WO1996026008A1 - Sample container - Google Patents

Sample container Download PDF

Info

Publication number
WO1996026008A1
WO1996026008A1 PCT/JP1995/000273 JP9500273W WO9626008A1 WO 1996026008 A1 WO1996026008 A1 WO 1996026008A1 JP 9500273 W JP9500273 W JP 9500273W WO 9626008 A1 WO9626008 A1 WO 9626008A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample container
resin
sample
contact
inorganic filler
Prior art date
Application number
PCT/JP1995/000273
Other languages
French (fr)
Japanese (ja)
Inventor
Keiichi Katoh
Syuzi Ueda
Original Assignee
Keiichi Katoh
Syuzi Ueda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP24348594A priority Critical patent/JPH07125739A/en
Priority claimed from JP24348594A external-priority patent/JPH07125739A/en
Application filed by Keiichi Katoh, Syuzi Ueda filed Critical Keiichi Katoh
Priority to PCT/JP1995/000273 priority patent/WO1996026008A1/en
Priority to US08/875,124 priority patent/US6319475B1/en
Publication of WO1996026008A1 publication Critical patent/WO1996026008A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50851Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates specially adapted for heating or cooling samples

Definitions

  • the present invention relates to the construction of a container for holding a sample requiring the application of a thermal process for the fields of medicine, chemistry and biotechnology.
  • sample containers consisted of only a single thick resin layer.Thus, when a temperature process was applied from the outside, heat transfer was extremely poor, and it was possible to efficiently transfer heating and cooling to the sample in the container. could not. In addition, the flexibility of the portion of the outer surface of the sample container that is in contact with the sample container support was not considered, and the heat transfer efficiency from the sample container support to the sample container was poor due to insufficient close contact with the sample container support.
  • the present invention has been made to solve such conventional drawbacks and to efficiently transfer external heating and cooling to a sample to which a temperature process needs to be applied. Disclosure of the invention
  • the present invention employs a technical means of improving heat conduction by adding an inorganic material having a thermal conductivity of 1 OWZ (mK) or more alone in a resin as a filler.
  • the drawbacks of a resin with low thermal conductivity are complemented by a large thermal conductivity L dispersed in the resin and an inorganic filler.
  • the volume content of the inorganic filler is low L, and there is no sufficient effect of improving the thermal conductivity, and at least a volume content of the inorganic filler of 30% is required.
  • the higher the volume content of the inorganic filler the better the thermal conductivity.
  • Increasing the volume content of inorganic fillers is difficult, especially when it exceeds 90%. You.
  • the volume content of the filler can be up to 95% by using the technique that used the spherical inorganic filler particles. Therefore, the volume content of the inorganic filler may be freely selected from the range of 30% to 95% in consideration of the strength, thermal conductivity, cost, shape, and the like.
  • the shape of the filler may be freely selected from particles and whiskers, fibers and foils according to the purpose. If necessary, a plurality of shapes may be combined.
  • Inorganic materials are boron nitride, aluminum oxide, gay carbide, gay nitride, calcium carbonate, magnesium oxide, gay oxide, quartz glass, zirconium oxide, titanium nitride, beryllium oxide, iron oxide.
  • the material may be freely selected from the above materials according to the purpose in consideration of strength, insulation properties, and the like, and a plurality of materials may be combined if necessary.
  • the part in contact with the sample must be made of resin to avoid contact with the inorganic filler. Therefore, this part may be formed by selecting the type of resin according to the properties of the sample and forming a resin-only part.However, if the part consisting of only the resin in contact with the sample is too thin, the resin-only layer may be damaged. Therefore, at least 5 m is required, depending on the resin material, since the sample may come into contact with the inorganic filler. On the other hand, if the thickness is more than a certain value, the thermal resistance of the resin-only part will increase and the heat conduction to the sample will deteriorate, so it is desirable that the thickness be less than 200.
  • the technology adopted is that it consists of only two parts, the rest of which consists of a composite of resin and inorganic filler.
  • the component resin of the portion of the outer surface of the sample container that is in contact with the sample container support is made of a resin that is more flexible than the main component resin of the sample container.
  • the flexible resin deforms on the uneven surface of the surface of the hole of the sample container support where the sample container is inserted, so that it adheres tightly to the sample container from the sample container support rest.
  • the communication is carried out.
  • the deformation mechanism of the flexible resin may be plastic deformation or elastic deformation. In the case of plastic deformation, it is preferable that the tensile strength of the constituent resin at the portion of the outer surface of the sample container that comes into contact with the sample container support be 32 MPa or less.
  • the longitudinal elastic modulus of the component resin in a portion of the outer surface of the sample container that comes into contact with the sample container support is 1.4 GPa or less.
  • the flexible resin may be a gel resin.
  • a resin according to the purpose may be selected from resins having a softening temperature of 100 or less at the portion of the outer surface of the sample container which is in contact with the sample container support. Even when this flexible resin is used, the volume content of the inorganic filler is preferably in the range of 30% or more and 95% or less, and the thickness of 5 m to 300 rn is more effective.
  • the sample can efficiently transmit the temperature process of external heating and cooling to the sample by installing the composite part consisting of resin and inorganic filler with good thermal conductivity.
  • the inorganic filler does not directly contact the sample and does not damage the sample.
  • the constituent resin of the portion of the outer surface of the sample container that is in contact with the sample container support uses a resin that is more flexible than the main component resin of the sample container.
  • FIGS. 1, 4, and 7 are external views of a preferred container according to the present invention.
  • FIGS. 2, 5, and 8 are cross-sectional views of a preferred container according to the present invention.
  • Fig. 6 and Fig. 10 show the container comparison performance test, and
  • Fig. 9 shows a comparative example.
  • FIG. 1 shows the appearance of a preferred container according to the present invention.
  • FIG. 2 is a sectional view taken along line AA of FIG.
  • the sample container has a high thermal conductive part 1 composed of a filler composed of powdered gay carbide and a polypropylene resin, and the filler does not come into direct contact with the sample. Thus, it consists of two parts made of polypropylene resin only.
  • the manufacturing method of this sample container was two-layer blow molding. In other words, the resin is mixed with a volumetric mixing ratio of 0, 20, 30, 50, 70, 80, 90% l / m to 20 m of gay carbide powder as a filler, and is compounded.
  • the high thermal conductivity part 1 was used, the part 2 was made of polypropylene resin only, and the thickness was 30 m.
  • a thermocouple is attached inside each container, and each container is set in a 80 ° C water bath, and the sample container is placed in a water bath of the same condition, that is, 8 ⁇ ' ⁇ .
  • the time required to reach 7 (TC) was measured.
  • TC time required to reach 7
  • the volume mixing ratio of the filler may be freely selected from 30% to 95% in consideration of the strength of the container and the use condition of the container.
  • the particles of the silicon carbide are used as the inorganic filler, but the present invention is not limited to this.
  • the shape of the inorganic filler is not less than 10 W (mK), and the shape of the inorganic filler is not limited to particles, whiskers, fibers and foils. You can choose freely according to your purpose. In this embodiment, only two layers are used, but if necessary, three layers, that is, a relaxation layer may be provided between the first and second layers. By providing this layer, the shear stress of the first and second layers can be reduced.
  • the part 2 that comes into contact with the internal sample is the same polypyrene as the part 1 in the present embodiment, but is not limited to this.
  • the method of manufacturing the part 2 that is in contact with the sample is not limited to the two-color blow molding. —It may be formed by ting.
  • FIG. 4 a gel-like silicon resin layer in which elastic copper powder was dispersed was formed on a portion of the outer surface of the container prepared in the above example, which was in contact with the sample container support, as shown in FIG. .
  • the portion 3 in FIG. 4 is a gel-like silicon resin layer in which elastic copper powder is dispersed.
  • FIG. 5 is a sectional view taken along line AA of FIG. This part is formed by adding copper powder as an inorganic filler to the silicone resin before gelation in a container with a volume blending ratio of 70% of the gay carbide filler prepared in the above example, and uniformly distributing it.
  • the flexible portion may be selected from materials within the scope of the present invention. That is, the component of the outer surface of the sample container that is in contact with the sample container support
  • the tensile strength of the component resin is 32 MPa or less or the longitudinal elastic modulus is 1.4 GPa or less, or the softening temperature is 100 or less
  • Resins according to the purpose may be selected from the above resins.
  • a relaxation layer may be provided between one part of the composite high thermal conductivity part and three parts of the flexible part. By providing this layer, the shear stress of the second and third layers can be reduced.
  • the inorganic filler dispersed in the flexible portion 3 is not limited to copper powder.
  • the shape may be freely selected from inorganic fillers having a power of 10 W / (mK) or more, such as particles, whiskers, fibers and foils, according to the purpose.
  • FIG. 7 shows the appearance of a sample container of another embodiment.
  • FIG. 8 is an A-A cross section of FIG.
  • 7 parts were made of boron nitride particles as an inorganic filler at a volume mixing ratio of 60%, epoxy was used as the resin, 8 parts were polypropylene, and 9 parts were soft PVC in which boron nitride particles were dispersed.
  • the same test as in Example 2 was performed. That is, for comparison, as shown in FIG. 9, a sample container comprising a portion 10 of only epoxy resin and a portion 11 of polypropylene without inorganic filler is prepared.
  • sample containers 13 are set in the anoremi block 12 and the sample Container 13 was pressed from above by rod 14.
  • a thermocouple was attached to the bottom part 15 of the sample support part of the sample container and tested. The result was that the temperature reached 70 "C.
  • the temperature of this example was 1/7 that of the comparative example, which was better. Results were obtained.
  • the present invention is a sample container having high heat conduction and high heat transfer that enables a temperature process for external heating and cooling to be quickly and efficiently transmitted to a sample.
  • the invention is suitable for biotechnology and related fields of chemistry, medicine, and engineering, and opens up new uses and applications.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)

Abstract

A conventional sample container is formed out of a single resin. Therefore, when such a sample container is subjected to a temperature process, the efficiency is very low. The present invention provides a sample container of a high heat conductivity and a high heat transfer rate. The portion of this sample container, in contact with a sample, is formed out of a resin alone, the portion, in contact with the sample support, is made of a material of a mixture of a soft resin, and a filler of a high heat conductivity. The other portions are made of a resin and a filler of a high heat conductivity. The container is suitably used in the biotechnological field, the fields concerning chemistry, medicine and engineering, and other fields possible in future.

Description

明細書 サンプル容器 技術分野  Description Sample container Technical field
本発明は、 医学、 化学、 生物工学の分野向けの熱プロセスを加える事 を必要とするサンプルを保持する容器の構造に関する。 背景技術  The present invention relates to the construction of a container for holding a sample requiring the application of a thermal process for the fields of medicine, chemistry and biotechnology. Background art
従来のサンプル容器では、 厚い単体の樹脂層だけで構成されていた,、 そのために温度プロセスを外部より加えた場合に非常に熱伝達が悪く、 効率よく加熱冷却を容器内のサンプルに伝える事ができなかった。 また サンプル容器の外部表面のサンプル容器支持体と接する部分の柔軟性が 考慮されておらずサンプル容器支持体との密着が不十分でサンプル容器 支持体からサンプル容器への熱伝達効率が悪かった。  Conventional sample containers consisted of only a single thick resin layer.Thus, when a temperature process was applied from the outside, heat transfer was extremely poor, and it was possible to efficiently transfer heating and cooling to the sample in the container. could not. In addition, the flexibility of the portion of the outer surface of the sample container that is in contact with the sample container support was not considered, and the heat transfer efficiency from the sample container support to the sample container was poor due to insufficient close contact with the sample container support.
本発明は、 このような従来の欠点を解決して、 温度プロセスを加える必 要のあるサンプルに、 外部からの加熱冷却を効率よくサンプルに伝える ために成されたものである。 発明の開示 The present invention has been made to solve such conventional drawbacks and to efficiently transfer external heating and cooling to a sample to which a temperature process needs to be applied. Disclosure of the invention
本発明は、 樹脂中に熱伝導率が単体で 1 O WZ ( m K ) 以上である無 機材料を充填材として入れる事により、 熱伝導を良好にするという技術 的手段を採用した。 すなわち本来熟伝導率の小さい樹脂の欠点を樹脂に 分散された熱伝導率の大き L、無機材料の充填材により補完するというこ とである。 無機充填材の体積含有率は低 L、と十分な熱伝導率向上の効果 はなく少なくとも無機充填材の体積含有率 3 0 %は必要である。 無機充 填材の体積含有率が多ければ多いほど熱伝導率はよくなる。 無機充填材 の体積含有率を多くすることは、 特に 9 0 %を越える場合には難しくな る。 例えば真球の無機充填材粒子を使用するといつた手法を利用すれば 充填材の体積含有率は 9 5 %までは可能である。 よって強度、 熱伝 導 率、 コス ト、 形状等を考慮して 無機充填材の体積含有率 3 0 %から 9 5 %の範囲から自由に選べばよい。 またここで無機材料を充填材の形状 は粒子及びゥィスカ—及び繊維及び箔等から目的に合わせて自由に選べ ばよい。 必要であれば複数の形状を組み合わせてもよい。無機材料の材 質は窒化ボロン、 酸化アルミニウム、 炭化ゲイ素、 窒化ゲイ素、 炭酸 カルシウム、 酸化マグネシウム、 酸化ゲイ素、 石英ガラス、 酸化ジルコ 二ゥム、 窒化チタン、 酸化べリ リウム、 力一ボン、 ダイヤモン ド、 金、 銀、 銅、 アルミニウム、 タングステン、 モリブデン等が考えられる。 強 度、 絶縁性等を考慮し前記材料より目的に合わせて自由に選べばよく必 要であれば複数の材料を組み合わせてもよい。 The present invention employs a technical means of improving heat conduction by adding an inorganic material having a thermal conductivity of 1 OWZ (mK) or more alone in a resin as a filler. In other words, the drawbacks of a resin with low thermal conductivity are complemented by a large thermal conductivity L dispersed in the resin and an inorganic filler. The volume content of the inorganic filler is low L, and there is no sufficient effect of improving the thermal conductivity, and at least a volume content of the inorganic filler of 30% is required. The higher the volume content of the inorganic filler, the better the thermal conductivity. Increasing the volume content of inorganic fillers is difficult, especially when it exceeds 90%. You. For example, the volume content of the filler can be up to 95% by using the technique that used the spherical inorganic filler particles. Therefore, the volume content of the inorganic filler may be freely selected from the range of 30% to 95% in consideration of the strength, thermal conductivity, cost, shape, and the like. In addition, the shape of the filler may be freely selected from particles and whiskers, fibers and foils according to the purpose. If necessary, a plurality of shapes may be combined. Inorganic materials are boron nitride, aluminum oxide, gay carbide, gay nitride, calcium carbonate, magnesium oxide, gay oxide, quartz glass, zirconium oxide, titanium nitride, beryllium oxide, iron oxide. , Diamond, gold, silver, copper, aluminum, tungsten, molybdenum, and the like. The material may be freely selected from the above materials according to the purpose in consideration of strength, insulation properties, and the like, and a plurality of materials may be combined if necessary.
サンプルに接する部分はサンプルの性質上から無機充填材と接触する ことを避けて樹脂でなければならない場合がある。 そこでこの部分はサ ンプルの性質により樹脂の種類を選び樹脂のみの部分を形成すればよい,, ただしサンプルに接する樹脂のみで構成される部分の厚さはあまり薄い と樹脂のみの層が破損等のためサンプルが無機充填材と接触する可能性 があるため、樹脂の材質にもよるが少なくとも 5 mは必要である。一方 厚さが一定以上ある場合には樹脂のみの部分の熱抵抗が大きくなつてし まいサンプルへの熱伝導が悪くなるため 2 0 0 以下が望ましい,,す なわちサンプルに接する部分は、 樹脂のみで構成され、 残部は樹脂と無 機充填材の複合体から構成された 2つの部分から成ると言う技術的- Τ·段 を採用した。  Due to the nature of the sample, the part in contact with the sample must be made of resin to avoid contact with the inorganic filler. Therefore, this part may be formed by selecting the type of resin according to the properties of the sample and forming a resin-only part.However, if the part consisting of only the resin in contact with the sample is too thin, the resin-only layer may be damaged. Therefore, at least 5 m is required, depending on the resin material, since the sample may come into contact with the inorganic filler. On the other hand, if the thickness is more than a certain value, the thermal resistance of the resin-only part will increase and the heat conduction to the sample will deteriorate, so it is desirable that the thickness be less than 200. The technology adopted is that it consists of only two parts, the rest of which consists of a composite of resin and inorganic filler.
サンプル容器の外部表面のサンプル容器支持体と接する部分の構成成 分樹脂がサンプル容器の主体成分樹脂より柔軟な樹脂を使用することに よりサンプル容器支持体とあるサンプル容器の外部表面を密着させるこ とが可能となる,、 すなわちサンプル容器支持体のサンプル容器を揷入す る部分の穴の表面の凹凸部に柔軟な樹脂が変形することにより密着しサ ンプル容器支持休からサンプル容器に効率的に熟伝達が行われる。 ここ で柔軟な樹脂の変形機構は塑性変形でも弾性変形でもよい。 塑性変形の 場合好ましくはサンプル容器の外部表面のサンプル容器支持体と接する 部分の構成成分樹脂の引っ張り強度が 3 2 M P a以下がよい。 弾性変形 の場合は好ましくはサンプル容器の外部表面のサンプル容器支持体と接 する部分の構成成分樹脂の縱弾性率が 1 . 4 G P a以下であるとよい。 また柔軟な樹脂がゲル状樹脂という構成でもよい。 他の方法としてサン プルに加える温度プロセスが 5 0 以上 1 0 0で以下の範囲で行われる 場合サンプル容器の外部表面のサンプル容器支持休と接する部分の構成 成分樹脂の軟化温度が 5 0 であればサンプル容器支持体と接する部分 の構成成分樹脂が 5 0 ΐ以上の温度プロセスのため熱により変形容易と なり密着する。 バイオテク ノ口ジ—の分野では印加温度プロセスの範囲 はほとんど 1 0 0 C以下である。 よってサンプル容器の外部表面のサン プル容器支持体と接する部分の構成成分樹脂の軟化温度が 1 0 0 以下 の樹脂から目的に応じた樹脂を選べばよい。 この柔軟な樹脂を使用する 場合においても無機充填材の体積含有率は 3 0 %以上 9 5 %以下の範囲 が好ましく厚さは 5 m〜 3 0 0 rnがより効果的である。 The component resin of the portion of the outer surface of the sample container that is in contact with the sample container support is made of a resin that is more flexible than the main component resin of the sample container. In other words, the flexible resin deforms on the uneven surface of the surface of the hole of the sample container support where the sample container is inserted, so that it adheres tightly to the sample container from the sample container support rest. The communication is carried out. Here, the deformation mechanism of the flexible resin may be plastic deformation or elastic deformation. In the case of plastic deformation, it is preferable that the tensile strength of the constituent resin at the portion of the outer surface of the sample container that comes into contact with the sample container support be 32 MPa or less. In the case of elastic deformation, it is preferable that the longitudinal elastic modulus of the component resin in a portion of the outer surface of the sample container that comes into contact with the sample container support is 1.4 GPa or less. Alternatively, the flexible resin may be a gel resin. As another method, when the temperature process applied to the sample is performed in the range of 50 to 100 and the following range, the component on the outer surface of the sample container that is in contact with the sample container support rest, even if the softening temperature of the component resin is 50 For example, the constituent resin at the portion in contact with the sample container support is easily deformed by heat because of a temperature process of 50 ° C. or more, and adheres closely. In the field of biotechnology, the range of the applied temperature process is almost 100 ° C or less. Therefore, a resin according to the purpose may be selected from resins having a softening temperature of 100 or less at the portion of the outer surface of the sample container which is in contact with the sample container support. Even when this flexible resin is used, the volume content of the inorganic filler is preferably in the range of 30% or more and 95% or less, and the thickness of 5 m to 300 rn is more effective.
前記のように構成されたサンプル容器によればサンプルは、 樹脂と熱 伝導の良好な無機充填材から成る複合体部分の設置により、 外部からの 加熱、 冷却を行う温度プロセスを効率よくサンプルに伝える事を可能と する., サンプルに対しても無機充填材が直接接触することなくサンブル にダメージを与えることはない。 またサンブル容器の外部表面のサンブ ル容器支持体と接する部分の構成成分樹脂がサンプル容器の主体成分樹 脂より柔軟な樹脂を使用することによりサンプル容器支持体とサンプル 容器の密着が可能となる 図面の簡単な説明 According to the sample container configured as described above, the sample can efficiently transmit the temperature process of external heating and cooling to the sample by installing the composite part consisting of resin and inorganic filler with good thermal conductivity. The inorganic filler does not directly contact the sample and does not damage the sample. In addition, the constituent resin of the portion of the outer surface of the sample container that is in contact with the sample container support uses a resin that is more flexible than the main component resin of the sample container. Brief description of the drawing that enables the container to be in close contact
第 1図、 第 4図、 第 7図は、 本発明にかかる好ましい容器の外観、 第 2図、 第 5図、 第 8図は、 本発明にかかる好ましい容器の断面図、 第 3 図は充填材の廃合量と熱の伝導性能の関係、 第 6図、 第 1 0図は容器比 較性能テス トの様子、 第 9図は比較例である。 発明を実施するための最良の形態  FIGS. 1, 4, and 7 are external views of a preferred container according to the present invention. FIGS. 2, 5, and 8 are cross-sectional views of a preferred container according to the present invention. Fig. 6 and Fig. 10 show the container comparison performance test, and Fig. 9 shows a comparative example. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説述するために添付の図面に従ってこれを説明す る。  The present invention will be described with reference to the accompanying drawings in order to explain the present invention in more detail.
第 1図は本発明にかかる好ましい容器の外観を示す。 第 2図は第 1図 の A— A断面である。 このサンプル容器は第 2図の断面構成に示すよう に、 炭化ゲイ素の粉体から成る充填材とポリプロピレン樹脂から成る複 合体高熱伝導部 1と、 サンプルに充填材が直接に接触することのないよ うにポリプロピレン樹脂のみの 2部から成っている。 本サンプル容器の 製法は、 2多層ブロー成形とした。 すなわち樹脂に体積配合比率をそれ ぞれ 0、 2 0、 3 0、 5 0、 7 0、 8 0、 9 0 %の l / m〜2 0 mの 炭化ゲイ素粉末を充填材として配合し複合体高熱伝導部 1とし、 2の部 分はポリプロピレン樹脂のみとし、 厚さ 3 0 mとした。 それぞれの容 器の内部に熱電対を貼り、 それぞれの容器を 8 0 "C恒温水槽にセッ 卜し 同条件すなわち 8 ο 'υの恒温水槽にサンプル容器を入れ、 熱電対の温 1 度が常温から 7 (TCになる時間を測定した。 結果は第 3図に示した。 図 からもわかるように本発明の範囲外である充填材の体積配合比率 3 0 % 未満では複合体高熱伝導部 1の熱伝導率が十分ではない,, 充填材の体積 配合比率が高ければ高いほど良好な結果であるが充填材の体積配合比率 が高いと強度劣化等の問題が起こる。 よって容器の強度及び容器の使用 状態等を考慮して充填材の体積配合比率を 3 0 %から 9 5 %の間で自由 に選べばよい。 ここでは無機充填材として炭化ゲイ素の粒子を使用して いるがこれに限られるものではなく 1 0 W ( m K ) 以上である無機充 填材から形状も粒子及びゥィスカー及び繊維及び箔等から目的に合わせ て自由に選べばよい。 また本実施例では、 2層のみであつたが必要に応 じて 3層すなわち、 1部と 2部の層の間に緩和層を設けてもよい。 この 層を設ける事により 1層と 2層の翦断応力を緩和する事ができる。 また 内部のサンプルに接触する部分 2は本実施例では部分 1と同様のポリプ 口ピレンであるがこれに限られるものではなくサンプルおよび印加する 温度プロセスの目的、 容器強度等に応じて部分 1及び部分 2の樹脂材料 を選ばよい。 このサンプルに接触する部分 2の製法も 2色ブロー成型に 限られるものでなく複合体高熱伝導部のみの容器の成型を行ったのち内 部のサンプルに接触する部分 2の樹脂のみの部分をコ—ティングによつ て形成してもよい。 FIG. 1 shows the appearance of a preferred container according to the present invention. FIG. 2 is a sectional view taken along line AA of FIG. As shown in the cross-sectional configuration of Fig. 2, the sample container has a high thermal conductive part 1 composed of a filler composed of powdered gay carbide and a polypropylene resin, and the filler does not come into direct contact with the sample. Thus, it consists of two parts made of polypropylene resin only. The manufacturing method of this sample container was two-layer blow molding. In other words, the resin is mixed with a volumetric mixing ratio of 0, 20, 30, 50, 70, 80, 90% l / m to 20 m of gay carbide powder as a filler, and is compounded. The high thermal conductivity part 1 was used, the part 2 was made of polypropylene resin only, and the thickness was 30 m. A thermocouple is attached inside each container, and each container is set in a 80 ° C water bath, and the sample container is placed in a water bath of the same condition, that is, 8 ο'υ. The time required to reach 7 (TC) was measured. The results are shown in Fig. 3. As can be seen from the figure, when the volumetric mixing ratio of the filler is out of the range of the present invention and less than 30%, the composite high heat conductive part 1 The thermal conductivity is not sufficient, and the higher the volume ratio of the filler, the better the results. If it is high, problems such as deterioration of strength occur. Therefore, the volume mixing ratio of the filler may be freely selected from 30% to 95% in consideration of the strength of the container and the use condition of the container. Here, the particles of the silicon carbide are used as the inorganic filler, but the present invention is not limited to this.The shape of the inorganic filler is not less than 10 W (mK), and the shape of the inorganic filler is not limited to particles, whiskers, fibers and foils. You can choose freely according to your purpose. In this embodiment, only two layers are used, but if necessary, three layers, that is, a relaxation layer may be provided between the first and second layers. By providing this layer, the shear stress of the first and second layers can be reduced. In this embodiment, the part 2 that comes into contact with the internal sample is the same polypyrene as the part 1 in the present embodiment, but is not limited to this. Select the resin material in part 2. The method of manufacturing the part 2 that is in contact with the sample is not limited to the two-color blow molding. —It may be formed by ting.
前記実施例で作成した容器の外側表面のサンプル容器支持体と接する 部分に第 4図に示すようにゲル化処理を行うと弾力性をもつ銅粉を分散 させたゲル状シリコン樹脂層を形成した。 ここで第 4図の 3の部分が弾 力性をもつ銅粉を分散させたゲル状シリコン樹脂層で出ある。 第 5図は 第 4図の A— A断面である。 この部分の形成方法は、 前記実施例で作成 した炭化ゲイ素充填材の体積配合比率 7 0 %の容器に、 ゲル化前のシリ コーン樹脂に無機充填材としての銅粉を加え一様に分布させるために界 面活性剤、 分散剤等を加え撹拌し、 溶剤を用い粘度を調整したものを塗 布する。 そしてこの部分に対してゲル化処理を行う。 本実施例では、 熱 によるゲル化処理を行った 次にこの容器の性能をテス卜するために第 As shown in FIG. 4, a gel-like silicon resin layer in which elastic copper powder was dispersed was formed on a portion of the outer surface of the container prepared in the above example, which was in contact with the sample container support, as shown in FIG. . Here, the portion 3 in FIG. 4 is a gel-like silicon resin layer in which elastic copper powder is dispersed. FIG. 5 is a sectional view taken along line AA of FIG. This part is formed by adding copper powder as an inorganic filler to the silicone resin before gelation in a container with a volume blending ratio of 70% of the gay carbide filler prepared in the above example, and uniformly distributing it. For this purpose, add a surfactant, dispersant, etc., stir, and apply a solvent whose viscosity is adjusted using a solvent. Then, a gelling process is performed on this portion. In this example, gelation treatment by heat was performed, and then a second test was performed to test the performance of this container.
6図に示すようにドライ恒温槽のアルミブロック 4に柔軟部分を設置し た容器と設置していない容器を挿入し比較試験を行った。 アルミプロッ クを 8 0 DCに設定しておきそれぞれの容器を容器支持部分に挿入し容器 と容器支持部の密着性を高めるためにサンプル容器上部に重りを置いた。 そして実施例 1と同様に 7 0 までの到達時間を測定した。 結果は柔軟 部分を設置した容器のほうが柔軟部分を設置していない容器に比較して 8 0 %到達時間が短縮できた。 本実施例では柔軟部分の設置を塗布によつ て行ったがこれに限られるものではない。 例えば容器の成型の時同時に 行ってもよい。 すなわちィンジヱクションなどの方法で 3色成型を行つ てもよい。 もちろん柔軟部分は本発明の範囲の材料を選べばよい。 すな わちサンプル容器の外部表面のサンプル容器支持体と接する部分の構成 成分樹脂の引っ張り強度が 3 2 M P a以下あるいは縱弾性率が 1 . 4 G P a以下あるいは、 軟化温度が 1 0 0 以下の樹脂から目的に応じた樹 脂を選んでもよい。 また 1部の複合体高熱伝導部と 3部の柔軟部分の間 に緩和層を設けてもよい。 この層を設ける事により 2層と 3層の剪断応 力を緩和する事ができる。 この柔軟部分 3に分散されている無機充填材 は銅粉に限られるものではない。 1 0 W/ ( m K ) 以上である無機充填 材から形状も粒子及びゥィスカー及び繊維及び箔等から目的に合わせて 自由に選べばよい。 6 Install a flexible part on the aluminum block 4 of the dry A comparison test was performed by inserting a container that was not installed and a container that was not installed. Each container Arumipuro' click should be set to 8 0 D C put weight on the sample container top in order to increase the adhesion of the container and the container supporting portion inserted into the container support portion. Then, the arrival time up to 70 was measured in the same manner as in Example 1. As a result, the container with the flexible part was able to shorten the arrival time by 80% compared to the container without the flexible part. In this embodiment, the flexible portion is provided by coating, but is not limited to this. For example, it may be performed at the same time as molding the container. That is, three-color molding may be performed by a method such as induction. Of course, the flexible portion may be selected from materials within the scope of the present invention. That is, the component of the outer surface of the sample container that is in contact with the sample container support The tensile strength of the component resin is 32 MPa or less or the longitudinal elastic modulus is 1.4 GPa or less, or the softening temperature is 100 or less Resins according to the purpose may be selected from the above resins. In addition, a relaxation layer may be provided between one part of the composite high thermal conductivity part and three parts of the flexible part. By providing this layer, the shear stress of the second and third layers can be reduced. The inorganic filler dispersed in the flexible portion 3 is not limited to copper powder. The shape may be freely selected from inorganic fillers having a power of 10 W / (mK) or more, such as particles, whiskers, fibers and foils, according to the purpose.
第 7図に他の実施例のサンプル容器の外観を示す。 第 8図は第 7図の A _ A断面出ある。 ここで 7部は無機充填材として窒化ホウ素粒子を体 積配合比率 6 0 %とし、 樹脂はエポキシを使用した 8部はポリプロピレ ン、 9部は窒化ホウ素粒子を分散させた軟質 P V Cを使用した。 実施例 2と同様のテス卜を行った。 すなわち比較のため第 9図に示すように、 無機充填材の配合がないエポキシ樹脂のみの部分 1 0とポリプロピレン 部分 1 1とからなるサンプル容器を用意する。 第 1 0図に示すようにァ ノレミブロック 1 2にサンプル容器 1 3をセッ 卜しそれぞれのサンプル容 器 1 3はロッ ド 1 4で上方より押し付けた。 サンプル容器のサンプル支 持部分の底面 1 5部に熱電対を貼りテス卜を行った,, 結果は 7 0 "C到達 温度は本実施例のほうが比較例に対して 1 / 7の時間となり良好な結果 を示した。 FIG. 7 shows the appearance of a sample container of another embodiment. FIG. 8 is an A-A cross section of FIG. Here, 7 parts were made of boron nitride particles as an inorganic filler at a volume mixing ratio of 60%, epoxy was used as the resin, 8 parts were polypropylene, and 9 parts were soft PVC in which boron nitride particles were dispersed. The same test as in Example 2 was performed. That is, for comparison, as shown in FIG. 9, a sample container comprising a portion 10 of only epoxy resin and a portion 11 of polypropylene without inorganic filler is prepared. As shown in Fig. 10, sample containers 13 are set in the anoremi block 12 and the sample Container 13 was pressed from above by rod 14. A thermocouple was attached to the bottom part 15 of the sample support part of the sample container and tested. The result was that the temperature reached 70 "C. The temperature of this example was 1/7 that of the comparative example, which was better. Results were obtained.
以上本発明を実施例に基き具体的に説明したが、 本発明は、 前記実施 例に限定されるものではなく、 その要旨を逸脱しない範囲で種々の変更 可能であることはいうまでもない。 産業上の利用可能性  Although the present invention has been specifically described based on the embodiments, the present invention is not limited to the above embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention. Industrial applicability
以上のように、 本発明は、 外部からの加熱、 冷却を行う温度プロセス を迅速に効率よくサンプルに伝える事を可能にした高熱伝導高熱伝達な サンプル容器である。 バイオテクノロジー分野及び化学及び医学、 工学 に関係する分野において適しており、 新しい用途と応用の道を開いて行 くための発明である。  INDUSTRIAL APPLICABILITY As described above, the present invention is a sample container having high heat conduction and high heat transfer that enables a temperature process for external heating and cooling to be quickly and efficiently transmitted to a sample. The invention is suitable for biotechnology and related fields of chemistry, medicine, and engineering, and opens up new uses and applications.

Claims

請求の範囲 The scope of the claims
1 - サンプル保持部を 1つ以上有するサンプル容器で、 その構成材の成 分が樹脂と無機充填材から成る事を特徴とするサンプル容器。 1-A sample container having at least one sample holding part, wherein the constituent material is composed of a resin and an inorganic filler.
2 . サンプルに接する部分は、 樹脂のみで構成され、 残部は樹脂と無機 充填材の複合体から構成された少なくとも 2つの部分からなる構造を特 徴とする請求の範囲第 1項記載のサンプル容器。 2. The sample container according to claim 1, wherein the portion in contact with the sample is composed of only a resin, and the remainder has a structure composed of at least two portions composed of a composite of a resin and an inorganic filler. .
3 . サンプル容器の外部表面のサンプル容器支持体と接する部分の構成 成分樹脂がサンプル容器の主体成分樹脂より柔軟な樹脂である事を特徴 とする請求の範囲第 1項記載のサンプル容器。  3. The sample container according to claim 1, wherein the constituent resin of a portion of the outer surface of the sample container that contacts the sample container support is a resin that is more flexible than the main component resin of the sample container.
4 . サンプルに接する部分の樹脂のみで構成された部分と、 樹脂と無機 充填材の複合体部分及びサンプル容器の外部表面のサンプル容器支持体 と接する部分の構成成分樹脂がサンプル容器の主体成分より変形容易な 樹脂であるそれぞれ部分の境界層の少なくとも 1層部分に膨張係数の違 いによる破壊防止を目的とするポリマー接着の方法で応力緩和層を設け た構造を特徴とする請求の範囲第 2項及び第 3項記載のサンプル容器。 4. The resin that is in contact with the sample only, the resin that is in contact with the sample container support on the outer surface of the sample container, and the composite resin-inorganic filler and the resin that is the main component of the sample container A structure in which a stress relaxation layer is provided on at least one of the boundary layers of each portion of the easily deformable resin by a polymer bonding method for preventing destruction due to a difference in expansion coefficient. 4. The sample container according to paragraph 3 and 3.
5 . 無機充填材の体積含有率が 3 0 %から 9 5 %である事を特徴とする 請求の範囲第 1項記載のサンプル容器。 5. The sample container according to claim 1, wherein the volume content of the inorganic filler is 30% to 95%.
6 . 無機充填材は熱伝導率が 1 O W/ ( m K ) 以上であるセラ ミ ックス 金属、 力一ボンから選ばれる少なくとも 1つの材質である事を特徴とす る請求の範囲第 1項記載のサンプル容器。  6. The method according to claim 1, wherein the inorganic filler is at least one material selected from the group consisting of a ceramic metal having a thermal conductivity of 1 OW / (mK) or more and a carbon. Sample container.
7 . 無機充填材が粒子及びゥィスカ—及び繊維及び箔から選ばれた少な くとも一種の形状である事を特徴とする請求の範囲第 1項記載のサンブ ル容器。  7. The sample container according to claim 1, wherein the inorganic filler has at least one kind of shape selected from particles and whiskers and fibers and foils.
8 . 無機充填材が窒化ボロン、 酸化アルミニウム、 炭化ゲイ素、 窒化ケ ィ素、 炭酸カルシウム、 酸化マグネシウム、 酸化ゲイ素、 石英ガラス、 酸化ジルコニウム、 窒化チタン、 酸化ベリ リウム、 カーボン、 ダイヤモ ン ド、 金、 銀、銅、アルミニウム、タングステン、モリブデンから選ばれた 少なくとも 1つの材料を主成分とする事を特徴とするの請求の範囲第 1 項記載のサンプル容器。 8. The inorganic fillers are boron nitride, aluminum oxide, gay carbide, silicon nitride, calcium carbonate, magnesium oxide, gay oxide, quartz glass, Claims: The main component is at least one material selected from zirconium oxide, titanium nitride, beryllium oxide, carbon, diamond, gold, silver, copper, aluminum, tungsten, and molybdenum. Sample container according to item 1.
9 . サンプルに直接接する樹脂のみで構成される部分の厚さが 5 m〜 2 0 0 / mである事を特徴とする請求の範囲第 2項記載のサンプル容器。9. The sample container according to claim 2, wherein the thickness of the portion composed of only the resin directly in contact with the sample is 5 m to 200 m / m.
1 0 . サンプル容器の外部表面のサンプル容器支持体と接する部分の構 成成分樹脂がサンプル容器の主体成分樹脂より柔軟な樹脂である部分の 厚さが 5 / m〜3 0 0 である事を特徴とする請求の範囲第 3項記載 のサン プル容器。 10. The thickness of the part of the outer surface of the sample container where the constituent resin in contact with the sample container support is a resin that is more flexible than the main component resin of the sample container should be 5 / m to 300. 4. The sample container according to claim 3, wherein the sample container is a container.
1 1 . サンプル容器の外部表面のサンプル容器支持体と接する部分の構 成成分樹脂の引っ張り強度が 3 2 M P a以下である事を特徵とする請求 の範囲第 3項記載のサンプル容器。  11. The sample container according to claim 3, wherein a tensile strength of a constituent resin at a portion of the outer surface of the sample container that contacts the sample container support is 32 MPa or less.
1 2 . サンプル容器の外部表面のサンプル容器支持体と接する部分の構 成成分樹脂の縱弾性率が 1 . 4 G P a以下である事を特徴とする請求の 範囲第 3項記載のサンプル容器。  12. The sample container according to claim 3, wherein a longitudinal elastic modulus of a constituent resin of a portion of the outer surface of the sample container which is in contact with the sample container support is 1.4 GPa or less.
1 3 . サンプル容器の外部表面のサンプル容器支持体と接する部分の構 成成分樹脂がゲル状であるある事を特徴とする請求の範囲第 3項記載の サンプル容器。  13. The sample container according to claim 3, wherein a constituent resin of a portion of the outer surface of the sample container that contacts the sample container support is a gel.
1 4 . サンプル容器の外部表面のサンプル容器支持体と接する部分の構 成成分樹脂の軟化温度が 1 0 0 以下である事を特徴とする請求の範囲 第 3項記載のサンプル容器。  14. The sample container according to claim 3, wherein the softening temperature of the constituent resin in a portion of the outer surface of the sample container that contacts the sample container support is 100 or less.
PCT/JP1995/000273 1993-09-03 1995-02-24 Sample container WO1996026008A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP24348594A JPH07125739A (en) 1993-09-03 1994-09-01 Sample container
PCT/JP1995/000273 WO1996026008A1 (en) 1994-09-01 1995-02-24 Sample container
US08/875,124 US6319475B1 (en) 1995-02-24 1995-02-24 Sample container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24348594A JPH07125739A (en) 1993-09-03 1994-09-01 Sample container
PCT/JP1995/000273 WO1996026008A1 (en) 1994-09-01 1995-02-24 Sample container

Publications (1)

Publication Number Publication Date
WO1996026008A1 true WO1996026008A1 (en) 1996-08-29

Family

ID=26436240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000273 WO1996026008A1 (en) 1993-09-03 1995-02-24 Sample container

Country Status (1)

Country Link
WO (1) WO1996026008A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1438137A1 (en) * 2001-09-20 2004-07-21 3-Dimensional Pharmaceuticals, Inc. Conductive microtiter plate
WO2009030908A2 (en) * 2007-09-06 2009-03-12 It-Is International Ltd Thermal control apparatus for chemical and biochemical reactions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174084A (en) * 1981-04-17 1982-10-26 Eisai Co Ltd Container for test
JPS634857A (en) * 1986-06-24 1988-01-09 Nitsushiyoo:Kk Minispitz
JPH03192129A (en) * 1989-12-21 1991-08-22 Sumitomo Chem Co Ltd Heat-insulating support material and container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174084A (en) * 1981-04-17 1982-10-26 Eisai Co Ltd Container for test
JPS634857A (en) * 1986-06-24 1988-01-09 Nitsushiyoo:Kk Minispitz
JPH03192129A (en) * 1989-12-21 1991-08-22 Sumitomo Chem Co Ltd Heat-insulating support material and container

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1438137A1 (en) * 2001-09-20 2004-07-21 3-Dimensional Pharmaceuticals, Inc. Conductive microtiter plate
EP1438137A4 (en) * 2001-09-20 2010-07-07 Johnson & Johnson Pharm Res Conductive microtiter plate
WO2009030908A2 (en) * 2007-09-06 2009-03-12 It-Is International Ltd Thermal control apparatus for chemical and biochemical reactions
WO2009030908A3 (en) * 2007-09-06 2009-08-13 It Is Internat Ltd Thermal control apparatus for chemical and biochemical reactions
US9492825B2 (en) 2007-09-06 2016-11-15 It-Is International Limited Thermal control apparatus for chemical and biochemical reactions

Similar Documents

Publication Publication Date Title
US5738936A (en) Thermally conductive polytetrafluoroethylene article
KR100677818B1 (en) Heat-Release Structure
US6311769B1 (en) Thermal interface materials using thermally conductive fiber and polymer matrix materials
JP2728607B2 (en) Manufacturing method of heat conductive composite sheet
US20060208354A1 (en) Thermal interface structure and process for making the same
US20100172101A1 (en) Thermal interface material and method for manufacturing the same
JP2004080040A (en) Flexible surface layer film for providing highly filled or less bridged thermally conductive interface pads
Li et al. Compliance-tunable thermal interface materials based on vertically oriented carbon fiber arrays for high-performance thermal management
KR20000064867A (en) Conductive, resin-based composition
JP7053484B2 (en) Three-dimensional heat conductive molded body and its manufacturing method
TW200903749A (en) Heat transport assembly
CN107686699A (en) Heat-conducting interface material and heat-conducting interface material preparation method
WO2018078436A1 (en) Three-dimensionally shaped thermally conductive molded body, and manufacturing method thereof
US20010050836A1 (en) Electrostatic chuck for ion injector
Li et al. An improvement of thermal conductivity of underfill materials for flip-chip packages
WO1996026008A1 (en) Sample container
JP6735432B1 (en) Thermally conductive silicone rubber composition, sheet thereof, and method for producing the same
JPH07125739A (en) Sample container
JPH11307697A (en) Thermally conductive composite sheet
US6319475B1 (en) Sample container
Kumaresan et al. Non-oil bleed two-part silicone dispensable thermal gap filler with Al2O3 and AlN filler for effective heat dissipation in electronics packaging
CN106280050B (en) A kind of high thermal conductive silicon rubber laminar composite
JP3372487B2 (en) Silicone rubber molding
CN108164753B (en) High heat conductive insulating ZnOw and its preparation method and application
JP2002198473A (en) Heat-conducting member

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08875124

Country of ref document: US

122 Ep: pct application non-entry in european phase