fiber strand type, and (b) is a graph showing the change over time.
  • COD time-dependent characteristic diagram of carbon arrow fiber strand by form (c) is a graph of weight change characteristic of carbon fiber strand by shape
  • (a) of Fig. 6 is the change of settled sludge amount by type of carbon fiber strand.
  • FIG. 1 is a view showing a contact member according to a first embodiment of the present invention.
  • Reference numeral 10 denotes a carbon male fiber strand in which, for example, a large number (tens of thousands) of carbon male filaments 12 having a diameter of 7 m to 15 im are bundled and both ends are bound.
  • Biofilm carrier One end of the biofilm carrier 10 is connected and supported by a string-like connecting member 14 such as a rope supported by anchor bolts 13 fixed to the bottom of the contact oxidation water channel 4 as shown in FIG. 7, for example.
  • the other end is connected to and supported by a pipe 17 connected to a float 15 via a string-like connecting member 16 such as a rope, thereby forming a contact layer material having a structure in which biofilm carriers 10 are arranged at predetermined intervals.
  • a string-like connecting member 14 such as a rope supported by anchor bolts 13 fixed to the bottom of the contact oxidation water channel 4 as shown in FIG. 7, for example.
  • the other end is connected to and supported by a pipe 17 connected to a float 15 via a string-like connecting member 16
  • the biofilm carrier 10 is apparently a single bundle in the air due to the viscosity of the binder applied to the surface of each filament 12, but in the sea or water, the filament 1 2 is a spindle type separated from each other, the tide It can rock like seaweed in response to the movement of. For this reason, in water, the contact surface area of the biofilm carrier 10 (carbon fiber filament 12) with the microorganisms is increased, and the microorganisms are accordingly exposed to the biofilm carrier 10 (the carbon woven fabric constituting the biofilm carrier 10). It easily adheres to fiber filaments 1 2) and has a high rate of biofilm settlement and settlement.
  • FIGS. 2 (a) to (g) As the biofilm carrier, various forms as shown in FIGS. 2 (a) to (g) are conceivable, in addition to the strand-shaped molded article having both ends bound as shown in FIG.
  • FIG. 2 (a) shows a braided strand formed body in which the carbon fiber filaments 12 are braided into a braid shape, and the filaments 12 are bulged at predetermined intervals in the longitudinal direction.
  • Fig. 2 (b) shows a tree-like strand formed by dividing the strand into several strands from the strand backbone 12a of the carbon fiber filament 12.
  • FIG. 2 (C) shows a broom-type strand formed by connecting and integrating a plurality of carbon woven strands 12 b with the strand base 12 a of the carbon fiber filament 12.
  • FIG. 2 (d) shows a lantern-shaped strand formed by forming a plurality of arc-shaped strands 12 c in the middle of the strand base 12 a of the carbon arrowhead filament 12.
  • Fig. 2 (e) shows an Akita straight strand-shaped molded product in which carbon fiber strands 12b are connected to and integrated with the strand base 12a of the carbon fiber filament 12 at predetermined intervals in the longitudinal direction. is there.
  • Fig. 2 (f) shows the arrangement of the cord-like connecting members 22 such as lobes at predetermined intervals, and twisting the carbon woven strands 12b to connect them so as to form a strand culling between the lobes. It is integrated.
  • Reference numeral 24 indicates a connecting portion.
  • Fig. 2 (g) shows a net-shaped strand formed by braiding carbon fiber strands 12b in a turtle-shape.
  • carbon arrowhead filament shaped body examples include a felt formed by compressing a strand into a felt, a strand wound into a coil, a twisted thread, a plain weave or a satin. Fiber-shaped molded articles woven in various forms such as weaving are conceivable.
  • a carbon male fiber filament 12 which is a component of the biofilm carrier can be separated in the sea or water, and a carbon arrowhead filament 12 which is a biofilm carrier can be used.
  • the molded body is not limited to the above-mentioned molded body as long as the molded body has a large contact surface area with the microorganism.
  • Fig. 3 shows braided carbon fiber strands (hereinafter referred to as braids) and carbon fiber strands (Fig. 1), as shown in Fig. 1.
  • Type strand), X-like carbon fiber (hereafter referred to as “filt”), nylon string and polyethylene tape are each suspended in an aquarium containing artificial sewage, and COD (chemical oxygen demand) in artificial sewage is suspended.
  • COD chemical oxygen demand
  • the upper and lower ends were fixed so that they could be used.
  • Artificial sewage in a clear water tank is prepared by dissolving reagents (dalcos, ammonium sulfate, dipotassium phosphate, sodium chloride, magnesium sulfate, chlorine chloride, etc.) in one liter of water and then discharging BOD 5 100 ppm of human sewage was prepared, and 10 times the volume of pond water was added to this artificial sewage, and water with a total volume of about 80 liters was used.
  • Each of the above-mentioned test materials (braid, oscillating straight type strand, filter, nylon string and polyethylene tape) is suspended in a water tank, and while being aired, the test materials are finely irradiated for about one week in the sun. An experiment to establish the organism was performed. The change in COD in the artificial sewage was measured by potassium permanganate titration.
  • Figure 3 (a) shows the results of the first experiment (after 3 days), and Figure 3 (b) shows the results of the second experiment (after 1 day).
  • first experiment Fig. 3 (a)
  • second experiment Fig. 3 (b)
  • COD value due to the difference in test materials. That is, the COD value is most remarkably reduced when a carbon male fiber material having a large surface area (felt) is used.
  • Fig. 4 shows the results obtained by aerating a PAN-based carbon male fiber strand (12 K oscillating linear strand) as a test material and a tape-shaped polyethylene as a comparative material in activated sludge.
  • Fig. 4 (a) shows the amount of sludge when settled for 30 minutes after standing for 1 day.
  • Fig. 4 (b) shows the change over time of COD, and
  • Fig. 4 (c) shows the change of the weight of the sample.
  • a molded body as shown in the figure was used.
  • the length of the carbon fiber strand was 30 cm, and the total weight of the five carbon fiber strand compacts bundled was about 0.3 g.
  • Five sets of the carbon fiber strand compact were prepared, and the weight was measured for each set.
  • the amount of sludge deposited by natural sedimentation for 30 minutes was measured.
  • the supernatant was collected and the COD was measured.
  • each sample was taken out, its weight was measured, and the increase in weight was defined as the biofilm fixation S, and the degree of biofilm fixation in each sample was examined.
  • Fig. 4 (a) the amount of settled sludge is not changed at all in the case of polyethylene tape, while the amount of settled sludge is changed in the case of the oscillating straight di-type carbon woven fiber strand. It is extremely fading. This is due to the fixing biofilm carbon ⁇ , said carbon ⁇ strand, 84 9 cm 3 phases question sludge, i.e., the microorganism has been fixed. According to visual observation, a large spherical mass adheres to the carbon fiber strand molded body, whereas almost no adherence is observed to the polyethylene tape. From this, it can be said that the biofilm fixation to carbon moth is significantly higher than the biofilm fixation to polyethylene tape.
  • Fig. 4 (c) also shows the change in the total weight of the carbon arrowhead fiber strand compact including the deposits on the polyethylene arrowhead compact and the polyethylene tape, and there was a very large difference between the two. That is, in the case of the former, after one day, there was a weight increase of 9.20 g to 31.lg (average 16.32 g) (weight ⁇ due to attached matter). On the other hand, the weight of the latter (increase in weight due to extraneous matter) was 0.1 g or less.
  • the carbon fiber strand compacts used in the experiment were the chochin type shown in Fig. 2 (d), the broom type shown in Fig. 2 (c), and the Akita Kanto type shown in Fig. 2 (e).
  • a mold was used.
  • a polyethylene tape was weighed the same as the carbon fiber strand molded body, and used as a comparative sample.
  • Approximately 500 ml of activated sludge was added to each of the four 5-liter air collection bottles, and the total volume was adjusted to approximately 4 liters with water. The contents of each air collection bottle were stirred well, allowed to settle naturally for 30 minutes, and the amount of sludge deposited was measured (the amount of settled sludge after 0 minutes).
  • Each of the weight-measured samples is suspended in a separate air-collection bottle containing activated sludge, and oxygen is sent by aeration, and artificial sewage adjusted to a COD of 1000 ppm is used as microbial nutrients. About 5% of the total volume was added. The liquid in the air-gathering bottle that had been stirred with warm air was collected, and the sludge was settled for 30 minutes, and then the COD of the supernatant was measured by a permanganate-powered rheometry. Polyethylene tape was treated in the same manner as above, and both were aerated for 1 day in the sun.
  • Figure 5 (a) is shows the settling sludge volume, sedimentation sludge amount after 1 day, since in the case of using the carbon O ⁇ strand is 74 2 to 8 84 cm 3, carbon O ⁇ strand the, so that the sludge 24 7 to 4 07 cm 3 is attached.
  • the amount of attached sludge is only 8 cm 3, which is about 130 to 1 Z50 in the case of carbon fiber strand.
  • “Akita-no-Kato” had the largest effect (large amount of sludge attached).
  • Fig. 5 (b) shows the measurement results of COD. In any case, what is the COD value in one day? ⁇ 11 ppm, and no remarkable difference was found due to the difference in the type of the test material and the morphology of the carbon fiber strand.
  • Fig. 5 (c) shows the sludge deposit attached to the carbon male fiber strand and polyethylene tape, and a marked difference was observed depending on the type and form of the test material. In other words, while carbon fiber strands increased by 22 to 38 g, polyethylene tape increased by only about 9 g. It was 2.7 to 4.2 times that of tape. Regarding the effect of the carbon fiber strand morphology on the amount deposited, the “broom type” was the largest. This result was consistent with the COD reduction in Fig. 5 (b). It is not inconsistent with the results of the settled sludge amount in Fig. 5 (a).
  • the carbon fiber is a PAN-based carbon fiber strand (12K, Toray, T-300 with the applied sizing agent removed) and a pitch-based carbon fiber strand (twisted two fibers) ) Were used. If a sizing agent layer is formed on the surface of the carbon fiber, the rate of attachment of microorganisms to the carbon fiber is poor, so if the sizing agent is applied to the carbon fiber strand, remove the sizing agent in advance. It is necessary to keep it.
  • the form of carbon moth fiber was “oscillating direct di type” shown in Fig. 1 and “broom type J” shown in Fig. 2 (c).
  • Fig. 6 (a) shows the change in the amount of settled sludge after one day.
  • the "oscillating straight type” is more stable than the "broom type”.
  • Fig. 6 (b) shows the change in the amount of COD.
  • the PAN type is larger than the pitch type, and moreover, the "panning type j"
  • Fig. 6 (c) shows the change in weight of the carbon fiber strand after one day.
  • the effect of the PAN system was larger than that of the pitch system (sludge adhesion amount, that is, the degree of biofilm fixation).
  • the weight increase is only 1.5 g, but this is the case where the test material is twisted and is out of the data.
  • PAN-based carbon fiber has a larger amount of sludge attached (biofilm fixation degree) than pitch-based carbon fiber, but this is not a difference between the types of carbon fibers that are bitic or PAN-based.
  • PNA-based carbon arrowhead fibers are in the form of strands
  • pitch-based carbon fibers are in the form of twisted yarns, and this twisted yarn shape reduces the contact surface area of carbon fibers and reduces the amount of attached sludge. This is probably the reason for this.
  • the carbon fiber also includes phenol-based carbon fiber and cellulose-based carbon fiber.
  • the present invention can be similarly applied to an activated carbon fiber having a large number of micropores formed on the surface.
  • the contact material in the first embodiment is merely an embodiment of the present invention, and the biofilm carrier 10 can be always kept at a constant water depth position by using a weight instead of the anchor bolt 13. It goes without saying that various structures can be considered depending on the specification of the arrangement of the biofilm carrier 10, such as a structure.
  • the biofilm carrier has high biocompatibility and biocompatibility and may become industrial waste. Since it is made of carbon fiber without carbon, it matches the natural environment.
  • the molded body formed into a predetermined shape by bundling, compressing, knitting, or maintaining a flexible and flexible carbon fibrous filament is similar to natural seaweed or algae under water.
  • Oscillation provides positive supply of oxygen to the microorganisms that make up the biofilm, promoting the degree of biofilm fixation and promoting the deterioration of water quality.
  • the carbon fiber filaments constituting the molded body oscillate, and the exposed surface area of the filament (interview on which the biofilm can settle) increases, so that the degree of fixation of the biofilm is increased. Water purification is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

A catalytic filtering material for a water purifier of catalytic oxidation type, which is excellent in biocompatibility, inexpensive, durable and also excellent in purifying effect. The material comprises biomembrane carriers (10) each prepared by bundling a number of carbon fiber filaments (12) and forming the obtained bundle into such a configuration that each filament (12) is waving like algae in water.

Description

明 細 書 接触酸化式水浄化装置における接触濂材 技術分野  Description Contact oxidizing material in contact oxidation type water purification equipment
本発明は、 上下水道や河川や湖沼等の水を生物膜を使って浄化する方 法 (以下、 これを接触酸化法という) に使用される生物膜担体である接 触爐材に関する。 背景技術  The present invention relates to a contact furnace material which is a biofilm carrier used in a method for purifying water from water and sewage, rivers, lakes and marshes using a biofilm (hereinafter referred to as a catalytic oxidation method). Background art
生物膜担体に形成されたバクテリァゃ原生動物や後生動物等からなる 生物膜と排水を接触させることにより、 排水中の B O Dや C O Dゃ微紬 な有機質 S S ·濁度成分等を除去する接触酸化法が知られている。  A contact oxidation method that removes BOD and COD-fine organic SS and turbidity components in wastewater by contacting wastewater with the biofilm composed of bacteria, protozoa and metazoans formed on the biofilm carrier. It has been known.
図 7は、 接触酸化法を使った河川の水浄化装 の一例を示している。 河川 1の水は、 スクリーン 2によって浮遊物を除去されて沈砂池 3に 送られ、 ここで小石や砂等を除去された後、 ボンブ Pによって接触酸化 水路 4に送られる。 接触酸化水路 4は、 蛇行する水路内に、 生物膜担体 である多数のブラスチック製の波板 5が所定の隙間をもって平行に積層 されて構成された接触 »材が配設された構造で、 水が波板 5 , 5間の隙 間を流れる際に、 波板 5の表面に形成されている生物膜と接触して浄化 される。 接触酸化水路 4を通ることで浄化された水は、 排水路 6から河 川 1に放流される。  Figure 7 shows an example of a river water purification system using the catalytic oxidation method. The water of the river 1 is sent to the sand basin 3 after the suspended matter is removed by the screen 2, where pebbles and sand are removed, and then sent to the contact oxidation channel 4 by the bomb P. The contact oxidation water channel 4 has a structure in which a number of plastic corrugated plates 5 as biofilm carriers are stacked in parallel with a predetermined gap in a meandering water channel, and a contact material is disposed. When the water flows through the gap between the corrugated sheets 5, 5, the water comes into contact with the biofilm formed on the surface of the corrugated sheets 5 and is purified. The water purified by passing through the contact oxidation channel 4 is discharged to the river 1 from the drain channel 6.
しかし前記した従来の接触據材を構成する生物膜担体としては、 軽量 にして加工のし易い合成樹脂が広く用いられているが、 合成樹脂は、 生 体親和性および生物親和性が低く、 さらにこれらが大量に放置されると 産業廃棄物ともなり、 公害問題を引き起こしかねないし、 地球環境上に おいても好ましくない。 また従来の生物膜担体は、 接触表面積を大きく するべく波形とされているが、 波板の表面積 (生物膜の付着形成される 面積) にはどうしても限界があった。 However, as a biofilm carrier constituting the conventional contact base material described above, a synthetic resin that is lightweight and easy to process is widely used, but the synthetic resin has low biocompatibility and biocompatibility, and If these are left in large quantities, they can become industrial waste and cause pollution problems, Is not preferred. Conventional biofilm carriers are corrugated in order to increase the contact surface area, but the surface area of corrugated sheets (the area on which biofilms are formed) is inevitably limited.
そこで発明者は、 自然界に存在する難分解性物質である炭素材に注目 した。 即ち、 まず第 1に、 炭素材は生体親和性および生物親和性に非常 に優れている。 第 2に、 炭素材はブラスの罨荷をもつことから、 主とし てマイナスの鼋荷をもつ微生物にとっては非常に定着し易い場所である と考えられる。 また炭素材には、 各種黒鉛材, ガラス伏炭素材, カーボ ンブラック, 活性炭, 木炭, コークス等様々なものがある。 炭素材を使 用する際には、 用途に応じた形状に成形加工して使用する。 そして炭素 材の 1つに炭素維維がある。 炭素繊維は、 比強度, 比弾性率および耐薬 品性等に優れていることから、 宇宙 ·航空産業やスポーツ用品等に広く 使用されている。 第 3に、 炭素維維は、 榭脂ゃコンクリートと複合化す ることで成形できることは勿論、 炭素雄維単独でも、 炭素繊維自体に可 換性があることから任意の形態に成形でき、 かつ耐久性にも優れている 。 さらに、 炭素維維によって成形した生物膜担体への微生物 (生物膜) の定着度を実験で調べたところ、 非常に良好な結果が得られ、 この結果 を基に、 発明者は本発明を提案するにいたったものである。  Therefore, the inventor paid attention to carbon material, which is a hardly decomposable substance existing in nature. First of all, carbon materials are extremely excellent in biocompatibility and biocompatibility. Secondly, since carbon materials have a brass compress, it is considered to be a very easily established place for microorganisms with mainly negative loads. There are various types of carbon materials such as various graphite materials, glassy carbon materials, carbon black, activated carbon, charcoal, and coke. When using a carbon material, it should be formed into a shape suitable for the application. One of the carbon materials is carbon fiber. Carbon fiber is widely used in the aerospace and aviation industries, sports equipment, etc. because of its excellent specific strength, specific elastic modulus, and chemical resistance. Thirdly, carbon fibers can be formed by combining them with resin and concrete, and of course, carbon fibers alone can be formed into any shape because the carbon fibers themselves are interchangeable, and are durable. Also excellent in nature. Furthermore, when the degree of colonization of microorganisms (biofilm) on the biofilm carrier formed by carbon fiber was examined by experiments, very good results were obtained. Based on these results, the inventors proposed the present invention. That's what it is.
本発明は前記従来技術の問題点および前記した発明者による考察のも とになされたもので、 その目的は、 生体親和性および生物親和性に優れ 、 安価にして耐久性があり、 かつ浄化作用に優れた接触酸化式水浄化装 置における接触濂材を提供することにある。 発明の開示  The present invention has been made based on the problems of the prior art and the consideration by the inventor described above, and its object is to have excellent biocompatibility and biocompatibility, to be inexpensive and durable, and to have a purifying action. An object of the present invention is to provide a contact oxidation material in a contact oxidation type water purification apparatus which is excellent in terms of quality. Disclosure of the invention
前記目的を達成するために、 請求項 1に係わるに接触酸化式水浄化装 置における接触濂材ぉ 、ては、 生物膜担体を炭素織維によつて構成する ようにしたもので、 生物膜担体を構成する炭素繊維は生体親和性および 生物親和性が高く、 自然環境に逆行しない。 また炭素織維はプラスの電 荷を帯び易く、 マイナスの鼋荷を帯び易い微生物が付着し易い。 従って 炭素織維への生物膜の定着度が高い。 To achieve the above object, the contact oxidation material in the catalytic oxidation water purifying apparatus according to claim 1, wherein the biofilm carrier is made of carbon fiber. In this way, the carbon fiber constituting the biofilm carrier has high biocompatibility and biocompatibility, and does not go against the natural environment. In addition, carbon fibers are easily charged with a positive charge, and microorganisms that are easily charged with a negative load are easily attached. Therefore, the degree of biofilm fixation on carbon fibers is high.
請求項 2においては、 請求項 1記載の接触酸化式水浄化装置における 接触爐材において、 生物膜担体を、 多数の柔軟かつ可攙な炭素織維フィ ラメントを結束したり, 圧箱したり, 緵んだり, 繊つたりして、 水中下 で揺動できる所定の形想に成形した成形体によって構成するようにした もので、 柔軟かつ可換な炭素鏃維フイラメントが結束されたり圧縮され たり編まれたり維られたりして所定形状に成形された成形体は、 水中下 では天然の海草や藻のように揺動することで、 生物膜を構成する微生物 に微生物の活動を促進させる上で不可欠な酸素を供給する。  According to claim 2, in the contact furnace material in the catalytic oxidation water purification apparatus according to claim 1, the biofilm carrier is formed by binding a large number of flexible and flexible carbon fiber filaments, by pressing a crucible, It is made up of a molded product that is formed into a predetermined shape that can be swung under water or delicate and oscillates under water. A flexible and interchangeable carbon arrowhead filament is bound or compressed. The molded body that has been formed into a predetermined shape by being knitted or retained can oscillate underwater like natural seagrass or algae, promoting the activity of the microorganisms that make up the biofilm. Supply essential oxygen.
請求項 3においては、 請求項 2記載の接触酸化式水浄化装 aにおける 接触濂材において、 炭素繳維フィラメントから構成された成形体を、 両 端部を結束したストラン ド状, ネッ ト伏, 組紐伏, ふさ付ス トラン ド状 , 技付ストランド状, ちょうちん型ストラン ド状, ほうき型ストラン ド 状, 秋田のかんとう型ストラン ド状, フヱルト状等、 水中下での炭素織 維フイ ラメントの露出表面積が大きくなる所定の形想に成形するように したもので、 水中下では成形体を構成する炭素維維フイラメ ントがそれ ぞれ揺動して、 炭素雄維フィ ラメン トの露出表面積 (生物膜の定着でき る面積) が大きくなる。 図面の簡単な説明  According to a third aspect of the present invention, in the contact oxidation material in the catalytic oxidation water purifying apparatus a according to the second aspect, the molded body composed of carbon fiber filaments is formed into a strand having both ends bound, For example, braided strands, strands with tufts, strands with tricks, lanterns, brooms, Akita's flexible strands, filters, etc. Under the water, the carbon fiber filaments that make up the molded body oscillate, and the exposed surface area of the carbon male fiber filament is increased. The area on which the biofilm can settle) increases. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明の第 1の実施例である接触據材を構成する生物膜担体 の概要図であり、 第 2図は本発明の接触 ¾材を構成する各種生物膜担体 の概要図、 第 3図は炭素維維ス トラン ド, ナイロン紐およびボリェチレ ンテープにおける CODの変化を示す図、 第 4図の (a) は炭素繊維ス トランドとボリェチレンテープにおける沈降汚泥量の変化特性図、 ( b ) は炭素鏃維ストランドとボリエチレンテープにおける CODの経時変 化特性図、 (c) は炭素繊維ストランドとボリエチレンテープにおける 重量変化特性図、 第 5図の (a) は炭素繊維ストランドの形態別沈降汚 泥量の変化特性図、 (b) は炭素鏃維ストランドの形態別 COD経時変 化特性図、 ( c ) は炭素繳維ストランドの形想別重量変化特性図、 第 6 図の (a) は炭素繳維の種類別沈降汚泥量の変化特性図、 (b) は炭素 織維の種類別 COD経時変化特性図、 (c) は炭素雄維の種類別重量変 化特性図、 図 7は従来の接触酸化法による水净化装 の全体構成図であ る。 発明を実施するための最良の形 SS FIG. 1 is a schematic diagram of a biofilm carrier constituting a contact base material according to a first embodiment of the present invention. FIG. 2 is a schematic diagram of various biofilm carriers constituting a contact substrate of the present invention. Fig. 3 shows carbon fiber strands, nylon strings and boletilles. Fig. 4 (a) is a graph showing the change in settled sludge amount between carbon fiber strand and boletylene tape, and (b) is the COD change between carbon arrowhead strand and polyethylene tape. Fig. 5 (c) is a graph showing the change in weight between carbon fiber strands and polyethylene tape, Fig. 5 (a) is a graph showing the change in the amount of settled sludge by carbon fiber strand type, and (b) is a graph showing the change over time. COD time-dependent characteristic diagram of carbon arrow fiber strand by form, (c) is a graph of weight change characteristic of carbon fiber strand by shape, and (a) of Fig. 6 is the change of settled sludge amount by type of carbon fiber strand. Characteristic diagram, (b) COD time-dependent characteristic diagram for each type of carbon fiber, (c) Weight change characteristic diagram for each type of carbon fiber, and Fig. 7 shows the overall configuration of a conventional water oxidation device using the catalytic oxidation method. It is a figure. BEST MODE FOR CARRYING OUT THE INVENTION SS
次に、 本発明の実施例を図面に基づいて説明する。  Next, embodiments of the present invention will be described with reference to the drawings.
第 1図は本発明の第 1の実施例である接触 «材を示す図である。  FIG. 1 is a view showing a contact member according to a first embodiment of the present invention.
符号 1 0は、 例えば直径 7 m〜 l 5 imの炭素雄維フィ ラメン ト 1 2の多数本 (数万本) が束ねられて、 両端部が結束された炭素雄維スト ラン ドから構成された生物膜担体である。 この生物膜担体 1 0の一端部 は、 例えば図 7に示すような接触酸化水路 4の底に固定されたアンカー ボルト 1 3に支持されたロープ等の紐状連結部材 1 4に連結支持され、 他端部はフロート 1 5にロープ等の紐状連結部材 1 6を介し連結された パイプ 1 7に連結支持されて、 生物膜担体 1 0が所定間隔に配列された 構造の接触濂材が構成されている。  Reference numeral 10 denotes a carbon male fiber strand in which, for example, a large number (tens of thousands) of carbon male filaments 12 having a diameter of 7 m to 15 im are bundled and both ends are bound. Biofilm carrier. One end of the biofilm carrier 10 is connected and supported by a string-like connecting member 14 such as a rope supported by anchor bolts 13 fixed to the bottom of the contact oxidation water channel 4 as shown in FIG. 7, for example. The other end is connected to and supported by a pipe 17 connected to a float 15 via a string-like connecting member 16 such as a rope, thereby forming a contact layer material having a structure in which biofilm carriers 10 are arranged at predetermined intervals. Have been.
生物膜担体 1 0は、 各フィ ラメン ト 1 2の表面に塗布されている結束 剤の粘性によって、 空気中では見掛け上一本の束となっているが、 海中 や水中では、 各フィラメン ト 1 2は互いにばらけた紡錘型となって、 潮 の動きに応じて海草の如く揺動できる。 このため水中においては、 生物 膜担体 1 0 (炭素縑維フイラメン ト 1 2 ) の微生物との接触表面積が增 えて、 それだけ微生物が生物膜担体 1 0 (生物膜担体 1 0を構成する炭 素織維フイラメント 1 2 ) に付着し易く、 生物膜の定着速度および定着 里も多い。 The biofilm carrier 10 is apparently a single bundle in the air due to the viscosity of the binder applied to the surface of each filament 12, but in the sea or water, the filament 1 2 is a spindle type separated from each other, the tide It can rock like seaweed in response to the movement of. For this reason, in water, the contact surface area of the biofilm carrier 10 (carbon fiber filament 12) with the microorganisms is increased, and the microorganisms are accordingly exposed to the biofilm carrier 10 (the carbon woven fabric constituting the biofilm carrier 10). It easily adheres to fiber filaments 1 2) and has a high rate of biofilm settlement and settlement.
また生物膜担体としては、 第 1図に示すような両端を結束したストラ ンド状成形体の他に、 第 2図 (a ) 〜 (g ) に示す様な種々の形態が考 えられる。  As the biofilm carrier, various forms as shown in FIGS. 2 (a) to (g) are conceivable, in addition to the strand-shaped molded article having both ends bound as shown in FIG.
第 2図 (a ) は、 炭素維維フイラメン ト 1 2を編んで組紐状となし、 長手方向所定間隔にフィラメント 1 2をふさ状に膨出させた組紐状スト ランド成形体である。  FIG. 2 (a) shows a braided strand formed body in which the carbon fiber filaments 12 are braided into a braid shape, and the filaments 12 are bulged at predetermined intervals in the longitudinal direction.
第 2図 (b ) は、 炭素織維フィラメント 1 2のストランド基幹部 1 2 aから幾本にもストランドを技分かれさせた樹技状ストランド成形体で める。  Fig. 2 (b) shows a tree-like strand formed by dividing the strand into several strands from the strand backbone 12a of the carbon fiber filament 12.
第 2図 ( C ) は、 炭素繳維フイラメント 1 2のストランド基幹部 1 2 aに複数本の炭素織維ストランド 1 2 bを連結一体化したほうき型スト ランド成形体である。  FIG. 2 (C) shows a broom-type strand formed by connecting and integrating a plurality of carbon woven strands 12 b with the strand base 12 a of the carbon fiber filament 12.
第 2図 ( d ) は、 炭素鏃維フイラメン ト 1 2のストランド基幹部 1 2 aの途中に複数本の円弧型のストランド 1 2 cを形成したちょうちん型 ス トランド成形体である。  FIG. 2 (d) shows a lantern-shaped strand formed by forming a plurality of arc-shaped strands 12 c in the middle of the strand base 12 a of the carbon arrowhead filament 12.
第 2図 ( e ) は、 炭素織維フイラメント 1 2のストランド基幹部 1 2 aに長手方向所定間隔に炭素繊維ス トラン ド 1 2 bを連結一体化した秋 田のかんとう型ストランド成形体である。  Fig. 2 (e) shows an Akita straight strand-shaped molded product in which carbon fiber strands 12b are connected to and integrated with the strand base 12a of the carbon fiber filament 12 at predetermined intervals in the longitudinal direction. is there.
第 2図 ( f ) は、 所定間隔にローブ等の紐状連結部材 2 2を配設し、 炭素織維ストランド 1 2 bを捩じって各ローブ間にストランドカ リング 状となる様に連結一体化したものである。 符号 2 4は、 連結部を示す。 第 2図 (g ) は、 炭素繊維ストラン ド 1 2 bを亀甲状に編んだネッ ト 状ストランド成形体である。 Fig. 2 (f) shows the arrangement of the cord-like connecting members 22 such as lobes at predetermined intervals, and twisting the carbon woven strands 12b to connect them so as to form a strand culling between the lobes. It is integrated. Reference numeral 24 indicates a connecting portion. Fig. 2 (g) shows a net-shaped strand formed by braiding carbon fiber strands 12b in a turtle-shape.
また炭素鏃維フイラメントの成形体のその他の例としては、 ストラン ドをフエルト状に圧縮成形したもの、 ストランドに巻きぐせをつけてコ ィル状にしたもの、 撚り糸状にしたもの、 平織あるいは朱子織等の各種 様式で織った維物状成形体等が考えられる。  Other examples of the carbon arrowhead filament shaped body include a felt formed by compressing a strand into a felt, a strand wound into a coil, a twisted thread, a plain weave or a satin. Fiber-shaped molded articles woven in various forms such as weaving are conceivable.
なお生物膜担体としては、 生物膜担体構成部材である炭素雄維フイ ラ メン ト 1 2が海中や水中でばらけて摇勛できるとともに、 生物膜担体で ある炭素鏃維フィラメ ン ト 1 2の微生物との接触表面積が大きくなる形 態の成形体であれば、 前記した形態の成形体に限るものではない。  As a biofilm carrier, a carbon male fiber filament 12 which is a component of the biofilm carrier can be separated in the sea or water, and a carbon arrowhead filament 12 which is a biofilm carrier can be used. The molded body is not limited to the above-mentioned molded body as long as the molded body has a large contact surface area with the microorganism.
第 3図は、 生物膜担体の試材として、 組紐状の炭素繊維ストランド ( 以下、 組紐という) , 第 1図に示すような形憨の紐状の炭素織維ストラ ンド (以下、 揺動直線型ストランドという) , フ Xルト状炭素維維 (以 下、 フヱルトという) , ナイロン紐およびボリエチレンテープをそれぞ れ人工下水を入れた水槽に吊るして、 人工下水中の C O D (化学的酸素 要求量) の変化特性を調べた結果を示す図表である。  Fig. 3 shows braided carbon fiber strands (hereinafter referred to as braids) and carbon fiber strands (Fig. 1), as shown in Fig. 1. Type strand), X-like carbon fiber (hereafter referred to as “filt”), nylon string and polyethylene tape are each suspended in an aquarium containing artificial sewage, and COD (chemical oxygen demand) in artificial sewage is suspended. 6 is a table showing the results of examining the change characteristics of the amount.
試材である組紐, 揺動直線型ストランド, フ ルト, ナイロン紐およ びボリエチレンテープは、 いずれも同一重量 ( 1 8 . 9 g ) で、 第 1図 に示すように、 水中で揺動できるように上下両端を固定した。  The braids, oscillating linear strands, flutes, nylon strings, and polyethylene tape, all of which were the same weight (18.9 g), oscillated in water as shown in Fig. 1. The upper and lower ends were fixed so that they could be used.
透明水槽に入れる人工下水は、 まず水 1 リッ トルの中に試薬 (ダルコ ース, 硫酸アンモニゥ厶, リ ン酸二カリウム, 塩化ナト リウム, 硫酸マ グネシゥム, 塩化力リゥム等) を溶かして B O D 5 0 0 p p m相当の人 ェ下水をつく り、 この人工下水に対し 1 0倍容の池水を加え、 全容を約 8 0 リ ツ トルとした水を用いた。 そして前記した各試材 (組紐, 揺動直 捸型ストランド, フヱルト, ナイロン紐およびボリエチレンテープ) を 水槽内に吊るし、 瞜気を行いながら、 約 1週間日向でこれらの試材に微 生物を定着させる実験を行った。 そして人工下水中の CODの変化を過 マンガン酸力リウム滴定法により測定した。 Artificial sewage in a clear water tank is prepared by dissolving reagents (dalcos, ammonium sulfate, dipotassium phosphate, sodium chloride, magnesium sulfate, chlorine chloride, etc.) in one liter of water and then discharging BOD 5 100 ppm of human sewage was prepared, and 10 times the volume of pond water was added to this artificial sewage, and water with a total volume of about 80 liters was used. Each of the above-mentioned test materials (braid, oscillating straight type strand, filter, nylon string and polyethylene tape) is suspended in a water tank, and while being aired, the test materials are finely irradiated for about one week in the sun. An experiment to establish the organism was performed. The change in COD in the artificial sewage was measured by potassium permanganate titration.
第 3図 (a) は第 1回目の実験結果 (3日後) 、 第 3図 (b) は第 2 回目の実験結果 ( 1 日後) をそれぞれ示すものである。 第 1回目の実験 (第 3図 (a) ) によれば、 いずれの試材においても COD値の差があ まり見られないが、 第 2回目の実験 (第 3図 (b) ) によれば、 試材の 違いにより COD値に大きな差が見られる。 即ち、 炭素雄維材料で、 し かも表面積の大きいもの (フェルト) を用いた場合に最も COD値の滅 少が著しい。  Figure 3 (a) shows the results of the first experiment (after 3 days), and Figure 3 (b) shows the results of the second experiment (after 1 day). According to the first experiment (Fig. 3 (a)), there is little difference in the COD value in any of the samples, but the second experiment (Fig. 3 (b)) For example, there is a large difference in COD value due to the difference in test materials. That is, the COD value is most remarkably reduced when a carbon male fiber material having a large surface area (felt) is used.
第 4図は、 試材である PAN系の炭素雄維ストラン ド ( 1 2 K揺動直 線型ストランド) と比較材料であるテープ状ボリエチレンをそれぞれ活 性汚泥中で曝気し、 これらの試材への生物膜の定着度の比較を行い、 材 料の違いによる生物膜定着度を検討した図表で、 第 4図 (a) は 1 日間 放置後 3 0分沈降させたときの汚泥量を、 第 4図 (b) は CODの経時 変化を、 第 4図 (c) は試材の重 1の変化をそれぞれ示している。  Fig. 4 shows the results obtained by aerating a PAN-based carbon male fiber strand (12 K oscillating linear strand) as a test material and a tape-shaped polyethylene as a comparative material in activated sludge. Fig. 4 (a) shows the amount of sludge when settled for 30 minutes after standing for 1 day. Fig. 4 (b) shows the change over time of COD, and Fig. 4 (c) shows the change of the weight of the sample.
揺動直線型の炭素鏃維ストランド成形体は、 炭素戡維ストラン ド ( 1 2K) を 5本 ( 1 2Kx 5 = 60K) 束ねて、 上端部と下端部をそれぞ れ結束一体化した第 1図に示すような成形体を用いた。 炭素織維ストラ ン ドの長さは 30 cmで、 5本束ねた炭素繳維ストラン ド成形体全体の 重量は約 0. 3 gであった。 この炭素縑維ストランド成形体を 5組用意 し、 一組毎に重量を測定しておいた。  The oscillating linear carbon arrowhead strand formed body is composed of five carbon strands (12K) bundled together (12Kx5 = 60K), and the upper and lower ends are bound and integrated, respectively. A molded body as shown in the figure was used. The length of the carbon fiber strand was 30 cm, and the total weight of the five carbon fiber strand compacts bundled was about 0.3 g. Five sets of the carbon fiber strand compact were prepared, and the weight was measured for each set.
また、 2つの 5 リッ トル集気瓶に活性汚泥をそれぞれ約 5 0 0 m 1ず つ加え、 水で全容を約 3リッ トルとした。 集気瓶の内容物はよく攙拌し 、 3 0分間自然沈降させ、 沈積した汚泥量の測定を行った ( 0分後の沈 降汚泥量) 。 次に、 重量を測定してある炭素繊維ストラン ド成形体 5組 を活性汚泥の入った集気瓶中に吊るし、 ¾気した。 また BODを 1 0 0 0 p pm相当に調整した人工下水を、 微生物の養分として全容の約 5% を加えた。 曝気で擾拌されている集気瓶中の液を採取し、 3 0分汚泥を 沈降させたのち、 上澄み液の CODを過マンガン酸力リゥム滴定法によ り測定した。一方、 重量が 0. 3 g〜0. 4 gの範囲に調整されたボリ エチレンテープ (輻 5 cm) 5組についても、 上記と同様の処理を行い 、 共に 1 日間日向で曝気しながら放置した。 Approximately 500 ml of activated sludge was added to each of the two 5-liter air collection bottles, and the total volume was reduced to approximately 3 liters with water. The contents of the air collection bottle were stirred well, allowed to settle naturally for 30 minutes, and the amount of sludge deposited was measured (the amount of settled sludge after 0 minutes). Next, five sets of carbon fiber strand molded bodies whose weights were measured were suspended in an air-collecting bottle containing activated sludge and aerated. BOD is 1 0 0 About 5% of the total volume of artificial sewage adjusted to 0 ppm was added as microbial nutrients. The liquid in the air-gathering bottle stirred by aeration was collected, the sludge was settled for 30 minutes, and then the COD of the supernatant was measured by the permanganate-powered rheometry. On the other hand, 5 sets of polyethylene tape (radiation 5 cm) adjusted to a weight in the range of 0.3 g to 0.4 g were subjected to the same treatment as above, and both were left for 1 day in the sun while aerated. .
1 日間放 後、 30分自然沈降させて沈積した汚泥量の測定を行った 。 さらに、 上澄み液を採取し CODを測定した。 また、 各試材を取り出 してその重量を測定し、 重量の増加量を生物膜の定着 Sとして、 各試材 における生物膜定着度を検討した。  After one day of release, the amount of sludge deposited by natural sedimentation for 30 minutes was measured. In addition, the supernatant was collected and the COD was measured. In addition, each sample was taken out, its weight was measured, and the increase in weight was defined as the biofilm fixation S, and the degree of biofilm fixation in each sample was examined.
第 4図 (a) では、 ボリエチレンテープの場合には、 全く沈降汚泥量 に変化が見られないのに対し、 揺動直棣型炭素織維ストランド成形体の 場合には、 沈降汚泥量が著しく滅少している。 これは炭素縑維に生物膜 が定着したことによるもので、 炭素繳維ストランドに、 84 9 cm3相 当の汚泥、 即ち、 微生物が定着したと言える。 また視覚的観察によると 、 炭素繳維ストランド成形体には、 球形状の大きな塊が付着しているの に対し、 ボリエチレンテープには付着物がほとんど見られない。 このこ とからもボリエチレンテープへの生物膜定着度に比べて炭素蛾維への生 物膜定着度が著しく高いと言える。 In Fig. 4 (a), the amount of settled sludge is not changed at all in the case of polyethylene tape, while the amount of settled sludge is changed in the case of the oscillating straight di-type carbon woven fiber strand. It is extremely fading. This is due to the fixing biofilm carbon縑維, said carbon繳維strand, 84 9 cm 3 phases question sludge, i.e., the microorganism has been fixed. According to visual observation, a large spherical mass adheres to the carbon fiber strand molded body, whereas almost no adherence is observed to the polyethylene tape. From this, it can be said that the biofilm fixation to carbon moth is significantly higher than the biofilm fixation to polyethylene tape.
また、 第 4図 (c) では、 炭素鏃維ストランド成形体とボリエチレン テープにおける付着物を含む総重量の変化が示されており、 両者の間に は、 極めて大きな差があった。 即ち、 前者の場合には、 1 日後に、 9. 20 g〜3 1. l g (平均 1 6. 32 g) の重量増 (付着物による重量 增) があった。 これに対し、 後者における重量增 (付着物による重量増 ) は 0. 1 g以下であった。  Fig. 4 (c) also shows the change in the total weight of the carbon arrowhead fiber strand compact including the deposits on the polyethylene arrowhead compact and the polyethylene tape, and there was a very large difference between the two. That is, in the case of the former, after one day, there was a weight increase of 9.20 g to 31.lg (average 16.32 g) (weight 增 due to attached matter). On the other hand, the weight of the latter (increase in weight due to extraneous matter) was 0.1 g or less.
次に、 炭素繊維ストランド成形体の形態の生物膜定着度への影響につ いて、 同様の実験を行った。 Next, the effect of the shape of the carbon fiber strand molded body on the biofilm fixation degree is described. And conducted a similar experiment.
実験に用いた炭素縑維ストランド成形体は、 第 2図 (d) に示すちょ うちん型と、 第 2図 (c) に示すほうき型と、 第 2図 (e) に示す秋田 のかんとう型を用いた。 またボリエチレンテープを、 炭素織維ストラン ド成形体と同重量を量りとり、 比較試材とした。 4個の 5リッ トル集気 瓶に活性汚泥をそれぞれ約 5 0 0 m lずつ加え、 水で全容を約 4 リッ ト ルとした。 各集気瓶の内容物はよく攪拌し、 3 0分間自然沈降させ沈積 した汚泥量の測定を行った ( 0分後の沈降汚泥量) 。  The carbon fiber strand compacts used in the experiment were the chochin type shown in Fig. 2 (d), the broom type shown in Fig. 2 (c), and the Akita Kanto type shown in Fig. 2 (e). A mold was used. A polyethylene tape was weighed the same as the carbon fiber strand molded body, and used as a comparative sample. Approximately 500 ml of activated sludge was added to each of the four 5-liter air collection bottles, and the total volume was adjusted to approximately 4 liters with water. The contents of each air collection bottle were stirred well, allowed to settle naturally for 30 minutes, and the amount of sludge deposited was measured (the amount of settled sludge after 0 minutes).
重量測定をした各試材を活性汚泥の入ったそれぞれの集気瓶内に吊る し、 曝気で酸素を送りながら、 また COD 1 0 00 p pm相当に調整し た人工下水を、 微生物の養分として全容の約 5%を加えた。 暖気で «拌 されている集気瓶中の液を採取し、 30分汚泥を沈降させた後、 上澄み 液の CODを過マンガン酸力リゥム滴定法により測定した。 ボリエチレ ンテープについても上記と同様の処理を行い、 共に 1 日間日向で曝気し ながら放 fiした。  Each of the weight-measured samples is suspended in a separate air-collection bottle containing activated sludge, and oxygen is sent by aeration, and artificial sewage adjusted to a COD of 1000 ppm is used as microbial nutrients. About 5% of the total volume was added. The liquid in the air-gathering bottle that had been stirred with warm air was collected, and the sludge was settled for 30 minutes, and then the COD of the supernatant was measured by a permanganate-powered rheometry. Polyethylene tape was treated in the same manner as above, and both were aerated for 1 day in the sun.
第 5図 (a) は、 沈降汚泥量を示すもので、 1 日後の沈降汚泥量は、 炭素織維ストランドを用いた場合には 74 2〜8 84 cm3であること から、 炭素雄維ストランドには、 24 7〜4 07 cm3の汚泥が付着し たこととなる。 一方、 ボリエチレンテープの場合には、 付着汚泥量がわ ずか 8 cm3で、 炭素維維ストランドの場合の約 1 30〜 1 Z5 0程 度である。 また炭素繳維ストランドの形態による付着量への影響では、 「秋田のかんとう型」 が最も効果大 (汚泥付着量大) であった。 Figure 5 (a) is shows the settling sludge volume, sedimentation sludge amount after 1 day, since in the case of using the carbon O維strand is 74 2 to 8 84 cm 3, carbon O維strand the, so that the sludge 24 7 to 4 07 cm 3 is attached. On the other hand, in the case of polyethylene tape, the amount of attached sludge is only 8 cm 3, which is about 130 to 1 Z50 in the case of carbon fiber strand. Regarding the effect of carbon fiber strand morphology on the amount of deposit, “Akita-no-Kato” had the largest effect (large amount of sludge attached).
第 5図 (b) は、 CODの測定結果を示すもので、 いずれの場合にも 、 一日で COD値は?〜 1 1 p pm程度減少しており、 試材の種類およ び炭素繊維ストランドの形態の違いによる顕著な差異は見られなかった 第 5図 (c) は、 炭素雄維ストランドおよびボリエチレンテープに付 着した汚泥置を示すもので、 試材の種類と形態の違いによって頭著な差 異が見られた。 即ち、 炭素縑維ストランドの場合には、 22〜38 gも 増加したのに対し、 ボリエチレンテープの場合にはわずか 9 g程度の増 加で、 炭素繳維ストランドの付着汚泥置は、 ボリエチレンテープの場合 の 2. 7〜4. 2倍であった。 炭素繊維ストランドの形態による付着量 への影響では、 「ほうき型」 の場合が最も大であった。 この結果は、 第 5図 (b) の COD減少量とも一致していた。 また第 5図 (a) の沈降 汚泥量の結果とも矛盾しない。 Fig. 5 (b) shows the measurement results of COD. In any case, what is the COD value in one day? ~ 11 ppm, and no remarkable difference was found due to the difference in the type of the test material and the morphology of the carbon fiber strand. Fig. 5 (c) shows the sludge deposit attached to the carbon male fiber strand and polyethylene tape, and a marked difference was observed depending on the type and form of the test material. In other words, while carbon fiber strands increased by 22 to 38 g, polyethylene tape increased by only about 9 g. It was 2.7 to 4.2 times that of tape. Regarding the effect of the carbon fiber strand morphology on the amount deposited, the “broom type” was the largest. This result was consistent with the COD reduction in Fig. 5 (b). It is not inconsistent with the results of the settled sludge amount in Fig. 5 (a).
次に炭素織維の種類およびストランドの形による生物膜定着度への影 響について検討した。  Next, the effect of the type of carbon fiber and the shape of the strand on biofilm settlement was examined.
炭素織維は PAN系炭素繊維ストランド ( 1 2K, 東レ, T— 30 0 であって、 塗布されたサイジング剤を除去したもの) とピッチ系炭素縑 維の撚糸 (2本のファイバーを撚つたもの) の 2種類を用いた。 炭素繳 維表面にサイジング剤層が形成されていると、 微生物の炭素雄維への付 着率が悪いので、 炭素織維ストランドにサイジング剤が塗布されている 場合には、 予めサイジング剤を除去しておくことが必要である。 また炭 素蛾維の形態としては、 第 1図に示す 「揺動直棣型」 および第 2図 (c ) に示す 「ほうき型 J であった。 前者の場合は、 長さ 4 5 cm (重さ約 0. 3 g) の炭素蛾維ストランドを 5本束ねて用いた。 後者 Γほうき型 」 では、 長さ 30 cmの 1 2Kストランド 5本を束ねて、 重さを約 1. 6 gとした。 第 6図 (a) は、 一日後の沈降汚泥量の変化を示すが、 P AN系炭素鏃維ストランドの場合には、 「揺動直捸型」 の方が 「ほうき 型」 よりも定着量が多い。 また第 6図 (b) は、 COD量の変化を示す 、 PAN系の方がピッチ系より大きく、 しかも 「揺動直棣型 j よりも The carbon fiber is a PAN-based carbon fiber strand (12K, Toray, T-300 with the applied sizing agent removed) and a pitch-based carbon fiber strand (twisted two fibers) ) Were used. If a sizing agent layer is formed on the surface of the carbon fiber, the rate of attachment of microorganisms to the carbon fiber is poor, so if the sizing agent is applied to the carbon fiber strand, remove the sizing agent in advance. It is necessary to keep it. In addition, the form of carbon moth fiber was “oscillating direct di type” shown in Fig. 1 and “broom type J” shown in Fig. 2 (c). In the former case, the length was 45 cm ( Five carbon moth strands weighing about 0.3 g) were bundled and used. In the latter “broom type”, five 12K strands 30 cm long were bundled and weighed about 1.6 g. And Fig. 6 (a) shows the change in the amount of settled sludge after one day. In the case of the PAN-based carbon arrowhead strand, the "oscillating straight type" is more stable than the "broom type". There are many. Fig. 6 (b) shows the change in the amount of COD. The PAN type is larger than the pitch type, and moreover, the "panning type j"
「ほうき型」 の方が大であった。 また第 6図 (c ) は一日後における炭素織維ストランドの重量変化を 示す。 P A N系の方が、 ピッチ系よりも効果は大 (汚泥付着量、 即ち、 生物膜定着度大) であった。 P A N系の場合のデータの中に、 重量の増 加が 1 . 5 gしかないものがあるが、 これは試材が捩じれてしまった場 合であり、 データ外のものである。 またピッチ系よりも P A N系の炭素 繊維の方が汚泥の付着量 (生物膜の定着度) は大であるが、 これはビッ チ系か P A N系かという炭素維維の種類のちがいというよりも、 P N A 系の炭素鏃維がストランド状であるのに対しピッチ系の炭素繊維では撚 り糸状態になっており、 この撚り糸状想が炭素織維の接触表面積を小さ くして付着汚泥量を低下させた理由と考えられる。 The "broom type" was larger. Fig. 6 (c) shows the change in weight of the carbon fiber strand after one day. The effect of the PAN system was larger than that of the pitch system (sludge adhesion amount, that is, the degree of biofilm fixation). In the case of the PAN system, there is a case where the weight increase is only 1.5 g, but this is the case where the test material is twisted and is out of the data. In addition, PAN-based carbon fiber has a larger amount of sludge attached (biofilm fixation degree) than pitch-based carbon fiber, but this is not a difference between the types of carbon fibers that are bitic or PAN-based. In contrast, PNA-based carbon arrowhead fibers are in the form of strands, whereas pitch-based carbon fibers are in the form of twisted yarns, and this twisted yarn shape reduces the contact surface area of carbon fibers and reduces the amount of attached sludge. This is probably the reason for this.
前記した第 3図〜第 6図に示す実験結果から、 炭素繳維は、 ナイロン ゃボリエチレンと比べて短時間のうちに多量の微生物が付着する、 即ち 、 非常に生物膜定着度に優れているといえる。  From the experimental results shown in FIGS. 3 to 6 above, carbon fiber adheres a larger amount of microorganisms in a short time than nylon polyethylene, that is, has a very high degree of biofilm settlement. It can be said that.
しかも、 ^素織維フイラメントがばらけて表面積が大きい形 «である 程、 生物膜定着度が高いといえる。  In addition, it can be said that the higher the surface area of the fiber weave filaments, the higher the degree of biofilm settlement.
なお前記した実施例では、 P A N系炭素繳維とピッチ系炭素縑維につ いてのみ言及したが、 炭素繳維には、 その他にフ Xノール系炭素繊維お よびセルロース系炭素雄維もあって、 これらも所定の形態に成形するこ とで、 本発明を同様に適用することができることは勿論、 表面に多数の 微钿孔を構築した活性炭素繊維にも同様に適用することができる。 また前記第 1の実施例における接触 «材は本発明の一実施例にすぎず 、 アンカーボルト 1 3に代えて重りを使用することで、 生物膜担体 1 0 を常に一定の水深位置に保持できる構造とする等、 生物膜担体 1 0の配 設の仕様により種々の構造のものが考えられることはいうまでもない。 産業上の利用可能性 以上の説明から明らかなように、 請求項 1に係る接触酸化式水浄化装 置における接触 ¾材によれば、 生物膜担体が、 生体親和性および生物親 和性が高く産業廃棄物となるおそれのない炭素織維によって構成されて いるので、 自然環境に合致する。 In the above-described embodiment, only the PAN-based carbon fiber and the pitch-based carbon fiber were mentioned. However, the carbon fiber also includes phenol-based carbon fiber and cellulose-based carbon fiber. However, by forming them into a predetermined form, the present invention can be similarly applied to an activated carbon fiber having a large number of micropores formed on the surface. Further, the contact material in the first embodiment is merely an embodiment of the present invention, and the biofilm carrier 10 can be always kept at a constant water depth position by using a weight instead of the anchor bolt 13. It goes without saying that various structures can be considered depending on the specification of the arrangement of the biofilm carrier 10, such as a structure. Industrial applicability As is apparent from the above description, according to the contact material in the catalytic oxidation water purification apparatus according to claim 1, the biofilm carrier has high biocompatibility and biocompatibility and may become industrial waste. Since it is made of carbon fiber without carbon, it matches the natural environment.
また炭素繊維はブラスの電荷を帯び易いので、 マイナスの電荷を帯び 易 、微生物にとっては非常に付着し易く、 従つて炭素雄維によって構成 された生物膜担体への生物膜の定着度は高く、 それだけ水質の浄化作用 に優れたものとなる。  In addition, since carbon fibers are easily charged with brass, they are easily charged with negative charges, and are very easily attached to microorganisms. Therefore, the degree of fixation of the biofilm to the biofilm carrier composed of carbon fibers is high. That is why the water purification effect is excellent.
また炭素繳維は安価であることから、 水質浄化作用に優れた水浄化装 置を安価に提供できることとなる。  In addition, since carbon fiber is inexpensive, it is possible to provide an inexpensive water purification apparatus having an excellent water purification action.
請求項 2では、 柔軟かつ可攙な炭素緻維フイラメントが結束されたり 圧縮されたり編まれたり維られたりして所定形状に成形された成形体は 、 水中下では天然の海草や藻のように揺動して、 生物膜を構成する微生 物に積極的に酸素が供給されるので、 生物膜の定着度が促進され、 水質 の净化が促進される。  According to the second aspect, the molded body formed into a predetermined shape by bundling, compressing, knitting, or maintaining a flexible and flexible carbon fibrous filament is similar to natural seaweed or algae under water. Oscillation provides positive supply of oxygen to the microorganisms that make up the biofilm, promoting the degree of biofilm fixation and promoting the deterioration of water quality.
請求項 3では、 水中下では成形体を構成する炭素繳維フイラメントが それぞれ揺動してフィラメントの露出表面積 (生物膜の定着できる面接 ) が大きくなるので、 生物膜の定着度が高められ、 さらに水質の浄化作 用が向上する。  According to the third aspect of the present invention, under water, the carbon fiber filaments constituting the molded body oscillate, and the exposed surface area of the filament (interview on which the biofilm can settle) increases, so that the degree of fixation of the biofilm is increased. Water purification is improved.

Claims

請 求 の 範 囲 The scope of the claims
1 . 生物膜担体が炭素繊維によって構成されたことを特徴とする接触酸 化式水浄化装置における接触濂材。 1. A contact oxidation material in a contact oxidation type water purification device, wherein the biofilm carrier is composed of carbon fiber.
2 . 前記生物膜担体は、 多数の柔軟かつ可撓な炭素織維フィ ラメ ン トが 結束されたり圧縮されたり編まれたり織られたりして、 水中下で揺動で きる所定の形態に成形された成形体によって構成されたことを特徴とす る請求項 1記載の接触酸化式水浄化装置における接触 «材。  2. The biofilm carrier is formed by bundling, compressing, knitting or weaving a large number of flexible and flexible carbon fiber filaments into a predetermined shape that can swing underwater. The contact material in the catalytic oxidation water purifier according to claim 1, characterized in that the contact material is constituted by a molded body formed.
3 . 前記炭素鏃維フィ ラメン トから構成された成形体は、 両端部が結束 されたストラン ド状, ネッ ト状, 組紐状, ふさ付ストランド状, 技付ス トランド状, ちょうちん型ストランド状, ほうき型ストランド状, 秋田 のかんとう型ストランド伏, フ Xルト伏等、 水中下での炭素繊維フイラ メントの露出表面積が大きくなる所定の形憨に成形されてなることを特 徴とする請求項 2記載の接触酸化式水浄化装置における接触 «材。  3. The molded body composed of the carbon arrowhead filaments has a strand shape, a net shape, a braided shape, a braided strand shape, a technical strand shape, a lantern type strand shape having both ends bound together. Claims characterized in that the carbon fiber filament is formed into a predetermined shape, such as a broom-shaped strand, an Akita canned strand, an X-fold, etc., in which the exposed surface area of the carbon fiber filament under water is large. 2. The contact material in the contact oxidation water purification device according to 2.
PCT/JP1995/001843 1995-02-20 1995-09-18 Catalytic filtering material for water purifier of catalytic oxidation type WO1996026161A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU34852/95A AU3485295A (en) 1995-02-20 1995-09-18 Catalytic filtering material for water purifier of catalytic oxidation type

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/30926 1995-02-20
JP3092695 1995-02-20

Publications (1)

Publication Number Publication Date
WO1996026161A1 true WO1996026161A1 (en) 1996-08-29

Family

ID=12317295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001843 WO1996026161A1 (en) 1995-02-20 1995-09-18 Catalytic filtering material for water purifier of catalytic oxidation type

Country Status (2)

Country Link
AU (1) AU3485295A (en)
WO (1) WO1996026161A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19821577A1 (en) * 1998-03-20 1999-09-23 Norddeutsche Seekabelwerk Gmbh Waste water biological treatment process has carpet of hanging fibers
DE19947517A1 (en) * 1999-10-01 2001-04-05 Norddeutsche Seekabelwerk Gmbh Fluid treatment apparatus and method of making the same
WO2003006385A2 (en) * 2001-07-09 2003-01-23 Peter Langendorf Textile material for using in a biological sewage treatment installation
CN100393643C (en) * 2006-09-14 2008-06-11 天津市塘沽区鑫宇环保科技有限公司 Processing method of collecting and displacing oil-field sewage and detritus sewage
US7731852B2 (en) 2004-12-13 2010-06-08 Aquarius Technologies Inc. Biomass support members and panels, biological processes and biological wastewater treatment apparatus
RU2515330C1 (en) * 2012-09-25 2014-05-10 ФГБОУ ВПО Ангарская государственная техническая академия Regular adapter for heat- and mass-exchange apparatuses with intermittent irrigation
CN104671396A (en) * 2015-01-29 2015-06-03 江苏大学 Sewage treatment device comprising bionic filler
CN105884026A (en) * 2016-04-27 2016-08-24 罗璐 Microbial carrier with core-shell structure and sinking and floating type polluted water body treatment method
CN106698677A (en) * 2017-01-06 2017-05-24 青海爱迪旺环保科技有限公司 Water treatment purifier and water treatment method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238374A (en) * 1988-07-27 1990-02-07 Osaka Gas Co Ltd Bulk active carbon fiber aggregate and production thereof
JPH0489370A (en) * 1990-07-27 1992-03-23 Kawasaki Steel Corp Porous carbon material and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238374A (en) * 1988-07-27 1990-02-07 Osaka Gas Co Ltd Bulk active carbon fiber aggregate and production thereof
JPH0489370A (en) * 1990-07-27 1992-03-23 Kawasaki Steel Corp Porous carbon material and production thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MICROFILM OF THE SPECIFICATION AND DRAWINGS ANNEXED TO THE WRITTEN APPLICATION OF JAPANESE UTILITY MODEL, Application No. 92895/1976, (Laid-open No. 11864/1978) (FUSO SANGYO K.K.), 31 January 1978, page 3. *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19821577A1 (en) * 1998-03-20 1999-09-23 Norddeutsche Seekabelwerk Gmbh Waste water biological treatment process has carpet of hanging fibers
DE19947517A1 (en) * 1999-10-01 2001-04-05 Norddeutsche Seekabelwerk Gmbh Fluid treatment apparatus and method of making the same
WO2003006385A2 (en) * 2001-07-09 2003-01-23 Peter Langendorf Textile material for using in a biological sewage treatment installation
WO2003006385A3 (en) * 2001-07-09 2003-07-10 Peter Langendorf Textile material for using in a biological sewage treatment installation
US7731852B2 (en) 2004-12-13 2010-06-08 Aquarius Technologies Inc. Biomass support members and panels, biological processes and biological wastewater treatment apparatus
CN100393643C (en) * 2006-09-14 2008-06-11 天津市塘沽区鑫宇环保科技有限公司 Processing method of collecting and displacing oil-field sewage and detritus sewage
RU2515330C1 (en) * 2012-09-25 2014-05-10 ФГБОУ ВПО Ангарская государственная техническая академия Regular adapter for heat- and mass-exchange apparatuses with intermittent irrigation
CN104671396A (en) * 2015-01-29 2015-06-03 江苏大学 Sewage treatment device comprising bionic filler
CN105884026A (en) * 2016-04-27 2016-08-24 罗璐 Microbial carrier with core-shell structure and sinking and floating type polluted water body treatment method
CN105884026B (en) * 2016-04-27 2019-04-02 北京清源中科环保科技有限公司 A kind of method of the microbe carrier and the formula pollution administration water body that drifts along of core shell structure
CN106698677A (en) * 2017-01-06 2017-05-24 青海爱迪旺环保科技有限公司 Water treatment purifier and water treatment method thereof

Also Published As

Publication number Publication date
AU3485295A (en) 1996-09-11

Similar Documents

Publication Publication Date Title
JP2954509B2 (en) Contact filter media in catalytic oxidation water purifier
JP4836420B2 (en) Fiber contact material, water treatment apparatus and water treatment method
WO1996026161A1 (en) Catalytic filtering material for water purifier of catalytic oxidation type
JPH11309483A (en) Water purifying method using wetland in combination
JP4413879B2 (en) Water purification material, artificial algae and method for producing them
JP2008069473A (en) Carbon fiber composite body
JP3184905B2 (en) Biofilm carrier, and water purification device, seaweed bed, water purification method, seaweed bed formation method, feed production method, and fertilizer production method using the biofilm carrier
EP0165862A1 (en) Material with a large specific surface and its use in favourizing the contact between environments or reactants involving physical and/or chemical and/or biological phenomena
JP2000325973A (en) Sewage treatment method and apparatus
CN111153502A (en) Telescopic carbon fiber ecological grass
WO2010035800A1 (en) System for water purification and method of increasing dissolved-oxygen concentration in water to be purified
CN209396967U (en) A kind of denitrification process biologic packing material
JP5052654B2 (en) Biofilm forming material
WO1996023405A1 (en) Artificial seaweed farm
CN207031087U (en) A kind of Weave type curtain biologic packing material
JP3474491B2 (en) Water purification method and water purification apparatus for attaching metal species to carbon fiber
RU49525U1 (en) BIOFILTER
JPH08266184A (en) Artificial algal field
JP2004330156A (en) Fringe pattern biological membrane carrier and biological membrane contact oxidation water cleaning method
JPH11188378A (en) Organism fixing carrier for drainage treatment and drainage treatment apparatus
JPS6297695A (en) Contact material for water treatment
CN209376485U (en) Aquiculture waste water circulating treating system
CN111559843A (en) Inclined sludge digestion filler and weaving method thereof
JP2004188284A (en) Biological membrane water cleaner
JP2004074004A (en) Method of cleaning water in closed water area by using fibrous material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB NL

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase