WO2018078436A1 - Three-dimensionally shaped thermally conductive molded body, and manufacturing method thereof - Google Patents

Three-dimensionally shaped thermally conductive molded body, and manufacturing method thereof Download PDF

Info

Publication number
WO2018078436A1
WO2018078436A1 PCT/IB2017/001308 IB2017001308W WO2018078436A1 WO 2018078436 A1 WO2018078436 A1 WO 2018078436A1 IB 2017001308 W IB2017001308 W IB 2017001308W WO 2018078436 A1 WO2018078436 A1 WO 2018078436A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
dimensional shape
outer layer
thermally conductive
mold
Prior art date
Application number
PCT/IB2017/001308
Other languages
French (fr)
Japanese (ja)
Inventor
智昭 打矢
良 阪口
任弘 高階
将 根津
崇 竹之内
Original Assignee
スリ一エム イノべイティブ プロパティズ カンパニ一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017151151A external-priority patent/JP2018078272A/en
Application filed by スリ一エム イノべイティブ プロパティズ カンパニ一 filed Critical スリ一エム イノべイティブ プロパティズ カンパニ一
Priority to EP17832980.1A priority Critical patent/EP3533579A1/en
Priority to JP2018546927A priority patent/JP7053484B2/en
Priority to CN201780067521.0A priority patent/CN110198820B/en
Priority to US16/345,951 priority patent/US20190329455A1/en
Publication of WO2018078436A1 publication Critical patent/WO2018078436A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/003Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/026Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0013Conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler

Definitions

  • the present disclosure relates to a three-dimensional shape thermally conductive molded body and a method for manufacturing the same.
  • Patent Document 1 Patent No. 3 4 9 2 6 5 6
  • a predetermined amount of fluid heat conductive grease is injected into a bag-like thin film sheet from its opening, and this heat conduction is performed.
  • Thermally conductive sheet that extends in the form of a thin sheet along the outer shape of the bag, hermetically seals the opening while exhausting the air inside, and shrinks the thin film sheet with hot air, finally shaping it into a thin sheet
  • the manufacturing method is described.
  • Patent Document 2 discloses a heat-dissipating insulating sheet obtained by coating and curing a silicone rubber containing a thermally conductive filler on a mesh-like reinforcing material, and a thermally conductive filler.
  • the uncured addition-type liquid silicone rubber whose hardness after curing with an agent is in the range of 10 to 95 with a F-hardness meter is integrally formed by molding, injection molding or coating molding, A method for producing a heat conductive composite sheet is described in which liquid silicone rubber is cured and combined with a heat insulating sheet.
  • Patent Document 3 Patent No. 2 9 3 8 3 40 discloses a silicone rubber layer containing a thermally conductive filler and having a Asker C hardness of 5 to 50, and the silicone rubber. There is described a thermally conductive composite sheet comprising a porous reinforcing material layer having pores with a diameter of 0.3 mm or more of leno weave contained in the layer.
  • Patent Document 4 Patent No. 3 3 8 2 8 4 2
  • a plurality of electronic components having different component heights are mounted on a printed wiring board, and what is a printed wiring board in these electronic components?
  • a heat sink is connected to the opposite surface via a heat transfer member made of a material having flexibility and high thermal conductivity, and the surface facing the electronic component in the heat transfer member is flat.
  • a large number of columnar protrusions that gradually increase in thickness from the leading end surface toward the other end on the base side are integrally formed so as to be close to each other, and the leading end surfaces of the columnar protrusions are pressed against the electronic component and are adjacent to each other.
  • An electronic component cooling structure is described in which a heat transfer member is interposed between an electronic component and a heat sink in a state where a V-shaped groove is formed between the electronic components.
  • Patent Document 1 Japanese Patent No. 3 4 9 2 6 5 6
  • Patent Document 2 Japanese Patent No. 2 7 2 8 6 0 7
  • Patent Document 3 Japanese Patent No. 2 9 3 8 3 4 0
  • Patent Document 4 Japanese Patent No. 3 3 8 2 8 4 2
  • a general heat conductive sheet has a sheet shape in which both main surfaces are flat (Patent Documents 2 to 3). In the case of a conventional flexible heat conductive sheet, a polysulfone or the like having poor flexibility is used. Because it was provided with a skin made of plastic material (Patent Document 1), During this period, air-trabbing was likely to occur, and there was a problem that a sufficient contact area could not be secured.
  • the present disclosure ensures sufficient gap filling property and contact area for exothermic parts such as IC chips and heat dissipating parts such as heat sinks without applying excessive stress.
  • a three-dimensional shape heat conductive molded body and a method for manufacturing the same are provided.
  • thermoly conductive material including a thermally conductive material and a silicone-based material
  • a three-dimensional shape heat conductive molded body having a substantially flat bottom surface and a three-dimensional shape portion located in the bottom surface, and a height of the three-dimensional shape portion above the bottom surface.
  • a three-dimensionally shaped thermally conductive molded body that differs in at least two places.
  • a step of preparing a mixture including a thermally conductive material and a silicone-based material, a substantially flat bottom surface, and a three-dimensional shape portion located in the bottom surface And a step of preparing a mold from which a molded body having a height different from the height of the three-dimensional shape portion at least in two places above the bottom is obtained, and an extensible film so as to be in contact with the inner surface of the mold Placing the mold on the mold, pasting the stretchable film on the mold, filling the cavity of the mold with the stretchable film, and optionally forming the bottom of the molded body
  • the step of flattening the substrate, the step of curing the mixture in the mold, and optionally cooling the mold, taking out the three-dimensional shape heat conductive molded article having the stretchable film from the mold, and optionally stretching Possible film is removed, and the shape is arbitrarily attached
  • a method of manufacturing a three-dimensional shape heat conductive molded body is provided, which includes a step of punch
  • a first silicone-based material containing a heat conductive material is applied on the stretchable film of a laminated film including a stretchable film and a release film.
  • the process of forming the upper outer layer by curing, and can be extended to the inner surface of the mold after removing the release film of the laminated film with the upper outer layer A step of arranging the laminated film on a mold so that the film can come into contact with the mold, the mold having a substantially flat bottom surface and a three-dimensional shape portion located in the bottom surface, and above the bottom surface
  • the mold can obtain a molded body having different heights in at least two places, a process of bonding the laminated film to the mold, and a cavity of the mold bonded with the laminated film And filling the intermediate member containing the second silicone material containing the heat conductive material, and optionally performing a flattening process on the portion located on the bottom side of the molded body, and optionally peeling
  • a third silicon-based material containing a heat conductive material is applied on the stretch
  • a release film including a bottom outer layer Placing the film on the mold so that the film is the outermost layer, and curing the second silicone material constituting the intermediate member and, if present, the third silicone material constituting the bottom outer layer, After optionally cooling the mold, remove the three-dimensional shape thermally conductive molded body with the stretchable film and the optional release film from the mold, and remove the optional stretchable film and / or the optional release film.
  • punching out the upper outer layer portion that does not include the intermediate member and the bottom outer layer portion, if present, to obtain a three-dimensional shape thermally conductive molded body, and manufacturing a three-dimensional shape thermally conductive molded body A method is provided.
  • a three-dimensional shape heat conductive molded body including a plurality of protrusion layers and a bottom outer layer, wherein the protrusion layers include a heat conductive material and a silicone material.
  • the bottom outer layer includes a thermally conductive material, a silicone-based material, and a reinforcing base, and the protrusion layer is not in contact with the outer periphery of the bottom surface of the adjacent protrusion layer, so that there is a gap between the adjacent protrusion layers Has been placed,
  • is about 0.70 to about 1.0
  • X is the compression ratio (%) when the gap is completely filled by the compression deformation of the protruding layer
  • is the bottom outer layer This is the ratio (%) of the total area of the bottom surface of the protrusion layer to the total area of the top surface.
  • a step of preparing a mixture including a heat conductive material and a silicon-based material, and forming a protruding layer and a gap of the three-dimensional shape heat conductive molded body A mold that can be stretched, a process in which an extensible film is placed on the mold so as to be in contact with the inner surface of the mold, a process in which the stretchable film is bonded to the mold, and a mold in which the stretchable film is bonded.
  • a method for producing a three-dimensional shape heat conductive molded body comprising: removing a film to obtain a three-dimensional shape heat conductive molded body.
  • a three-dimensional shape thermally conductive molded body and a method for producing the same which are excellent in preventing protrusion from the end portions of the constituent materials.
  • the contact area with the adherend can be increased, and the three-dimensional shape heat conduction is excellent in heat dissipation, tear resistance, stress relaxation (flexibility), assembly, and the like.
  • a molded article and a method for producing the same are provided.
  • a three-dimensional shape heat conductive molded body excellent in heat resistance and a method for producing the same are provided.
  • a method for producing a three-dimensional shape thermally conductive molded body that can be molded using an extremely flexible material is provided.
  • FIG. 1 is a cross-sectional view of a three-dimensional shape thermally conductive molded body according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram schematically illustrating a process of forming a three-dimensional shape thermally conductive molded body using a vacuum thermocompression bonding apparatus.
  • FIG. 3 is a perspective view of a three-dimensional shape thermally conductive molded body according to an embodiment of the present disclosure.
  • FIG. 4 is a perspective view of a three-dimensional shape thermally conductive molded body according to another embodiment of the present disclosure.
  • FIG. 5 is a perspective view of a three-dimensional shape thermally conductive molded body according to another embodiment of the present disclosure.
  • FIG. 6 is a perspective view of a three-dimensional shape thermally conductive molded body according to another embodiment of the present disclosure.
  • FIG. 7 is a perspective view of a three-dimensional shape thermally conductive molded body according to another embodiment of the present disclosure.
  • FIG. 8 is a perspective view of a three-dimensional shape thermally conductive molded body according to another embodiment of the present disclosure.
  • FIG. 9 is a perspective view of a three-dimensional shape thermally conductive molded body according to another embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view of a three-dimensional shape thermally conductive molded body according to still another embodiment of the present disclosure.
  • FIG. 1 1 is a perspective view of a three-dimensional shape thermally conductive molded body according to still another embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of the measurement principle of thermal resistance.
  • FIG. 13 is a perspective view of a three-dimensional shape thermally conductive molded body according to still another embodiment of the present disclosure.
  • FIG. 14 is a perspective view of a three-dimensional shape thermally conductive molded body according to still another embodiment of the present disclosure.
  • the three-dimensional shape thermally conductive molded body in the first embodiment is a three-dimensional shape thermally conductive molded body including a thermally conductive material and a silicone-based material, and the molded body is substantially flat. It has a bottom surface and a three-dimensional shape portion located in the bottom surface, and the height of the three-dimensional shape portion above the bottom surface is different in at least two places. Since this three-dimensional shape thermally conductive molded body has a predetermined three-dimensional shape portion, a sufficient contact area can be ensured without applying excessive stress to the adherend to be applied.
  • At least a part of the three-dimensional shape portion may be covered with an upper outer layer containing a silicone material.
  • a nonwoven fabric may be present on the bottom surface side. If the nonwoven fabric is embedded on the bottom side of the molded body, the stretchability of the molded body in the planar direction is suppressed, and there is no problem such as cracking when the molded body is peeled off from the mold. Can be improved.
  • At least a part of the shape of the three-dimensional shape portion may be substantially dome-shaped or substantially kamaboko-shaped.
  • the three-dimensional shape portion having such a shape can further secure a sufficient contact area with the adherend to be applied.
  • the shape of the three-dimensional shape portion may substantially match the shape of the adherend to which the shape portion is applied. By substantially matching the shape of the adherend to which the three-dimensional shape portion is applied, it is sufficient for the adherend. A sufficient contact area can be secured, and the stress on the adherend can be reduced.
  • the three-dimensional shape thermally conductive molded body according to the first embodiment includes a bottom outer layer constituting a bottom surface, an upper outer layer disposed so as to cover the bottom outer layer, and between the bottom outer layer and the upper outer layer.
  • the upper outer layer, the intermediate member, and the bottom outer layer may include a silicone-based material.
  • the upper outer layer and the bottom outer layer, or the bottom outer layer and the intermediate member may be made of the same material and integrated. By setting it as such a structure, the molded object excellent in adhesiveness can be obtained.
  • the upper outer layer includes a silicone rubber
  • the intermediate member includes a silicone gel
  • the bottom outer layer includes a silicone rubber or a silicone gel.
  • the upper outer layer containing silicone rubber covers, for example, an intermediate member that is flexible and easily deformed, it is possible to improve the flexibility of the molded body and to prevent the protrusion from the end. Since the upper outer layer has rubber elasticity, for example, if pressure is applied to the molded body from the outside, the intermediate member of the silicone gel can be easily deformed, but if the pressure is removed, the deformed intermediate member is The work can be reverted to its original shape by the restoring force associated with the rubber elasticity of the outer layer.
  • the intermediate member may be more flexible than the upper outer layer and / or the lower outer layer.
  • the three-dimensional shape thermally conductive molded body in the first embodiment may have different tackiness between the bottom surface and the surface portion of the three-dimensional shape thermally conductive molded body excluding the bottom surface.
  • Such a molded article having tackiness is easily reworked because it adheres to one of the adherends without breaking during rework.
  • the manufacturing method of the three-dimensional shape thermally conductive molded body in the first embodiment A step of preparing a mixture containing a functional material and a silicone-based material, a substantially flat bottom surface, and a three-dimensional shape portion located in the bottom surface, wherein the height of the three-dimensional shape portion above the bottom surface is at least 2
  • a step of preparing a mold from which different molded bodies can be obtained at different locations a step of placing an extensible film on the die so as to be in contact with the inner surface of the die, a step of attaching the extensible film to the die, A step of filling the cavity of the mold bonded with the stretchable film with a mixture, and optionally performing a flattening process on the bottom portion of the molded body, and a step of curing the mixture in the mold, and optionally
  • the three-dimensional shape heat conductive molded body having the stretchable film is taken out of the mold, the stretchable film is arbitrarily removed, the part not arbitrarily attached with the mold
  • Another method for producing a three-dimensional shape thermally conductive molded body in the first embodiment is a first method comprising a thermally conductive material on an extensible film of a laminated film including an extensible film and a release film. Applying a silicone material and curing to form the upper outer layer; and after removing the release film of the laminated film having the upper outer layer, the laminated film is brought into contact with the mold inner surface.
  • the mold is a step of placing on a mold, and the mold has a substantially flat bottom surface and a three-dimensional shape portion positioned in the bottom surface, and the height of the three-dimensional shape portion above the bottom surface is at least 2
  • a base material is applied to form a bottom outer layer, and the peeling film includes the bottom outer layer so that the bottom outer layer covers the top outer layer and the intermediate member filled in the cavity.
  • a step of arranging on the mold so as to be a surface layer, a step of curing the second silicone material constituting the intermediate member, and a third silicone material constituting the bottom outer layer, if any, and any After cooling the mold, a three-dimensional shape heat conductive molded body having an extensible film and an optional release film is removed from the mold. Remove, optionally stretchable film and Z or optional release film, and optionally punch out the upper outer layer part that does not contain the intermediate member and the bottom outer layer part if present. And obtaining a molded body.
  • the three-dimensional shape thermally conductive molded body according to the second embodiment includes a plurality of protrusion layers and a bottom outer layer, the protrusion layer includes a heat conductive material and a silicone-based material, and the bottom outer layer includes: Including a thermally conductive material, a silicone-based material, and a reinforcing substrate, and the protruding layer is not in contact with the bottom surface outer peripheral portion of the adjacent protruding layer, and is disposed so as to have a gap between the adjacent protruding layers;
  • is about 0.70 to about 1.0
  • X is the compression ratio (%) when the gap is completely filled by the compression deformation of the protruding layer
  • is the bottom outer layer This is the ratio (%) of the total area of the bottom surface of the protrusion layer to the total area of the top surface. Is satisfied. Since this three-dimensional shape heat conductive molded body has a predetermined projection layer and a gap, it can reduce the compressive stress on the adherend as compared with the conventional flat heat radiating sheet, and has a heat radiating property and tear resistance. Stress relaxation property (flexibility), assembly property, etc. can be improved.
  • the widths of the gaps can be made substantially uniform.
  • the upper surface of the protrusion layer is substantially the same. It may be a flat surface.
  • the upper surface of the projection layer is a substantially flat surface, it becomes easy to form a contact surface with few voids on the adherend after compression deformation of the molded body.
  • the three-dimensional shape thermally conductive molded body according to the second embodiment has a shape of the substantially flat surface of the projection layer as a substantially regular triangle, a substantially square, a substantially regular pentagon, a substantially regular hexagon, a substantially rectangular shape, or a substantially rectangular shape.
  • the projection layer may have a cross-sectional portion along each side of the shape, and the adjacent sides in the shape of the adjacent projection layer may be in a substantially parallel state.
  • the protrusion layer having such a structure is easy to be filled in the adjacent gap by the protrusion layer portion that compresses and expands in the horizontal direction, and forms a uniform contact surface with less voids against the adherend application surface after compression. It becomes easy.
  • the taper angle of the protrusion layer can be set to about 80 ° to about 90 °.
  • Such a protruding layer is excellent in mold releasability, and after compression, it becomes easier to form a uniform contact surface with less voids relative to the adherend application surface.
  • the three-dimensional shape thermally conductive molded body in the second embodiment is a projection layer anchor
  • the C hardness can be about 0 to about 30. Since the protrusion layer having such hardness is excellent in flexibility, it is excellent in gap filling property, increase in the contact area with respect to the adherend, or unevenness following property due to compression.
  • the three-dimensional shape thermal conductive molded body in the second embodiment is applied to an adherend.
  • the contact area when compressed by 50% can be increased by about 40% or more compared to the contact area when the molded body is applied to the adherend without being compressed.
  • a molded body exhibiting such performance is excellent in stress relaxation for the adherend, and more easily forms a uniform contact surface with less voids on the adherend application surface after compression.
  • three-dimensional shape heat conductive body in the second embodiment may have a protrusion layer 5 Roh inch 2 or more. With a molded body having such a configuration, sufficient heat dissipation can be exhibited with respect to the adherend.
  • the thickness of the bottom outer layer is about 0.5 mm or less, and the thickness of the three-dimensional shape thermally conductive molded body is about 4. O mm or less. It can be done. In general heat dissipation sheets, the compressive stress increases as the thickness decreases. However, since the molded body of the present disclosure has a predetermined protrusion layer and a gap, even if it is such a thickness, the molded body has excellent stress relaxation properties against the adherend, and after compression, the adherend application surface On the other hand, since it is easy to form a uniform contact surface with few voids, sufficient heat dissipation can be exhibited on the adherend.
  • a method for producing a three-dimensional shape thermally conductive molded body according to the second embodiment includes a step of preparing a mixture containing a thermally conductive material and a silicone-based material, and a protruding layer of the three-dimensional shape thermally conductive molded body.
  • a step of preparing a mold capable of forming a gap a step of arranging an extensible film on the mold so as to be in contact with the inner surface of the mold, a step of bonding the extensible film to the mold, and an extensible film Filling the cavity into the cavity of the above-mentioned mold, and a laminate for the bottom outer layer having the bottom outer layer on the release film, covering the mixture with the bottom outer layer filling the cavity, and the release film being the outermost layer
  • the stretchable film is made of polyolefin resin (polyethylene resin (for example, low density polyethylene resin, medium density polyethylene resin). ), A copolymer of polypropylene and polyethylene, etc.), a polymethylpentene resin (TPX (registered trademark) resin), an ionomer resin, and at least one resin selected from fluorine-based resins.
  • a resin laminate may be used.
  • a film containing such a material is excellent in deep drawability, mold releasability, and releasability from a silicone-based material, so that a three-dimensional shape heat conductive molded body can be produced with higher accuracy.
  • the “three-dimensional shape portion” means a portion of the three-dimensional shape heat conductive molded body that is located above the bottom surface of the molded body.
  • substantially means including variations caused by manufacturing errors and the like, and intended to allow a fluctuation of about 20% in soil.
  • dome shape means a substantially circular shape when viewed from above, and the cross section of the center line of the substantially circular shape is a substantially semicircular cross section or a section as described in FIG.
  • One of the outer edges of these cross-sections has a shape that is further cut inwardly from the bottom surface in the vertical direction (eg, along the first height a). It means you may.
  • kamaboko means that when viewed from above, at least one end of a substantially rectangular shape or a substantially rectangular shape is a substantially semicircular shape or a substantially elliptical shape, and the long side or long axis of these shapes.
  • the cross-section at the intermediate position is a substantially semicircular cross-section or a cross-section as shown in FIG. 1, and either one of the outer ends of these cross-sections is directed inward from the bottom toward the inside. (For example, along the first height a) This means that the shape may be further cut.
  • bottom side means less than about half of the maximum height of the three-dimensional shape portion located above the bottom surface or about 13 or less.
  • the three-dimensional shape thermally conductive molded body of one embodiment of the present disclosure is a three-dimensional shape thermally conductive molded body including a thermally conductive material and a silicone material, and the molded body is substantially It has a flat bottom surface and a three-dimensional shape portion located in the bottom surface, and the height of the three-dimensional shape portion above the bottom surface is different in at least two places.
  • the three-dimensional shape thermally conductive molded body having such a configuration may be referred to as “first three-dimensional shape thermally conductive molded body” or “first molded body”.
  • FIG. 1 is a cross-sectional view of a three-dimensionally shaped thermally conductive molded body having a three-layer structure according to an embodiment of the present disclosure.
  • the three-dimensional shape thermally conductive molded body 1 includes a bottom outer layer 2, an intermediate member 3, and a top outer layer 4, and has a first height 'a and a second height b. Is different in at least two places in the height of the three-dimensional shape above the bottom Intended to be.
  • the silicone materials used for the bottom outer layer 2, the intermediate member 3 and the upper outer layer 4 are all the same, it can be regarded as a one-dimensional three-dimensional shape heat conductive molded body.
  • the heat conduction of the two-layer structure Can be regarded as a molded product.
  • a top outer layer, an intermediate member, and a bottom outer layer (which may include a nonwoven fabric impregnated with a silicone-based material) are sequentially laminated and cured. If the layers are later integrated using the same silicone-based material and the layer interface cannot be distinguished, the molded body can be regarded as a single layer structure.
  • the silicone material is not particularly limited, but silicone gel and silicone rubber can be used.
  • silicone gel and silicone rubber can be used.
  • silicone gel and silicone rubber may be used in combination.
  • Silicone gel has excellent flexibility, and silicone rubber has excellent anti-extrusion properties.
  • Silicone gels can be used, such as heat-curing type or room-temperature curing type, and those having a curing mechanism of condensation type or addition type. However, it is easy to adjust the cross-linking density and to make it flexible.
  • a silicone gel obtained from an addition-type silicone composition is preferred.
  • the group bonded to the silicon atom is not particularly limited. For example, an alkyl group such as a methyl group, an ethyl group, and a propyl group, a cycloalkyl group such as a cyclopentyl group and a cyclohexyl group, a vinyl group, and a allyl group.
  • aryl groups such as alkenyl groups, phenyl groups, tolyl groups, etc., those in which hydrogen atoms of these groups are partially substituted with other atoms or linking groups can be mentioned.
  • the method for producing the addition reaction type (or cross-linked) silicone gel used in the present invention is not particularly limited, but usually, organohydrodiene polysiloxane (a-1) and alkenyl polysiloxane (a- 2) and the presence of catalyst It can be obtained by hydrosilylation reaction (addition reaction) in the presence.
  • addition reaction curable silicone gel compositions that can form such silicone gels: one-part curable and two-part curable.
  • the liquid curable composition can provide a flexible gel by heating after mixing the two liquids.
  • an addition reaction catalyst an addition reaction between a alkenyl group bonded to a silicon atom in the (a-1) component and a hydrogen atom bonded to the silicon atom in the (a-2) component (hydrosilylation reaction) Any catalyst known to promote the process can be used.
  • chloroplatinic acid for example, chloroplatinic acid, alcohol-modified chloroplatinic acid, complexes of chloroplatinic acid and vinyl siloxane, platinum-based catalysts such as chloroplatinic acid 2-ethyl hexanol solution, tetrakis ( ⁇ -phenylphosphine) palladium, paradioxide Palladium-based catalysts such as a mixture of mukuro and black phenyl phosphine, and platinum group metal-based catalysts such as rhodium catalyst can be used.
  • platinum-based catalysts such as chloroplatinic acid 2-ethyl hexanol solution, tetrakis ( ⁇ -phenylphosphine) palladium, paradioxide Palladium-based catalysts such as a mixture of mukuro and black phenyl phosphine
  • platinum group metal-based catalysts such as rhodium catalyst
  • the addition amount of the addition reaction catalyst can be appropriately adjusted in consideration of reactivity and the like.
  • the addition amount of the addition reaction catalyst is about 0 with respect to the total amount of the component (a-1) and the component (a-2). It can be used in the range of 1 ppm or more and about 1 OO ppm or less (catalyst metal element conversion).
  • the silicone gel adjusts the flexibility of the silicone gel by changing the crosslinking density of the silicone gel by appropriately adjusting the blending ratio of (a-1) to (a-3), the crosslinking temperature and time, etc. can do.
  • Silicone gels include, for example, MQ resin type tackifying components, addition of non-reactive adhesive components, length of side chains of non-crosslinked functional groups, types of terminal functional groups, etc. It may be adjusted to develop the desired tackiness.
  • the silicone rubber either an addition reaction type or a condensation type can be used.
  • an addition reaction type silicone rubber the crosslink density of the above addition reaction type silicone gel is increased to increase the elasticity of rubber (extensive when load is applied, excluding load) It is possible to use a device that exhibits the property of returning to its original position.
  • a condensation-type silicone rubber is one that undergoes a hydrolytic condensation reaction by cross-linking by reacting with moisture in the atmosphere.
  • hydrolytic functional groups possessed by this condensed type reactive silicone rubber include, for example, alkoxy groups (de-alcohol type), iso-probenoxy groups (de-acetone type), methyl ethyl ketoxime groups (de-aged xim) Type) and acetoxy group (deacetic acid type), but from the viewpoints of high curing speed and low odor of the released substance, the deacetone type or dealcohol type is preferred.
  • the thermally conductive material may be insulative or conductive.
  • Insulating heat conductive materials include nitrogen compounds such as boron nitride, aluminum nitride, and silicon nitride, aluminum oxide (alumina), magnesium oxide, zinc oxide, silicon oxide, beryllium oxide, titanium oxide, and copper oxide.
  • Metal oxides such as cuprous oxide, metal hydroxides such as magnesium hydroxide, aluminum hydroxide, magnesai ⁇
  • Magnetic carbonate carbon compounds such as silicon carbide and diamond, silica, talc, my strength, ceramics such as kaolin, bentonite and pie mouth ferrite, titanium boride, calcium titanate, etc. can be used.
  • Boron nitride is composed of c-BN (cubic structure), w-BN (Uruthite structure), h-BN (hexagonal structure), r-BN (rhombohedral structure), t-BN (turbulent layer). Any structure such as (structure) may be used. Examples of the shape of boron nitride include scaly ones and aggregates thereof, and any of them can be used.
  • Examples of conductive thermal conductive materials include graphite, force bon black, graphite, carbon fiber (pitch and PAN), force bon nanotube (CNT), force — Bonn nanofiber (CNF) ), Metal compounds such as silver, copper, iron, nickel, aluminum, titanium or metal alloys containing these, stainless steel (SUS), conductive metal oxides such as zinc oxide doped with different elements, Metal compounds such as moss can be used.
  • An insulating material such as silica is covered with a conductive heat conductive material to make it conductive, or a conductive heat conductive material is covered with an insulating material such as silicon to make it insulating. Can also be used as a thermally conductive material.
  • thermally conductive materials can be used alone or in combination of two or more.
  • heat conductive material For the shape of the heat conductive material, various shapes can be used, for example, fiber shape, plate shape, scale shape, rod shape, granular shape, rod shape, tube shape, curved plate shape, needle shape, curved plate shape. , Needles and the like. These heat conductive materials may be subjected to surface treatment such as silane coupling treatment, titanate coupling treatment, epoxy treatment, urethane treatment, oxidation treatment and the like.
  • the total content of the heat conductive material in the three-dimensional shape heat conductive molded body is about 30% by mass or more, about 50% by mass or more, or about 8 depending on the type of the heat conductive material. 0% by mass or more, approximately 95% by mass. / 0 or less, or about 90% by mass or less. If the molded body has a multilayer structure, the content in each layer may be other than the above range as long as the total content of the entire molded body is in the above range, and the content in each layer is It may be the same or different.
  • the heat dissipation performance (thermal conductivity) of the three-dimensional shape thermally conductive molded body of the present disclosure is about 1.0.
  • This value includes the interfacial thermal resistance.
  • the average particle size of the thermally conductive material is about 0.1 jm or more, about .0 or more, or about 0.3 ⁇ _ ⁇ or more, about 20.00 Aim or less, about 10 0 xm or less, Or about 70 m or less.
  • the thermally conductive material can be used in combination with at least two particles having different average particle sizes. With such a configuration, the thermal conductivity is improved because the thermally conductive material having a small particle diameter is filled between the large particle diameters and filled in a close packed manner.
  • the average particle size and particle size distribution of the thermally conductive material can be measured with an electron microscope, a laser one-diffracted light scattering device, or the like.
  • Silicone-based materials further include additives such as flame retardants, pigments, dyes, fillers, reinforcing materials, leveling agents, antifoaming agents, dispersants, curing accelerators, reactive diluents, and solvents. May be included. The blending amount of these additives can be appropriately determined within a range not impairing the effects of the present invention.
  • the intermediate member of the three-dimensional shape thermally conductive molded body has a first force when the intermediate member is formed into a sheet having a thickness of about 1 O mm.
  • the hardness by a C hardness meter is about 30 or less, about 2 or less or about 8 or less, or about 0 or more.
  • the three-dimensional shape heat conductive molded body may have a single layer, two layers, or three layers.
  • any two of the bottom outer layer 2, the intermediate member 3 and the upper outer layer 4 may be composed of the same silicone gel, and the remainder may be composed of different silicone gels or silicone rubbers.
  • the bottom outer layer 2 and the upper outer layer 4 may be made of the same silicone rubber, and the intermediate member 3 may be made of silicone gel.
  • the upper outer layer 4 or the upper outer layer 4 and the bottom outer layer 2 are preferably made of silicone rubber.
  • the bottom outer layer 2 In the case of a three-layer structure, different silicone materials can be used for the bottom outer layer 2, the intermediate member 3 and the upper outer layer 4, respectively.
  • the upper outer layer 4 or the upper outer layer 4 and the bottom outer layer 2 are made of silicone rubber from the viewpoint of flexibility and prevention of protrusion from the end.
  • a molded body having a two-layer or three-layer structure in which the intermediate member 3 is more flexible than the upper outer layer 4 and / or the lower outer layer 2 is excellent in preventing protrusion from the end.
  • the two-layer or three-layer molded body that uses silicone rubber for the upper outer layer 4 or the upper outer layer 4 and the bottom outer layer 2 is a highly flexible silicone that protrudes from the end as an intermediate member. Even if the base material is used, the intermediate member 3 is covered with the upper outer layer 4 made of at least silicone rubber. Therefore, the intermediate member is less likely to leak from the end due to the restoring force of the silicone rubber.
  • the three-dimensional shape portion above the bottom surface of the three-dimensional shape heat conductive molded body is not particularly limited as long as the height is different in at least two or three places.
  • a three-dimensional shape part having a substantially dome shape or a substantially semi-cylindrical shape as shown in FIGS. 1 and 2 is preferable.
  • the top portion having a substantially dome shape or a substantially semi-cylindrical shape first adheres to the flat surface of the adherend, and then molded together with pressing.
  • the three-dimensional shape of the body is flattened from the top to the outside so that the three-dimensional shape of the body is crushed and deformed, and the air between the adherend and the three-dimensional shape is pushed outward. Since it adheres to the surface, air does not enter between the adherend and the three-dimensional shape portion, and the contact area of the three-dimensional shape thermally conductive compact to the adherend can be improved. This effect is exhibited when the upper outer layer contains a silicone-based material, and other plastic materials with poor flexibility are mixed with air even if they have the same three-dimensional shape, A sufficient contact area could not be obtained.
  • FIGS. 3 to 9 show examples of specific shapes of the three-dimensional shape heat conductive molded body, but the shape of the molded body is not limited to these.
  • the molded body in FIGS. 3 to 9 has an approximately dome-shaped or approximately semi-cylindrical three-dimensional shape, and therefore has better air bleedability than a conventional flat, single-walled thermally conductive molded body. is there.
  • the larger the molded body the more the molded body having a plurality of three-dimensional shapes, as shown in FIGS. 5 to 9, specifically, two or more, three or more, or five or more,
  • the problem of entraining air (bubbles) at the contact part with heat sinks or heat-generating parts such as heating elements can be further reduced.
  • the size, number, placement location, etc. of the three-dimensional shape part in the molded body can be appropriately set in consideration of the shape, size, etc. of the parts to which the molded body is applied.
  • the part and the approximately three-dimensional shape part that is substantially kamaboko may coexist.
  • the three-dimensional shape thermally conductive molded body of the present disclosure has a high three-dimensional shape portion above the bottom surface. Therefore, the stress applied to the various parts to be applied can be reduced as compared with the conventional flat sheet-shaped heat conductive molded body.
  • the load when the height is compressed to, for example, 80% (load when compressed at 20%) is a flat sheet shape. It becomes smaller than the load when it is compressed at the same ratio using the heat conductive molded body.
  • the load at the time of 20% compression may be about 95% or less, about 90% or less, or about 85% or less as compared to a conventional flat sheet-shaped heat conductive molded body.
  • the three-dimensional shape portion of the molded body has the shape of the adherend.
  • the shape may be approximately the same. For example, it is possible to minimize the stress on each element and maximize the contact area by molding the heat conductive molded body that covers the entire electronic substrate according to the shape of each element on the substrate. it can. Furthermore, for example, even if the adherend is like a coil, it is possible to easily wrap the coil with a three-dimensional shape heat conductive molding without gaps by using a three-dimensional shape like a coil punching die. be able to.
  • the size of the three-dimensional shape thermally conductive molded body can be appropriately determined according to the adherend to be applied.
  • the thickness of the top outer layer and the bottom outer layer is about 10 / xm or more in consideration of flexibility, prevention of protrusion from the end, strength, etc. It may be about 50 / xm or more, about 500 m or less, or about 300 m or less.
  • a reinforcing base material such as a woven fabric, a knitted fabric, or a non-woven fabric may be incorporated on the bottom surface side so as not to be exposed from the bottom surface of the molded body. If the reinforcing base is present on the bottom surface side of the molded body, the stretchability of the molded body in the planar direction is suppressed, the strength of the molded body is improved, and cracks when the molded body is peeled off from the mold, etc. Trouble can be prevented.
  • non-woven fabrics are preferable because they are excellent in the impregnation properties of silicone materials.
  • Nonwoven fabrics are easily impregnated with silicone materials, and the constituent fibers can be fixed with silicone materials. Even if it is thinner than the above, it can have a strength equal to or greater than these reinforcing base materials.
  • a material for the reinforcing substrate glass, vinylon, alamide, nylon, polyolefin, polyester, acrylic, and the like can be used. However, since flame retardancy can be imparted, glass is preferable.
  • the nonwoven fabric may have a thickness of about 20 tm or more, or about 40 jam or more, and may be less than about 0.2 mm or less than about 0.1 mm.
  • the tackiness of the bottom surface of the molded body and the surface portion of the molded body excluding the bottom surface may be different.
  • the molded body having such tackiness is easily reworked because it adheres to one of the adherends without breaking during rework.
  • the tackiness of the three-dimensional shape heat conductive molded body can be appropriately adjusted depending on the surface treatment, the use of different materials such as silicone rubber and silicone gel, and the difference in the blending amount of the adhesive component.
  • the manufacturing method of the three-dimensional shape thermally conductive molded body of the present disclosure will be exemplarily described, the manufacturing method of the three-dimensional shape thermally conductive molded body is not limited thereto.
  • the following method exemplifies a method employing a vacuum thermocompression bonding device for bonding an extensible film, but is not limited to this method, and a vacuum molding method, a film insert molding method, or the like can also be used. .
  • the method for producing the three-dimensional shape thermally conductive molded body 60 can be produced, for example, by the following method (Fig. 2).
  • the first silicone material containing the heat conductive material is applied and cured to form the upper outer layer.
  • Curing is not particularly limited, and heat curing, electron beam curing, and the like can be employed.
  • a mold 20 having a predetermined three-dimensional shape as shown in FIG. 2 (A) is prepared.
  • the exemplary vacuum thermocompression bonding apparatus 30 has a first vacuum chamber 31 and a second vacuum chamber 32 on the upper and lower sides, respectively, and between the upper and lower vacuum chambers.
  • a jig for setting the upper outer laminated film 10 to be attached to the mold 20 is provided.
  • the lower vacuum chamber 3 1 has a lifting platform 3 that can be moved up and down.
  • a partition plate 34 and a pedestal 33 are installed on 5 (not shown), and the mold 20 is set on the pedestal 33.
  • a vacuum thermocompression bonding apparatus a commercially available apparatus such as a double-sided vacuum molding machine (manufactured by Fuse Vacuum Co., Ltd.) can be used.
  • the first vacuum chamber 31 and the second vacuum chamber 32 are closed, the pressure is reduced, and the inside of each chamber is evacuated (atmospheric pressure is 1 atm). In this case, for example, about O atm). After that, or simultaneously with the vacuum, the upper outer layer laminated film 10 is heated.
  • the elevator 35 is raised and the mold 20 is pushed up to the second vacuum chamber 32.
  • the heating can be performed by, for example, a lamp heater incorporated in the ceiling portion of the second vacuum chamber 32.
  • the heating temperature can generally be about 50 ° C or higher, or about 130 ° C or higher, about 180 ° C or lower, or about 160 ° C or lower.
  • the degree of vacuum in the reduced-pressure atmosphere can be about 0.110 atm or less, about 0.05 atm or less, and about 0.01 atm or less with atmospheric pressure of 1 atm.
  • the heated upper outer layer laminated film 10 is pressed against the surface of the mold 20 and stretched. Thereafter or simultaneously with stretching, the inside of the second vacuum chamber 32 is pressurized to an appropriate pressure (eg, 3 atm to 1 atm) as shown in FIG. 2 (E).
  • the upper outer laminated film 10 heated by the pressure difference is in close contact with the exposed surface of the mold 20, stretches following the three-dimensional shape of the exposed surface, and is in close contact with the surface of the mold 20 in a peelable manner. Form a coating.
  • the inside of the second vacuum chamber 32 can be pressurized and the exposed surface of the mold 20 can be covered with the upper outer laminated film 10 as it is.
  • the upper and lower first vacuum chambers 31 and 32 are again opened to atmospheric pressure. Then, the mold 20 covered with the upper outer layer laminated film 10 is taken out. As shown in FIG. 2 (F), the edge of the upper outer laminated film 10 that is in close contact with the surface of the mold 20 is trimmed to obtain an integrated product 40 including the upper outer laminated film 10 and the mold 20. obtain.
  • the second silicone material is cured, taken out from the unitary product 40, and if necessary, the stretchable film is removed and punched to obtain a three-dimensional shape heat conductive molded body. it can.
  • FIG. 2 (G) As shown in FIG. 2 (G), on the intermediate member 1 2,
  • the bottom outer layer 13 is formed by applying a third silicon-based material containing a heat conductive material on a release film (not shown), and the bottom outer layer 13 is formed by laminating the upper outer layer.
  • a release film including the bottom outer layer 13 is disposed so that the release film is the outermost layer so as to cover the film 10 and the intermediate member 12 filled in the cavity portion 11, and the final integrated product 50 Get.
  • a reinforcing base material such as a nonwoven fabric is applied on the release film, and a third silicone material is applied and impregnated on the base material to form the bottom portion.
  • the outer layer 1 3 can also be obtained.
  • the second and third sili- s constituting the intermediate member 12 and the bottom outer layer 13 are formed. Curing corn-based material. From the viewpoint of adhesion, it is preferable to cure the intermediate member 12 and the bottom outer layer 13 at the same time. For curing, various curing methods such as heat curing and electron beam curing can be employed.
  • the three-dimensional shape thermally conductive molded body having the stretchable film and the optionally present release film is taken out of the mold 20 and the three-dimensional shape thermally conductive molding is taken.
  • the body 60 can be obtained. If necessary, stretchable film, release film may be removed, intermediate member not included, upper outer layer part and bottom outer layer part, if present, appropriately punched, individual 3D shape heat A conductive molded body can also be obtained.
  • first to third silicone-based materials containing the heat conductive material are the same material, they can be regarded as a single-layer molded article, and two of the three types are the same material. If it is, it can be regarded as a two-layered molded body, and if all three types are different materials, it can be regarded as a three-layered molded body.
  • a three-dimensionally shaped thermally conductive molded body having a single layer structure can also be produced, for example, by the following method.
  • the stretchable film is set in a vacuum heating pressure bonding apparatus 30 and the stretchable film is peelably bonded to the mold 20 in the same manner as described above.
  • an integrated product 40 including the stretchable film and the mold 20 is obtained.
  • the cavity portion 1 1 of the integrated product 40 is filled with a silicone-based material containing a heat conductive material, and is subjected to a flattening treatment using a blade or the like as necessary. Harden the material.
  • the three-dimensional shape heat conductive molded body having the stretchable film can be taken out of the mold, and a one-dimensional three-dimensional shape heat conductive molded body can be obtained. If necessary, the stretchable film may be removed, and an appropriate three-dimensional shape heat conductive molded body can be obtained by performing appropriate punching.
  • the stretchable film used in the method for producing a three-dimensional shape thermally conductive molded body has, for example, extensibility so that it can be deep-drawn, and can be separated from the silicone material.
  • the material is not particularly limited as long as it has a material containing polyethylene, such as polyethylene (for example, low density polyethylene resin, medium density polyethylene resin), polyolefin resin such as polypropylene and polyethylene copolymer, polymethylpentene resin (TPX ( (Registered Trademark) Resin), Ionomer Mono Resin, Fluorine Resin, etc. can be used.
  • polyethylene for example, low density polyethylene resin, medium density polyethylene resin
  • polyolefin resin such as polypropylene and polyethylene copolymer
  • TPX polymethylpentene resin
  • Ionomer Mono Resin Ionomer Mono Resin
  • Fluorine Resin etc.
  • a surface treatment such as a mold release treatment may be appropriately applied to the film surface.
  • Another embodiment of the present disclosure is a three-dimensional shape thermally conductive molded body (hereinafter, sometimes referred to as "second three-dimensional shape thermally conductive molded body” or “second molded body”). Examples are shown in Figures 10, 11, 13 and 14.
  • the three-dimensional shape heat conductive molded body includes a plurality of protrusion layers and a bottom outer layer, the protrusion layer includes a heat conductive material and a silicon-based material, and the bottom outer layer includes a heat conductive material and a silicone-based material.
  • the projecting layer is not in contact with the outer peripheral portion of the bottom surface of the adjacent projecting layer, and is arranged so as to have a gap between the adjacent projecting layers.
  • is about 0.70 to about 1.0
  • X is the compression ratio (%) when the gap is completely filled by the compression deformation of the protruding layer
  • is the bottom outer layer It is the ratio (%) of the total area of the bottom surface of the protrusion layer to the total area of the top surface. Is satisfied.
  • the above-described materials can be used as the heat conductive material, the silicone material, and the reinforcing base material used in the protrusion layer and bottom outer layer of the second three-dimensional shape heat conductive molded body.
  • a silicone gel as a silicone-based material from the viewpoint of stress relaxation, contact area, unevenness followability, and the like.
  • the protruding layer of the second three-dimensional shape thermally conductive molded body is in contact with the outer peripheral portion of the bottom surface of the adjacent protruding layer. There is no gap between adjacent projection layers.
  • the protrusion shape of the protrusion layer is not limited to the following, but can be at least one selected from a substantially cylindrical shape, a substantially prismatic shape, a substantially truncated cone shape, and a substantially truncated pyramid shape. In addition, for example, as illustrated in FIG. 13 or FIG.
  • a protrusion layer (hereinafter referred to as these protrusions) arranged in a substantially linear shape, a substantially wavy shape or a substantially zigzag shape with respect to the main surface of the bottom outer layer
  • the layer is called “substantially linear protrusion layer”, “substantially wavy protrusion layer” or “substantially zigzag protrusion layer”.
  • a protrusion layer having a substantially square shape, a substantially rectangular shape, or a substantially isosceles trapezoidal shape can be employed as the cross-sectional shape when the protrusion layer is cut perpendicularly to the bottom outer layer.
  • the substantially linear protrusion layer, the substantially wavy protrusion layer, or the substantially zigzag protrusion layer may be formed continuously as illustrated in FIG. 13 or FIG. 14, or may be formed intermittently. Also good.
  • one side of the molded body is the X axis, and one side perpendicular to the X axis is the y axis.
  • the substantially linear projection layer, the substantially wavy projection layer, or the substantially zigzag projection layer is formed substantially parallel to the X axis (substantially perpendicular to the y axis).
  • the projection layer is preferably a substantially prismatic projection layer, a substantially truncated pyramid projection layer, a substantially linear projection layer, or a substantially wavy projection layer.
  • the upper surface of the protrusion layer may be substantially dome-shaped as described above, but is preferably a substantially flat surface from the viewpoint of increasing the contact area with the adherend.
  • the shape of the flat surface may be a substantially circular shape, a substantially regular triangle, a substantially square, a substantially regular pentagon, a substantially regular hexagon, a substantially rectangular shape, or a substantially wave shape. From the viewpoint of increasing the contact area with the adherend, the shape of the flat surface is preferably a substantially regular triangle, a substantially square, a substantially regular pentagon, a substantially regular hexagon, a substantially rectangular, or a substantially wave shape.
  • the protruding layer has a cross-sectional portion along each side of the flat surface shape, and adjacent sides in the flat surface shape of the adjacent protruding layer are substantially parallel. It is preferable that it exists in a state.
  • the protrusion layer having such a structure is easily filled in the adjacent gap by a portion that is compressed and expanded in the horizontal direction (hereinafter, sometimes referred to as an “expanded portion”), and has a small gap with respect to the adherend application surface. It becomes easier to form a uniform contact surface that is not present.
  • the second molded body Since the protruding layer is formed so as to satisfy the following formula (I), the second molded body has excellent stress relaxation properties against the adherend and is in contact with the adherend. The area can be improved.
  • is about 0.70 to about 1.00
  • X is the compression ratio (%) when the gap is completely filled by the compression deformation of the protruding layer
  • is the upper surface of the bottom outer layer. This is the ratio (%) of the total area of the bottom surface of the projection layer.
  • is a coefficient that varies depending on the material constituting the protruding layer and the compression ratio, and can be calculated by the following experiment, for example.
  • a cylindrical sample is prepared by punching a sheet with a predetermined thickness with a 44.3 mm punch. Measure the diameter of the upper surface of the cylindrical sample before compression (initial diameter) and the maximum diameter (compressed diameter) of the cylindrical sample after compressing the cylindrical sample by crushing it by 1 mm using a glass plate, etc. To do.
  • the maximum diameter of the cylinder means the diameter of the circular part that is most widened in the horizontal direction between the top surface and the bottom surface of the cylindrical sample.
  • Table 1 shows the calculated ⁇ results for the cylindrical samples 1 to 3. 1]
  • is about 0.70 or more, about 0.72 or more, about 0.75 or more, about 0.77 or more, about 0.80 or more, or about 0.82 or more, and about 1.00 or less. It can be a range.
  • X is the compression ratio (%) when the gap is completely filled by the compressive deformation of the protruding layer, and is not limited to the following range, but is about 20% or more, about 25% or more, or about 30% The range may be about 75% or less, about 70% or less, or about 65% or less.
  • is the ratio (%) of the total area of the bottom surface of the projection layer to the total area of the top surface of the bottom outer layer.
  • a size of at least 1 m X lm ( 1 m 2 ) 3D shape thermal conductive molding is displayed on a personal computer, and the area A of the bottom surface of the projecting layer of the sheet is calculated, and (area AX 1 00) / (excluding the projecting layer) Y (%) can be obtained from the total area (1 m 2 )) of the upper surface of the sheet.
  • the sheet of the three-dimensional shape thermally conductive molded body having a size of at least 1 m ⁇ 1 m may be a real sheet.
  • one hexagonal column is arbitrarily selected from a plurality of hexagonal columns, and the hexagonal column Measure the diameter (C) of the circumscribed circle of the regular hexagon (hereinafter sometimes referred to as “inner regular hexagon”) that is the bottom of Next, a regular hexagon that is half the gap width (A) (hereinafter sometimes referred to as “outer regular hexagon”) is derived from each side of the inner regular hexagon, and the diameter of the circumscribed circle of the outer regular hexagon is specified. (C + A). Calculate the area of the inner regular hexagon and the outer regular hexagon based on the diameter of each circumscribed circle, and obtain Y (%) from (area of the inner regular hexagon X 1 00) Z (area of the outer regular hexagon) You can also. The value of Y by such a method is derived from the minimum unit of one protrusion layer. And the size and the shape and size of the gap are substantially equal, Y can be obtained by this method.
  • the taper angle (0) of the protrusion layer can be about 80 ° or more or about 82 ° or more, about 90 ° or less, or about 88 ° or less.
  • Such a projecting layer is excellent in mold releasability, and after compression, it becomes easier to form a uniform contact surface with few voids with respect to the adherend application surface.
  • the taper angle (0) of the protrusion layer is formed by a cross section along each side of the flat surface shape on the upper surface of the protrusion layer and the upper surface of the bottom outer layer as shown in FIG. Means angle.
  • the protrusion layer has a hardness of about 30 or less, about 20 or less, or about 10 or less when the material constituting the protrusion layer is formed into a sheet having a thickness of about 1 Omm. It may be about 0 or more. Since the protruding layer having the Asker hardness in such a range is excellent in flexibility, it is excellent in gap filling property, increase in the contact area with respect to the adherend, or unevenness following property due to compression.
  • the second three-dimensional shape thermally conductive molded body has five protruding layers, Z inch 2 or more, 1
  • the maximum height from the upper surface of the bottom outer layer to the upper surface of the protruding layer may be about 0.5 mm or more, or about 1. Omm or more, about 3.5 mm or less, or about 3. Omm or less.
  • the molded body 4 is provided with a width A at the bottom surface of the gap as illustrated in FIG. 10, and therefore, compared with a molded body having a gap like a V-shaped groove without a related width,
  • the molded body has better tear resistance.
  • the former mode of the present disclosure compresses the projecting layer compared to the latter mode.
  • the degree of possibility is high and the degree of freedom of unevenness tracking increases, there is an advantage that the range of selection of usable adherends is widened. From the viewpoint of facilitating the formation of a uniform contact surface with few voids with respect to the adherend application surface, the width of the gap is preferably substantially uniform.
  • the bottom outer layer of the second three-dimensional shape thermally conductive molded body is formed of a reinforcing base material such as a nonwoven fabric between the silicone material layers (10 4, 10 8) as shown in FIG.
  • a laminated structure including the layers 10 6 may be used, or a structure in which a reinforcing material is impregnated with a silicone material and integrated may be used.
  • the composition containing the silicone material and the heat conductive material used in the bottom outer layer is the same as the composition used in the protrusion layer, the second three-dimensional shape heat conductive molding provided with the protrusion layer and the bottom outer layer
  • the body can be regarded as an integrated product.
  • the bottom outer layer can be regarded as a portion located below the cross section in the bottom direction of the gap (excluding the release film if it exists).
  • a conventional flat heat dissipation sheet generates compressive stress on the compression surface during compression accompanying application of the sheet to an adherend (eg, an IC chip), and the surface near the periphery of the adherend. Tensile stress, which is a reaction in the direction, is generated. Since the adherend may be damaged by these stresses, a heat dissipation sheet having a concavo-convex shape has been developed to alleviate the stress.
  • the conventional heat radiation sheet uses a material with poor flexibility in order to maintain the concave and convex shape, a void portion is formed in the concave portion of the heat radiation sheet and the contact area is reduced. In some cases, heat dissipation was also reduced.
  • the bottom outer layer includes a reinforcing base material such as a nonwoven fabric, and the tear strength of the molded body can be improved.
  • a material it is possible to use only a silicone gel that is softer than silicone rubber and excellent in gap filling and unevenness followability, and it can be applied to an adherend after compression rather than a conventional heat dissipation sheet with an uneven shape. The contact area can be further increased and the heat dissipation can be further improved.
  • a bottom outer layer that does not include a reinforcing base material is employed, for example, when a molded body is applied between two adherends and compressed and bonded together, the bottom outer layer is peeled off from the bottom outer layer side. Sometimes, it peeled off from the protruding layer side, and the molded body sometimes broke. However, since the second molded body of the present disclosure has the bottom outer layer including the reinforcing base material, the molded body can be peeled from the protruding layer side in a state where the bottom outer layer is stuck to the adherend during rework. Therefore, it has the advantage of excellent rework workability.
  • the tensile strength of the second molded body is preferably about 14 NZ cm 2 or less, about 12 NZ cm 2 or less, or about 10 N / cm 2 or less from the viewpoint of reworkability.
  • the thickness of the bottom outer layer is approximately 0.5 mm or less or approximately from the viewpoint of strength or heat dissipation.
  • 0.4 mm or less can be about 0.05 mm or more, or about 0.1 mm or more.
  • the contact area when the molded body is applied to the adherend and compressed by 50% does not compress the molded body onto the adherend. Compared to the contact area when applied to, it can be increased by about 40% or more, about 45% or more, or about 50% or more.
  • a molded body exhibiting such performance is excellent in stress relaxation for the adherend, and more easily forms a uniform contact surface with less voids on the adherend application surface after compression.
  • the stress relaxation property of the second three-dimensional shape thermally conductive molded body is more effective as the total area of the molded body on the adherend application surface side (total area of the upper surface of the bottom outer layer) increases. be able to. From the viewpoint of stress relaxation, the total area on the adherend application surface side of the second three-dimensional shape thermally conductive composition (total area of the top surface of the bottom outer layer) is about 50 cm 2 or more, about 100 cm 2 Or about 20 O cm 2 or more.
  • the thickness of the second three-dimensional shape thermally conductive molded body is about 4.0 mm or less, about 3.5 mm or less, about 3. Omm or less, or about 2.5 mm. Can be about 0.1 mm or more, or about 0.55 mm or more.
  • the compressive stress at the time of about 50% compression of the second three-dimensional shape thermally conductive molded body is about 10 NZ cm 2 or less.
  • the thermal resistance of the second three-dimensional shape thermally conductive molded body can be about 1.0 KNOW or less.
  • the second three-dimensional shape thermally conductive molded body of the present disclosure can be manufactured in the same manner as described above, but the manufacturing method of the three-dimensional shape thermally conductive molded body is not limited thereto. I can't.
  • the following method exemplifies a method that employs a vacuum thermocompression bonding apparatus for laminating an extensible film, but not limited to this method, a vacuum molding method, a film insert molding method, or the like can also be used. it can.
  • the second three-dimensional shape thermally conductive molded body can be manufactured, for example, by the following method.
  • the stretchable film is set in the vacuum thermocompression bonding apparatus 30 so that the stretchable film can be peeled by the same method as described above. Bonded to the mold that can form the protrusion layer and gap of the three-dimensional heat-conductive molded body of 2 to obtain an integral product including the stretchable film and the mold.
  • a reinforcing base material such as a non-woven fabric is disposed on the release film, and a mixture containing a heat conductive material and a silicon-based material is applied onto the reinforcing base material with a knife coater having a predetermined gap interval. And the laminated body for bottom outer layers provided with a bottom outer layer is obtained.
  • the hollow portion of the integrated product is filled with a mixture containing a heat conductive material and a silicone-based material that is the same as or different from the mixture used in the production of the bottom outer layer, and a blade or the like is used as necessary.
  • a flattening process is performed, and the bottom outer layer laminate is placed on the mold so as to cover the mixture in which the bottom outer layer is filled in the cavity and the release film is the outermost layer, and then the silicone material is cured.
  • the three-dimensional shape heat conductive molded body provided with the stretchable film can be taken out of the mold to obtain a second three-dimensional shape heat conductive molded body. If necessary, the stretchable film and / or the release film may be removed, or a punching process may be appropriately performed to obtain a three-dimensional shape heat conductive molded body having a predetermined shape.
  • Stretchable fill used in a method for producing a three-dimensionally shaped thermally conductive molded body As the system, the same use as described above can be used.
  • the three-dimensional shape thermally conductive molded body of the present disclosure includes a vehicle and a lithium ion battery.
  • in-vehicle lithium-ion batteries used in household electrical appliances, computer equipment, etc.
  • a heat-generating component such as an IC chip
  • a heat-dissipating component such as a hinge sink or a hinge pipe
  • It can be used as a heat-dissipating article that can be disposed so as to fill the gap between the heat-generating parts and efficiently transfer heat generated from the heat-generating parts to the heat-dissipating parts.
  • the three-dimensional shape heat conductive molded body of the present disclosure can be designed freely in shape and size, it can be used as an alternative to potting materials for circuit boards, for example, for heat generating parts with complex shapes such as coils. However, it can also be used.
  • Wasker rubber hardness tester C type manufactured by Kobunshi Keiki Co., Ltd. was used to measure the washer force C hardness of the evaluation sample in accordance with SRI IS 01 01, which is a standard of the Japan Rubber Association.
  • the compressive load was measured with a Tensilon tester using a jig with a size of 35 mm x 40 mm. Place the evaluation sample on the Tensilon testing machine so that it is located in the center of the jig, move the jig attached to the load cell downward at a speed of 0. SmmZ, and when the evaluation sample is compressed 20% The jig was stopped with and the load at that time was measured.
  • the thermal conductivity of large samples was measured using a QTM-D3 and a probe (PD-13N) manufactured by Kyoto Denshi Kogyo Co., Ltd. 0-chome 1 / 1-03 measures the thermal conductivity by a method called the unsteady thin wire heating method.
  • the probe sensor consists of a single heating wire and thermocouple stretched in a straight line. When a constant current is passed through the heating wire, heat is generated and the temperature of the heating wire rises exponentially. In samples with high thermal conductivity (metals, etc.), the heat moves quickly and escapes to the sample side, so the temperature of the heating wire decreases.
  • the temperature rise of the heating wire is related to the thermal conductivity of the sample and is expressed by the following equation (1).
  • the thermal conductivity of the sample can be obtained from the slope of the temperature rise graph with the time axis as a logarithmic scale.
  • the thermal conductivity of small samples was measured using ASTM D using a thermal resistance measuring device (TIMT ester 1 400 manufactured by Analysis Tech, Inc.).
  • the thermal resistance / thermal conductivity measurement method according to 5470 was performed. Two aluminum blocks (aluminum plates) were installed between the heater and the cooling plate of the thermal resistance measuring device. A sample was inserted between the aluminum blocks, a predetermined load (compression rate) was applied, and the thermal conductivity was measured. In the measurement, the compression ratio was adjusted so that the sample was in contact with the heater and the cooling plate in almost the same area. The compression ratio was about 30% for all samples.
  • HIMILAN registered trademark 1706, which is an ionomer resin
  • HIMILAN registered trademark 1706
  • the molten resin is supplied to a die set at 220 ° C with a screw rotating at 59 rpm, and the molten resin discharged from the die is transported at a speed of 1.8 minutes.
  • PET film (emblem Trademark) S25) was extruded and laminated to produce a 125 tm thick ionomer resin ZPET laminated film.
  • silicone compound 1 A and 200 g of silicone compound 1 B were weighed into a plastic cup and stirred and mixed with a resin spatula for about 10 minutes to prepare silicone compound 1 A B.
  • the silicone compound 1 A B was coated on the ionomer resin side of the ionomer resin Z PET laminated film with a knife coater.
  • the coated ionomer resin ZP ET laminate film was passed through an oven at 1800C for 18 minutes to cure the silicone, producing a boron nitride-containing silicone rubber sheet 1 for the top outer layer. .
  • the thickness of the silicone rubber layer of the sheet 1 was 2 1 3 Atm.
  • silicone compound 2B The material in the glass bottle was mixed for 1 minute at a speed of 2000 rpm using Yutaro Awatori, and then defoamed for 30 seconds to prepare silicone compound 2B.
  • 1 Weigh 50 g of silicone compound 2 A and 100 g of silicone compound 2 B in a 300 mL plastic cup and stir and mix with a resin spatula for about 5 minutes to avoid bubbles. Silicone compound 2 AB for the member was produced.
  • the PET film of the boron nitride-containing silicone rubber sheet 1 was removed, and an upper outer laminated film 10 having a two-layer structure made of a deep-drawn ionomer resin and a silicon nitride-containing silicone rubber was produced.
  • a double-sided vacuum molding machine (manufactured by Fuse Vacuum Co., Ltd.) is used as the vacuum thermocompression bonding apparatus 30 as shown in FIG. 2 (B), and an ionomer resin is placed on the aluminum mold 20 installed in the apparatus 30.
  • the upper outer layer laminated film 10 was fixed so that is on the mold 20 side.
  • the heating conditions were set so that the surface temperature of the film 10 was 120 ° C.
  • the heated film 10 is laminated on the surface of the mold 20 so that no air is caught.
  • An integrated product 40 as shown in F) was produced.
  • the mold 20 has such a shape as shown in FIG. 2 (F) that a 23.5 mm ⁇ 90.0 mm ⁇ 4.0 mm approximately semi-cylindrical three-dimensional shape can be obtained.
  • the hollow part 1 ⁇ of the integrated product 40 is filled with the silicone compound 2 AB for the intermediate member, and then air is wound on the filled silicone compound 2 AB.
  • the bottom outer layer 1 was laminated so as not to penetrate.
  • a rubber roller 1 was applied onto the sheet 1 so that the sheet 1 was in close contact with the mold uniformly to produce a final integrated product 50.
  • the final integrated product 50 was left in an oven at 120 ° C. for 20 minutes to heat cure the silicone gel constituting the intermediate member and the bottom outer layer. Next, the final product 50 was removed from the oven, cooled, and the cured substantially kamaboko-shaped three-dimensional shape thermally conductive molded body 60 was removed from the mold 20.
  • a bottom outer layer sheet 3 was prepared in the same manner as in Example 2 except that silicone compound 3 was used instead of silicone compound 4 A B. Silicone compound 5 AB is used instead of silicone compound 2 AB, the mold is changed to the type used in Example 3, and the bottom outer layer sheet 3 is used instead of the bottom outer layer sheet 3 In the same manner as in Example 2, an evaluation sample of a substantially dome-shaped three-dimensional shape thermally conductive molded body was produced. Therefore, as in Example 3, the test specimen produced had a false force-C hardness of 0.
  • Dyion (registered trademark) THV 500 a fluororesin
  • THV 500 a fluororesin
  • the molten resin was supplied to a die set at 260 ° C, and the molten resin discharged from the die was extruded onto a 75 micron thick PET film for lamination to produce a fluororesin / PET laminated film.
  • Fluororesin layer The thickness was 1 0 0 ⁇ m.
  • silicone compound 2 A and 100 g of silicone compound 2 B were weighed into a 3 0 0 mL polycup, and a resin sno.
  • a silicone compound 6 AB was prepared by mixing the contents with CHIYURA for about 5 minutes without bubbles.
  • the silicone compound 6 AB is placed on the release liner YB-2, then the silicone compound 6 AB is applied onto the glass paper GMC10-0 MR6, and the knife and liner are combined.
  • the bottom outer layer sheet 4 was produced by coating and impregnating with a knife coater with a gap set to 1550 tm.
  • the PET film of the laminated film was removed to produce a fluororesin film capable of deep drawing.
  • the same vacuum thermocompression bonding equipment as in Example 1 is adopted, and the mold is composed of a plurality of approximately three-dimensional rows with a diameter of 16.5 mm and a thickness of 2.6 mm that are parallel in the vertical and horizontal directions. However, a mold having shapes that are alternately displaced was used.
  • Spray paste 55 (manufactured by Sriem Japan Co., Ltd.) was sprayed on the mold and the solvent was dried before use. Lamination of the fluororesin film to the mold was performed in the same manner as in Example 1.
  • Silicone compound 6 AB was poured onto a mold coated with a fluororesin film, and then the bottom outer layer sheet 4 was laminated on the silicone compound coated surface so as not to entrain the wires.
  • the mold covered with the bottom outer layer sheet 4 was pressure-bonded with a rubber neck so that the sheet was evenly adhered to the mold to produce a final integrated product.
  • the final monolith was allowed to stand in an oven at 120 ° C. for 20 minutes, and the silicone gel constituting the molded body was heated and cured. Next, the final integrated product was taken out from the oven and allowed to cool to room temperature. After standing for 1 day, the three-dimensional shape heat conductive molded product was taken out from the mold.
  • the fluororesin film on the surface was peeled off to obtain an evaluation sample of a three-dimensional shape heat conductive molded body having a substantially dome shape with a diameter of 16.5 mm and a thickness of 2.6 mm.
  • Silicone compound 6 AB coated with YB-2 release liner 30 mm After injecting into a mold having a thickness of X4 OmmX 10 mm, the test piece produced by curing in an oven at 120 ° C. had a first strength C hardness of 0.
  • Silicone Compound 7 B O g SE 1 885 B, 0.0375 g additive “SP 72 97 J in a 225 mL glass bottle was mixed for 1 minute at a rotation speed of 20000 pm using Awatori Shintaro and defoamed for 30 seconds to prepare Silicone Compound 7 B.
  • a bottom outer layer sheet 5 was prepared in the same manner as in Example 5 using silicone compound 7 AB, full-size silicone liner YB-2, and glass paper GMC 10 0-MR 6.
  • silicone compound 6 AB Same as Example 5 except using silicone compound 7 AB for An evaluation sample of a three-dimensional shape heat conductive molded body having a substantially dome shape with a diameter of 16.5 mm and a thickness of 2.6 mm was obtained by the method described above, and the silicon compound 7 AB was peeled off. Test specimens made by injecting into a 30 mmX40 mmX l 0 mm thick mold coated with YB-2 of the liner and cured in an oven at 120 ° C 1 C hardness was 5 It was.
  • silicone compound 8 A was prepared.
  • fluorosilicone liner YB-2 was prepared in the same manner as in Example 5.
  • glass paper GMC 10—MR 6 was prepared in the same manner as in Example 5.
  • Three-dimensional shape thermal conductive molding with an approximate dome shape with a diameter of 16.5 mm and a thickness of 2.6 mm in the same manner as in Example 5 except that silicon compound 8 AB is used instead of silicone compound 6 AB
  • An evaluation sample of the body was obtained.
  • silicone compound 9B 100 g of silicone compound 9 A and 100 g of silicone compound 9 B
  • Silicone compound 9 AB was prepared by mixing so as not to contain bubbles. Using the silicon compound 9 AB, the fluorosilicone liner YB-2, and the glass separator GMC 10 0-MR 6, the bottom outer layer 7-7 was prepared in the same manner as in Example 5. Three-dimensional shape heat conduction with a substantially dome shape with a diameter of 16.5 mm and a thickness of 2.6 mm in the same manner as in Example 5 except that silicone compound 9 AB is used instead of silicone compound 6 AB An evaluation sample of the molded product was obtained. The test piece was prepared by injecting silicone compound 9 AB into a 30mmX40mmX10mm thick mold coated with release liner YB-2 and then curing in 120 ° C oven. The force C hardness was 30.
  • Silicone compound 2 AB was applied between two release liners (YB-2), and a 2 mm thick silicone gel sheet was obtained through a knife coater head with the gap between the liners set to 2 mm. . The sheet was then allowed to stand in an oven at 120 ° C. for 20 minutes to cure the silicone gel sheet. Since the cohesive strength of the sheet was very low and could not be removed from the release liner, the various characteristics of the sheet could not be measured.
  • the Asker C hardness of a test piece prepared by bonding three 2.6 mm thick sheets was 30. For the measurement of compressive stress, a sample punched from this sheet into a cylindrical shape with a diameter of 16.5 mm was used.
  • Table 3 shows the results of the% load), thermal conductivity 1 and 2, assemblability and releasability.
  • the three-dimensional shape thermal conductive molded body of the present disclosure exhibits excellent flexibility and compressive stress.
  • Example 8 both use the same silicone compound 9 AB and show the same Asker C hardness.
  • the stress of Example 8 shows about 78% of the stress of Comparative Example 3, and Example 8 is lower than Comparative Example 3.
  • the shape of the molded body reduces the stress when compressed by 20%, that is, the stress applied to various members to which the molded body is applied can be reduced. Suggests that
  • the first force C hardness of the evaluation sample was measured using a C1 rubber hardness meter C type (manufactured by Kobunshi Keiki Co., Ltd.) in accordance with SRI ISO 1001, which is a standard of the Japan Rubber Association.
  • the compressive stress was measured with a Tensilon tester using a flat plate jig. Place the evaluation sample at the center of the jig so that the 330 mm x 88 mm evaluation sample is compressed, move the jig attached to the load cell downward at a speed of 5. OmmZ, and the evaluation sample is 1 The jig was stopped when it was compressed by 0 mm, and the stress at that time was measured.
  • the thermal resistance value of the evaluation sample was measured with a thermal impedance meter TIM tester manufactured by Analyssi Tetech. The measurement principle of such a device is outlined below.
  • the TIM tester can measure the thermal resistance value according to AS TM D 5470.
  • the probe (one sensor) consists of a heater plate, a cooler plate, and multiple thermocouples. 33. Omm cylindrical TIM sample is compressed 1. Omm with heater and cooling plate. When the test starts, a certain amount of heat is applied from the heater plate. Here, the cooler is always cooled with water. After the temperature stabilizes, the heat flux and temperature at the sample interface are calculated from the temperature data obtained from several thermocouples ( Figure 12). As a result, the thermal resistance value is calculated from the following equation (2) according to the heat flow and temperature difference between the heater and cooler contacts. [Equation 7]
  • the bottom outer layer surface of the evaluation sample is lined with a single-sided adhesive tape (manufactured by Sumitomo 3EM, part number # 85 1 mm). After that, 90 ° peel adhesion was measured according to the procedure specified in JI SZ-0237. The molded product was peeled at a pulling speed of 30 OmmZ.
  • Hi-Millan (registered trademark) 1706 which is an eye-catching resin, was melted with a single screw extruder having a diameter of 2 Omm and a barrel temperature set at 200 ° C.
  • the molten resin is supplied to a drop die set at 220 ° C with a screw rotating at 59 rpm, and the molten resin discharged from the drop die is transported at a speed of 1.8 mZ for a PET film (emblem of 25 microns) (Registered Trademark) S 25) Cast on top to produce 1.25 m thick ionomer resin PET film
  • the PET film was removed from the above-mentioned ionomer resin ZPET laminated film to obtain an ionomer resin film capable of deep drawing.
  • a double-sided vacuum molding machine (manufactured by Fuse Vacuum Co., Ltd.) is used as a vacuum thermocompression bonding apparatus as shown in Fig. 2 (B), and an ionomer resin film is fixed on an aluminum mold installed in the apparatus. did.
  • the heating conditions were set so that the surface temperature of the film would be 120 ° C.
  • the heated film is laminated on the surface of the mold so that air is not entrapped, and shown in FIG. An integrated product was manufactured.
  • the silicone gel compound 1 ab is applied onto the glass spacer with a knife coater having a gap interval of 1 5 0 im, and the bottom outer layer is provided with a bottom outer layer. A sheet was obtained.
  • Silicone gelco is formed in the hollow part of the integrated product covered with an ionomer resin film.
  • Compound 1 ab was filled, and then, a laminated sheet for the bottom outer layer was laminated on the filled silicone compound 1 ab so as not to entrain air. A rubber roller was applied on the sheet to flatten the sheet so that the sheet was uniformly adhered to the mold, and a final integrated product was produced. The final monolith was allowed to stand at 120 ° C. for 10 minutes to heat cure the silicone gel. Next, the final integrated product was taken out of the oven and cooled, and the cured three-dimensional shape heat conductive molded body was taken out of the mold so that the ionomer resin film was removed from the mold.
  • the eye-like resin film was removed from the three-dimensional shape heat conductive molded body, and an evaluation sample of the three-dimensional shape heat conductive molded body was obtained.
  • the mold used has such a shape that a projection layer having an approximately flat hexagonal upper flat surface as shown in Fig. 11 is obtained, and the three-dimensional shape heat conduction obtained from the mold is used.
  • the evaluation sample of the molded product is the gap width (A), the height of the projection layer (B), the diameter of the circumscribed circle on the bottom of the projection layer (C), and the taper angle. , And the number of protrusions per square inch. [0168] ⁇ Example 1 0 to 1 1>
  • Example 10 Three-dimensional shape satisfying the gap width (A), protrusion layer height (B), circumscribed circle diameter (C), taper angle, and number of protrusions per square inch shown in Table 4. Evaluation samples of Example 10 and Example 11 were obtained in the same manner as in Example 9 except that the mold was changed to a mold capable of obtaining a thermally conductive molded body.
  • Silicone compound 1 ab is applied between two release liners (YB-2), with a thickness of 1.5 mm through the knife coat head with the gap between the liners set at 2.1 mm. A silicone gel sheet was obtained. Next, this sheet was allowed to stand in an oven at 120 ° C. for 20 minutes to cure the silicone gel sheet, and then the three sheets were laminated to obtain an evaluation sample having a thickness of 4.5 mm.
  • Silicone compound 1 ab is applied between two release liners (YB-2), and a 1.5 mm thick silicone is passed through a knife coater head with the gap between the liners set at 2.1 mm. A gel sheet was obtained. Next, this sheet was allowed to stand in an oven at 120 ° C. for 20 minutes to cure the silicone gel sheet, and then an evaluation sample having a thickness of 3 mm was obtained by laminating the two sheets.
  • the thickness of the molded body is equal to or less than the thickness of the sample of Comparative Example 6.
  • the second three-dimensional shape thermally conductive molded body of the present disclosure can obtain good thermal conductivity and reduce defects on the adherend as compared with the conventional flat heat dissipation sheet. I understood.
  • the thickness of the second three-dimensional shape heat conductive molded body Taper angle

Landscapes

  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Provided is a three-dimensionally shaped thermally conductive molded body (1) and manufacturing method thereof, that can ensure sufficient gap filling properties and contact surface area with regard to heat dissipating components such as heat sinks and the like and heat generating components such as IC chips and the like, without adding excessive stress to these components. The three-dimensionally shaped thermally conductive molded body of a first aspect of the present disclosure contains a thermally conductive material and a silicone-based material, the molded body has a substantially flat bottom surface, and a three-dimensional shaped part located on the inside of the bottom surface, and the height of the three-dimensionally shaped part that is higher than the bottom surface differs in at least two locations (a, b).

Description

明 細 書  Specification
発明の名称 : 三次元形状熱伝導性成形体、 及びその製造方法 技術分野  Title of invention: Three-dimensional shape thermally conductive molded body and manufacturing method thereof
[0001 ] 本開示は三次元形状熱伝導性成形体、 及びその製造方法に関する。  [0001] The present disclosure relates to a three-dimensional shape thermally conductive molded body and a method for manufacturing the same.
背景技術  Background art
[0002] 電子機器を構成する発熱性部品 (パワートランジスタ、 サイリスタ等) 、 集積回路 ( I C、 L S I等) の発熱を効率良く冷却するため、 これらの部品 と、 放熱板、 筐体等のヒートシンクとの間隙に厚手の放熱シートを適用して 、 発熱性部品の放熱性を向上させることが行われている。 従来の放熱シート は柔軟性に劣るため、 例えば熱膨張を起こした際に隣接する素子と基板に対 して過度の応力がかかり破損させるおそれがあった。 そのため、 より柔軟な 放熱シートが求められていた。  [0002] In order to efficiently cool the heat generated by heat-generating components (power transistors, thyristors, etc.) and integrated circuits (ICs, LSIs, etc.) that make up electronic devices, Applying a thick heat dissipation sheet to the gap has been done to improve the heat dissipation of the heat generating parts. Conventional heat-dissipating sheets are inflexible, so that, for example, when thermal expansion occurs, there is a risk of damaging the adjacent elements and substrate due to excessive stress. Therefore, a more flexible heat dissipation sheet has been demanded.
[0003] 特許文献 1 (特許第 3 4 9 2 6 5 6号公報) には、 袋状の薄膜シートにそ の開口部から所定量の流動性の熱伝導性グリスを注入し、 この熱伝導性グリ スを袋の外形に沿って薄板状に伸ばし、 内部の空気を排気しつつ開口部を気 密封止し、 熱風で薄膜シートを収縮させ最終的に薄板状に整形する、 熱伝導 性シートの製造方法が記載されている。  [0003] In Patent Document 1 (Patent No. 3 4 9 2 6 5 6), a predetermined amount of fluid heat conductive grease is injected into a bag-like thin film sheet from its opening, and this heat conduction is performed. Thermally conductive sheet that extends in the form of a thin sheet along the outer shape of the bag, hermetically seals the opening while exhausting the air inside, and shrinks the thin film sheet with hot air, finally shaping it into a thin sheet The manufacturing method is described.
[0004] 特許文献 2 (特許第 2 7 2 8 6 0 7号公報) には、 網目状補強材に熱伝導 性充填剤配合のシリコーンゴムを被覆硬化させた放熱絶縁シートと、 熱伝導 性充填剤を配合した硬化後の硬さがァス力一 F硬度計で 1 0〜9 5の範囲で ある未硬化の付加型液状シリコ一ンゴムをモールド成形、 射出成形あるいは コーティング成形により一体成形し、 液状シリコーンゴムを硬化させ放熱絶 縁シートと複合化する、 熱伝導性複合シートの製造方法が記載されている。  [0004] Patent Document 2 (Patent No. 2 7 2 6 0 7) discloses a heat-dissipating insulating sheet obtained by coating and curing a silicone rubber containing a thermally conductive filler on a mesh-like reinforcing material, and a thermally conductive filler. The uncured addition-type liquid silicone rubber whose hardness after curing with an agent is in the range of 10 to 95 with a F-hardness meter is integrally formed by molding, injection molding or coating molding, A method for producing a heat conductive composite sheet is described in which liquid silicone rubber is cured and combined with a heat insulating sheet.
[0005] 特許文献 3 (特許第 2 9 3 8 3 4 0号公報) には、 熱伝導性充填材を含有 し、 ァスカー C硬度が 5〜5 0であるシリコーンゴム層と、 該シリコーンゴ ム層中に含まれた、 からみ織りの直径 0 . 3 m m以上の孔を有する多孔性補 強材層とを備えてなる熱伝導性複合シートが記載されている。 [0006] 特許文献 4 (特許第 3 3 8 2 8 4 2号公報) には、 プリン卜配線板に部品 高さが異なる複数の電子部品を実装し、 これらの電子部品におけるプリント 配線板とは反対側の面に、 柔軟性を有するとともに熱伝導率が高い材料から なる伝熱用部材を介してヒートシンクを接続してなり、 この伝熱用部材にお ける電子部品と対向する面に、 平坦な先端面から基部側の他端に向かうにし たがって次第に太くなる多数の柱状突起を互いに近接するように一体に形成 し、 柱状突起の先端面が電子部品に押付けられるとともに、 互いに隣接する 柱状突起どうしの間に断面 V字状の溝が形成される状態で伝熱用部材を電子 部品とヒートシンクとの間に介装した、 電子部品の冷却構造が記載されてい る。 [0005] Patent Document 3 (Patent No. 2 9 3 8 3 40) discloses a silicone rubber layer containing a thermally conductive filler and having a Asker C hardness of 5 to 50, and the silicone rubber. There is described a thermally conductive composite sheet comprising a porous reinforcing material layer having pores with a diameter of 0.3 mm or more of leno weave contained in the layer. [0006] In Patent Document 4 (Patent No. 3 3 8 2 8 4 2), a plurality of electronic components having different component heights are mounted on a printed wiring board, and what is a printed wiring board in these electronic components? A heat sink is connected to the opposite surface via a heat transfer member made of a material having flexibility and high thermal conductivity, and the surface facing the electronic component in the heat transfer member is flat. A large number of columnar protrusions that gradually increase in thickness from the leading end surface toward the other end on the base side are integrally formed so as to be close to each other, and the leading end surfaces of the columnar protrusions are pressed against the electronic component and are adjacent to each other. An electronic component cooling structure is described in which a heat transfer member is interposed between an electronic component and a heat sink in a state where a V-shaped groove is formed between the electronic components.
先行技術文献  Prior art documents
[0007] 特許文献 1 :特許第 3 4 9 2 6 5 6号公報 [0007] Patent Document 1: Japanese Patent No. 3 4 9 2 6 5 6
特許文献 2:特許第 2 7 2 8 6 0 7号公報  Patent Document 2: Japanese Patent No. 2 7 2 8 6 0 7
特許文献 3:特許第 2 9 3 8 3 4 0号公報  Patent Document 3: Japanese Patent No. 2 9 3 8 3 4 0
特許文献 4:特許第 3 3 8 2 8 4 2号公報  Patent Document 4: Japanese Patent No. 3 3 8 2 8 4 2
発明の概要  Summary of the Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 熱伝導性シートにおける、 発熱性部品とヒートシンク等の放熱部品との間 の間隙を充填する性能 (以下、 「間隙充填性」 という場合がある。 ) は、 該 シートが柔軟になればなるほど向上することが知られている。 しかしながら 、 シートが柔軟化しすぎると、 該シ一卜の形状を保持することが困難となり 、 場合によっては、 シート端部よりはみ出たシートの構成材料が、 隣接する 電子部品等を汚染する問題があった。 一般的な熱伝導性シートは、 両主表面 が平坦な枚葉のシート形状であり (特許文献 2 ~ 3 ) 、 従来の柔軟な熱伝導 性シー卜の場合は、 柔軟性に劣るポリサルホン等のプラスチック材料よりな る外皮を備えていたため (特許文献 1 ) 、 発熱性部品、 ヒートシンクなどと の間にエア一トラッビングを生じ易く、 接触面積を十分に確保することがで きないという問題を有していた。 [0008] The ability to fill a gap between a heat-generating component and a heat-dissipating component such as a heat sink in the thermally conductive sheet (hereinafter, sometimes referred to as "gap filling property") can be achieved if the sheet becomes flexible. It is known to improve. However, if the sheet is too soft, it is difficult to maintain the shape of the sheet. In some cases, the constituent material of the sheet that protrudes from the end of the sheet may contaminate adjacent electronic components. It was. A general heat conductive sheet has a sheet shape in which both main surfaces are flat (Patent Documents 2 to 3). In the case of a conventional flexible heat conductive sheet, a polysulfone or the like having poor flexibility is used. Because it was provided with a skin made of plastic material (Patent Document 1), During this period, air-trabbing was likely to occur, and there was a problem that a sufficient contact area could not be secured.
[0009] 本開示は、 I Cチップ等の発熱性部品、 ヒートシンク等の放熱部品に対し て過度の応力を付加することなく、 これらの部品に対して十分な間隙充填性 及び接触面積を確保することができる、 三次元形状熱伝導性成形体及びその 製造方法を提供する。  [0009] The present disclosure ensures sufficient gap filling property and contact area for exothermic parts such as IC chips and heat dissipating parts such as heat sinks without applying excessive stress. A three-dimensional shape heat conductive molded body and a method for manufacturing the same are provided.
課題を解決するための手段  Means for solving the problem
[0010] 本開示の一実施態様によれば、 熱伝導性材料及びシリコーン系材料を含む [0010] According to one embodiment of the present disclosure, including a thermally conductive material and a silicone-based material
、 三次元形状熱伝導性成形体であって、 該成形体は、 略平坦な底面と、 該底 面内に位置する三次元形状部とを有し、 底面より上方の三次元形状部の高さ が少なくとも 2か所において相違する、 三次元形状熱伝導性成形体が提供さ れる。 A three-dimensional shape heat conductive molded body, the molded body having a substantially flat bottom surface and a three-dimensional shape portion located in the bottom surface, and a height of the three-dimensional shape portion above the bottom surface. There is provided a three-dimensionally shaped thermally conductive molded body that differs in at least two places.
[001 1 ] 本開示の別の実施態様によれば、 熱伝導性材料及びシリコーン系材料を含 む混合物を準備する工程と、 略平坦な底面と、 該底面内に位置する三次元形 状部とを有し、 底面より上方の前記三次元形状部の高さが少なくとも 2か所 において相違する成形体が得られる型を準備する工程と、 型内面に接触し得 るように、 伸長可能フィルムを型上に配置する工程と、 型に伸長可能フィル ムを貼り合わせる工程と、 伸長可能フィルムを貼り合わせた型の空洞部に混 合物を充填し、 任意に成形体の底面となる部分に対して平坦化処理を行う、 工程と、 型内の混合物を硬化させる工程と、 任意に型を冷却後、 伸長可能フ イルムを備える三次元形状熱伝導性成形体を型から取り出し、 任意に伸長可 能フィルムを除去し、 任意に型形状が付されていない部分を打ち抜き、 三次 元形状熱伝導性成形体を得る工程と、 を含む、 三次元形状熱伝導性成形体の 製造方法が提供される。  [001 1] According to another embodiment of the present disclosure, a step of preparing a mixture including a thermally conductive material and a silicone-based material, a substantially flat bottom surface, and a three-dimensional shape portion located in the bottom surface And a step of preparing a mold from which a molded body having a height different from the height of the three-dimensional shape portion at least in two places above the bottom is obtained, and an extensible film so as to be in contact with the inner surface of the mold Placing the mold on the mold, pasting the stretchable film on the mold, filling the cavity of the mold with the stretchable film, and optionally forming the bottom of the molded body The step of flattening the substrate, the step of curing the mixture in the mold, and optionally cooling the mold, taking out the three-dimensional shape heat conductive molded article having the stretchable film from the mold, and optionally stretching Possible film is removed, and the shape is arbitrarily attached A method of manufacturing a three-dimensional shape heat conductive molded body is provided, which includes a step of punching a portion that is not formed to obtain a three-dimensional shape heat conductive molded body.
[0012] 本開示の別の実施態様によれば、 伸長可能フィルムと剥離フィルムとを含 む積層フィルムの前記伸長可能フィルム上に、 熱伝導性材料を含有する第 1 のシリコーン系材料を適用し、 硬化させて上部外層を形成する工程と、 上部 外層を備える積層フィルムの剥離フィルムを除去した後、 型内面に伸長可能 フィルムが接触し得るように、 該積層フィルムを型上に配置する工程であつ て、 該型は、 略平坦な底面と、 該底面内に位置する三次元形状部とを有し、 底面より上方の三次元形状部の高さが少なくとも 2か所において相違する成 形体が得られる型である、 工程と、 型に前記積層フィルムを貼り合わせるェ 程と、 積層フィルムを貼り合わせた型の空洞部に、 熱伝導性材料を含有する 第 2のシリコーン系材料を含む中間部材を充填し、 任意に成形体の底面側に 位置する部分に対して平坦化処理を行う、 工程と、 任意に、 剥離フィルム上 に熱伝導性材料を含有する第 3のシリコ ン系材料を適用して底部外層を形 成し、 該底部外層が、 上部外層と空洞部に充填した中間部材とを覆うように 、 該底部外層を含む剥離フィルムを、 該剥離フィルムが最表層となるように 型上に配置する工程と、 中間部材を構成する第 2のシリコーン系材料、 及び 存在する場合は底部外層を構成する第 3のシリコーン系材料を硬化させるェ 程と、 任意に型を冷却後、 伸長可能フイルム及び任意に存在する剥離フィル ムを備える三次元形状熱伝導性成形体を型から取り出し、 任意に伸長可能フ ィルム及び 又は任意に存在する剥離フィルムを除去し、 任意に中間部材を 含まない上部外層部分及び存在する場合は底部外層部分を打ち抜き、 三次元 形状熱伝導性成形体を得る工程と、 を含む、 三次元形状熱伝導性成形体の製 造方法が提供される。 [0012] According to another embodiment of the present disclosure, a first silicone-based material containing a heat conductive material is applied on the stretchable film of a laminated film including a stretchable film and a release film. The process of forming the upper outer layer by curing, and can be extended to the inner surface of the mold after removing the release film of the laminated film with the upper outer layer A step of arranging the laminated film on a mold so that the film can come into contact with the mold, the mold having a substantially flat bottom surface and a three-dimensional shape portion located in the bottom surface, and above the bottom surface The mold can obtain a molded body having different heights in at least two places, a process of bonding the laminated film to the mold, and a cavity of the mold bonded with the laminated film And filling the intermediate member containing the second silicone material containing the heat conductive material, and optionally performing a flattening process on the portion located on the bottom side of the molded body, and optionally peeling A third silicon-based material containing a heat conductive material is applied on the film to form a bottom outer layer, and the bottom outer layer covers the top outer layer and the intermediate member filled in the cavity. A release film including a bottom outer layer; Placing the film on the mold so that the film is the outermost layer, and curing the second silicone material constituting the intermediate member and, if present, the third silicone material constituting the bottom outer layer, After optionally cooling the mold, remove the three-dimensional shape thermally conductive molded body with the stretchable film and the optional release film from the mold, and remove the optional stretchable film and / or the optional release film. Optionally, punching out the upper outer layer portion that does not include the intermediate member and the bottom outer layer portion, if present, to obtain a three-dimensional shape thermally conductive molded body, and manufacturing a three-dimensional shape thermally conductive molded body A method is provided.
本開示のさらに別の実施態様によれば、 複数の突起層、 及び底部外層を備 える、 三次元形状熱伝導性成形体であって、 突起層が、 熱伝導性材料及びシ リコーン系材料を含み、 底部外層が、 熱伝導性材料、 シリコーン系材料及び 補強基材を含み、 突起層は、 隣接する突起層の底面外周部と接触しておらず 、 隣接する突起層間に間隙を有するように配置されており、  According to still another embodiment of the present disclosure, a three-dimensional shape heat conductive molded body including a plurality of protrusion layers and a bottom outer layer, wherein the protrusion layers include a heat conductive material and a silicone material. The bottom outer layer includes a thermally conductive material, a silicone-based material, and a reinforcing base, and the protrusion layer is not in contact with the outer periphery of the bottom surface of the adjacent protrusion layer, so that there is a gap between the adjacent protrusion layers Has been placed,
下記式 ( I )  The following formula (I)
[数 1 ] [Number 1]
Qi Y= 1 0 0— X ( Ο
Figure imgf000007_0001
Qi Y = 1 0 0— X (Ο
Figure imgf000007_0001
[式中、 αは約 0 . 7 0 ~約1 . 0 0であり、 Xは間隙が突起層の圧縮変 形によって完全に充填されるときの圧縮率 (%) であり、 Υは底部外層上面 の総面積のうち突起層底面の総面積が占める割合 (%) である。 ] を満足す る、 三次元形状熱伝導性成形体が提供される。 [Where α is about 0.70 to about 1.0, X is the compression ratio (%) when the gap is completely filled by the compression deformation of the protruding layer, and Υ is the bottom outer layer This is the ratio (%) of the total area of the bottom surface of the protrusion layer to the total area of the top surface. The three-dimensional shape heat conductive molded body satisfying the above is provided.
[0014] 本開示のさらに別の実施態様によれば、 熱伝導性材料及びシリコ一ン系材 料を含む混合物を準備する工程と、 三次元形状熱伝導性成形体の突起層及び 間隙を形成し得る型を準備する工程と、 型内面に接触し得るように、 伸長可 能フィルムを型上に配置する工程と、 型に伸長可能フィルムを貼り合わせる 工程と、 伸長可能フィルムを貼り合わせた型の空洞部に混合物を充填するェ 程と、 剥離フィルム上に底部外層を備える底部外層用積層体を、 底部外層が 空洞部に充填した混合物を覆い剥離フィルムが最表層となるように型上に配 置する工程と、 混合物及び底部外層のシリコーン系材料を硬化させる工程と 、 任意に前記型を冷却後、 伸長可能フィルムを備える三次元形状熱伝導性成 形体を型から取り出し、 任意に伸長可能フィルムを除去し、 三次元形状熱伝 導性成形体を得る工程と、 を含む、 三次元形状熱伝導性成形体の製造方法が 提供される。 [0014] According to still another embodiment of the present disclosure, a step of preparing a mixture including a heat conductive material and a silicon-based material, and forming a protruding layer and a gap of the three-dimensional shape heat conductive molded body A mold that can be stretched, a process in which an extensible film is placed on the mold so as to be in contact with the inner surface of the mold, a process in which the stretchable film is bonded to the mold, and a mold in which the stretchable film is bonded. Filling the cavity with the mixture, and placing the laminate for the bottom outer layer on the release film with the bottom outer layer on the mold so that the release film covers the mixture filled in the cavity and the release film is the outermost layer. A step of placing, a step of curing the mixture and the silicone material of the bottom outer layer, and optionally cooling the mold, and then removing the three-dimensional shape heat conductive composition comprising the stretchable film from the mold and arbitrarily extending F There is provided a method for producing a three-dimensional shape heat conductive molded body, comprising: removing a film to obtain a three-dimensional shape heat conductive molded body.
発明の効果  The invention's effect
[0015] 本開示によれば、 I Cチップ等の発熱性部品、 ヒートシンク等の放熱部品 に対して過度の応力を付加することなく、 これらの部品に対して十分な間隙 充填性及び接触面積を確保することができる、 三次元形状熱伝導性成形体及 びその製造方法が提供される。  [0015] According to the present disclosure, sufficient gap filling property and contact area are ensured for exothermic parts such as an IC chip and heat dissipating parts such as a heat sink without applying excessive stress. A three-dimensional shape heat conductive molded body and a method for manufacturing the same are provided.
[0016] 本開示によれば、 構成材料の端部等からのはみだし防止性に優れる、 三次 元形状熱伝導性成形体及びその製造方法が提供される。  [0016] According to the present disclosure, there are provided a three-dimensional shape thermally conductive molded body and a method for producing the same, which are excellent in preventing protrusion from the end portions of the constituent materials.
[0017] 本開示によれば、 被着体に対して接触面積を増加させることができ、 放熱 性、 耐引き裂き性、 応力緩和性 (柔軟性) 、 アッセンプリ性等に優れる、 三 次元形状熱伝導性成形体及びその製造方法が提供される。  [0017] According to the present disclosure, the contact area with the adherend can be increased, and the three-dimensional shape heat conduction is excellent in heat dissipation, tear resistance, stress relaxation (flexibility), assembly, and the like. A molded article and a method for producing the same are provided.
[0018] 本開示によれば、 耐熱性に優れる三次元形状熱伝導性成形体及びその製造 方法が提供される。 [0019] 本開示によれば、 例えば複数の発熱性部品の各々の高さが相違する場合で あっても間隙充填性に優れる三次元形状熱伝導性成形体及びその製造方法が 提供される。 [0018] According to the present disclosure, a three-dimensional shape heat conductive molded body excellent in heat resistance and a method for producing the same are provided. [0019] According to the present disclosure, there is provided a three-dimensional shape heat conductive molded body excellent in gap filling property and a method for manufacturing the same even when, for example, the heights of a plurality of exothermic parts are different.
[0020] 本開示によれば、 極めて柔軟な材料を使用して成形加工することが可能な 三次元形状熱伝導性成形体の製造方法が提供される。  [0020] According to the present disclosure, a method for producing a three-dimensional shape thermally conductive molded body that can be molded using an extremely flexible material is provided.
[0021 ] 上述の記載は、 本発明の全ての実施態様及び本発明に関する全ての利点を 開示したものとみなしてはならない。 [0021] The above description should not be construed as disclosing all embodiments of the present invention and all advantages related to the present invention.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1 ]本開示の一実施態様による三次元形状熱伝導性成形体の断面図である。  [0022] FIG. 1 is a cross-sectional view of a three-dimensional shape thermally conductive molded body according to an embodiment of the present disclosure.
[図 2]真空加熱圧着装置を用いて三次元形状熱伝導性成形体を形成する工程を 模式的に説明する図である。  FIG. 2 is a diagram schematically illustrating a process of forming a three-dimensional shape thermally conductive molded body using a vacuum thermocompression bonding apparatus.
[図 3]本開示の一実施態様による三次元形状熱伝導性成形体の斜視図である。  FIG. 3 is a perspective view of a three-dimensional shape thermally conductive molded body according to an embodiment of the present disclosure.
[図 4]本開示の別の実施態様による三次元形状熱伝導性成形体の斜視図である  FIG. 4 is a perspective view of a three-dimensional shape thermally conductive molded body according to another embodiment of the present disclosure.
[図 5]本開示の別の実施態様による三次元形状熱伝導性成形体の斜視図である FIG. 5 is a perspective view of a three-dimensional shape thermally conductive molded body according to another embodiment of the present disclosure.
[図 6]本開示の別の実施態様による三次元形状熱伝導性成形体の斜視図である FIG. 6 is a perspective view of a three-dimensional shape thermally conductive molded body according to another embodiment of the present disclosure.
[図 7]本開示の別の実施態様による三次元形状熱伝導性成形体の斜視図である FIG. 7 is a perspective view of a three-dimensional shape thermally conductive molded body according to another embodiment of the present disclosure.
[図 8]本開示の別の実施態様による三次元形状熱伝導性成形体の斜視図である FIG. 8 is a perspective view of a three-dimensional shape thermally conductive molded body according to another embodiment of the present disclosure.
[図 9]本開示の別の実施態様による三次元形状熱伝導性成形体の斜視図である FIG. 9 is a perspective view of a three-dimensional shape thermally conductive molded body according to another embodiment of the present disclosure.
[図 10]本開示のさらに別の実施態様による三次元形状熱伝導性成形体の断面 図である。 FIG. 10 is a cross-sectional view of a three-dimensional shape thermally conductive molded body according to still another embodiment of the present disclosure.
[図 1 1 ]本開示のさらに別の実施態様による三次元形状熱伝導性成形体の斜視 図である。 [図 12]熱抵抗の測定原理の概略図である。 FIG. 1 1 is a perspective view of a three-dimensional shape thermally conductive molded body according to still another embodiment of the present disclosure. FIG. 12 is a schematic diagram of the measurement principle of thermal resistance.
[図 13]本開示のさらに別の実施態様による三次元形状熱伝導性成形体の斜視 図である。  FIG. 13 is a perspective view of a three-dimensional shape thermally conductive molded body according to still another embodiment of the present disclosure.
[図 14]本開示のさらに別の実施態様による三次元形状熱伝導性成形体の斜視 図である。  FIG. 14 is a perspective view of a three-dimensional shape thermally conductive molded body according to still another embodiment of the present disclosure.
発明を実施するための形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 第 1の実施形態における三次元形状熱伝導性成形体は、 熱伝導性材料及び シリコーン系材料を含む、 三次元形状熱伝導性成形体であって、 該成形体は 、 略平坦な底面と、 該底面内に位置する三次元形状部とを有し、 底面より上 方の三次元形状部の高さが少なくとも 2か所において相違する。 この三次元 形状熱伝導性成形体は、 所定の三次元形状部を有するため、 適用する被着体 に対して過度の応力を付加することなく十分な接触面積を確保することがで きる。  [0023] The three-dimensional shape thermally conductive molded body in the first embodiment is a three-dimensional shape thermally conductive molded body including a thermally conductive material and a silicone-based material, and the molded body is substantially flat. It has a bottom surface and a three-dimensional shape portion located in the bottom surface, and the height of the three-dimensional shape portion above the bottom surface is different in at least two places. Since this three-dimensional shape thermally conductive molded body has a predetermined three-dimensional shape portion, a sufficient contact area can be ensured without applying excessive stress to the adherend to be applied.
[0024] 第 1の実施形態における三次元形状熱伝導性成形体は、 三次元形状部の少 なくとも一部が、 シリコーン系材料を含む上部外層で覆われていてもよい。 このような上部外層を備えることによって、 成形体端部におけるはみだし防 止性を向上させることができる。  [0024] In the three-dimensional shape thermally conductive molded body according to the first embodiment, at least a part of the three-dimensional shape portion may be covered with an upper outer layer containing a silicone material. By providing such an upper outer layer, it is possible to improve the protrusion prevention property at the end of the molded body.
[0025] 第 1の実施形態における三次元形状熱伝導性成形体は、 不織布が底面側に 内在していてもよい。 成形体の底面側に不織布が内在していると、 成形体の 平面方向への延伸性が抑制され、 型から成形体を引きはがす際に割れ等の不 具合を生じることがなく、 取リ扱い性を向上させることができる。  [0025] In the three-dimensional heat conductive molded body according to the first embodiment, a nonwoven fabric may be present on the bottom surface side. If the nonwoven fabric is embedded on the bottom side of the molded body, the stretchability of the molded body in the planar direction is suppressed, and there is no problem such as cracking when the molded body is peeled off from the mold. Can be improved.
[0026] 第 1の実施形態における三次元形状熱伝導性成形体は、 三次元形状部の形 状の少なくとも一部が、 略ドーム状又は略かまぼこ状であってもよい。 この ような形状の三次元形状部は、 より一層、 適用する被着体に対して十分な接 触面積を確保することができる。  [0026] In the three-dimensional shape heat conductive molded body according to the first embodiment, at least a part of the shape of the three-dimensional shape portion may be substantially dome-shaped or substantially kamaboko-shaped. The three-dimensional shape portion having such a shape can further secure a sufficient contact area with the adherend to be applied.
[0027] 第 1の実施形態における三次元形状熱伝導性成形体は、 三次元形状部の形 状が、 該形状部を適用する被着部材の形状と略一致していてもよい。 三次元 形状部を適用する被着部材の形状と略一致させることで、 被着体に対して十 分な接触面積を確保することができ、 被着部材に対する応力を小さくするこ とができる。 [0027] In the three-dimensional shape thermally conductive molded body according to the first embodiment, the shape of the three-dimensional shape portion may substantially match the shape of the adherend to which the shape portion is applied. By substantially matching the shape of the adherend to which the three-dimensional shape portion is applied, it is sufficient for the adherend. A sufficient contact area can be secured, and the stress on the adherend can be reduced.
[0028] 第 1の実施形態における三次元形状熱伝導性成形体は、 底面を構成する底 部外層と、 該底部外層を覆うように配置される上部外層と、 底部外層と上部 外層との間に配置される中間部材とを含んでもよく、 上部外層、 中間部材及 び底部外層は、 シリコーン系材料を含んでもよい。 このような構成の成形体 とすることで、 成形体の柔軟性及び被着体に対する接触面積を使用用途に応 じて自由に設計することができる。  [0028] The three-dimensional shape thermally conductive molded body according to the first embodiment includes a bottom outer layer constituting a bottom surface, an upper outer layer disposed so as to cover the bottom outer layer, and between the bottom outer layer and the upper outer layer. And the upper outer layer, the intermediate member, and the bottom outer layer may include a silicone-based material. By using the molded body having such a configuration, the flexibility of the molded body and the contact area with the adherend can be freely designed according to the intended use.
[0029] 第 1の実施形態における三次元形状熱伝導性成形体は、 上部外層及び底部 外層、 又は底部外層及び中間部材が同一材料よリなり一体化されてもよい。 このような構成とすることで、 密着性に優れた成形体を得ることができる。  [0029] In the three-dimensional shape heat conductive molded body in the first embodiment, the upper outer layer and the bottom outer layer, or the bottom outer layer and the intermediate member may be made of the same material and integrated. By setting it as such a structure, the molded object excellent in adhesiveness can be obtained.
[0030] 第 1の実施形態における三次元形状熱伝導性成形体は、 上部外層はシリコ —ンゴムを含み、 中間部材はシリコーンゲルを含み、 及び底部外層はシリコ —ンゴム又はシリコ一ンゲルを含んでもよい。 シリコーンゴムを含む上部外 層で、 例えば柔軟で変形し易い中間部材を覆う構成にすると、 成形体の柔軟 性を向上させつつ、 端部等からのはみだし防止性も向上させることができる 。 上部外層はゴム弾性を有するため、 例えば成形体に外部から圧力を付加す れば、 シリコーンゲルの中間部材は容易に変形することができる一方で、 圧 力を取り除けば、 変形した中間部材は上部外層のゴム弾性に伴う復元力によ つて元の形状に戻ることができるため、 リワーク作業性にも優れている。  [0030] In the three-dimensional shape heat conductive molded body according to the first embodiment, the upper outer layer includes a silicone rubber, the intermediate member includes a silicone gel, and the bottom outer layer includes a silicone rubber or a silicone gel. Good. If the upper outer layer containing silicone rubber covers, for example, an intermediate member that is flexible and easily deformed, it is possible to improve the flexibility of the molded body and to prevent the protrusion from the end. Since the upper outer layer has rubber elasticity, for example, if pressure is applied to the molded body from the outside, the intermediate member of the silicone gel can be easily deformed, but if the pressure is removed, the deformed intermediate member is The work can be reverted to its original shape by the restoring force associated with the rubber elasticity of the outer layer.
[0031 ] 第 1の実施形態における三次元形状熱伝導性成形体は、 中間部材が上部外 層及び 又は底部外層よりも柔軟であつてもよい。 このような構成にするこ とで、 成形体の間隙充填性を向上させることができる。  [0031] In the three-dimensional shape thermally conductive molded body according to the first embodiment, the intermediate member may be more flexible than the upper outer layer and / or the lower outer layer. By adopting such a configuration, the gap filling property of the molded body can be improved.
[0032] 第 1の実施形態における三次元形状熱伝導性成形体は、 底面と、 該底面を 除く三次元形状熱伝導性成形体の表面部分とのタック性を相違させてもよい 。 このようなタック性を有する成形体は、 リワーク時に破断することなくい ずれか一方の被着体に貼りつくため、 リワーク作業を行いやすい。  [0032] The three-dimensional shape thermally conductive molded body in the first embodiment may have different tackiness between the bottom surface and the surface portion of the three-dimensional shape thermally conductive molded body excluding the bottom surface. Such a molded article having tackiness is easily reworked because it adheres to one of the adherends without breaking during rework.
[0033 第 1の実施形態における三次元形状熱伝導性成形体の製造方法は、 熱伝導 性材料及びシリコーン系材料を含む混合物を準備する工程と、 略平坦な底面 と、 該底面内に位置する三次元形 部とを有し、 底面より上方の三次元形状 部の高さが少なくとも 2か所において相違する成形体が得られる型を準備す る工程と、 型内面に接触し得るように、 伸長可能フィルムを型上に配置する 工程と、 型に伸長可能フィルムを貼り合わせる工程と、 伸長可能フィルムを 貼り合わせた型の空洞部に混合物を充填し、 任意に成形体の底面となる部分 に対して平坦化処理を行う、 工程と、 型内の混合物を硬化させる工程と、 任 意に型を冷却後、 伸長可能フィルムを備える三次元形状熱伝導性成形体を型 から取り出し、 任意に伸長可能フィルムを除去し、 任意に型形状が付されて いない部分を打ち抜き、 三次元形状熱伝導性成形体を得る工程と、 を含む。 第 1の実施形態における三次元形状熱伝導性成形体の別の製造方法は、 伸 長可能フィルムと剥離フィルムとを含む積層フィルムの伸長可能フィルム上 に、 熱伝導性材料を含有する第 1のシリコーン系材料を適用し、 硬化させて 上部外層を形成する工程と、 上部外層を備える積層フィルムの剥離フィルム を除去した後、 型内面に伸長可能フィルムが接触し得るように、 該積層フィ ルムを型上に配置する工程であって、 型は、 略平坦な底面と、 該底面内に位 置する三次元形状部とを有し、 底面より上方の三次元形状部の高さが少なく とも 2か所において相違する成形体が得られる型である、 工程と、 型に積層 フィルムを貼り合わせる工程と、 積層フィルムを貼り合わせた型の空洞部に 、 熱伝導性材料を含有する第 2のシリコーン系材料を含む中間部材を充填し 、 任意に成形体の底面側に位置する部分に対して平坦化処理を行う、 工程と 、 任意に、 剥離フィルム上に熱伝導性材料を含有する第 3のシリコーン系材 料を適用して底部外層を形成し、 該底部外層が、 上部外層と空洞部に充填し た中間部材とを覆うように、 該底部外層を含む剥離フィルムを、 該剥離フィ ルムが最表層となるように型上に配置する工程と、 中間部材を構成する第 2 のシリコーン系材料、 及び存在する場合は底部外層を構成する第 3のシリコ ーン系材料を硬化させる工程と、 任意に型を冷却後、 伸長可能フィルム及び 任意に存在する剥離フィルムを備える三次元形状熱伝導性成形体を型から取 リ出し、 任意に伸長可能フィルム及び Z又は任意に存在する剥離フィルムを 除去し、 任意に前記中間部材を含まない上部外層部分及び存在する場合は底 部外層部分を打ち抜き、 三次元形状熱伝導性成形体を得る工程と、 を含む。 [0033] The manufacturing method of the three-dimensional shape thermally conductive molded body in the first embodiment A step of preparing a mixture containing a functional material and a silicone-based material, a substantially flat bottom surface, and a three-dimensional shape portion located in the bottom surface, wherein the height of the three-dimensional shape portion above the bottom surface is at least 2 A step of preparing a mold from which different molded bodies can be obtained at different locations, a step of placing an extensible film on the die so as to be in contact with the inner surface of the die, a step of attaching the extensible film to the die, A step of filling the cavity of the mold bonded with the stretchable film with a mixture, and optionally performing a flattening process on the bottom portion of the molded body, and a step of curing the mixture in the mold, and optionally After the mold is cooled, the three-dimensional shape heat conductive molded body having the stretchable film is taken out of the mold, the stretchable film is arbitrarily removed, the part not arbitrarily attached with the mold shape is punched out, and the three-dimensional shape heat is removed. Conductivity And a step of obtaining a configuration, the. Another method for producing a three-dimensional shape thermally conductive molded body in the first embodiment is a first method comprising a thermally conductive material on an extensible film of a laminated film including an extensible film and a release film. Applying a silicone material and curing to form the upper outer layer; and after removing the release film of the laminated film having the upper outer layer, the laminated film is brought into contact with the mold inner surface. The mold is a step of placing on a mold, and the mold has a substantially flat bottom surface and a three-dimensional shape portion positioned in the bottom surface, and the height of the three-dimensional shape portion above the bottom surface is at least 2 A second silicone containing a thermally conductive material in a step of bonding a laminated film to the mold, and a cavity of the mold laminated with the laminated film. Material Filling the intermediate member containing the material, and optionally performing a flattening process on the portion located on the bottom side of the molded body, and optionally, a third silicone containing a thermally conductive material on the release film A base material is applied to form a bottom outer layer, and the peeling film includes the bottom outer layer so that the bottom outer layer covers the top outer layer and the intermediate member filled in the cavity. A step of arranging on the mold so as to be a surface layer, a step of curing the second silicone material constituting the intermediate member, and a third silicone material constituting the bottom outer layer, if any, and any After cooling the mold, a three-dimensional shape heat conductive molded body having an extensible film and an optional release film is removed from the mold. Remove, optionally stretchable film and Z or optional release film, and optionally punch out the upper outer layer part that does not contain the intermediate member and the bottom outer layer part if present. And obtaining a molded body.
[0035] これらの製造方法は、 所定形状の成形型を使用して形成されるため、 柔軟 な材料を使用したとしても精度よく三次元形状熱伝導性成形体を作製するこ とができる。 [0035] Since these manufacturing methods are formed using a mold having a predetermined shape, a three-dimensional shape thermally conductive molded body can be accurately produced even if a flexible material is used.
[0036] 第 2の実施形態における三次元形状熱伝導性成形体は、 複数の突起層、 及 び底部外層を備え、 突起層が熱伝導性材料及びシリコーン系材料を含み、 底 部外層が、 熱伝導性材料、 シリコーン系材料及び補強基材を含み、 突起層は 、 隣接する突起層の底面外周部と接触しておらず、 隣接する突起層間に間隙 を有するように配置されておリ、  [0036] The three-dimensional shape thermally conductive molded body according to the second embodiment includes a plurality of protrusion layers and a bottom outer layer, the protrusion layer includes a heat conductive material and a silicone-based material, and the bottom outer layer includes: Including a thermally conductive material, a silicone-based material, and a reinforcing substrate, and the protruding layer is not in contact with the bottom surface outer peripheral portion of the adjacent protruding layer, and is disposed so as to have a gap between the adjacent protruding layers;
下記式 ( I )  The following formula (I)
[数 2] α Y = 1 0 0— X ( I )  [Equation 2] α Y = 1 0 0— X (I)
[式中、 αは約 0. 7 0〜約1 . 0 0であり、 Xは間隙が突起層の圧縮変 形によって完全に充填されるときの圧縮率 (%) であり、 Υは底部外層上面 の総面積のうち突起層底面の総面積が占める割合 (%) である。 ] を満足す る。 この三次元形状熱伝導性成形体は、 所定の突起層及び間隙を有するため 、 従来の平坦な放熱シートに比べて被着体に対する圧縮応力を低減させるこ とができ、 放熱性、 耐引き裂き性、 応力緩和性 (柔軟性) 、 アッセンプリ性 等を向上させることができる。 [Where α is about 0.70 to about 1.0, X is the compression ratio (%) when the gap is completely filled by the compression deformation of the protruding layer, and Υ is the bottom outer layer This is the ratio (%) of the total area of the bottom surface of the protrusion layer to the total area of the top surface. Is satisfied. Since this three-dimensional shape heat conductive molded body has a predetermined projection layer and a gap, it can reduce the compressive stress on the adherend as compared with the conventional flat heat radiating sheet, and has a heat radiating property and tear resistance. Stress relaxation property (flexibility), assembly property, etc. can be improved.
[0037] 第 2の実施形態における三次元形状熱伝導性成形体は、 間隙の幅を略均等 にすることができる。 係る構成にすることで、 圧縮して水平方向に拡張する 突起層部分によって間隙内を均一に充填することができるため、 圧縮後に空 隙の少ない接触面を被着体に対して形成することができる。  [0037] In the three-dimensional shape heat conductive molded body in the second embodiment, the widths of the gaps can be made substantially uniform. By adopting such a configuration, it is possible to uniformly fill the gap with the protruding layer portion that compresses and expands in the horizontal direction. Therefore, it is possible to form a contact surface with less voids on the adherend after compression. it can.
[0038] 第 2の実施形態における三次元形状熱伝導性成形体は、 突起層の上面が略 平坦面であってもよい。 突起層の上面が略平坦面であると、 成形体の圧縮変 形後に空隙の少ない接触面を被着体に対して形成しやすくなる。 [0038] In the three-dimensional shape heat conductive molded body according to the second embodiment, the upper surface of the protrusion layer is substantially the same. It may be a flat surface. When the upper surface of the projection layer is a substantially flat surface, it becomes easy to form a contact surface with few voids on the adherend after compression deformation of the molded body.
[0039] 第 2の実施形態における三次元形状熱伝導性成形体は、 突起層の略平坦面 の形状を、 略正三角形、 略正方形、 略正五角形、 略正六角形、 略長方形、 又 は略波型形状にすることができ、 突起層は、 係る形状の各辺に沿った断面部 を有し、 隣接する突起層の係る形状における隣接する各辺が略平行状態であ つてもよい。 係る構成の突起層は、 圧縮して水平方向に拡張する突起層部分 によって隣接する間隙に充填され易くなリ、 圧縮後に被着体適用面に対して 空隙の少ない均一な接触面をより形成し易くなる。  [0039] The three-dimensional shape thermally conductive molded body according to the second embodiment has a shape of the substantially flat surface of the projection layer as a substantially regular triangle, a substantially square, a substantially regular pentagon, a substantially regular hexagon, a substantially rectangular shape, or a substantially rectangular shape. The projection layer may have a cross-sectional portion along each side of the shape, and the adjacent sides in the shape of the adjacent projection layer may be in a substantially parallel state. The protrusion layer having such a structure is easy to be filled in the adjacent gap by the protrusion layer portion that compresses and expands in the horizontal direction, and forms a uniform contact surface with less voids against the adherend application surface after compression. It becomes easy.
[0040] 第 2の実施形態における三次元形状熱伝導性成形体は、 突起層のテーパー 角を約 8 0 ° 〜約 9 0 ° にすることができる。 係る突起層は型離れ性に優れ るとともに、 圧縮後、 被着体適用面に対して空隙の少ない均一な接触面をよ リ形成し易くなる。  [0040] In the three-dimensional shape thermally conductive molded body in the second embodiment, the taper angle of the protrusion layer can be set to about 80 ° to about 90 °. Such a protruding layer is excellent in mold releasability, and after compression, it becomes easier to form a uniform contact surface with less voids relative to the adherend application surface.
[0041 ] 第 2の実施形態における三次元形状熱伝導性成形体は、 突起層のァスカー  [0041] The three-dimensional shape thermally conductive molded body in the second embodiment is a projection layer anchor
C硬度を約 0〜約 3 0にすることができる。 係る硬度を有する突起層は柔軟 性に優れるため、 圧縮に伴う、 間隙充填性、 被着体に対する接触面積の増加 又は凹凸追従性に優れている。  The C hardness can be about 0 to about 30. Since the protrusion layer having such hardness is excellent in flexibility, it is excellent in gap filling property, increase in the contact area with respect to the adherend, or unevenness following property due to compression.
C0042] 第 2の実施形態における三次元形状熱伝導性成形体は、 被着体に適用して  C0042] The three-dimensional shape thermal conductive molded body in the second embodiment is applied to an adherend.
5 0 %圧縮したときの接触面積が、 係る成形体を被着体に圧縮せずに適用し たときの接触面積に比較して約 4 0 %以上増加させることができる。 係る性 能を奏する成形体は、 被着体に対する応力緩和性に優れるとともに、 圧縮後 、 被着体適用面に対して空隙の少ない均一な接触面をより形成し易くなる。  The contact area when compressed by 50% can be increased by about 40% or more compared to the contact area when the molded body is applied to the adherend without being compressed. A molded body exhibiting such performance is excellent in stress relaxation for the adherend, and more easily forms a uniform contact surface with less voids on the adherend application surface after compression.
[0043] 第 2の実施形態における三次元形状熱伝導性成形体は、 突起層を 5個ノ i n c h 2以上有することができる。 係る構成の成形体であれば、 被着体に対し て十分な放熱性を発現させることができる。 [0043] three-dimensional shape heat conductive body in the second embodiment may have a protrusion layer 5 Roh inch 2 or more. With a molded body having such a configuration, sufficient heat dissipation can be exhibited with respect to the adherend.
[0044] 第 2の実施形態における三次元形状熱伝導性成形体は、 底部外層の厚さを 約 0 . 5 m m以下、 三次元形状熱伝導性成形体の厚さを約 4 . O m m以下に することができる。 一般的な放熱シートは、 薄くなるほど圧縮応力が増加す る傾向にあるが、 本開示の成形体は、 所定の突起層及び間隙を有するため、 係る厚さであっても、 被着体に対する応力緩和性に優れるとともに、 圧縮後 、 被着体適用面に対して空隙の少ない均一な接触面を形成し易いため、 被着 体に対して十分な放熱性を発現させることができる。 [0044] In the three-dimensional shape thermally conductive molded body in the second embodiment, the thickness of the bottom outer layer is about 0.5 mm or less, and the thickness of the three-dimensional shape thermally conductive molded body is about 4. O mm or less. It can be done. In general heat dissipation sheets, the compressive stress increases as the thickness decreases. However, since the molded body of the present disclosure has a predetermined protrusion layer and a gap, even if it is such a thickness, the molded body has excellent stress relaxation properties against the adherend, and after compression, the adherend application surface On the other hand, since it is easy to form a uniform contact surface with few voids, sufficient heat dissipation can be exhibited on the adherend.
[0045] 第 2の実施形態における三次元形状熱伝導性成形体の製造方法は、 熱伝導 性材料及びシリコーン系材料を含む混合物を準備する工程と、 三次元形状熱 伝導性成形体の突起層及び間隙を形成し得る型を準備する工程と、 型内面に 接触し得るように、 伸長可能フィルムを型上に配置する工程と、 型に前記伸 長可能フィルムを貼り合わせる工程と、 伸長可能フィルムを貼り合わせた前 記型の空洞部に前記混合物を充填する工程と、 剥離フィルム上に底部外層を 備える底部外層用積層体を、 底部外層が空洞部に充填した混合物を覆い剥離 フィルムが最表層となるように型上に配置する工程と、 混合物及び底部外層 のシリコーン系材料を硬化させる工程と、 任意に前記型を冷却後、 前記伸長 可能フィルムを備える三次元形状熱伝導性成形体を前記型から取り出し、 任 意に前記伸長可能フィルムを除去し、 三次元形状熱伝導性成形体を得る工程 と、 を含む。 係る製造方法は、 所定形状の成形型を使用して形成されるため 、 柔軟な材料を使用したとしても精度よく三次元形状熱伝導性成形体を作製 することができる。  [0045] A method for producing a three-dimensional shape thermally conductive molded body according to the second embodiment includes a step of preparing a mixture containing a thermally conductive material and a silicone-based material, and a protruding layer of the three-dimensional shape thermally conductive molded body. And a step of preparing a mold capable of forming a gap, a step of arranging an extensible film on the mold so as to be in contact with the inner surface of the mold, a step of bonding the extensible film to the mold, and an extensible film Filling the cavity into the cavity of the above-mentioned mold, and a laminate for the bottom outer layer having the bottom outer layer on the release film, covering the mixture with the bottom outer layer filling the cavity, and the release film being the outermost layer A step of placing the mold on the mold so that the mixture and the silicone material of the bottom outer layer are cured, and optionally a three-dimensional shape thermal conductivity comprising the stretchable film after cooling the mold Removed form from the mold, removing the extendible film arbitrary, and a step of obtaining a three-dimensional shape heat conductive body, the. Since such a manufacturing method is formed using a mold having a predetermined shape, even if a flexible material is used, a three-dimensional shape heat conductive molded body can be produced with high accuracy.
[0046] 第 1又は第 2の実施形態における三次元形状熱伝導性成形体の製造方法に おいて、 伸長可能フィルムは、 ポリオレフイン樹脂 (ポリエチレン樹脂 (例 えば、 低密度ポリエチレン樹脂、 中密度ポリエチレン樹脂) 、 ポリプロピレ ンとポリエチレンとのコポリマー等) 、 ポリメチルペンテン樹脂 (T P X ( 登録商標) 樹脂) 、 アイオノマ一樹脂、 及びフッ素系樹脂から選択される少 なくとも 1つの樹脂を含んでもよく、 これらの樹脂の積層体を使用してもよ い。 このような材料を含むフィルムは、 深絞り性、 型離れ性、 シリコーン系 材料との剥離性に優れるため、 より精度よく三次元形状熱伝導性成形体を作 製することができる。  [0046] In the method for producing a three-dimensional shape thermally conductive molded body according to the first or second embodiment, the stretchable film is made of polyolefin resin (polyethylene resin (for example, low density polyethylene resin, medium density polyethylene resin). ), A copolymer of polypropylene and polyethylene, etc.), a polymethylpentene resin (TPX (registered trademark) resin), an ionomer resin, and at least one resin selected from fluorine-based resins. A resin laminate may be used. A film containing such a material is excellent in deep drawability, mold releasability, and releasability from a silicone-based material, so that a three-dimensional shape heat conductive molded body can be produced with higher accuracy.
[0047] 以下、 本発明の代表的な実施態様を例示する目的でより詳細に説明するが 、 本発明はこれらの実施態様に限定されない。 [0047] The following is a more detailed description for the purpose of illustrating representative embodiments of the present invention. The present invention is not limited to these embodiments.
[0048] 本開示において 「三次元形状部」 とは、 三次元形状熱伝導性成形体におけ る、 該成形体の底面より上方に位置する部分を意味する。  In the present disclosure, the “three-dimensional shape portion” means a portion of the three-dimensional shape heat conductive molded body that is located above the bottom surface of the molded body.
[0049] 本開示において 「略」 とは、 製造誤差などによって生じるバラつきを含む ことを意味し、 土約 2 0 %程度の変動が許容されることを意図する。  [0049] In this disclosure, "substantially" means including variations caused by manufacturing errors and the like, and intended to allow a fluctuation of about 20% in soil.
[0050] 本開示において 「ドーム状」 とは、 上面から見た場合は略円形であり、 該 略円形の中心線の横断面は、 略半円形断面、 又は図 1 に記載されるような断 面であって、 これらの断面の外側端部のいずれか一方は、 内側に向かって底 面から垂直方向に (例えば、 第 1の高さ aに沿って) さらに切断されたよう な形状であってもよいことを意味する。 本開示において 「かまぼこ状」 とは 、 上面から見た場合は略長方形もしくは略長方形の少なくとも一方の端部が 略半円形の形状、 又は略楕円形であり、 これらの形状の長辺又は長軸の中間 位置における横断面が、 略半円形断面、 又は図 1 に記載されるような断面で あって、 これらの断面の外側端部のいずれか一方は、 内側に向かって底面か ら垂直方向に (例えば、 第 1の高さ aに沿って) さらに切断されたような形 状であってもよいことを意味する。  [0050] In the present disclosure, "dome shape" means a substantially circular shape when viewed from above, and the cross section of the center line of the substantially circular shape is a substantially semicircular cross section or a section as described in FIG. One of the outer edges of these cross-sections has a shape that is further cut inwardly from the bottom surface in the vertical direction (eg, along the first height a). It means you may. In the present disclosure, “kamaboko” means that when viewed from above, at least one end of a substantially rectangular shape or a substantially rectangular shape is a substantially semicircular shape or a substantially elliptical shape, and the long side or long axis of these shapes. The cross-section at the intermediate position is a substantially semicircular cross-section or a cross-section as shown in FIG. 1, and either one of the outer ends of these cross-sections is directed inward from the bottom toward the inside. (For example, along the first height a) This means that the shape may be further cut.
[0051 ] 本開示において 「底面側」 とは、 底面より上方に位置する三次元形状部の 最大高さの約半分未満又は約 1 3以下を意味する。  [0051] In the present disclosure, "bottom side" means less than about half of the maximum height of the three-dimensional shape portion located above the bottom surface or about 13 or less.
[0052] 本開示の一実施態様の三次元形状熱伝導性成形体は、 熱伝導性材料及びシ リコーン系材料を含む、 三次元形状熱伝導性成形体であって、 該成形体は、 略平坦な底面と、 該底面内に位置する三次元形状部とを有し、 底面より上方 の三次元形状部の高さが少なくとも 2か所において相違する。 係る構成の三 次元形状熱伝導性成形体を、 以下、 「第 1の三次元形状熱伝導性成形体」 又 は 「第 1の成形体」 という場合がある。  [0052] The three-dimensional shape thermally conductive molded body of one embodiment of the present disclosure is a three-dimensional shape thermally conductive molded body including a thermally conductive material and a silicone material, and the molded body is substantially It has a flat bottom surface and a three-dimensional shape portion located in the bottom surface, and the height of the three-dimensional shape portion above the bottom surface is different in at least two places. Hereinafter, the three-dimensional shape thermally conductive molded body having such a configuration may be referred to as “first three-dimensional shape thermally conductive molded body” or “first molded body”.
[0053] 本開示の一実施態様である三層構成の三次元形状熱伝導性成形体を図 1 に 断面図で示す。 図 1 に示すように、 三次元形状熱伝導性成形体 1は、 底部外 層 2と、 中間部材 3と、 上部外層 4とを備え、 第 1の高さ' a及び第 2の高さ bは、 底面より上方の三次元形状部の高さが少なくとも 2か所において相違 することを意図する。 ここで、 底部外層 2、 中間部材 3及び上部外層 4に使 用されるシリコーン系材料が全て同一である場合には、 一層構成の三次元形 状熱伝導性成形体とみなすことができ、 底部外層 2及び中間部材 3、 中間部, 材 3及び上部外層 4、 又は底部外層 2及び上部外層 4に使用されるシリコー ン系材料が同一である場合には、 二層構成の三次元形状熱伝導性成形体とみ なすことができる。 成形体の製造過程において、 例えば上部外層、 中間部材 、 及び底部外層 (シリコーン系材料で含浸された不織布等を含む場合がある 。 ) を順に積層して形成した場合であっても、 硬化させた後に各層が同一の シリコーン系材料を用いて一体化され、 層界面を区別することができない場 合には、 この成形体は一層構成とみなすことができる。 [0053] FIG. 1 is a cross-sectional view of a three-dimensionally shaped thermally conductive molded body having a three-layer structure according to an embodiment of the present disclosure. As shown in FIG. 1, the three-dimensional shape thermally conductive molded body 1 includes a bottom outer layer 2, an intermediate member 3, and a top outer layer 4, and has a first height 'a and a second height b. Is different in at least two places in the height of the three-dimensional shape above the bottom Intended to be. Here, when the silicone materials used for the bottom outer layer 2, the intermediate member 3 and the upper outer layer 4 are all the same, it can be regarded as a one-dimensional three-dimensional shape heat conductive molded body. If the silicone material used for the outer layer 2 and the intermediate member 3, the middle part, the material 3 and the upper outer layer 4, or the bottom outer layer 2 and the upper outer layer 4 is the same, the heat conduction of the two-layer structure Can be regarded as a molded product. In the manufacturing process of the molded body, for example, a top outer layer, an intermediate member, and a bottom outer layer (which may include a nonwoven fabric impregnated with a silicone-based material) are sequentially laminated and cured. If the layers are later integrated using the same silicone-based material and the layer interface cannot be distinguished, the molded body can be regarded as a single layer structure.
[0054] シリコーン系材料は、 特に制限されるものではないが、 シリコーンゲル、 シリコーンゴムを使用することができる。 成形体が多層構成の場合には、 異 種のシリコーンゲルを使用したり、 シリコーンゲル及びシリコーンゴムを併 用してもよい。 シリコーンゲルは柔軟性に優れ、 シリコーンゴムは端部から のはみ出し防止性に優れる。  [0054] The silicone material is not particularly limited, but silicone gel and silicone rubber can be used. When the molded body has a multilayer structure, a different kind of silicone gel may be used, or silicone gel and silicone rubber may be used in combination. Silicone gel has excellent flexibility, and silicone rubber has excellent anti-extrusion properties.
[0055] (シリコーンゲル)  [0055] (Silicone gel)
シリコーンゲルは、 加熱硬化型又は常温硬化型のもの、 硬化機構が縮合型 又は付加型のものなど、 いずれも用いることができるが、 架橋密度の調整が 容易であり、 柔軟化させ易い等の観点で、 付加型シリコーン組成物から得ら れるシリコーンゲルが好ましい。 ケィ素原子に結合する基も、 特に限定され るものではなく、 例えば、 メチル基、 ェチル基、 プロピル基等のアルキル基 、 シクロペンチル基、 シクロへキシル基等のシクロアルキル基、 ビニル基、 ァリル基等のアルケニル基、 フエニル基、 トリル基等のァリール基のほか、 これらの基の水素原子が部分的に他の原子又は結合基で置換されたものを挙 げることができる。  Silicone gels can be used, such as heat-curing type or room-temperature curing type, and those having a curing mechanism of condensation type or addition type. However, it is easy to adjust the cross-linking density and to make it flexible. A silicone gel obtained from an addition-type silicone composition is preferred. The group bonded to the silicon atom is not particularly limited. For example, an alkyl group such as a methyl group, an ethyl group, and a propyl group, a cycloalkyl group such as a cyclopentyl group and a cyclohexyl group, a vinyl group, and a allyl group. In addition to aryl groups such as alkenyl groups, phenyl groups, tolyl groups, etc., those in which hydrogen atoms of these groups are partially substituted with other atoms or linking groups can be mentioned.
[0056] 本発明で用いられる付加反応型 (又は架橋) シリコーンゲルの製法は、 特 に限定されないが、 通常は、 オルガノハイ ドロジエンポリシロキサン (a— 1 ) とァルケ二ルポリシロキサン (a— 2 ) とを原料とし、 両者を触媒の存 在下でハイ ドロシリル化反応 (付加反応) させることにより得られる。 この ようなシリコーンゲルを形成し得る付加反応硬化型シリコーンゲル組成物に は、 一液硬化型及び二液硬化型の 2つのタイプがあり、 一液硬化型の組成物 は加熱することにより、 二液硬化型の組成物は二液混合後に加熱することに より、 柔軟なゲルを提供することができる。 [0056] The method for producing the addition reaction type (or cross-linked) silicone gel used in the present invention is not particularly limited, but usually, organohydrodiene polysiloxane (a-1) and alkenyl polysiloxane (a- 2) and the presence of catalyst It can be obtained by hydrosilylation reaction (addition reaction) in the presence. There are two types of addition reaction curable silicone gel compositions that can form such silicone gels: one-part curable and two-part curable. The liquid curable composition can provide a flexible gel by heating after mixing the two liquids.
[0057] ( a— 3 ) 付加反応触媒  [0057] (a-3) Addition reaction catalyst
付加反応触媒としては、 (a— 1 ) 成分中のケィ素原子に結合するァルケ ニル基と、 (a— 2 ) 成分中のケィ素原子に結合する水素原子との付加反応 (ヒドロシリル化反応) を促進するものとして知られている、 いかなる触媒 でもよい。 例えば、 塩化白金酸、 アルコール変性塩化白金酸、 塩化白金酸と ビニルシロキサンとの錯体、 塩化白金酸一 2—ェチルへキサノ一ル溶液等の 白金系触媒、 テトラキス (卜リフエニルホスフィン) パラジウム、 パラジゥ ム黒と卜リフエニルホスフィンとの混合物等のパラジウム系触媒、 ロジウム 触媒等の白金族金属系触媒を使用することができる。  As an addition reaction catalyst, an addition reaction between a alkenyl group bonded to a silicon atom in the (a-1) component and a hydrogen atom bonded to the silicon atom in the (a-2) component (hydrosilylation reaction) Any catalyst known to promote the process can be used. For example, chloroplatinic acid, alcohol-modified chloroplatinic acid, complexes of chloroplatinic acid and vinyl siloxane, platinum-based catalysts such as chloroplatinic acid 2-ethyl hexanol solution, tetrakis (卜 -phenylphosphine) palladium, paradioxide Palladium-based catalysts such as a mixture of mukuro and black phenyl phosphine, and platinum group metal-based catalysts such as rhodium catalyst can be used.
[0058] 付加反応触媒の配合量は、 反応性等を考慮して適宜調整することができ、 例えば (a— 1 ) 成分と (a— 2 ) 成分との合計量に対して、 約 0 . 1 p p m以上、 約 1 O O p p m以下 (触媒金属元素換算) の範囲で使用することが できる。  [0058] The addition amount of the addition reaction catalyst can be appropriately adjusted in consideration of reactivity and the like. For example, the addition amount of the addition reaction catalyst is about 0 with respect to the total amount of the component (a-1) and the component (a-2). It can be used in the range of 1 ppm or more and about 1 OO ppm or less (catalyst metal element conversion).
[0059] シリコーンゲルは、 (a— 1 ) 〜 (a— 3 ) の配合割合、 架橋させる温度 及び時間等を適宜調整してシリコーンゲルの架橋密度を変えることによって 、 シリコーンゲルの柔軟性を調整することができる。  [0059] The silicone gel adjusts the flexibility of the silicone gel by changing the crosslinking density of the silicone gel by appropriately adjusting the blending ratio of (a-1) to (a-3), the crosslinking temperature and time, etc. can do.
[0060] シリコーンゲルは、 例えば、 M Qレジン型の粘着付与成分を配合したり、 非反応性の粘着成分を添加したり、 非架橋官能基の側鎖の長さ、 末端官能基 の種類などを調整して、 所望の粘着性を発現させてもよい。  [0060] Silicone gels include, for example, MQ resin type tackifying components, addition of non-reactive adhesive components, length of side chains of non-crosslinked functional groups, types of terminal functional groups, etc. It may be adjusted to develop the desired tackiness.
[0061 ] (シリコーンゴム)  [0061] (Silicone rubber)
シリコーンゴムとしては、 付加反応型又は縮合型のいずれも使用すること ができる。 付加反応型のシリコーンゴムとしては、 上述した付加反応型シリ コーンゲルの架橋密度を高めてゴム弾性 (荷重をかけると伸び、 荷重を除く と略元の位置に戻る性質) を呈するようにしたものを使用することができる 。 縮合型のシリコーンゴムとは、 大気中の水分と反応することによって、 加 水分解縮合反応を起こして架橋するものである。 この縮合型の反応性シリコ —ンゴムが有する加水分解官能基としては、 例えば、 アルコキシ基 (脱アル コール型) 、 イソプロべノキシ基 (脱アセトン型) 、 メチルェチルケトォキ シム基 (脱才キシム型) 、 ァセトキシ基 (脱酢酸型) などがあるが、 硬化速 度が速いこと、 放出される物質の臭気が少ないという観点から、 脱アセトン 型又は脱アルコール型が好ましい。 As the silicone rubber, either an addition reaction type or a condensation type can be used. As an addition reaction type silicone rubber, the crosslink density of the above addition reaction type silicone gel is increased to increase the elasticity of rubber (extensive when load is applied, excluding load) It is possible to use a device that exhibits the property of returning to its original position. A condensation-type silicone rubber is one that undergoes a hydrolytic condensation reaction by cross-linking by reacting with moisture in the atmosphere. Examples of the hydrolytic functional groups possessed by this condensed type reactive silicone rubber include, for example, alkoxy groups (de-alcohol type), iso-probenoxy groups (de-acetone type), methyl ethyl ketoxime groups (de-aged xim) Type) and acetoxy group (deacetic acid type), but from the viewpoints of high curing speed and low odor of the released substance, the deacetone type or dealcohol type is preferred.
[0062] (熱伝導性材料)  [0062] (Thermal conductive material)
熱伝導性材料は、 絶縁性であっても導電性であってもよい。 絶縁性の熱伝 導性材料としては、 窒化ホウ素、 窒化アルミニウム、 窒化珪素等の窒素化合 物や、 酸化アルミニウム (アルミナ) 、 酸化マグネシウム、 酸化亜鉛、 酸化 ケィ素、 酸化ベリリウム、 酸化チタン、 酸化銅、 亜酸化銅等の金属酸化物、 水酸化マグネシウム、 水酸化アルミニウム等の金属水酸化物、 マグネサイ 卜 The thermally conductive material may be insulative or conductive. Insulating heat conductive materials include nitrogen compounds such as boron nitride, aluminum nitride, and silicon nitride, aluminum oxide (alumina), magnesium oxide, zinc oxide, silicon oxide, beryllium oxide, titanium oxide, and copper oxide. , Metal oxides such as cuprous oxide, metal hydroxides such as magnesium hydroxide, aluminum hydroxide, magnesai 卜
(炭酸マグネシウム) 、 炭化珪素、 ダイアモンド等の炭素化合物、 シリカ、 タルク、 マイ力、 カオリン、 ベントナイ ト、 パイ口フェライ ト等のセラミツ ク類、 ホウ化チタン、 チタン酸カルシウム等が使用できる。 (Magnesium carbonate), carbon compounds such as silicon carbide and diamond, silica, talc, my strength, ceramics such as kaolin, bentonite and pie mouth ferrite, titanium boride, calcium titanate, etc. can be used.
[0063] これらの中でも、 熱伝導性等の観点から、 酸化アルミニウム (アルミナ) 、 水酸化アルミニウム、 酸化亜鉛、 窒化ホウ素、 窒化アルミニウムが好まし い。 なお、 窒化ホウ素は、 c一 B N (立方晶構造) 、 w— B N (ウルッ鉱構 造) 、 h— B N (六方晶構造) 、 r一 B N (菱面体晶構造) 、 t一 B N (乱 層構造) 等の何れの構造であってもよい。 窒化ホウ素の形状には、 鱗片状の もの、 これらの凝集体等があるが、 いずれも用いることができる。  Of these, aluminum oxide (alumina), aluminum hydroxide, zinc oxide, boron nitride, and aluminum nitride are preferred from the viewpoint of thermal conductivity and the like. Boron nitride is composed of c-BN (cubic structure), w-BN (Uruthite structure), h-BN (hexagonal structure), r-BN (rhombohedral structure), t-BN (turbulent layer). Any structure such as (structure) may be used. Examples of the shape of boron nitride include scaly ones and aggregates thereof, and any of them can be used.
[0064] 導電性の熱伝導性材料としては、 黒鉛、 力一ボンブラック、 グラフアイ ト 、 炭素繊維 (ピッチ系、 P A N系) 、 力一ボンナノチューブ (C N T ) 、 力 —ボンナノファイバ一 (C N F ) 等の炭素化合物や、 銀、 銅、 鉄、 ニッケル 、 アルミニウム、 チタン等の金属又はこれらを含む金属合金、 ステンレス ( S U S ) 、 異種元素がドープされた酸化亜鉛等の導電性金属酸化物、 フェラ ィ 卜類等の金属系化合物が使用できる。 シリカ等の絶縁性材料を導電性の熱 伝導性材料で被覆して導電性としたり、 或いは、 導電性の熱伝導性材料をシ リ力等の絶縁性材料で被覆して絶縁性とし、 これらを熱伝導性材料として使 用することもできる。 [0064] Examples of conductive thermal conductive materials include graphite, force bon black, graphite, carbon fiber (pitch and PAN), force bon nanotube (CNT), force — Bonn nanofiber (CNF) ), Metal compounds such as silver, copper, iron, nickel, aluminum, titanium or metal alloys containing these, stainless steel (SUS), conductive metal oxides such as zinc oxide doped with different elements, Metal compounds such as moss can be used. An insulating material such as silica is covered with a conductive heat conductive material to make it conductive, or a conductive heat conductive material is covered with an insulating material such as silicon to make it insulating. Can also be used as a thermally conductive material.
[0065] これらの熱伝導性材料は、 1種又は 2種以上を組み合わせて使用できる。  [0065] These thermally conductive materials can be used alone or in combination of two or more.
熱伝導性材料の形状については、 種々の形状のものを使用でき、 例えば、 繊 維状、 板状、 鱗片状、 棒状、 粒状、 ロッド状、 チューブ状、 曲板状、 針状、 曲板状、 針状等が挙げられる。 これらの熱伝導性材料は、 シランカップリン グ処理、 チタネートカップリング処理、 エポキシ処理、 ウレタン処理、 酸化 処理等の表面処理が施されていてもよい。  For the shape of the heat conductive material, various shapes can be used, for example, fiber shape, plate shape, scale shape, rod shape, granular shape, rod shape, tube shape, curved plate shape, needle shape, curved plate shape. , Needles and the like. These heat conductive materials may be subjected to surface treatment such as silane coupling treatment, titanate coupling treatment, epoxy treatment, urethane treatment, oxidation treatment and the like.
[0066] 三次元形状熱伝導性成形体中の熱伝導性材料の総含有量は、 熱伝導性材料 の種類にもよるが、 約 3 0質量%以上、 約 5 0質量%以上又は約 8 0質量% 以上、 約 9 5質量。 /0以下又は約 9 0質量%以下とすることができる。 体積比 であれば、 成形体が多層構成の場合には、 成形体全体の総含有量が前記範囲 である限り、 各層における含有量は前記範囲以外であってもよく、 各層の含 有量が同一でも異なっていてもよい。 [0066] The total content of the heat conductive material in the three-dimensional shape heat conductive molded body is about 30% by mass or more, about 50% by mass or more, or about 8 depending on the type of the heat conductive material. 0% by mass or more, approximately 95% by mass. / 0 or less, or about 90% by mass or less. If the molded body has a multilayer structure, the content in each layer may be other than the above range as long as the total content of the entire molded body is in the above range, and the content in each layer is It may be the same or different.
[0067] 本開示の三次元形状熱伝導性成形体の放熱性能 (熱伝導率) は、 約 1 . 0  [0067] The heat dissipation performance (thermal conductivity) of the three-dimensional shape thermally conductive molded body of the present disclosure is about 1.0.
O W/ m K以上、 又は約 1 . 2 O WZ m K以上にすることができる。 なお、 この値は界面熱抵抗を含む値である。  O W / m K or higher, or about 1.2 O WZ m K or higher. This value includes the interfacial thermal resistance.
[0068] 熱伝導性材料の平均粒子径は、 約 0 . 1 j m以上、 約 0 . 以上、 又 は約 0 . 3 μ_ ηι以上、 約 2 0 0 Ai m以下、 約 1 0 0 x m以下、 又は約 7 0 ^ m以下であってもよい。 熱伝導性材料は平均粒子径が異なる少なくとも 2つ の粒子を併用することができる。 このような構成にすると、 大きな粒子径の 間に小さな粒子径の熱伝導性材料が埋まり最密充填のような状態で充填され るため、 熱伝導性が向上する。 熱伝導性材料の平均粒径、 粒度分布は、 電子 顕微鏡、 レーザ一回折光散乱装置などにより測定することができる。 例えば 、 平均粒子径が異なる 2つの粒子を併用した場合、 これらの粒子を含むシリ コーン系材料における粒度分布には 2つのピークが観測される。 したがって 、 該シリコーン系材料における粒度分布のピークの数を確認することで、 平 均粒子径の異なる粒子がシリコーン系材料中にいくつ含まれているかを確認 することができる。 [0068] The average particle size of the thermally conductive material is about 0.1 jm or more, about .0 or more, or about 0.3 μ_ηι or more, about 20.00 Aim or less, about 10 0 xm or less, Or about 70 m or less. The thermally conductive material can be used in combination with at least two particles having different average particle sizes. With such a configuration, the thermal conductivity is improved because the thermally conductive material having a small particle diameter is filled between the large particle diameters and filled in a close packed manner. The average particle size and particle size distribution of the thermally conductive material can be measured with an electron microscope, a laser one-diffracted light scattering device, or the like. For example, when two particles having different average particle diameters are used in combination, two peaks are observed in the particle size distribution in a silicone material containing these particles. Therefore By confirming the number of particle size distribution peaks in the silicone material, it is possible to confirm how many particles having different average particle diameters are contained in the silicone material.
[0069] シリコーン系材料は、 難燃剤、 顔料、 染料、 充填剤、 補強材、 レべリング 剤、 消泡剤、 分散剤、 硬化促進剤、 反応性希釈剤、 溶剤などの添加剤をさら に含んでもよい。 これらの添加剤の配合量は、 本発明の効果を損なわない範 囲において適宜決定することができる。  [0069] Silicone-based materials further include additives such as flame retardants, pigments, dyes, fillers, reinforcing materials, leveling agents, antifoaming agents, dispersants, curing accelerators, reactive diluents, and solvents. May be included. The blending amount of these additives can be appropriately determined within a range not impairing the effects of the present invention.
[0070] 三次元形状熱伝導性成形体の中間部材は、 該中間部材を約 1 O m m厚のシ —卜に成形した場合のァス力一 C硬度計による硬度が約 3 0以下、 約 2 0以 下又は約 8以下であってもよく、 約 0以上であってもよい。  [0070] The intermediate member of the three-dimensional shape thermally conductive molded body has a first force when the intermediate member is formed into a sheet having a thickness of about 1 O mm. The hardness by a C hardness meter is about 30 or less, about 2 or less or about 8 or less, or about 0 or more.
[0071 ] 三次元形状熱伝導性成形体は、 一層、 二層又は三層構成であってもよい。  [0071] The three-dimensional shape heat conductive molded body may have a single layer, two layers, or three layers.
所望の柔軟性を発現させる観点から、 一層構成の場合は、 全体がシリコーン ゲルで構成されることが好ましい。 二層構成の場合は、 底部外層 2、 中間部 材 3及び上部外層 4の内の何れか二つが同一のシリコ一ンゲルで構成され、 残リが異なるシリコーンゲル又はシリコーンゴムで構成されてもよく、 或い は、 底部外層 2及び上部外層 4が同一のシリコーンゴムで構成され、 中間部 材 3がシリコ一ンゲルで構成されてもよい。 柔軟性及び端部からのはみ出し 防止性の観点から、 上部外層 4、 又は上部外層 4と底部外層 2がシリコーン ゴムで構成されることが好ましい。 三層構成の場合は、 底部外層 2、 中間部 材 3及び上部外層 4として、 各々異なるシリコーン系材料を使用することが できる。 二層構成の場合と同様に、 柔軟性及び端部からのはみ出し防止性の 観点から、 上部外層 4、 又は上部外層 4と底部外層 2がシリコーンゴムで構 成されることが好ましい。 中間部材 3が上部外層 4及び 又は底部外層 2よ リも柔軟である二層又は三層構成の成形体は、 端部からのはみ出し防止性に 優れる。 中でも、 上部外層 4、 又は上部外層 4と底部外層 2にシリコーンゴ ムを採用する、 二層又は三層構成の成形体は、 中間部材として、 端部からは み出すような柔軟性の高いシリコーン系材料を使用したとしても、 少なくと もシリコーンゴムで構成される上部外層 4で中間部材 3が被覆されているた め、 シリコーンゴムの復元力により、 該中間部材が端部からより漏れにくく なる。 From the viewpoint of expressing desired flexibility, in the case of a one-layer structure, it is preferable that the whole is composed of a silicone gel. In the case of a two-layer structure, any two of the bottom outer layer 2, the intermediate member 3 and the upper outer layer 4 may be composed of the same silicone gel, and the remainder may be composed of different silicone gels or silicone rubbers. Alternatively, the bottom outer layer 2 and the upper outer layer 4 may be made of the same silicone rubber, and the intermediate member 3 may be made of silicone gel. From the viewpoint of flexibility and prevention of protrusion from the end, the upper outer layer 4 or the upper outer layer 4 and the bottom outer layer 2 are preferably made of silicone rubber. In the case of a three-layer structure, different silicone materials can be used for the bottom outer layer 2, the intermediate member 3 and the upper outer layer 4, respectively. As in the case of the two-layer structure, it is preferable that the upper outer layer 4 or the upper outer layer 4 and the bottom outer layer 2 are made of silicone rubber from the viewpoint of flexibility and prevention of protrusion from the end. A molded body having a two-layer or three-layer structure in which the intermediate member 3 is more flexible than the upper outer layer 4 and / or the lower outer layer 2 is excellent in preventing protrusion from the end. Among them, the two-layer or three-layer molded body that uses silicone rubber for the upper outer layer 4 or the upper outer layer 4 and the bottom outer layer 2 is a highly flexible silicone that protrudes from the end as an intermediate member. Even if the base material is used, the intermediate member 3 is covered with the upper outer layer 4 made of at least silicone rubber. Therefore, the intermediate member is less likely to leak from the end due to the restoring force of the silicone rubber.
[0072] 三次元形状熱伝導性成形体の底面より上方の三次元形状部は、 その高さが 少なくとも 2か所又は 3か所で異なっていればよく、 特に制限されるもので はない。 中でも、 図 1、 2に示されるような、 略ドーム状又は略かまぼこ状 の三次元形状部であることが好ましい。 このような形状であると、 特に、 適 用する被着体の表面が平坦な場合、 略ドーム状又は略かまぼこ状の頂部が被 着体の該平坦面にまず付着し、 次いで、 押圧とともに成形体の三次元形状部 が押しつぶされて変形し、 被着体と三次元形状部との間の空気を外側に押し 出すように、 頂部から外側に向かって三次元形状部が被着体の平坦面に付着 していくため、 被着体と三次元形状部との間に空気が混入せず、 三次元形状 熱伝導性成形体の被着体に対する接触面積を向上させることができる。 この 効果は、 上部外層がシリコーン系材料を含む場合に発揮される効果であり、 他の柔軟性に劣るプラスチック材料では、 同一の三次元形状部を有していて も空気が混入してしまい、 十分な接触面積が得られなかった。  [0072] The three-dimensional shape portion above the bottom surface of the three-dimensional shape heat conductive molded body is not particularly limited as long as the height is different in at least two or three places. Among them, a three-dimensional shape part having a substantially dome shape or a substantially semi-cylindrical shape as shown in FIGS. 1 and 2 is preferable. With such a shape, in particular, when the surface of the adherend to be applied is flat, the top portion having a substantially dome shape or a substantially semi-cylindrical shape first adheres to the flat surface of the adherend, and then molded together with pressing. The three-dimensional shape of the body is flattened from the top to the outside so that the three-dimensional shape of the body is crushed and deformed, and the air between the adherend and the three-dimensional shape is pushed outward. Since it adheres to the surface, air does not enter between the adherend and the three-dimensional shape portion, and the contact area of the three-dimensional shape thermally conductive compact to the adherend can be improved. This effect is exhibited when the upper outer layer contains a silicone-based material, and other plastic materials with poor flexibility are mixed with air even if they have the same three-dimensional shape, A sufficient contact area could not be obtained.
[0073] 図 3〜図 9において、 三次元形状熱伝導性成形体の具体的な形状の一例が 示されているが、 該成形体の形状はこれらに制限されるものではない。 図 3 〜図 9における成形体は、 略ドーム状又は略かまぼこ状の三次元形状部を有 するため、 従来の平坦なシ一卜形状の熱伝導性成形体に比べて空気抜け性が 良好である。 中でも、 成形体が大きくなればなるほど、 図 5〜図 9に示され るような、 三次元形状部を複数、 具体的には、 二つ以上、 三つ以上又は五つ 以上有する成形体は、 ヒ一卜シンク、 又は発熱素子等の発熱性部品との接触 部において、 空気 (気泡) を巻き込む不具合をより減少させることができる 。 成形体における、 三次元形状部の大きさ、 個数、 配置場所等については、 成形体を適用する部品の形状、 大きさ等を考慮して適宜設定することができ 、 略ドーム状の三次元形状部と略かまぼこ状の三次元形状部とが併存してい てもよい。  [0073] FIGS. 3 to 9 show examples of specific shapes of the three-dimensional shape heat conductive molded body, but the shape of the molded body is not limited to these. The molded body in FIGS. 3 to 9 has an approximately dome-shaped or approximately semi-cylindrical three-dimensional shape, and therefore has better air bleedability than a conventional flat, single-walled thermally conductive molded body. is there. Among them, the larger the molded body, the more the molded body having a plurality of three-dimensional shapes, as shown in FIGS. 5 to 9, specifically, two or more, three or more, or five or more, The problem of entraining air (bubbles) at the contact part with heat sinks or heat-generating parts such as heating elements can be further reduced. The size, number, placement location, etc. of the three-dimensional shape part in the molded body can be appropriately set in consideration of the shape, size, etc. of the parts to which the molded body is applied. The part and the approximately three-dimensional shape part that is substantially kamaboko may coexist.
[0074] 本開示の三次元形状熱伝導性成形体は、 底面より上方の三次元形状部の高 さが少なくとも 2か所において相違する構成を備えるため、 従来の平坦なシ -卜形状の熱伝導性成形体に比べて、 適用する各種部品に付加される応力を 低減させることができる。 具体的には、 三次元形状部の高さを基準とした場 合に、 その高さの、 例えば 8 0 %まで圧縮したときの荷重 (2 0 %圧縮時の 荷重) は、 平坦なシート形状の熱伝導性成形体を使用して同様の比率で圧縮 したときの荷重に比べて小さくなる。 2 0 %圧縮時の荷重は、 従来の平坦な シート形状の熱伝導性成形体に比べて、 約 9 5 %以下、 約 9 0 %以下、 又は 約 8 5 %以下であってもよい。 [0074] The three-dimensional shape thermally conductive molded body of the present disclosure has a high three-dimensional shape portion above the bottom surface. Therefore, the stress applied to the various parts to be applied can be reduced as compared with the conventional flat sheet-shaped heat conductive molded body. Specifically, when the height of the three-dimensional shape part is used as a reference, the load when the height is compressed to, for example, 80% (load when compressed at 20%) is a flat sheet shape. It becomes smaller than the load when it is compressed at the same ratio using the heat conductive molded body. The load at the time of 20% compression may be about 95% or less, about 90% or less, or about 85% or less as compared to a conventional flat sheet-shaped heat conductive molded body.
[0075] 三次元形状熱伝導性成形体を適用する被着体の適用面が略平坦ではなく、 異形状である場合には、 該成形体の三次元形状部は、 被着体の形状に略一致 するような形状であってもよい。 例えば、 電子基板全体を覆うような熱伝導 性成形体で、 基板上の各素子の形状に応じて成型することで、 各素子に対す る応力を最小化し、 かつ接触面積を最大化することができる。 さらに、 例え ば被着体がコィルのようなものであっても、 コイルの抜き型のような三次元 形状部とすることで、 コィルを隙間なく簡易に三次元形状熱伝導性成形体で 包み込むことができる。  [0075] When the application surface of the adherend to which the three-dimensional shape thermally conductive molded body is applied is not substantially flat and has an irregular shape, the three-dimensional shape portion of the molded body has the shape of the adherend. The shape may be approximately the same. For example, it is possible to minimize the stress on each element and maximize the contact area by molding the heat conductive molded body that covers the entire electronic substrate according to the shape of each element on the substrate. it can. Furthermore, for example, even if the adherend is like a coil, it is possible to easily wrap the coil with a three-dimensional shape heat conductive molding without gaps by using a three-dimensional shape like a coil punching die. be able to.
[0076] 三次元形状熱伝導性成形体の大きさは、 適用する被着体に応じて適宜決定 することができる。 三次元形状熱伝導性成形体が多層構成の場合には、 柔軟 性、 端部からのはみ出し防止性、 強度等を考慮し、 上部外層及び底部外層の 厚さは、 約 1 0 /x m以上又は約 5 0 /x m以上、 約 5 0 0 m以下又は約 3 0 0 m以下であってもよい。  [0076] The size of the three-dimensional shape thermally conductive molded body can be appropriately determined according to the adherend to be applied. When the three-dimensional shape heat conductive molded body has a multilayer structure, the thickness of the top outer layer and the bottom outer layer is about 10 / xm or more in consideration of flexibility, prevention of protrusion from the end, strength, etc. It may be about 50 / xm or more, about 500 m or less, or about 300 m or less.
[0077] 三次元形状熱伝導性成形体は、 該成形体の底面から露出しないように、 織 物、 編物又は不織布等の補強基材を底面側に内在させてもよい。 成形体の底 面側に補強基材が内在していると、 成形体の平面方向への延伸性が抑制され 、 成形体の強度が向上し、 型から成形体を引きはがすときの割れ等の不具合 を防止することができる。 中でも、 不織布は、 シリコーン系材料の含浸性に も優れるので好ましい。 不織布はシリコーン系材料が含浸し易く、 構成する 繊維間をシリコーン系材料で固定し得るため、 織物、 編物からなる補強基材 に比べて薄い場合であっても、 これらの補強基材と同等以上の強度を有する ことができる。 補強基材の材料としては、 ガラス、 ビニロン、 ァラミ ド、 ナ ィロン、 ポリオレフイン、 ポリエステル、 アクリルなどを使用することがで きるが、 難燃性も付与し得るため、 ガラスが好ましい。 不織布の厚さとして は、 約 2 0 t m以上又は約 4 0 ja m以上であってよく、 約 0 . 2 m mより薄 く又は約 0 . 1 m mより薄くすることもできる。 [0077] In the three-dimensional shape heat conductive molded body, a reinforcing base material such as a woven fabric, a knitted fabric, or a non-woven fabric may be incorporated on the bottom surface side so as not to be exposed from the bottom surface of the molded body. If the reinforcing base is present on the bottom surface side of the molded body, the stretchability of the molded body in the planar direction is suppressed, the strength of the molded body is improved, and cracks when the molded body is peeled off from the mold, etc. Trouble can be prevented. Among these, non-woven fabrics are preferable because they are excellent in the impregnation properties of silicone materials. Nonwoven fabrics are easily impregnated with silicone materials, and the constituent fibers can be fixed with silicone materials. Even if it is thinner than the above, it can have a strength equal to or greater than these reinforcing base materials. As a material for the reinforcing substrate, glass, vinylon, alamide, nylon, polyolefin, polyester, acrylic, and the like can be used. However, since flame retardancy can be imparted, glass is preferable. The nonwoven fabric may have a thickness of about 20 tm or more, or about 40 jam or more, and may be less than about 0.2 mm or less than about 0.1 mm.
[0078] 三次元形状熱伝導性成形体は、 該成形体の底面と、 該底面を除く成形体の 表面部分とのタック性を相違させてもよい。 このようなタック性を有する成 形体は、 リワーク時に破断することなくいずれか一方の被着体に貼りつくた め、 リワーク作業を行いやすい。 三次元形状熱伝導性成形体のタック性は、 表面処理、 シリコーンゴム及びシリコーンゲル等の異種材料の使用、 粘着成 分の配合量の相違などによって適宜調整することができる。  [0078] In the three-dimensional shape heat conductive molded body, the tackiness of the bottom surface of the molded body and the surface portion of the molded body excluding the bottom surface may be different. The molded body having such tackiness is easily reworked because it adheres to one of the adherends without breaking during rework. The tackiness of the three-dimensional shape heat conductive molded body can be appropriately adjusted depending on the surface treatment, the use of different materials such as silicone rubber and silicone gel, and the difference in the blending amount of the adhesive component.
[0079] 本開示の三次元形状熱伝導性成形体の製造方法について例示的に説明する が、 三次元形状熱伝導性成形体の製造方法はこれらに限られない。 たとえば 以下の方法では、 伸長可能フィルムの貼り合わせに関し、 真空加熱圧着装置 を採用した方法を例示しているが、 該方法に限らず、 真空成型法、 フィルム インサート成型法なども使用することができる。  [0079] Although the manufacturing method of the three-dimensional shape thermally conductive molded body of the present disclosure will be exemplarily described, the manufacturing method of the three-dimensional shape thermally conductive molded body is not limited thereto. For example, the following method exemplifies a method employing a vacuum thermocompression bonding device for bonding an extensible film, but is not limited to this method, and a vacuum molding method, a film insert molding method, or the like can also be used. .
[0080] 三次元形状熱伝導性成形体 6 0の製造方法について、 例えば以下の方法に より製造することができる (図 2 ) 。  [0080] The method for producing the three-dimensional shape thermally conductive molded body 60 can be produced, for example, by the following method (Fig. 2).
[0081 ] 伸長可能フィルムと剥離フィルムとを含む積層フィルムの伸長可能フィル ム上に、 熱伝導性材料を含有する第 1のシリコーン系材料を適用し、 硬化さ せて上部外層を形成する。 硬化は、 特に制限されるものではなく、 加熱硬化 、 電子線硬化などを採用することができる。  [0081] On the stretchable film of the laminated film including the stretchable film and the release film, the first silicone material containing the heat conductive material is applied and cured to form the upper outer layer. Curing is not particularly limited, and heat curing, electron beam curing, and the like can be employed.
[0082] 図 2 ( A ) に示されるような、 所定の三次元形状を有する型 2 0を用意す る。 図 2 ( B ) に示すように、 例示的な真空加熱圧着装置 3 0は、 上下に第 1真空室 3 1及び第 2の真空室 3 2をそれぞれ有しており、 上下の真空室の 間に型 2 0に貼り付ける上部外層積層フィルム 1 0をセッ卜する治具が備え られている。 また、 下側の第 1真空室 3 1 には、 上下に昇降可能な昇降台 3 5 (不図示) の上に仕切り板 34及び台座 33が設置されており、 型 20は この台座 33の上にセッ 卜される。 このような真空加熱圧着装置としては、 市販のもの、 例えば両面真空成型機 (布施真空株式会社製) などを使甩する ことができる。 A mold 20 having a predetermined three-dimensional shape as shown in FIG. 2 (A) is prepared. As shown in FIG. 2 (B), the exemplary vacuum thermocompression bonding apparatus 30 has a first vacuum chamber 31 and a second vacuum chamber 32 on the upper and lower sides, respectively, and between the upper and lower vacuum chambers. A jig for setting the upper outer laminated film 10 to be attached to the mold 20 is provided. The lower vacuum chamber 3 1 has a lifting platform 3 that can be moved up and down. A partition plate 34 and a pedestal 33 are installed on 5 (not shown), and the mold 20 is set on the pedestal 33. As such a vacuum thermocompression bonding apparatus, a commercially available apparatus such as a double-sided vacuum molding machine (manufactured by Fuse Vacuum Co., Ltd.) can be used.
[0083] 図 2 (B) に示すように、 まず、 真空加熱圧着装置 30の第 1真空室 3 1 及び第 2真空室 32を大気圧に解放した状態で、 上下の真空室の間に、 剥離 フィルムを除去した伸長可能フィルムと上部外層を備える上部外層積層フィ ルム 1 0を伸長可能フィルムが型 20側となるようにセッ トする。 第 1真空 室 3 1 において台座 33の上に型 20をセッ トする。  [0083] As shown in FIG. 2 (B), first, in a state where the first vacuum chamber 3 1 and the second vacuum chamber 32 of the vacuum thermocompression bonding apparatus 30 are released to atmospheric pressure, between the upper and lower vacuum chambers, Set the stretchable film with the peelable film removed and the upper outer layer laminated film 10 with the upper outer layer so that the stretchable film is on the mold 20 side. Set the mold 20 on the pedestal 33 in the first vacuum chamber 3 1.
[0084] 次に、 図 2 (C) に示すように、 第 1真空室 3 1及び第 2真空室 32を閉 鎖し、 それぞれ減圧し、 各室の内部を真空 (大気圧を 1 a t mとした場合例 えば約 O a t m) にする。 その後又は真空にするのと同時に上部外層積層フ イルム 1 0を加熱する。 次いで、 図 2 (D) に示すように、 昇降台 35を上 昇させて型 20を第 2真空室 32まで押し上げる。 加熱は、 例えば第 2真空 室 32の天井部に組み込まれたランプヒータで行うことができる。 加熱温度 は一般に約 50°C以上又は約 1 30°C以上、 約 1 80°C以下又約 1 60°C以 下とすることができる。 減圧雰囲気の真空度は、 大気圧を 1 a t mとして約 0. 1 0 a t m以下、 約 0. 05 a t m以下、 約 0. 01 a t m以下とする ことができる。  [0084] Next, as shown in Fig. 2 (C), the first vacuum chamber 31 and the second vacuum chamber 32 are closed, the pressure is reduced, and the inside of each chamber is evacuated (atmospheric pressure is 1 atm). In this case, for example, about O atm). After that, or simultaneously with the vacuum, the upper outer layer laminated film 10 is heated. Next, as shown in FIG. 2 (D), the elevator 35 is raised and the mold 20 is pushed up to the second vacuum chamber 32. The heating can be performed by, for example, a lamp heater incorporated in the ceiling portion of the second vacuum chamber 32. The heating temperature can generally be about 50 ° C or higher, or about 130 ° C or higher, about 180 ° C or lower, or about 160 ° C or lower. The degree of vacuum in the reduced-pressure atmosphere can be about 0.110 atm or less, about 0.05 atm or less, and about 0.01 atm or less with atmospheric pressure of 1 atm.
[0085] 加熱された上部外層積層フィルム 1 0は型 20の表面に押しつけられて延 伸される。 その後又は延伸と同時に、 図 2 (E) に示すように、 第 2真空室 32内を適当な圧力 (例えば 3 a t m~ 1 a t m) に加圧する。 圧力差によ り加熱された上部外層積層フィルム 1 0は型 20の露出表面に密着し、 露出 表面の 3次元形状に追従して延伸し、 型 20の表面に剥離可能に密着した状 態の被覆を形成する。 図 2 (C) の状態で減圧及び加熱を行った後、 そのま ま第 2真空室 32内を加圧して上部外層積層フィルム 1 0で型 20の露出表 面を被覆することもできる。  [0085] The heated upper outer layer laminated film 10 is pressed against the surface of the mold 20 and stretched. Thereafter or simultaneously with stretching, the inside of the second vacuum chamber 32 is pressurized to an appropriate pressure (eg, 3 atm to 1 atm) as shown in FIG. 2 (E). The upper outer laminated film 10 heated by the pressure difference is in close contact with the exposed surface of the mold 20, stretches following the three-dimensional shape of the exposed surface, and is in close contact with the surface of the mold 20 in a peelable manner. Form a coating. After reducing the pressure and heating in the state of FIG. 2 (C), the inside of the second vacuum chamber 32 can be pressurized and the exposed surface of the mold 20 can be covered with the upper outer laminated film 10 as it is.
[0086] この後、 上下の第 1真空室 3 1及び第 2真空室 32を再び大気圧に開放し て、 上部外層積層フィルム 1 0で被覆された型 2 0を外に取り出す。 図 2 ( F ) に示すように、 型 2 0の表面に密着した上部外層積層フィルム 1 0のェ ッジをトリミングし、 上部外層積層フィルム 1 0と型 2 0とを備える一体品 4 0を得る。 [0086] After that, the upper and lower first vacuum chambers 31 and 32 are again opened to atmospheric pressure. Then, the mold 20 covered with the upper outer layer laminated film 10 is taken out. As shown in FIG. 2 (F), the edge of the upper outer laminated film 10 that is in close contact with the surface of the mold 20 is trimmed to obtain an integrated product 40 including the upper outer laminated film 10 and the mold 20. obtain.
[0087] 次いで、 一体品 4 0の空洞部 1 1 に、 熱伝導性材料を含有する第 2のシリ  [0087] Next, in the hollow part 1 1 of the one-piece 40, a second series containing a heat conductive material is formed.
コーン系材料を充填し、 必要に応じてブレード等を使用して平坦化処理を行 し、、 中間部材 1 2を形成する。 この段階で、 第 2のシリコーン系材料を硬化 させ、 一体品 4 0から取り出し、 必要に応じて、 伸長可能フィルムを除去し 、 打ち抜き加工を行い、 三次元形状熱伝導性成形体を得ることもできる。 図 2の例示態様では、 図 2 (G ) に示すように、 中間部材 1 2の上に、 さらに Fill the corn-based material and perform a flattening process using a blade or the like as necessary to form the intermediate member 12. At this stage, the second silicone material is cured, taken out from the unitary product 40, and if necessary, the stretchable film is removed and punched to obtain a three-dimensional shape heat conductive molded body. it can. In the exemplary embodiment of FIG. 2, as shown in FIG. 2 (G), on the intermediate member 1 2,
、、 '― -,, '―-
、 底部外層 1 3を適用する構成を例示する。 この態様では、 剥離フィルム ( 不図示) 上に熱伝導性材料を含有する第 3のシリコ一ン系材料を適用して底 部外層 1 3を形成し、 該底部外層 1 3が、 上部外層積層フィルム 1 0と空洞 部 1 1 に充填した中間部材 1 2とを覆うように、 該底部外層 1 3を含む剥離 フィルムを、 該剥離フィルムが最表層となるように配置して最終一体品 5 0 を得る。 ここで、 剥離フィルム上に底部外層 1 3を形成する際に、 剥離フィ ルム上に不織布等の補強基材を適用し、 該基材上に第 3のシリコーン系材料 を塗布、 含浸させて底部外層 1 3を得ることもできる。 必要に応じて、 成形 体の底面側に位置する部分に対してブレード、 ゴムローラー等で平坦化処理 を行った後、 中間部材 1 2及び底部外層 1 3を構成する第 2及び第 3のシリ コーン系材料を硬化させる。 密着性の観点から、 中間部材 1 2及び底部外層 1 3の硬化は同時に行うことが好ましい。 硬化は、 加熱硬化、 電子線硬化な ど種々の硬化方法を採用することができる。 The configuration to which the bottom outer layer 13 is applied is illustrated. In this embodiment, the bottom outer layer 13 is formed by applying a third silicon-based material containing a heat conductive material on a release film (not shown), and the bottom outer layer 13 is formed by laminating the upper outer layer. A release film including the bottom outer layer 13 is disposed so that the release film is the outermost layer so as to cover the film 10 and the intermediate member 12 filled in the cavity portion 11, and the final integrated product 50 Get. Here, when forming the bottom outer layer 13 on the release film, a reinforcing base material such as a nonwoven fabric is applied on the release film, and a third silicone material is applied and impregnated on the base material to form the bottom portion. The outer layer 1 3 can also be obtained. If necessary, after flattening the part located on the bottom side of the molded body with a blade, a rubber roller, etc., the second and third sili- s constituting the intermediate member 12 and the bottom outer layer 13 are formed. Curing corn-based material. From the viewpoint of adhesion, it is preferable to cure the intermediate member 12 and the bottom outer layer 13 at the same time. For curing, various curing methods such as heat curing and electron beam curing can be employed.
[0088] 任意に最終一体品 5 0を冷却した後、 伸長可能フィルム及び任意に存在す る剥離フィルムを備える三次元形状熱伝導性成形体を型 2 0から取り出し、 三次元形状熱伝導性成形体 6 0を得ることができる。 必要に応じ、 伸長可能 フィルム、 剥離フイルムを除去してもよく、 中間部材を含まない、 上部外層 部分及び存在する場合は底部外層部分を適宜打ち抜き、 個別の三次元形状熱 伝導性成形体を得ることもできる。 [0088] After optionally cooling the final integrated product 50, the three-dimensional shape thermally conductive molded body having the stretchable film and the optionally present release film is taken out of the mold 20 and the three-dimensional shape thermally conductive molding is taken. The body 60 can be obtained. If necessary, stretchable film, release film may be removed, intermediate member not included, upper outer layer part and bottom outer layer part, if present, appropriately punched, individual 3D shape heat A conductive molded body can also be obtained.
[0089] 熱伝導性材料を含有する第 1〜第 3のシリコーン系材料の全てが同一材料 であれば、 一層構成の成形体とみなすことができ、 三種の内の二種が同一材 料であれば、 二層構成の成形体とみなすことができ、 三種全てが異なる材料 であれば、 三層構成の成形体とみなすことができる。  [0089] If all of the first to third silicone-based materials containing the heat conductive material are the same material, they can be regarded as a single-layer molded article, and two of the three types are the same material. If it is, it can be regarded as a two-layered molded body, and if all three types are different materials, it can be regarded as a three-layered molded body.
[0090] 一層構成の三次元形状熱伝導性成形体については、 例えば以下の方法によ つても製造することができる。  [0090] A three-dimensionally shaped thermally conductive molded body having a single layer structure can also be produced, for example, by the following method.
[0091 ] 上述の上部外層積層フィルム 1 0に代えて、 伸長可能フィルムを真空加熱 圧着装置 3 0にセットし、 上述と同様の方法で、 伸長可能フィルムを剥離可 能に型 2 0に貼り合わせて、 伸長可能フィルムと型 2 0とを備える一体品 4 0を得る。  [0091] Instead of the upper outer layer laminated film 10 described above, the stretchable film is set in a vacuum heating pressure bonding apparatus 30 and the stretchable film is peelably bonded to the mold 20 in the same manner as described above. Thus, an integrated product 40 including the stretchable film and the mold 20 is obtained.
[0092] 次いで、 一体品 4 0の空洞部 1 1 に、 熱伝導性材料を含有するシリコーン 系材料を充填し、 必要に応じてブレード等を使用して平坦化処理を行った後 、 シリコーン系材料を硬化させる。  [0092] Next, the cavity portion 1 1 of the integrated product 40 is filled with a silicone-based material containing a heat conductive material, and is subjected to a flattening treatment using a blade or the like as necessary. Harden the material.
[0093] 任意に型を冷却した後、 伸長可能フィルムを備える三次元形状熱伝導性成 形体を型から取り出し、 一層構成の三次元形状熱伝導性成形体を得ることが できる。 必要に応じ、 伸長可能フィルムを除去してもよく、 適宜打ち抜き加 ェを行い、 個別の三次元形状熱伝導性成形体を得ることもできる。  [0093] After optionally cooling the mold, the three-dimensional shape heat conductive molded body having the stretchable film can be taken out of the mold, and a one-dimensional three-dimensional shape heat conductive molded body can be obtained. If necessary, the stretchable film may be removed, and an appropriate three-dimensional shape heat conductive molded body can be obtained by performing appropriate punching.
[0094] 三次元形状熱伝導性成形体の製造方法において使用される伸長可能フィル ムとしては、 例えば深絞り成型ができるような伸長性を有し、 型離れ性及び シリコーン系材料との剥離性を有する材料であれば特に制限されるものでは ないが、 ポリエチレン (例えば低密度ポリエチレン樹脂、 中密度ポリェチレ ン樹脂) 、 ポリプロピレンとポリエチレンとのコポリマ一等のポリオレフィ ン樹脂、 ポリメチルペンテン樹脂 (T P X (登録商標) 樹脂) 、 アイオノマ 一樹脂、 フッ素系樹脂などの少なくとも 1種以上の樹脂を使用することがで きる。 これらの材料は単独又は組み合わせて使用することができ、 単層フィ ル厶又は積層フィルムの形態であってもよい。 フィルム表面に対し、 離型処 理等の表面処理を適宜適用してもよい。 [0095] 本開示の別の実施態様の三次元形状熱伝導性成形体 (以下、 「第 2の三次 元形状熱伝導性成形体」 又は 「第 2の成形体」 という場合がある。 ) の一例 を図 1 0、 1 1、 1 3及び 1 4に示す。 この三次元形状熱伝導性成形体は、 複数の突起層、 及び底部外層を備え、 突起層が、 熱伝導性材料及びシリコー ン系材料を含み、 底部外層が、 熱伝導性材料、 シリコーン系材料及び補強基 材を含み、 突起層は、 隣接する突起層の底面外周部と接触しておらず、 隣接 する突起層間に間隙を有するように配置されており、 下記式 ( I ) [0094] The stretchable film used in the method for producing a three-dimensional shape thermally conductive molded body has, for example, extensibility so that it can be deep-drawn, and can be separated from the silicone material. The material is not particularly limited as long as it has a material containing polyethylene, such as polyethylene (for example, low density polyethylene resin, medium density polyethylene resin), polyolefin resin such as polypropylene and polyethylene copolymer, polymethylpentene resin (TPX ( (Registered Trademark) Resin), Ionomer Mono Resin, Fluorine Resin, etc. can be used. These materials can be used alone or in combination, and may be in the form of a single layer film or a laminated film. A surface treatment such as a mold release treatment may be appropriately applied to the film surface. [0095] Another embodiment of the present disclosure is a three-dimensional shape thermally conductive molded body (hereinafter, sometimes referred to as "second three-dimensional shape thermally conductive molded body" or "second molded body"). Examples are shown in Figures 10, 11, 13 and 14. The three-dimensional shape heat conductive molded body includes a plurality of protrusion layers and a bottom outer layer, the protrusion layer includes a heat conductive material and a silicon-based material, and the bottom outer layer includes a heat conductive material and a silicone-based material. And the projecting layer is not in contact with the outer peripheral portion of the bottom surface of the adjacent projecting layer, and is arranged so as to have a gap between the adjacent projecting layers. The following formula (I)
[数 3]  [Equation 3]
Gf Y = 1 O O - X ( I ) Gf Y = 1 O O-X (I)
[式中、 αは約 0 . 7 0 ~約1 . 0 0であり、 Xは間隙が突起層の圧縮変 形によって完全に充填されるときの圧縮率 (%) であり、 Υは底部外層上面 の総面積のうち突起層底面の総面積が占める割合 (%) である。 ] を満足し ている。 [Where α is about 0.70 to about 1.0, X is the compression ratio (%) when the gap is completely filled by the compression deformation of the protruding layer, and Υ is the bottom outer layer It is the ratio (%) of the total area of the bottom surface of the protrusion layer to the total area of the top surface. Is satisfied.
[0096] 第 2の三次元形状熱伝導性成形体の突起層及び底部外層で使用する、 熱伝 導性材料、 シリコーン系材料及び補強基材としては、 上述した材料を使用す ることができる。 係る成形体では、 応力緩和性、 接触面積、 凹凸追従性等の 観点から、 シリコーン系材料として、 シリコーンゲルを使用することが好ま しい。  [0096] The above-described materials can be used as the heat conductive material, the silicone material, and the reinforcing base material used in the protrusion layer and bottom outer layer of the second three-dimensional shape heat conductive molded body. . In such a molded body, it is preferable to use a silicone gel as a silicone-based material from the viewpoint of stress relaxation, contact area, unevenness followability, and the like.
[0097] 第 2の三次元形状熱伝導性成形体の突起層は、 図 1 0、 1 1、 1 3及び 1 4で例示されるように、 隣接する突起層の底面外周部と接触しておらず、 隣 接する突起層間に間隙を有するように配置されている。 突起層の突起形状は 、 次のものに限定されないが、 略円柱状、 略角柱状、 略円錐台状及び略角錐 台状から選ばれる少なくとも一種とすることができる。 この他、 例えば、 図 1 3又は図 1 4に例示されるように、 底部外層の主要表面に対して、 略直線 状、 略波状又は略ジグザグ状に配置された突起層 (以下、 これらの突起層を 、 「略直線状突起層」 、 「略波状突起層」 又は 「略ジグザグ状突起層」 とい う場合がある。 ) であって、 該突起層を底部外層に対して垂直に切断したと きの断面形状は、 略正方形、 略長方形又は略等脚台形である突起層なども採 用することができる。 略直線状突起層、 略波状突起層又は略ジグザグ状突起 層は、 図 1 3又は図 1 4に例示されるように連続的に形成されてもよく、 或 いは断続的に形成されていてもよい。 例えば、 図 1 3又は図 1 4に例示され るような三次元形状熱伝導性成形体の場合、 係る成形体の一辺を X軸、 該 X 軸に対して垂直な一辺を y軸、 成形体の厚さ方向を z軸としたときに、 略直 線状突起層、 略波状突起層又は略ジグザグ状突起層は、 X軸に対して略平行 ( y軸に対して略垂直) に形成されてもよく、 y軸に対して略平行 (X軸に 対して略垂直) に形成されてもよく、 X軸又は y軸に対して角度をもって形 成されてもよい。 ここで、 「波状」 とは、 正弦波のような滑らかな波形状を 意味する一方で、 「ジグザグ状」 とは、 ノコギリ刃のような銳く屈曲するよ うな形状を意味する。 被着体への接触面積を増加させる観点から、 突起層は 、 略角柱状の突起層、 略角錐台状の突起層、 略直線状突起層、 又は略波状突 起層が好ましい。 突起層の上面は、 上述したような略ドーム状であってもよ いが、 被着体への接触面積を増加させる観点から、 略平坦面であることが好 ましい。 係る平坦面の形状としては、 略円形状、 略正三角形、 略正方形、 略 正五角形、 略正六角形、 略長方形、 又は略波型形状とすることができる。 被 着体への接触面積を増加させる観点から、 係る平坦面の形状は、 略正三角形 、 略正方形、 略正五角形、 略正六角形、 略長方形、 又は略波型形状であるこ とが好ましく、 係る形状の平坦面を有する突起層の場合、 突起層は、 係る平 坦面形状の各辺に沿った断面部を有し、 隣接する突起層の平坦面形状におけ る隣接する各辺が略平行状態にあることが好ましい。 係る構成の突起層は、 圧縮して水平方向に拡張する部分 (以下、 「拡張部」 という場合がある。 ) によって隣接する間隙に充填され易くなり、 被着体適用面に対して空隙の少 ない均一な接触面をより形成し易くなる。 [0097] As illustrated in FIGS. 10, 11, 1 3, and 14, the protruding layer of the second three-dimensional shape thermally conductive molded body is in contact with the outer peripheral portion of the bottom surface of the adjacent protruding layer. There is no gap between adjacent projection layers. The protrusion shape of the protrusion layer is not limited to the following, but can be at least one selected from a substantially cylindrical shape, a substantially prismatic shape, a substantially truncated cone shape, and a substantially truncated pyramid shape. In addition, for example, as illustrated in FIG. 13 or FIG. 14, a protrusion layer (hereinafter referred to as these protrusions) arranged in a substantially linear shape, a substantially wavy shape or a substantially zigzag shape with respect to the main surface of the bottom outer layer The layer is called “substantially linear protrusion layer”, “substantially wavy protrusion layer” or “substantially zigzag protrusion layer”. There is a case. In addition, as the cross-sectional shape when the protrusion layer is cut perpendicularly to the bottom outer layer, a protrusion layer having a substantially square shape, a substantially rectangular shape, or a substantially isosceles trapezoidal shape can be employed. The substantially linear protrusion layer, the substantially wavy protrusion layer, or the substantially zigzag protrusion layer may be formed continuously as illustrated in FIG. 13 or FIG. 14, or may be formed intermittently. Also good. For example, in the case of a three-dimensional shape heat conductive molded body as illustrated in FIG. 13 or FIG. 14, one side of the molded body is the X axis, and one side perpendicular to the X axis is the y axis. When the thickness direction of the z-axis is the z-axis, the substantially linear projection layer, the substantially wavy projection layer, or the substantially zigzag projection layer is formed substantially parallel to the X axis (substantially perpendicular to the y axis). It may be formed substantially parallel to the y-axis (substantially perpendicular to the X-axis), or may be formed with an angle with respect to the X-axis or the y-axis. Here, “wavy” means a smooth wave shape such as a sine wave, while “zigzag” means a shape that bends like a saw blade. From the viewpoint of increasing the contact area with the adherend, the projection layer is preferably a substantially prismatic projection layer, a substantially truncated pyramid projection layer, a substantially linear projection layer, or a substantially wavy projection layer. The upper surface of the protrusion layer may be substantially dome-shaped as described above, but is preferably a substantially flat surface from the viewpoint of increasing the contact area with the adherend. The shape of the flat surface may be a substantially circular shape, a substantially regular triangle, a substantially square, a substantially regular pentagon, a substantially regular hexagon, a substantially rectangular shape, or a substantially wave shape. From the viewpoint of increasing the contact area with the adherend, the shape of the flat surface is preferably a substantially regular triangle, a substantially square, a substantially regular pentagon, a substantially regular hexagon, a substantially rectangular, or a substantially wave shape. In the case of a protruding layer having a flat surface, the protruding layer has a cross-sectional portion along each side of the flat surface shape, and adjacent sides in the flat surface shape of the adjacent protruding layer are substantially parallel. It is preferable that it exists in a state. The protrusion layer having such a structure is easily filled in the adjacent gap by a portion that is compressed and expanded in the horizontal direction (hereinafter, sometimes referred to as an “expanded portion”), and has a small gap with respect to the adherend application surface. It becomes easier to form a uniform contact surface that is not present.
突起層は、 下記式 ( I ) を満足するように形成されているため、 第 2の成 形体は、 被着体に対する応力緩和性に優れるとともに、 被着体に対する接触 面積を向上させることができる。 Since the protruding layer is formed so as to satisfy the following formula (I), the second molded body has excellent stress relaxation properties against the adherend and is in contact with the adherend. The area can be improved.
[数 4ϋ α Υ= 10 Ο-Χ ( I )  [Number 4ϋ α Υ = 10 Ο-Χ (I)
[式中、 αは約 0. 70〜約1. 00であり、 Xは間隙が突起層の圧縮変 形によって完全に充填されるときの圧縮率 (%) であり、 Υは底部外層上面 の総面積のうち突起層底面の総面積が占める割合 (%) である。 ] [Where α is about 0.70 to about 1.00, X is the compression ratio (%) when the gap is completely filled by the compression deformation of the protruding layer, and Υ is the upper surface of the bottom outer layer. This is the ratio (%) of the total area of the bottom surface of the projection layer. ]
αは、 突起層を構成する材料及び圧縮率によって変動する係数であり、 例 えば、 次の実験により算出することができる。 まず、 所定厚のシートを 04 . 3 mmのポンチで打ち抜いて円柱のサンプルを準備する。 係る円柱サンプ ルにおける圧縮前の上面の直径 (初期直径) と、 円柱サンプルを上面から下 方にガラス板等を用いて 1 mm押し潰して圧縮した後の円柱最大直径 (圧縮 後直径) を測定する。 ここで、 円柱最大直径とは、 円柱サンプルの上面から 底面の間で横方向に一番広がっている円状部分の直径を意味する。 測定した 各直径から、 圧縮前後の円柱サンプルの円状部分の面積を各々算出し、 上記 の Y (%) に相当する圧縮前後の面積比 (圧縮前の上面部面積ノ圧縮後の最 大面積) を算出する。 続いて、 上記の X (%) に相当する、 円柱サンプルを 1 mm圧縮したときの圧縮率 ( 1 mmZ円柱サンプルの初期厚み (mm) ) を算出する。 係る X及び Yの値を、 以下の式 ( I I )  α is a coefficient that varies depending on the material constituting the protruding layer and the compression ratio, and can be calculated by the following experiment, for example. First, a cylindrical sample is prepared by punching a sheet with a predetermined thickness with a 44.3 mm punch. Measure the diameter of the upper surface of the cylindrical sample before compression (initial diameter) and the maximum diameter (compressed diameter) of the cylindrical sample after compressing the cylindrical sample by crushing it by 1 mm using a glass plate, etc. To do. Here, the maximum diameter of the cylinder means the diameter of the circular part that is most widened in the horizontal direction between the top surface and the bottom surface of the cylindrical sample. From the measured diameters, calculate the area of the circular part of the cylindrical sample before and after compression, and the area ratio before and after compression corresponding to the above Y (%) (the top surface area before compression and the maximum area after compression) ) Is calculated. Subsequently, the compression ratio (initial thickness (mm) of 1 mmZ cylindrical sample) when the cylindrical sample is compressed by 1 mm, corresponding to the above X (%), is calculated. The values of X and Y are expressed by the following formula (I I)
[数 5] a= (100— X) /Y (I I) に導入して αを求めることができる。 一例として、 円柱サンプル 1〜3にお ける算出した αの結果を以下の表 1 に示す。 1] [Equation 5] a = (100— X) / Y (II) can be introduced to find α. As an example, Table 1 below shows the calculated α results for the cylindrical samples 1 to 3. 1]
Figure imgf000030_0001
αは、 約 0. 7 0以上、 約 0. 7 2以上、 約 0. 7 5以上、 約 0. 7 7以 上、 約 0. 80以上又は約 0. 82以上、 約 1 . 00以下の範囲にすること ができる。 Xは、 間隙が突起層の圧縮変形によって完全に充填されるときの 圧縮率 (%) であり、 次の範囲に限定されないが、 約 2 0%以上、 約 2 5% 以上又は約 3 0%以上、 約 7 5%以下、 約 7 0%以下又は約 6 5%以下の範 囲であってもよい。 Υは、 底部外層上面の総面積のうち突起層底面の総面積 が占める割合 (%) である。 突起層を複数有する三次元形状熱伝導性成形体 における Υの求め方としては、 三次元形状熱伝導性成形体を得るための型デ 一夕を参考に、 少なくとも 1 m X l mの大きさ (1 m2) の三次元形状熱伝導 性成形体のシ一卜をパソコン上に表示し、 係るシートの突起層底面の面積 A を算出し、 (面積 A X 1 00) / (突起層を除いたシート上面の総面積 (1 m2) ) から Y (%) を求めることができる。 なお、 少なくとも 1 m X 1 mの 大きさの三次元形状熱伝導性成形体のシートが、 実物のシートであってもよ いことは言うまでもない。 或いは、 例えば、 図 1 1で例示される六角柱の突 起層を備える三次元形状熱伝導性成形体の場合、 複数の六角柱の中から任意 に一つの六角柱を選択し、 係る六角柱の底面である正六角形 (以後、 「内側 正六角形」 という場合がある。 ) の外接円の直径 (C) を測定する。 次いで 、 係る内側正六角形の各辺から間隙幅 (A) の半分だけ大きい正六角形 (以 後、 「外側正六角形」 という場合がある。 ) を導き、 係る外側正六形の外接 円の直径を特定する (C + A) 。 各外接円の直径に基づいて内側正六角形及 び外側正六角形の各面積を算出し、 (内側正六角形の面積 X 1 00) Z (外 側正六角形の面積) から Y (%) を求めることもできる。 係る方法による Y の値は、 突起層一つの最小単位から導かれるものであるが、 突起層の形状及 び大きさ、 並びに間隙の形状及び大きさが略均等である場合には、 係る方法 で Yを求めることができる。
Figure imgf000030_0001
α is about 0.70 or more, about 0.72 or more, about 0.75 or more, about 0.77 or more, about 0.80 or more, or about 0.82 or more, and about 1.00 or less. It can be a range. X is the compression ratio (%) when the gap is completely filled by the compressive deformation of the protruding layer, and is not limited to the following range, but is about 20% or more, about 25% or more, or about 30% The range may be about 75% or less, about 70% or less, or about 65% or less. Υ is the ratio (%) of the total area of the bottom surface of the projection layer to the total area of the top surface of the bottom outer layer. As a method for obtaining wrinkles in a three-dimensional shape thermally conductive molded body having a plurality of projection layers, referring to a mold table for obtaining a three-dimensional shape thermally conductive molded body, a size of at least 1 m X lm ( 1 m 2 ) 3D shape thermal conductive molding is displayed on a personal computer, and the area A of the bottom surface of the projecting layer of the sheet is calculated, and (area AX 1 00) / (excluding the projecting layer) Y (%) can be obtained from the total area (1 m 2 )) of the upper surface of the sheet. Needless to say, the sheet of the three-dimensional shape thermally conductive molded body having a size of at least 1 m × 1 m may be a real sheet. Or, for example, in the case of a three-dimensional shape thermally conductive molded body provided with a hexagonal column projection layer illustrated in FIG. 11, one hexagonal column is arbitrarily selected from a plurality of hexagonal columns, and the hexagonal column Measure the diameter (C) of the circumscribed circle of the regular hexagon (hereinafter sometimes referred to as “inner regular hexagon”) that is the bottom of Next, a regular hexagon that is half the gap width (A) (hereinafter sometimes referred to as “outer regular hexagon”) is derived from each side of the inner regular hexagon, and the diameter of the circumscribed circle of the outer regular hexagon is specified. (C + A). Calculate the area of the inner regular hexagon and the outer regular hexagon based on the diameter of each circumscribed circle, and obtain Y (%) from (area of the inner regular hexagon X 1 00) Z (area of the outer regular hexagon) You can also. The value of Y by such a method is derived from the minimum unit of one protrusion layer. And the size and the shape and size of the gap are substantially equal, Y can be obtained by this method.
[0102] 突起層のテーパー角 (0) は、 約 80° 以上又は約 82° 以上、 約 90° 以下又は約 88° 以下にすることができる。 係る突起層は型離れ性に優れる とともに、 圧縮後、 被着体適用面に対して空隙の少ない均一な接触面をより 形成し易くなる。 ここで、 突起層のテ一パ一角 (0) とは、 図 1 0に示され るような、 突起層上面における平坦面形状の各辺に沿った断面と底部外層の 上面とによって形成される角度を意味する。  [0102] The taper angle (0) of the protrusion layer can be about 80 ° or more or about 82 ° or more, about 90 ° or less, or about 88 ° or less. Such a projecting layer is excellent in mold releasability, and after compression, it becomes easier to form a uniform contact surface with few voids with respect to the adherend application surface. Here, the taper angle (0) of the protrusion layer is formed by a cross section along each side of the flat surface shape on the upper surface of the protrusion layer and the upper surface of the bottom outer layer as shown in FIG. Means angle.
[0103] 突起層は、 該突起層を構成する材料を約 1 Omm厚のシートに成形した場 合のァスカー C硬度計による硬度が、 約 30以下、 約 20以下又は約 1 0以 下であってもよく、 約 0以上であってもよい。 このような範囲のァスカー硬 度を有する突起層は、 柔軟性に優れるため、 圧縮に伴う、 間隙充填性、 被着 体に対する接触面積の増加又は凹凸追従性に優れている。  [0103] The protrusion layer has a hardness of about 30 or less, about 20 or less, or about 10 or less when the material constituting the protrusion layer is formed into a sheet having a thickness of about 1 Omm. It may be about 0 or more. Since the protruding layer having the Asker hardness in such a range is excellent in flexibility, it is excellent in gap filling property, increase in the contact area with respect to the adherend, or unevenness following property due to compression.
[0104] 第 2の三次元形状熱伝導性成形体は、 突起層を、 5個 Z i n c h2以上、 1 [0104] The second three-dimensional shape thermally conductive molded body has five protruding layers, Z inch 2 or more, 1
0個/ i n c h2以上、 又は 1 2個 Z i n c h 2以上有することができる。 係 る構成の成形体であれば、 被着体に対して十分な放熱性を発現させることが できる。 Can have 0 pieces / inch 2 or more, or 1 2 pieces Z inch 2 or more. With the molded body having the related structure, sufficient heat dissipation can be exhibited with respect to the adherend.
[0105] 底部外層上面から突起層上面までの最大の高さは、 約 0. 5 mm以上又は 約 1. Omm以上、 約 3. 5mm以下又は約 3. Omm以下にすることがで さる。  [0105] The maximum height from the upper surface of the bottom outer layer to the upper surface of the protruding layer may be about 0.5 mm or more, or about 1. Omm or more, about 3.5 mm or less, or about 3. Omm or less.
[0106] 第 2の三次元形状熱伝導性成形体における突起層間に形成される間隙 1 1  [0106] The gap formed between the protrusion layers in the second three-dimensional shape thermally conductive molded body 1 1
4は、 図 1 0で例示されるように間隙の底面において幅 Aを備えるため、 係 る幅を備えない V字状の溝のような間隙を有する成形体に比べ、 本開示の第 2の成形体の方が耐引き裂き性に優れている。 本開示の間隙を有するように 突起層を適用した成形体 (前者態様) と、 V字状の溝のような間隙を有する ように突起層を適用した成形体 (後者態様) を比較した場合、 後者態様の方 が、 隣接する突起層が接近しており、 圧縮して水平方向に拡張し得る突起層 部分が前者態様に比べて少ないため、 突起層を圧縮できる割合も少なくなる 。 その結果、 突起層を圧縮し得る割合の低い後者態様では適用する被着体の 凹凸の大きさに対して制約がかかるが、 本開示の前者態様は、 後者態様に比 ベて突起層を圧縮し得る割合が高く、 凹凸追 ¾έ性の自由度が増すため、 使用 可能な被着体の選択の幅が広がるという利点を有している。 被着体適用面に 対して空隙の少ない均一な接触面をよリ形成し易くするという観点から、 間 隙の幅は略均等であることが好ましい。 4 is provided with a width A at the bottom surface of the gap as illustrated in FIG. 10, and therefore, compared with a molded body having a gap like a V-shaped groove without a related width, The molded body has better tear resistance. When comparing the molded body in which the protrusion layer is applied so as to have the gap of the present disclosure (the former aspect) and the molded body in which the protrusion layer is applied so as to have a gap like a V-shaped groove (the latter aspect), In the latter mode, adjacent projecting layers are closer, and the number of projecting layer parts that can be compressed and expanded in the horizontal direction is smaller than in the former mode. . As a result, in the latter mode in which the ratio of the projecting layer that can be compressed is low, there are restrictions on the size of the unevenness of the adherend to be applied. However, the former mode of the present disclosure compresses the projecting layer compared to the latter mode. In addition, since the degree of possibility is high and the degree of freedom of unevenness tracking increases, there is an advantage that the range of selection of usable adherends is widened. From the viewpoint of facilitating the formation of a uniform contact surface with few voids with respect to the adherend application surface, the width of the gap is preferably substantially uniform.
[0107] 第 2の三次元形状熱伝導性成形体の底部外層は、 図 1 0に示されるように 、 シリコーン系材料層 (1 0 4、 1 0 8 ) の間に不織布等の補強基材層 1 0 6を備える積層構成であつてもよく、 補強基材にシリコーン系材料が含浸し て一体化した構成であつてもよい。 底部外層で使用するシリコーン系材料及 び熱伝導性材料を含む組成物が、 突起層で使用する組成物と同一である場合 、 突起層及び底部外層を備える第 2の三次元形状熱伝導性成形体は一体品と みなすことができる。 この場合における底部外層とは、 間隙の底面方向断面 の下側に位置する部分 (但し、 存在する場合は、 剥離フィルムは除く。 ) と みなすことができる。  [0107] The bottom outer layer of the second three-dimensional shape thermally conductive molded body is formed of a reinforcing base material such as a nonwoven fabric between the silicone material layers (10 4, 10 8) as shown in FIG. A laminated structure including the layers 10 6 may be used, or a structure in which a reinforcing material is impregnated with a silicone material and integrated may be used. When the composition containing the silicone material and the heat conductive material used in the bottom outer layer is the same as the composition used in the protrusion layer, the second three-dimensional shape heat conductive molding provided with the protrusion layer and the bottom outer layer The body can be regarded as an integrated product. In this case, the bottom outer layer can be regarded as a portion located below the cross section in the bottom direction of the gap (excluding the release film if it exists).
[0108] 従来の平坦な放熱シートは、 該シートの被着体 (例えば、 I Cチップ等) への適用に伴う圧縮時に、 圧縮面で圧縮応力が発生し、 被着体の周辺近傍で は面方向に反作用である引っ張り応力が発生する。 これらの応力により、 被 着体を損傷させるおそれがあつたため、 該応力の緩和のために凹凸形状を設 けた放熱シートも開発されている。 しかしながら、 係る従来の放熱シ一トは 凹凸形状を保持させるために柔軟性に劣る材料を使用していたため、 放熱シ 一卜の凹部に伴う空隙部が生じて接触面積が低下し、 その結果、 放熱性も低 下する場合があった。 本開示の第 2の三次元形状熱伝導性成形体は、 底部外 層が不織布等の補強基材を含み、 成形体の引き裂き強度等を向上させること ができるため、 成形体で使用するシリコーン系材料として、 シリコーンゴム よりも柔軟で、 間隙充填性及び凹凸追従性に優れるシリコーンゲルのみを使 用することもでき、 従来の凹凸形状を設けた放熱シートよりも、 圧縮後の被 着体への接触面積をより増加させ、 放熱性をより向上させることができる。 [0109] 補強基材を備えない底部外層を採用した場合に、 例えば、 2つの被着部材 間に成形体を適用し、 圧縮して貼り合わせた後にリヮ一クすると、 底部外層 側から剥がれることもあれば、 突起層側から剥がれることもあり、 成形体が 破断する場合があった。 しかしながら、 本開示の第 2の成形体は、 補強基材 を備える底部外層を有するため、 リワーク時には、 底部外層が被着体に貼付 された状態で、 成形体を突起層側から剥すことができるため、 リワーク作業 性に優れるという利点も有している。 第 2の成形体の引っ張り接着強さは、 リワーク性の観点から、 約 1 4 NZ c m 2以下、 約 1 2 NZ cm 2以下、 又は 約 1 0 N/c m2以下にすることが好ましい。 [0108] A conventional flat heat dissipation sheet generates compressive stress on the compression surface during compression accompanying application of the sheet to an adherend (eg, an IC chip), and the surface near the periphery of the adherend. Tensile stress, which is a reaction in the direction, is generated. Since the adherend may be damaged by these stresses, a heat dissipation sheet having a concavo-convex shape has been developed to alleviate the stress. However, since the conventional heat radiation sheet uses a material with poor flexibility in order to maintain the concave and convex shape, a void portion is formed in the concave portion of the heat radiation sheet and the contact area is reduced. In some cases, heat dissipation was also reduced. In the second three-dimensional shape heat conductive molded body of the present disclosure, the bottom outer layer includes a reinforcing base material such as a nonwoven fabric, and the tear strength of the molded body can be improved. As a material, it is possible to use only a silicone gel that is softer than silicone rubber and excellent in gap filling and unevenness followability, and it can be applied to an adherend after compression rather than a conventional heat dissipation sheet with an uneven shape. The contact area can be further increased and the heat dissipation can be further improved. [0109] When a bottom outer layer that does not include a reinforcing base material is employed, for example, when a molded body is applied between two adherends and compressed and bonded together, the bottom outer layer is peeled off from the bottom outer layer side. Sometimes, it peeled off from the protruding layer side, and the molded body sometimes broke. However, since the second molded body of the present disclosure has the bottom outer layer including the reinforcing base material, the molded body can be peeled from the protruding layer side in a state where the bottom outer layer is stuck to the adherend during rework. Therefore, it has the advantage of excellent rework workability. The tensile strength of the second molded body is preferably about 14 NZ cm 2 or less, about 12 NZ cm 2 or less, or about 10 N / cm 2 or less from the viewpoint of reworkability.
[0110] 底部外層の厚さは、 強度又は放熱性の観点から、 約 0. 5 mm以下又は約  [0110] The thickness of the bottom outer layer is approximately 0.5 mm or less or approximately from the viewpoint of strength or heat dissipation.
0. 4 mm以下にすることができ、 約 0. 05mm以上又は約 0. 1 mm以 上にすることができる。  0.4 mm or less, and can be about 0.05 mm or more, or about 0.1 mm or more.
[0111] 本開示の第 2の三次元形状熱伝導性成形体は、 該成形体を被着体に適用し て 50%圧縮したときの接触面積が、 成形体を被着体に圧縮せずに適用した ときの接触面積に比較して、 約 40%以上、 約 45%以上又は約 50%以上 増加させることができる。 係る性能を奏する成形体は、 被着体に対する応力 緩和性に優れるとともに、 圧縮後、 被着体適用面に対して空隙の少ない均一 な接触面をより形成し易くなる。  [0111] In the second three-dimensional shape thermally conductive molded body of the present disclosure, the contact area when the molded body is applied to the adherend and compressed by 50% does not compress the molded body onto the adherend. Compared to the contact area when applied to, it can be increased by about 40% or more, about 45% or more, or about 50% or more. A molded body exhibiting such performance is excellent in stress relaxation for the adherend, and more easily forms a uniform contact surface with less voids on the adherend application surface after compression.
[0112] 第 2の三次元形状熱伝導性成形体の応力緩和性は、 係る成形体の被着体適 用面側の総面積 (底部外層上面の総面積) が大きくなるほど効果をより発揮 させることができる。 応力緩和性の観点から、 第 2の三次元形状熱伝導性成 形体の被着体適用面側の総面積 (底部外層上面の総面積) は、 約 50 c m2以 上、 約 1 00 c m2以上、 又は約 20 O c m2以上にすることができる。 [0112] The stress relaxation property of the second three-dimensional shape thermally conductive molded body is more effective as the total area of the molded body on the adherend application surface side (total area of the upper surface of the bottom outer layer) increases. be able to. From the viewpoint of stress relaxation, the total area on the adherend application surface side of the second three-dimensional shape thermally conductive composition (total area of the top surface of the bottom outer layer) is about 50 cm 2 or more, about 100 cm 2 Or about 20 O cm 2 or more.
[0113] 第 2の三次元形状熱伝導性成形体の厚さは、 放熱性の観点から、 約 4. 0 mm以下、 約 3. 5 mm以下、 約 3. Omm以下又は約 2. 5 mm以下にす ることができ、 約 0. 1 mm以上又は約 0. 55 mm以上にすることができ る。  [0113] From the viewpoint of heat dissipation, the thickness of the second three-dimensional shape thermally conductive molded body is about 4.0 mm or less, about 3.5 mm or less, about 3. Omm or less, or about 2.5 mm. Can be about 0.1 mm or more, or about 0.55 mm or more.
[0114] 第 2の三次元形状熱伝導性成形体の約 50%圧縮時の圧縮応力は、 約 1 0 N Z c m 2以下にすることができる。 [0114] The compressive stress at the time of about 50% compression of the second three-dimensional shape thermally conductive molded body is about 10 NZ cm 2 or less.
[01 15] 第 2の三次元形状熱伝導性成形体の熱抵抗は、 約 1 . 0 Kノ W以下とする ことができる。 [0115] The thermal resistance of the second three-dimensional shape thermally conductive molded body can be about 1.0 KNOW or less.
[01 16] 本開示の第 2の三次元形状熱伝導性成形体は上述した方法と同様にして製 造することができるが、 係る三次元形状熱伝導性成形体の製造方法はこれら に限られない。 たとえば以下の方法では、 伸長可能フィルムの貼り合わせに 関し、 真空加熱圧着装置を採用した方法を例示しているが、 該方法に限らず 、 真空成型法、 フィルムインサート成型法なども使用することができる。  [0116] The second three-dimensional shape thermally conductive molded body of the present disclosure can be manufactured in the same manner as described above, but the manufacturing method of the three-dimensional shape thermally conductive molded body is not limited thereto. I can't. For example, the following method exemplifies a method that employs a vacuum thermocompression bonding apparatus for laminating an extensible film, but not limited to this method, a vacuum molding method, a film insert molding method, or the like can also be used. it can.
[01 17] 第 2の三次元形状熱伝導性成形体の製造方法について、 例えば以下の方法 により製造することができる。  [0117] The second three-dimensional shape thermally conductive molded body can be manufactured, for example, by the following method.
[01 18] 図 2に示される上部外層積層フィルム 1 0に代えて、 伸長可能フィルムを 真空加熱圧着装置 3 0にセッ トし、 上述と同様の方法で、 伸長可能フィルム を剥離可能に、 第 2の三次元形^熱伝導性成形体の突起層及び間隙を形成し 得る型に貼り合わせて、 伸長可能フィルムと型とを備える一体品を得る。  [01 18] Instead of the upper outer layer laminated film 10 shown in FIG. 2, the stretchable film is set in the vacuum thermocompression bonding apparatus 30 so that the stretchable film can be peeled by the same method as described above. Bonded to the mold that can form the protrusion layer and gap of the three-dimensional heat-conductive molded body of 2 to obtain an integral product including the stretchable film and the mold.
[01 19] 剥離フィルム上に不織布等の補強基材を配置し、 熱伝導性材料及びシリコ —ン系材料を含む混合物を、 係る補強基材上に所定のギャップ間隔を有する ナイフコーターで塗工して、 底部外層を備える底部外層用積層体を得る。  [01 19] A reinforcing base material such as a non-woven fabric is disposed on the release film, and a mixture containing a heat conductive material and a silicon-based material is applied onto the reinforcing base material with a knife coater having a predetermined gap interval. And the laminated body for bottom outer layers provided with a bottom outer layer is obtained.
[0120] 次いで、 一体品の空洞部に、 底部外層作製時に使用した混合物と同一又は 異種の熱伝導性材料及びシリコーン系材料を含む混合物を充填し、 必要に応 じてブレード等を使用して平坦化処理を行い、 底部外層が空洞部に充填した 混合物を覆い剥離フィルムが最表層となるように、 底部外層用積層体を型上 に配置した後、 シリコーン系材料を硬化させる。  [0120] Next, the hollow portion of the integrated product is filled with a mixture containing a heat conductive material and a silicone-based material that is the same as or different from the mixture used in the production of the bottom outer layer, and a blade or the like is used as necessary. A flattening process is performed, and the bottom outer layer laminate is placed on the mold so as to cover the mixture in which the bottom outer layer is filled in the cavity and the release film is the outermost layer, and then the silicone material is cured.
[0121 ] 任意に型を冷却した後、 伸長可能フィルムを備える三次元形状熱伝導性成 形体を型から取り出し、 第 2の三次元形状熱伝導性成形体を得ることができ る。 必要に応じ、 伸長可能フィルム及び 又は剥離フィルムを除去してもよ 、 適宜打ち抜き加工を行い、 所定形状の三次元形状熱伝導性成形体を得る こともできる。  [0121] After optionally cooling the mold, the three-dimensional shape heat conductive molded body provided with the stretchable film can be taken out of the mold to obtain a second three-dimensional shape heat conductive molded body. If necessary, the stretchable film and / or the release film may be removed, or a punching process may be appropriately performed to obtain a three-dimensional shape heat conductive molded body having a predetermined shape.
[0122] 三次元形状熱伝導性成形体の製造方法において使用される伸長可能フィル ムとしては、 上述したものと同一の使用することができる。 [0122] Stretchable fill used in a method for producing a three-dimensionally shaped thermally conductive molded body As the system, the same use as described above can be used.
[0123] 本開示の三次元形状熱伝導性成形体は、 車両、 リチウムイオンバッテリー  [0123] The three-dimensional shape thermally conductive molded body of the present disclosure includes a vehicle and a lithium ion battery.
(例えば、 車載用リチウムイオンバッテリー) 、 家電製品、 コンピューター 機器、 等で使用される、 例えば、 I Cチップ等の発熱性部品と、 ヒ一卜シン ク又はヒ一卜パイプ等の放熱部品との間の間隙を充填するように配置して、 発熱性部品から発生した熱を放熱部品に効率よく熱伝達し得る、 放熱用物品 として使用することができる。 本開示の三次元形状熱伝導性成形体は形状、 大きさを自由に設計できるため、 例えば、 回路基板のポッティング材の代替 として使用することができ、 コィル等の複雑形状の発熱性部品に対しても使 用することもできる。  (For example, in-vehicle lithium-ion batteries), used in household electrical appliances, computer equipment, etc. For example, between a heat-generating component such as an IC chip and a heat-dissipating component such as a hinge sink or a hinge pipe It can be used as a heat-dissipating article that can be disposed so as to fill the gap between the heat-generating parts and efficiently transfer heat generated from the heat-generating parts to the heat-dissipating parts. Since the three-dimensional shape heat conductive molded body of the present disclosure can be designed freely in shape and size, it can be used as an alternative to potting materials for circuit boards, for example, for heat generating parts with complex shapes such as coils. However, it can also be used.
実施例 、  Example ,
[0124] 以下の実施例において、 本開示の具体的な実施態様を例示するが、 本発明 はこれに限定されるものではない。 部及びパーセントは全て、 特に明記しな い限り質量による。 [0124] In the following examples, specific embodiments of the present disclosure are illustrated, but the present invention is not limited thereto. All parts and percentages are by weight unless otherwise specified.
[0125] 本実施例で使用した原料などを以下の表 2に示す。 [0125] The raw materials used in this example are shown in Table 2 below.
[0126] [0126]
Figure imgf000036_0001
Figure imgf000036_0001
[0127] 本開示の第 1の三次元形状熱伝導性成形体の特性を以下の方法にしたがつ て評価した。  [0127] The characteristics of the first three-dimensional shape thermally conductive molded body of the present disclosure were evaluated according to the following methods.
[0128] [評価方法] <ァスカー c硬度の評価 > [0128] [Evaluation method] <Assasser c hardness evaluation>
ァスカーゴム硬度計 C型 (高分子計器株式会社製) を用い、 日本ゴム協会 標準規格である S R I S 01 01 に準拠して、 評価サンプルのァス力一 C硬 度を測定した。  Wasker rubber hardness tester C type (manufactured by Kobunshi Keiki Co., Ltd.) was used to measure the washer force C hardness of the evaluation sample in accordance with SRI IS 01 01, which is a standard of the Japan Rubber Association.
[0129] <圧縮荷重の評価 >  [0129] <Evaluation of compressive load>
35mm X 40 m mの大きさの治具を使用するテンシロン試験機により圧 縮荷重を測定した。 治具の中央に位置するように、 評価サンプルをテンシロ ン試験機に配置し、 荷重計に取り付けた治具を 0. SmmZ分の速度で下方 に移動し、 評価サンプルが 20%圧縮された時点で治具を止め、 そのときの 荷重を測定した。  The compressive load was measured with a Tensilon tester using a jig with a size of 35 mm x 40 mm. Place the evaluation sample on the Tensilon testing machine so that it is located in the center of the jig, move the jig attached to the load cell downward at a speed of 0. SmmZ, and when the evaluation sample is compressed 20% The jig was stopped with and the load at that time was measured.
[0130] <熱伝導率の評価 1 >  [0130] <Evaluation of thermal conductivity 1>
大型のサンプル (例 1、 2、 及び比較例 2) の熱伝導率の測定は、 京都電 子工業株式会社製の QTM—D3及びプローブ (PD— 1 3 N) を用いて行 つた。 0丁1/1ー03は、 非定常法細線加熱法という方法によって熱伝導率を 測定するものである。 プローブ (センサー) は、 直線状に張られた単一の加 熱線と熱電対により構成されている。 加熱線に一定電流を通じると熱が発生 し、 加熱線の温度は指数関数的に上昇する。 熱伝導率の高いサンプル (金属 など) では、 熱は急速に移動しサンプル側に逃げてゆくために加熱線の温度 は小さくなる。 逆に熱伝導率が低い試料 (断熱材など) では、 熱が逃げ難い ために加熱線の温度は大きく上昇する。 このように加熱線の温度上昇はサン プルの熱伝導率に関係し、 下記の式 ( 1 ) で表される。 すなわち、 サンプル の熱伝導率は時間軸を対数目盛りにした昇温グラフの傾きから求めることが できる。  The thermal conductivity of large samples (Examples 1, 2, and Comparative Example 2) was measured using a QTM-D3 and a probe (PD-13N) manufactured by Kyoto Denshi Kogyo Co., Ltd. 0-chome 1 / 1-03 measures the thermal conductivity by a method called the unsteady thin wire heating method. The probe (sensor) consists of a single heating wire and thermocouple stretched in a straight line. When a constant current is passed through the heating wire, heat is generated and the temperature of the heating wire rises exponentially. In samples with high thermal conductivity (metals, etc.), the heat moves quickly and escapes to the sample side, so the temperature of the heating wire decreases. Conversely, for samples with low thermal conductivity (such as heat insulation materials), the heat does not escape easily, so the temperature of the heating wire rises significantly. Thus, the temperature rise of the heating wire is related to the thermal conductivity of the sample and is expressed by the following equation (1). In other words, the thermal conductivity of the sample can be obtained from the slope of the temperature rise graph with the time axis as a logarithmic scale.
[数 6]  [Equation 6]
A = q X I n (t a/t ^ / {4πΧ (Τ^Τ,) } (1 ) A = q X I n (t a / t ^ / {4πΧ (Τ ^ Τ,)} (1)
(式中、 スはサンプルの熱伝導率 (W/mK) であり、 qは加熱線の単位時 間、 単位長さの発熱量 (WZm) であり、 1 t 2は測定時間 (秒) であり 、 丁 !^は時間!: t 2での温度 (K) である。 ) (Where S is the thermal conductivity of the sample (W / mK), and q is the unit of the heating wire. The unit length is the calorific value (WZm), and 1 t 2 is the measurement time (seconds). ^ Is time! : Temperature at t 2 (K). )
[0131] <熱伝導率の評価 2 >  [0131] <Evaluation of thermal conductivity 2>
小型のサンプル (例 3〜8及び比較例 3) の熱伝導率の測定は、 熱抵抗測 定装置 (A n a l y s i s T e c h, I n c. 社製の T I M T e s t e r 1 400) を用いて、 ASTM D 5470による熱抵抗/熱伝導率 測定方法に準拠して行った。 熱抵抗測定装置のヒータ一及び冷却プレー卜の 間にアルミブロック (アルミ板) を二つ設置した。 このアルミブロックの間 に、 サンプルを挿入し、 所定の荷重 (圧縮率) をかけ、 熱伝導率を測定した 。 なお、 測定に際し、 ヒータ一と冷却プレートにおいて、 サンプルがほぼ同 じ面積で接触するように圧縮率を調整した。 圧縮率はいずれのサンプルでも 約 30%であった。  The thermal conductivity of small samples (Examples 3 to 8 and Comparative Example 3) was measured using ASTM D using a thermal resistance measuring device (TIMT ester 1 400 manufactured by Analysis Tech, Inc.). The thermal resistance / thermal conductivity measurement method according to 5470 was performed. Two aluminum blocks (aluminum plates) were installed between the heater and the cooling plate of the thermal resistance measuring device. A sample was inserted between the aluminum blocks, a predetermined load (compression rate) was applied, and the thermal conductivity was measured. In the measurement, the compression ratio was adjusted so that the sample was in contact with the heater and the cooling plate in almost the same area. The compression ratio was about 30% for all samples.
[0132] <アッセンプリ性の評価 >  [0132] <Assembly evaluation>
評価サンプルのアッセンプリ性について評価した。 ライナーからの剥離性 及びサンプルの取り扱い性 (著しく伸びない) が容易であるものを 「良」 、 ラィナ一から剥離はできるが、 サンプルが塑性変形してしまい取り扱い難い ものを 「可」 、 ライナーから剥離できないものを 「不可」 とした。  The assemblability of the evaluation sample was evaluated. "Good" for easy releasability from the liner and easy handling of the sample (not significantly stretched), "Possible" for those that can be peeled from the liner but difficult to handle due to plastic deformation of the sample. Those that could not be peeled were marked as “impossible”.
[0133] くリワーク性の評価 >  [0133] Evaluation of reworkability>
小型のサンプル (例 3~8) について、 リワーク性の評価を以下の方法で 行った。 なお、 比較例 2及び 3のシート状サンプルは 1 6. 5mm0の円筒 状に打ち抜いたものについて同様に評価した。 5 c mX l O c mのフロート ガラス板 2枚を準備した。 5個のサンプルを 1枚のガラス板表面に均等間隔 で底部が接触するように配置した。 その上にもう 1枚のガラス板を被せ、 そ の上に 1 k gの重りを置いて各サンプルに均等に荷重がかかるようにした。 荷重がかかった状態でこれらのガラス板を 1 50°Cに調温されたオープン中 に 24時間放置した。 その後、 オーブンから取り出して冷却し、 室温に戻つ た状態で上側のガラス板を剥離した。 5個のサンプルのうち、 サンプル形状 に変化がなく、 且つ下側のガラス板から剥がれることなく、 全てのサンプル が残っていた場合を 「良」 、 サンプル形状に変化がなく 1個以上のサンプル が上側のガラス板についていた場合を 「可」 、 ガラス板を剥がす際にサンプ ル形状が変形してしまった場合を 「不可」 とした。 Reworkability of small samples (Examples 3 to 8) was evaluated by the following method. The sheet-like samples of Comparative Examples 2 and 3 were evaluated in the same manner as those punched into a 16.5 mm0 cylinder. Two float glass plates of 5 c mX l O cm were prepared. Five samples were placed on the surface of one glass plate so that the bottoms were in contact at equal intervals. Another glass plate was placed on top of it, and a 1 kg weight was placed on top of it to ensure that each sample was evenly loaded. Under the load, these glass plates were left for 24 hours in an open temperature controlled at 150 ° C. Then, it took out from the oven, cooled, and peeled the upper glass plate in the state returned to room temperature. Of the 5 samples, all the samples have no change in shape and are not peeled off the lower glass plate. If the sample remains, “good”, if there is no change in the sample shape and one or more samples are attached to the upper glass plate, “Yes”, if the sample shape is deformed when the glass plate is peeled off Was made “impossible”.
[0134] <例 1 > [Example 1]
バレル温度を 200°Cに設定した直径 20 mmの一軸押し出し機でアイォ ノマー樹脂であるハイミラン (登録商標) 1 706を溶融した。 溶融した樹 脂を 59 r pmで回転するスクリューで 220°Cに設定されたダイに供給し 、 ダイから吐出した溶融樹脂を搬送速度 1. 8 分で 25ミクロン厚の P ETフィルム (エンブレム (登録商標) S 25) 上に押し出しラミネートし 、 1 25 tm厚のアイオノマー樹脂 ZP E T積層フィルムを作製した。  HIMILAN (registered trademark) 1706, which is an ionomer resin, was melted with a single screw extruder having a diameter of 20 mm and a barrel temperature set to 200 ° C. The molten resin is supplied to a die set at 220 ° C with a screw rotating at 59 rpm, and the molten resin discharged from the die is transported at a speed of 1.8 minutes. PET film (emblem Trademark) S25) was extruded and laminated to produce a 125 tm thick ionomer resin ZPET laminated film.
[0135] 500 gの CY— 52— 276 A及び 250 gの P l a t e l e t s O O  [0135] 500 g CY— 52— 276 A and 250 g P l a t e l e t s O O
3を容量 2 Lのプラネタリ一ミキサーに量り取り、 1 5分間、 羽回転数 20 r pmで混合してシリコーンコンパウンド 1 Aを作製した。 同様に、 500 gの CY— 52— 276 B、 5. 0 gの C Y 52— 005 K、 及び 2509 の P I a t e I e t s 003をプラネタリーミキサーに量り取り、 1 5分間 、 羽回転数 20 r pmで混合してシリコーンコンパウンド 1 Bを作製した。  3 was weighed into a 2 L planetary mixer and mixed for 15 minutes at a blade rotation speed of 20 rpm to produce a silicone compound 1A. Similarly, weigh 500 g of CY—52—276 B, 5.0 g of CY 52—005 K, and 2509 of PI ate I ets 003 into a planetary mixer, 15 minutes, blade rotation 20 rpm Was mixed to prepare a silicone compound 1B.
200 gのシリコーンコンパゥンド 1 Aと 200 gのシリコ一ンコンパゥン ド 1 Bをポリカップに量り取り、 樹脂製スパチュラで約 1 0分間撹拌混合し てシリコーンコンパゥンド 1 A Bを作製した。 該シリコーンコンパゥンド 1 A Bをアイオノマー樹脂 Z P ET積層フィルムのアイオノマ一樹脂側にナイ フコーターでコ一ティングした。 コーティングしたアイオノマー樹脂 ZP E T積層フィルムを、 1 8分かけて 1 20°Cのオーブン中を通過させてシリコ —ンを硬化させ、 上部外層用の窒化ホウ素含有シリコーンゴムシ一ト 1を作 製した。 該シート 1のシリコーンゴム層の厚さは 2 1 3 Atmであった。  200 g of silicone compound 1 A and 200 g of silicone compound 1 B were weighed into a plastic cup and stirred and mixed with a resin spatula for about 10 minutes to prepare silicone compound 1 A B. The silicone compound 1 A B was coated on the ionomer resin side of the ionomer resin Z PET laminated film with a knife coater. The coated ionomer resin ZP ET laminate film was passed through an oven at 1800C for 18 minutes to cure the silicone, producing a boron nitride-containing silicone rubber sheet 1 for the top outer layer. . The thickness of the silicone rubber layer of the sheet 1 was 2 1 3 Atm.
[0136] 1 21. 4 gの AX35— 1 25、 48. 6 gの AX3— 75、 及び 30 . 0 gの S E 1 885 Aを 225 m Lのガラス瓶に量り取った。 ガラス瓶中 の材料を自転 '公転ミキサーである 「あわとり鍊太郎」 を用いて 200 O r pmの回転数で 1分間混合し、 その後、 30秒間脱泡してシリコーンコンパ ゥンド 2 Aを作製した。 同様に、 1 21. 4 gの AX35— 1 25、 48. 6 gの AX3— 75、 及び 30. O gの S E 1 885 Bを 225 m Lのガラ ス瓶に量り取った。 ガラス瓶中の材料をあわとり鍊太郎を用いて 2000 r pmの回転数で 1分間混合し、 その後、 30秒間脱泡してシリコーンコンパ ゥンド 2 Bを作製した。 1 50 gのシリコーンコンパゥンド 2 Aと 1 00 g のシリコーンコンパゥンド 2 Bを 300 m Lのポリカツプに量り取り、 樹脂 製スパチュラで約 5分間、 泡が入らないように撹拌混合し、 中間部材用のシ リコーンコンパウンド 2 A Bを作製した。 [0136] 1 21.4 g AX35—125, 48.6 g AX3—75, and 30.0 g SE 1 885 A were weighed into a 225 mL glass bottle. Rotate the material in the glass bottle using a revolution mixer, “Awatori Sotaro”, mix at a rotation speed of 200 Orm for 1 minute, and then degas for 30 seconds to remove the silicone component. Wound 2 A was produced. Similarly, 1 21.4 g of AX35—125, 48.6 g of AX3—75, and 30. Og of SE 1 885 B were weighed into a 225 mL glass bottle. The material in the glass bottle was mixed for 1 minute at a speed of 2000 rpm using Yutaro Awatori, and then defoamed for 30 seconds to prepare silicone compound 2B. 1 Weigh 50 g of silicone compound 2 A and 100 g of silicone compound 2 B in a 300 mL plastic cup and stir and mix with a resin spatula for about 5 minutes to avoid bubbles. Silicone compound 2 AB for the member was produced.
[0137] 1 40. 0 gの S E 1 701 LT V及び 1 4. O gの S E 1 701 LTV 用触媒を 300 mしのポリ力ップに量り取り、 樹脂製スパチユラで約 5分間 、 泡が入らないように撹拌混合し、 シリコーンコンパウンド 3を作製した。 次いで、 該シリコーンコンパゥンド 3を剥離ライナ一である Y B— 2上に適 用し、 ナイフとライナーとのギャップが 1 5 OAtmに設定されたナイフコ一 ターでコーティングし、 底部外層用シート 1 を作製した。  [0137] 1400.00 g of SE 1 701 LT V and 1 4. O g of SE 1 701 LTV catalyst was weighed into a 300 m polystrand and foamed with a plastic spatula for about 5 minutes. The mixture was stirred and mixed so that it did not enter to prepare Silicone Compound 3. Next, the silicone compound 3 was applied onto the release liner YB-2, coated with a knife coater with a knife-liner gap set to 15 OAtm, and the bottom outer layer sheet 1 was coated. Produced.
[0138] 窒化ホウ素含有シリコーンゴムシ一卜 1の PETフィルムを除去して、 深 絞り成形可能なアイオノマ一樹脂 窒化ホゥ素含有シリコーンゴムからなる 2層構成の上部外層積層フィルム 1 0を作製した。 図 2 (B) に示されるよ うな真空加熱圧着装置 30として、 両面真空成型機 (布施真空株式会社製) を採用し、 該装置 30内に設置したアルミ製の型 20上に、 アイオノマ一樹 脂が型 20側になるように上部外層積層フィルム 1 0を固定した。 該フィル ム 1 0の表面温度が 1 20°Cになるように加熱条件を設定した。 次いで、 上 述した図 2 (B) 〜図 2 (E) で示されるような手順に従って、 加熱したフ イルム 1 0をエア一が巻き込まれないように型 20の表面に積層し、 図 2 ( F) に示されるような一体品 40を作製した。 ここで、 型 20は、 図 2 (F ) に示されるような、 23. 5mmX 90. 0 m m X 4. 0mmの略かまぼ こ状の三次元形状が得られるような形状を備える。  [0138] The PET film of the boron nitride-containing silicone rubber sheet 1 was removed, and an upper outer laminated film 10 having a two-layer structure made of a deep-drawn ionomer resin and a silicon nitride-containing silicone rubber was produced. A double-sided vacuum molding machine (manufactured by Fuse Vacuum Co., Ltd.) is used as the vacuum thermocompression bonding apparatus 30 as shown in FIG. 2 (B), and an ionomer resin is placed on the aluminum mold 20 installed in the apparatus 30. The upper outer layer laminated film 10 was fixed so that is on the mold 20 side. The heating conditions were set so that the surface temperature of the film 10 was 120 ° C. Next, according to the procedure shown in FIGS. 2B to 2E, the heated film 10 is laminated on the surface of the mold 20 so that no air is caught. An integrated product 40 as shown in F) was produced. Here, the mold 20 has such a shape as shown in FIG. 2 (F) that a 23.5 mm × 90.0 mm × 4.0 mm approximately semi-cylindrical three-dimensional shape can be obtained.
[0139] 一体品 40の空洞部 1 〗 に中間部材用のシリコーンコンパウンド 2 A Bを 充填し、 次いで、 充填したシリコーンコンパウンド 2 A B上に、 エアーが巻 き込まれないように底部外層用シ一卜 1を積層した。 該シ一卜 1が型に均一 に密着するように、 シート 1上にゴムローラ一を適用して最終一体品 50を 作製した。 最終一体品 50を 1 20°Cのオーブンに 20分間静置して中間部 材及び底部外層を構成するシリコーンゲルを加熱硬化させた。 次いで、 最終 —体品 50をオーブンから取り出して冷却し、 硬化させた略かまぼこ状の三 次元形状熱伝導性成形体 60を型 20から取り出した。 冷えて固くなる前に 、 最表層のァィ才ノマー樹脂層を除去して略かまぼこ状の三次元形状熱伝導 性成形体の評価サンプルを得た。 なお、 中間部材用のシリコーンコンパゥン ド 2ABを、 剥離ライナ一の Y B— 2で内部を被覆した 30 mmX4 Omm X 1 0 mm厚の型に注入した後に、 1 20 °Cのオーブン中で硬化して作製し た試験片のァスカー C硬度は 0であった。 [0139] The hollow part 1 の of the integrated product 40 is filled with the silicone compound 2 AB for the intermediate member, and then air is wound on the filled silicone compound 2 AB. The bottom outer layer 1 was laminated so as not to penetrate. A rubber roller 1 was applied onto the sheet 1 so that the sheet 1 was in close contact with the mold uniformly to produce a final integrated product 50. The final integrated product 50 was left in an oven at 120 ° C. for 20 minutes to heat cure the silicone gel constituting the intermediate member and the bottom outer layer. Next, the final product 50 was removed from the oven, cooled, and the cured substantially kamaboko-shaped three-dimensional shape thermally conductive molded body 60 was removed from the mold 20. Before being hardened by cooling, the outermost layer of the nomer resin layer was removed to obtain an evaluation sample of a substantially kamaboko-shaped three-dimensional shape heat conductive molded body. After injecting silicone compound 2AB for intermediate parts into a 30 mmX4 Omm X 10 mm thick mold coated with YB-2 as the release liner, it was cured in an oven at 120 ° C. The tester thus produced had an Asker C hardness of 0.
く例 2> Example 2>
75. O gの AX3— 75及び 25. O gの CY 52— 276Aを 225 m Lのガラス瓶に量り取った。 ガラス瓶中の材料をあわとり鍊太郎を用いて 2000 r pmの回転数で 1分間混合し、 その後、 30秒間脱泡してシリコ —ンコンパウンド 4 Aを作製した。 同様に、 75. 09の八ズ3— 75、 2 5. 0 gの C Y 52— 276 B及び 0. 25 gの C Y 52— 005 Kを 22 5 m Lのガラス瓶に量り取った。 ガラス瓶中の材料をあわとり鍊太郎を用い て 2000 r p mの回転数で 1分間混合し、 その後、 30秒間脱泡してシリ コーンコンパウンド 4 Bを作製した。 80 gのシリコーンコンパウンド 4 A と 80 gのシリコーンコンパウンド 4 Bを 300 m Lのポリカツプに量り取 リ、 樹脂製スパチュラで約 5分間、 泡が入らないように撹拌混合し、 シリコ 一ンコンパウンド 4 A Bを作製した。 ガラスペーパー GMC 1 0— MR 6を 剥離ライナ一である Y B— 2上に載置し、 次いで、 該シリコーンコンパゥン ド 4 A Bをガラスべ一パー上に適用し、 ナイフとライナーのギャップが 1 5 0 Amに設定されたナイフコ一ターでコ一ティングして含浸させ、 底部外層 用シート 2を作製した。 該底部外層用シート 2を底部外層用シート 1に代え て使用したこと以外は、 例 1 と同一の方法を使用して略かまぼこ状の三次元 形状熱伝導性成形体の評価サンプルを得た。 したがって、 例 1 と同様、 作製 した試験片のァス力一 C硬度は 0であった。 75. Og AX3—75 and 25. Og CY52—276A were weighed into a 225 mL glass bottle. The material in the glass bottle was mixed for 1 minute at a rotational speed of 2000 rpm using Yutaro Awatori, and then defoamed for 30 seconds to prepare Silicone Compound 4A. Similarly, 75.09 9 's 3-75, 25.0 g CY52-276 B and 0.25 g CY52-005 K were weighed into a 225 mL glass bottle. The material in the glass bottle was mixed for 1 minute at a speed of 2000 rpm using Awatori Eitaro, and then defoamed for 30 seconds to produce silicone compound 4B. Weigh 80 g of silicone compound 4 A and 80 g of silicone compound 4 B into a 300 mL plastic cup, and stir and mix with a resin spatula for about 5 minutes to prevent foaming. Silico Compound 4 AB Was made. Glass paper GMC 1 0—Mr 6 is placed on YB-2, which is the release liner, then the silicone compound 4 AB is applied onto the glass plate, and the gap between the knife and liner is 1 The bottom outer layer sheet 2 was prepared by impregnating with a knife coater set at 50 Am. Except that the bottom outer layer sheet 2 was used in place of the bottom outer layer sheet 1, a substantially kamaboko-shaped three-dimensional structure was used in the same manner as in Example 1. An evaluation sample of the shape heat conductive molding was obtained. Therefore, as in Example 1, the test piece produced had a first force of 1 C hardness.
[0141] <例 3> [0141] <Example 3>
1 50. 0 gのシリコーンコンパウンド 2 A及び 1 22. 7 gのシリコー ンコンパゥンド 2 Bを 30 OmLポリカップに量り取り、 樹脂製スパチュラ で内容物を約 5分間泡が入らないように混合してシリコ一ンコンパゥンド 5 A Bを作製した。 シリコーンコンパゥンド 2 A Bの代わりにシリコーンコン ノヽ。ゥンド 5 A Bを用い、 かつ、 直径 1 9mm、 厚さ 4. Ommの略ドーム状 の複数の三次元形状の列が縦方向及び横方向において平行に重ならないよう な配置された形状を備える型を使用した以外は例 1 と同様の方法で略ドーム 状の三次元形状熱伝導性成形体の評価サンプルを作製した。 なお、 中間部材 用のシリコーンコンパゥンド 5 A Bを、 剥離ライナ一の Y B— 2で内部を被 覆した 30mmX40mmX l 0 m m厚の型に注入した後に、 1 20°Cのォ —ブン中で硬化して作製した試験片のァス力一 C硬度は 0であった。  1 Weigh 50.0 g of silicone compound 2 A and 1 22.7 g of silicone compound 2 B into a 30 OmL plastic cup and mix with a resin spatula for about 5 minutes to prevent foaming. N compound 5 AB was produced. Silicone compound 2 A B instead of silicone. A mold that uses Wind 5 AB and has a shape in which multiple rows of three-dimensional shapes with a diameter of 19 mm and a thickness of 4. Omm are arranged so that they do not overlap in parallel in the vertical and horizontal directions. An evaluation sample of a substantially dome-shaped three-dimensional thermal conductive molded body was produced in the same manner as in Example 1 except that it was used. After injecting silicone compound 5 AB for intermediate parts into a 30mmX40mmX10mm thick mold covered with YB-2 of the release liner, cure in 120 ° C oven. The test piece thus prepared had a first force C hardness of 0.
[0142] <例 4> [0142] <Example 4>
シリコーンコンパゥンド 4 A Bの代わりにシリコーンコンパゥンド 3を用 い、 例 2と同様の方法で底部外層用シート 3を作製した。 シリコーンコンパ ゥンド 2 ABの代わりにシリコーンコンパゥンド 5 ABを用い、 型を例 3で 使用した型に変更し、 底部外層用シー卜 3の代わリに底部外層用シ一卜 3を 用いた以外は例 2と同様の方法で略ドーム状の三次元形状熱伝導性成形体の 評価サンプルを作製した。 したがって、 例 3と同様、 作製した試験片のァス 力一C硬度は 0であった。  A bottom outer layer sheet 3 was prepared in the same manner as in Example 2 except that silicone compound 3 was used instead of silicone compound 4 A B. Silicone compound 5 AB is used instead of silicone compound 2 AB, the mold is changed to the type used in Example 3, and the bottom outer layer sheet 3 is used instead of the bottom outer layer sheet 3 In the same manner as in Example 2, an evaluation sample of a substantially dome-shaped three-dimensional shape thermally conductive molded body was produced. Therefore, as in Example 3, the test specimen produced had a false force-C hardness of 0.
[0143] <例5> [0143] <Example 5>
バレル温度を 200°C— 220°C- 230°C- 260°Cに設定した直径 2 Ommの一軸押し出し機でフッ素樹脂であるダイ二オン (登録商標) THV 500を溶融した。 溶融した樹脂を 260°Cに設定されたダイに供給し、 ダ ィから吐出した溶融樹脂を 75ミクロン厚 ®P E Tフィルム上に押し出しラ ミネートし、 フッ素樹脂/ PET積層フィルムを作製した。 フッ素樹脂層の 厚さは 1 0 0 ^ mであった。 Dyion (registered trademark) THV 500, a fluororesin, was melted with a single screw extruder with a diameter of 2 Omm with the barrel temperature set to 200 ° C—220 ° C-230 ° C-260 ° C. The molten resin was supplied to a die set at 260 ° C, and the molten resin discharged from the die was extruded onto a 75 micron thick PET film for lamination to produce a fluororesin / PET laminated film. Fluororesin layer The thickness was 1 0 0 ^ m.
[0144] 次いで、 1 0 0 9のシリコーンコンパウンド 2 A及び 1 0 0 gのシリコ一 ンコンパウンド 2 Bを 3 0 0 m Lポリカップに量り取り、 樹脂製スノ、。チユラ で内容物を約 5分間泡が入らないように混合してシリコーンコンパウンド 6 A Bを作製した。 [0144] Next, 100 0 of silicone compound 2 A and 100 g of silicone compound 2 B were weighed into a 3 0 0 mL polycup, and a resin sno. A silicone compound 6 AB was prepared by mixing the contents with CHIYURA for about 5 minutes without bubbles.
[0145] シリコーンコンパゥンド 6 A Bを剥離ライナ一である Y B— 2上に載置し 、 次いで、 該シリコーンコンパウンド 6 A Bをガラスペーパー G M C 1 0— M R 6上に適用し、 ナイフとライナ一のギャップが 1 5 0 t mに設定された ナイフコーターでコ一ティングして含浸させ、 底部外層用シート 4を作製し た。  [0145] The silicone compound 6 AB is placed on the release liner YB-2, then the silicone compound 6 AB is applied onto the glass paper GMC10-0 MR6, and the knife and liner are combined. The bottom outer layer sheet 4 was produced by coating and impregnating with a knife coater with a gap set to 1550 tm.
[0146] 積層フィルムの P E Tフィルムを除去して、 深絞り成形可能なフッ素樹脂 フィルムを作製した。 例 1 と同様の真空加熱圧着装置を採用し、 型としては 、 直径 1 6 . 5 m m , 厚さ 2 . 6 m mの略ドーム状の複数の三次元形状の列 が縦方向及び横方向において平行であって交互にずれて配置された形状を備 える型を使用した。 型にはスプレー糊 5 5 (スリ一ェムジャパン株式会社製 ) を吹きつけて溶剤が乾燥してから使用した。 フッ素樹脂フィルムの型への 貼り合わせは例 1 と同様にして行った。  [0146] The PET film of the laminated film was removed to produce a fluororesin film capable of deep drawing. The same vacuum thermocompression bonding equipment as in Example 1 is adopted, and the mold is composed of a plurality of approximately three-dimensional rows with a diameter of 16.5 mm and a thickness of 2.6 mm that are parallel in the vertical and horizontal directions. However, a mold having shapes that are alternately displaced was used. Spray paste 55 (manufactured by Sriem Japan Co., Ltd.) was sprayed on the mold and the solvent was dried before use. Lamination of the fluororesin film to the mold was performed in the same manner as in Example 1.
[0147] シリコーンコンパゥンド 6 A Bをフッ素樹脂フィルムで被覆された型の上 に注ぎ、 次いで底部外層用シート 4をシリコーンコンパウンド塗布面に、 ェ ァ一が巻き込まれないように積層した。 底部外層用シ一卜 4でカバーされた 型を、 該シートが均一に型に密着するようにゴム口一ラーで圧着して最終一 体品を作製した。 最終一体品を 1 2 0 °Cのオーブンに 2 0分間静置して成形 体を構成するシリコーンゲルを加熱硬化させた。 次いで、 最終一体品をォ一 ブンから取り出して室温になるまで自然冷却し、 1 日放置後、 型から三次元 形状熱伝導性成形体を取り出した。 次いで、 表面のフッ素樹脂フィルムを剥 離することによって、 直径 1 6 . 5 m m、 厚さ 2 . 6 m mの略ドーム形状を 備える三次元形状熱伝導性成形体の評価サンプルを得た。 なお、 シリコーン コンパゥンド 6 A Bを、 剥離ライナーの Y B— 2で内部を被覆した 3 0 m m X4 OmmX 1 0 mm厚の型に注入した後に、 1 20°Cのオーブン中で硬化 して作製した試験片のァス力一 C硬度は 0であった。 [0147] Silicone compound 6 AB was poured onto a mold coated with a fluororesin film, and then the bottom outer layer sheet 4 was laminated on the silicone compound coated surface so as not to entrain the wires. The mold covered with the bottom outer layer sheet 4 was pressure-bonded with a rubber neck so that the sheet was evenly adhered to the mold to produce a final integrated product. The final monolith was allowed to stand in an oven at 120 ° C. for 20 minutes, and the silicone gel constituting the molded body was heated and cured. Next, the final integrated product was taken out from the oven and allowed to cool to room temperature. After standing for 1 day, the three-dimensional shape heat conductive molded product was taken out from the mold. Next, the fluororesin film on the surface was peeled off to obtain an evaluation sample of a three-dimensional shape heat conductive molded body having a substantially dome shape with a diameter of 16.5 mm and a thickness of 2.6 mm. Silicone compound 6 AB coated with YB-2 release liner 30 mm After injecting into a mold having a thickness of X4 OmmX 10 mm, the test piece produced by curing in an oven at 120 ° C. had a first strength C hardness of 0.
[0148] く例 θ> [0148] Example θ>
1 21. 4 gの ΑΧ35— 1 25、 48. 6 gの AX3— 75、 30. 0 9の S E 1 885 Aを 225 m Lのガラス瓶に量りとつた。 次いで、 ガラス 瓶の内容物をあわとり鍊太郎を用いて 2000 r pmの回転数で 1分間混合 し、 その後、 30秒間脱泡することによってシリコーンコンパウンド 7 Aを 作製した。 同様に、 1 21 · 4 gの AX35— 1 25、 48. 6 gの AX3 — 75、 30. O gの S E 1 885 B、 0. 0375 gの添加剤 「 S P 72 97 J を 225 mLのガラス瓶に量り取り、 あわとり鍊太郎を用いて 200 0 r pmの回転数で 1分間混合し、 30秒間脱泡することによってシリコー ンコンパゥンド 7 Bを作製した。 1 00 gのシリコーンコンパゥンド 7 A及 び 1 009のシリコーンコンパゥンド 7 Bを 30 OmLのポリカップに量り 取り、 樹脂製スパチュラで内容物を約 5分間泡が入らないように混合してシ リコーンコンパゥンド 7 A Bを作製した。 該シリコーンコンパゥンド 7 AB 、 フル才ロシリコーンライナーの Y B— 2、 ガラスペーパー GMC 1 0— M R 6を用いて、 例 5と同様にして底部外層用シート 5を作製した。 シリコー ンコンパゥンド 6 A Bの代わりにシリコーンコンパゥンド 7 A Bを用いる以 外は例 5と同様の方法で、 直径 1 6. 5 mm、 厚さ 2. 6 mmの略ドーム形 状を備える三次元形状熱伝導性成形体の評価サンプルを得た。 なお、 シリコ —ンコンパウンド 7 A Bを、 剥離ライナ一の YB— 2で内部を被覆した 30 mmX40mmX l 0 m m厚の型に注入した後に、 1 20°Cのオーブン中で 硬化して作製した試験片のァス力一 C硬度は 5であった。  1 21.4 g ΑΧ35— 1 25, 48.6 g AX3— 75, 30.0 9 S E 1 885 A was weighed into a 225 ml glass bottle. Next, the contents of the glass bottle were mixed for 1 minute at a rotational speed of 2000 rpm using Awatori Eitaro, and then defoamed for 30 seconds to prepare silicone compound 7A. Similarly, 1 21 · 4 g AX35— 1 25, 48.6 g AX3 — 75, 30. O g SE 1 885 B, 0.0375 g additive “SP 72 97 J in a 225 mL glass bottle Was mixed for 1 minute at a rotation speed of 20000 pm using Awatori Shintaro and defoamed for 30 seconds to prepare Silicone Compound 7 B. 100 g of Silicone Compound 7 A and The silicone compound 7B of 1009 was weighed into a 30 OmL polycup, and the contents were mixed with a resin spatula for about 5 minutes so as not to cause foaming to produce silicone compound 7AB. A bottom outer layer sheet 5 was prepared in the same manner as in Example 5 using silicone compound 7 AB, full-size silicone liner YB-2, and glass paper GMC 10 0-MR 6. Instead of silicone compound 6 AB Same as Example 5 except using silicone compound 7 AB for An evaluation sample of a three-dimensional shape heat conductive molded body having a substantially dome shape with a diameter of 16.5 mm and a thickness of 2.6 mm was obtained by the method described above, and the silicon compound 7 AB was peeled off. Test specimens made by injecting into a 30 mmX40 mmX l 0 mm thick mold coated with YB-2 of the liner and cured in an oven at 120 ° C 1 C hardness was 5 It was.
[0149] く例 7 > [0149] Case 7>
1 21. 4 gの AX35— 1 25、 48. 6 gの AX3— 75、 及び 30 . 09の S E 1 885 Aを 225 m Lのガラス瓶に量りとつた。 次いで、 ガ ラス瓶の内容物をあわとり鍊太郎を用いて 2000 r pmの回転数で 1分間 混合し、 30秒間脱泡することによってシリコーンコンパウンド 8 Aを作製 した。 同様に、 1 21 · 4 gの AX35— 1 25、 48. 6 gの AX3— 7 5、 30. O gの S E 1 885 B、 及び 0. 075 gの S P 7297を量り 取り、 あわとり鍊太郎を用いて 2000 r pmの回転数で 1分間混合し、 3 0秒間脱泡することによってシリコーンコンパウンド 8 Bを作製した。 1 0 0 gのシリコーンコンパゥンド 8 A及び 1 00 gのシリコーンコンパゥンド 8 Bを 3 O OmLのポリカップに量り取り、 樹脂製スパチュラで内容物を約 5分間泡が入らないように混合してシリコーンコンパウンド 8 A Bを作製し た。 該シリコーンコンパウンド 8 AB、 フルォロシリコーンライナ一の Y B ー2、 ガラスペ一パ一 GMC 1 0— MR 6を用いて、 例 5と同様にして底部 外層用シ一卜 6を作製した。 シリコーンコンパウンド 6 A Bの代わりにシリ コーンコンパウンド 8 A Bを用いる以外は例 5と同様の方法で、 直径 1 6. 5 mm, 厚さ 2. 6 m mの略ドーム形状を備える三次元形状熱伝導性成形体 の評価サンプルを得た。 なお、 シリコーンコンパウンド 8 A Bを、 剥離ライ ナ一の Y B— 2で内部を被覆した 30mmX40mmX l 0 m m厚の型に注 入した後に、 1 20°Cのオーブン中で硬化して作製した試験片のァス力一 C 硬度は 8であった。 1 21.4 g AX35—125, 48.6 g AX3—75, and 30.09 SE 1 885 A were weighed into a 225 mL glass bottle. Next, the contents of the glass bottle are mixed for 1 minute at a speed of 2000 rpm using Awatori Eitaro, and defoamed for 30 seconds to produce silicone compound 8A. did. Similarly, weigh out 1 21 · 4 g of AX35—125, 48.6 g of AX3—75, 30. O g of SE 1 885 B, and 0.075 g of SP 7297. Was used for 1 minute at a rotational speed of 2000 rpm, and defoamed for 30 seconds to prepare silicone compound 8B. Weigh 100 g of silicone compound 8 A and 100 g of silicone compound 8 B into a 3 O OmL plastic cup and mix the contents with a resin spatula for about 5 minutes without foaming. A silicone compound 8 AB was prepared. Using the silicone compound 8 AB, the fluorosilicone liner YB-2, and the glass paper GMC 10—MR 6, a bottom outer layer sheet 6 was prepared in the same manner as in Example 5. Three-dimensional shape thermal conductive molding with an approximate dome shape with a diameter of 16.5 mm and a thickness of 2.6 mm in the same manner as in Example 5 except that silicon compound 8 AB is used instead of silicone compound 6 AB An evaluation sample of the body was obtained. In addition, after injecting silicone compound 8 AB into a 30 mm X 40 mm X 10 mm thick mold coated with YB-2, the release liner, the test piece prepared by curing in an oven at 120 ° C was used. The first force C hardness was 8.
<例 8> <Example 8>
1 21. 4 gの AX35— 1 25、 48. 6 gの AX3— 75、 及び 30 . 0 gの S E 1 885 Aを 225 m Lのガラス瓶に量りとつた。 次いで、 ガ ラス瓶の内容物をあわとり鍊太郎を用いて 2000 r pmの回転数で 1分間 混合し、 その後に 30秒間脱泡することによってシリコーンコンパゥンド 9 Aを作製した。 同様に、 1 21. 4 gの AX35— 1 25、 48. 6 gの A X3— 75、 30. O gの S E 1 885 B、 0. 1 50 gの S P 7297を 1 21.4 g AX35—125, 48.6 g AX3—75, and 30.0 g S E 1 885 A were weighed into a 225 mL glass bottle. Next, the content of the glass bottle was mixed for 1 minute at a rotation speed of 2000 rpm using Awatori Yutaro, and then defoamed for 30 seconds to prepare silicone compound 9A. Similarly, 1 21.4 g of AX35—125, 48.6 g of A X3—75, 30. O g of S E 1 885 B, 0.150 g of S P 7297
225 m Lのガラス瓶に量りとつた。 次いで、 ガラス瓶の内容物をあわとり 鍊太郎を用いて 2000 r p mの回転数で 1分間混合し、 その後に 30秒間 脱泡することによってシリコーンコンパウンド 9 Bを作製した。 1 00 gの シリコーンコンパゥンド 9 A及び 1 00 gのシリコーンコンパゥンド 9 BをWeighed into a 225 ml glass bottle. Next, the content of the glass bottle was mixed for 1 minute at a rotational speed of 2000 rpm using Awatori Eitaro, and then defoamed for 30 seconds to prepare silicone compound 9B. 100 g of silicone compound 9 A and 100 g of silicone compound 9 B
300 m Lのポリカツプに量り取り、 樹脂製スパチュラで内容物を約 5分間 泡が入らないように混合してシリコーンコンパウンド 9 A Bを作製した。 シ リコ一ンコンパウンド 9 A B、 フルォロシリコーンライナーの YB— 2、 ガ ラスペ一パー GMC 1 0—MR 6を用いて、 例 5と同様にして底部外層用シ —卜 7を作製した。 シリコーンコンパゥンド 6 A Bの代わりにシリコーンコ ンパウンド 9 A Bを用いる以外は例 5と同様の方法で、 直径 1 6. 5 mm, 厚さ 2. 6 m mの略ドーム形状を備える三次元形状熱伝導性成形体の評価サ ンプルを得た。 なお、 シリコーンコンパウンド 9 A Bを、 剥離ライナーの Y B— 2で内部を被覆した 30mmX40mmX l 0 m m厚の型に注入した後 に、 1 20°Cのオーブン中で硬化して作製した試験片のァス力一 C硬度は 3 0であった。 Weigh in a 300 ml plastic cup and use a plastic spatula for about 5 minutes. Silicone compound 9 AB was prepared by mixing so as not to contain bubbles. Using the silicon compound 9 AB, the fluorosilicone liner YB-2, and the glass separator GMC 10 0-MR 6, the bottom outer layer 7-7 was prepared in the same manner as in Example 5. Three-dimensional shape heat conduction with a substantially dome shape with a diameter of 16.5 mm and a thickness of 2.6 mm in the same manner as in Example 5 except that silicone compound 9 AB is used instead of silicone compound 6 AB An evaluation sample of the molded product was obtained. The test piece was prepared by injecting silicone compound 9 AB into a 30mmX40mmX10mm thick mold coated with release liner YB-2 and then curing in 120 ° C oven. The force C hardness was 30.
[0151] <比較例 1 >  [0151] <Comparative Example 1>
シリコーンコンパウンド 2 A Bを 2枚の剥離ライナ一 (YB— 2) 間に適 用し、 該ライナー間のギャップを 2 mmにセッ 卜したナイフコーターへッ ド を通して厚さ 2 mmのシリコーンゲルシートを得た。 次いで、 このシートを 1 20°Cのオーブン中で 20分間静置してシリコーンゲルシートを硬化させ た。 該シートの凝集力は極めて低く剥離ライナ一から除去できなかったため 、 該シー卜の各種特性を測定することができなかった。  Silicone compound 2 AB was applied between two release liners (YB-2), and a 2 mm thick silicone gel sheet was obtained through a knife coater head with the gap between the liners set to 2 mm. . The sheet was then allowed to stand in an oven at 120 ° C. for 20 minutes to cure the silicone gel sheet. Since the cohesive strength of the sheet was very low and could not be removed from the release liner, the various characteristics of the sheet could not be measured.
[0152] <比較例 2>  [0152] <Comparative Example 2>
シリコーンコンパウンド 6 A Bを 2枚の剥離ライナ一 (YB— 2) 間に適 用し、 ライナー間のギャップを 2 mmにセッ 卜したナイフコ一ターへッ ドを 通して厚さ 2 mmのシリコーンゲルシートを得た。 次いで、 このシートを 1 20°Cのオーブン中で 20分間静置してシリコーンゲルシ一卜を硬化させた 。 2枚のライナ一の内の 1枚を剥がしたシートを 2枚用意し、 層間に気泡が 巻き込まれないように 2枚のシートを貼り合せて、 厚さ 4 mmの評価用のシ リコ一ン熱伝導性シートを得た。 なお、 厚さ 4 mmのシートを 3枚貼り合せ て作製した試験片のァス力一 C硬度は 0であった。  Apply a silicone compound 6 AB between two release liners (YB-2) and pass a 2 mm thick silicone gel sheet through a knife coater head with a 2 mm gap between the liners. Obtained. Next, this sheet was allowed to stand in an oven at 120 ° C. for 20 minutes to cure the silicone gel. Prepare two sheets from which one of the two liners has been peeled off, and bond the two sheets so that no air bubbles are caught between the layers. A thermally conductive sheet was obtained. Note that the test piece prepared by bonding three sheets of 4 mm thick had a first force C hardness of 0.
[0153] <比較例 3>  [0153] <Comparative Example 3>
シリコーンコンパウンド 9 A Bを 2枚の剥離ライナ一 (YB— 2) 間に適 用し、 ライナ一間のギャップを 2. 6 mmにセッ トしたナイフコ一ターへッ ドを通して厚さ 2. 6 mmのシリコーンゲルシートを得た。 次いで、 このシ ートを 1 20°Cのオーブン中で 20分間静置してシリコーンゲルシートを硬 化させ、 厚さ 2. 6 mmの評価用のシリコーン熱伝導性シートを得た。 なお 、 厚さ 2. 6 mmのシートを 3枚貼り合せて作製した試験片のァスカー C硬 度は 30であった。 圧縮応力の測定には、 このシートを直径 1 6. 5 mmの 円柱状に打ち抜いたサンプルを用いた。 Silicone compound 9 AB suitable between two release liners (YB-2) And a 2.6 mm thick silicone gel sheet was obtained through a knife coater head with a gap between the liners set at 2.6 mm. Next, this sheet was allowed to stand in an oven at 120 ° C. for 20 minutes to harden the silicone gel sheet, thereby obtaining a silicone heat conductive sheet for evaluation having a thickness of 2.6 mm. In addition, the Asker C hardness of a test piece prepared by bonding three 2.6 mm thick sheets was 30. For the measurement of compressive stress, a sample punched from this sheet into a cylindrical shape with a diameter of 16.5 mm was used.
[0154] 例 1 ~8、 及び比較例 1〜3における、 ァス力一 C硬度、 圧縮荷重 (20[0154] In Examples 1 to 8 and Comparative Examples 1 to 3, the first force C hardness, compressive load (20
%圧縮時の荷重) 、 熱伝導率 1及び 2、 アッセンプリ性並びにリヮ一ク性の 結果を表 3に示す。 Table 3 shows the results of the% load), thermal conductivity 1 and 2, assemblability and releasability.
[0155] [表 3] [0155] [Table 3]
Figure imgf000047_0001
Figure imgf000047_0001
[0156] 表 3に示すように、 本開示の三次元形状熱伝導性成形体は、 優れた柔軟性 及び圧縮応力を示している。 また、 例 8と比較例 3を比較すると、 両者は同 一のシリコーンコンパゥンド 9 A Bを使用し、 同一のァスカー C硬度を示し ているにもかかわらず、 20%圧縮時の応力については、 例 8の応力は比較 例 3の応力に比べて約 78 %の応力を示しており、 例 8の方が比較例 3より も低くなつている。 この結果は、 成形体の形状が 20%圧縮時の応力を低下 させる、 即ち、 成形体を適用する各種部材に対して付加される応力を低減で きることを示唆している。 [0156] As shown in Table 3, the three-dimensional shape thermal conductive molded body of the present disclosure exhibits excellent flexibility and compressive stress. In addition, comparing Example 8 with Comparative Example 3, both use the same silicone compound 9 AB and show the same Asker C hardness. The stress of Example 8 shows about 78% of the stress of Comparative Example 3, and Example 8 is lower than Comparative Example 3. As a result, the shape of the molded body reduces the stress when compressed by 20%, that is, the stress applied to various members to which the molded body is applied can be reduced. Suggests that
[0157] 本開示の第 2の三次元形状熱伝導性成形体の特性を以下の方法にしたがつ て評価した。  [0157] The characteristics of the second three-dimensional shape thermally conductive molded body of the present disclosure were evaluated according to the following methods.
[0158] [評価方法] [0158] [Evaluation method]
<ァスカー C硬度の評価 >  <Evaluation of Asker C hardness>
ァス力一ゴム硬度計 C型 (高分子計器株式会社製) を用い、 日本ゴム協会 標準規格である S R I S O 1 01 に準拠して、 評価サンプルのァス力一 C硬 度を測定した。  The first force C hardness of the evaluation sample was measured using a C1 rubber hardness meter C type (manufactured by Kobunshi Keiki Co., Ltd.) in accordance with SRI ISO 1001, which is a standard of the Japan Rubber Association.
[0159] <圧縮応力の評価 > [0159] <Evaluation of compressive stress>
平板治具を使用するテンシロン試験機によリ圧縮応力を測定した。 330 mmX 88 mmの評価サンプルが圧縮されるように、 治具の中央に係る評価 サンプルを配置し、 荷重計に取り付けた治具を 5. OmmZ分の速度で下方 に移動し、 評価サンプルが 1. 0 mm圧縮された時点で治具を止め、 そのと きの応力を測定した。  The compressive stress was measured with a Tensilon tester using a flat plate jig. Place the evaluation sample at the center of the jig so that the 330 mm x 88 mm evaluation sample is compressed, move the jig attached to the load cell downward at a speed of 5. OmmZ, and the evaluation sample is 1 The jig was stopped when it was compressed by 0 mm, and the stress at that time was measured.
[0160] く熱抵抗の評価〉 [0160] Evaluation of heat resistance>
評価サンプルの熱抵抗値を、 A n a l y s i s T e c h社製の熱インピ 一ダンスメータ一 T I Mテスタ一によって測定した。 係る装置の測定原理 を以下に概説する。  The thermal resistance value of the evaluation sample was measured with a thermal impedance meter TIM tester manufactured by Analyssi Tetech. The measurement principle of such a device is outlined below.
[0161] T I Mテスターは、 AS TM D 5470による熱抵抗値を測定すること ができる。 プローブ (センサ一) は、 ヒータープレ一卜、 冷却器プレート、 複数の熱電対で構成されている。 33. Omm の円柱状 T I Mのサンプル を、 ヒーター及び冷却プレートによって 1. Omm圧縮する。 試験が開始さ れると、 一定の熱がヒータープレートの熱線から加えられる。 ここで、 冷却 器は常に水で冷却されている。 温度が安定した後、 サンプルの界面における 熱流速及び温度が、 いくつかの熱電対から得られた温度データによって計算 される (図 1 2) 。 その結果、 以下の式 (2) から、 ヒーター及び冷却器の 接点間の熱流量及び温度差によって熱抵抗値が計算される。 [数 7] [0161] The TIM tester can measure the thermal resistance value according to AS TM D 5470. The probe (one sensor) consists of a heater plate, a cooler plate, and multiple thermocouples. 33. Omm cylindrical TIM sample is compressed 1. Omm with heater and cooling plate. When the test starts, a certain amount of heat is applied from the heater plate. Here, the cooler is always cooled with water. After the temperature stabilizes, the heat flux and temperature at the sample interface are calculated from the temperature data obtained from several thermocouples (Figure 12). As a result, the thermal resistance value is calculated from the following equation (2) according to the heat flow and temperature difference between the heater and cooler contacts. [Equation 7]
IftS抗値 (K/W) =温度差 (K) /熱流量 (W) (2)  IftS resistance (K / W) = temperature difference (K) / heat flow (W) (2)
[0162] <引っ張り接着強さ (リワーク性) の評価 > [0162] <Evaluation of tensile bond strength (reworkability)>
評価サンプルの底部外層面を片面粘着テープ (住友スリーェム社製、 品番 #85 1 Α) で裏打ちし、 評価サンプルの突起層面をガラス板に貼り付け、 押圧して間隙がなくなるまで突起層を変形させた後、 90° ピール接着力を J I S-Z-0237に規定される手順に従って測定した。 成形体の剥離は 、 30 OmmZ分の引っ張り速度で実施した。  The bottom outer layer surface of the evaluation sample is lined with a single-sided adhesive tape (manufactured by Sumitomo 3EM, part number # 85 1 mm). After that, 90 ° peel adhesion was measured according to the procedure specified in JI SZ-0237. The molded product was peeled at a pulling speed of 30 OmmZ.
[0163] <例 9>  [0163] <Example 9>
バレル温度を 200°Cに設定した直径 2 Ommの一軸押し出し機でアイ才 ノマ一樹脂であるハイミラン (登録商標) 1 706を溶融した。 溶融した樹 脂を 59 r pmで回転するスクリユーで 220°Cに設定されたドロップダイ に供給し、 ドロップダイから吐出した溶融樹脂を搬送速度 1. 8mZ分で 2 5ミクロン厚の P E Tフィルム (エンブレム (登録商標) S 25) 上にキヤ ストし、 1 25 m厚のアイオノマ一樹脂ノ P ET積層フィルムを作製した  Hi-Millan (registered trademark) 1706, which is an eye-catching resin, was melted with a single screw extruder having a diameter of 2 Omm and a barrel temperature set at 200 ° C. The molten resin is supplied to a drop die set at 220 ° C with a screw rotating at 59 rpm, and the molten resin discharged from the drop die is transported at a speed of 1.8 mZ for a PET film (emblem of 25 microns) (Registered Trademark) S 25) Cast on top to produce 1.25 m thick ionomer resin PET film
[0164] 1 08 gの AX 75— 1 50、 36 gの A X 35— 1 25、 36 gの AX [0164] 1 08 g AX 75— 1 50, 36 g A X 35— 1 25, 36 g AX
3— 75、 1 gの DMS— V22及び 1 9 gの S E 1 885 Aを 225mL のガラス瓶に量り取った。 ガラス瓶中の材料を自転■公転ミキサーにより 2 000 r pmの回転数で 1分間混合し、 続いて、 30秒間脱泡してシリコ一 ンコンパゥンド 1 aを作製した。 同様に、 1 08 gの AX75— 1 50、 3 6 gの AX35— 1 25、 36 gの AX3— 75、 1 gの DMS— V22及 び 1 9 gの S E 1 885 Bを 225 m Lのガラス瓶に量り取り、 同様に、 ガ ラス瓶中の材料を混合及び脱泡してシリコーンコンパウンド 1 bを作製した 。 1 50 gのシリコーンコンパゥンド 1 aと 1 50 gのシリコーンコンパゥ ンド 1 bをポリカップに量り取り、 次いで、 樹脂製スパチュラで約 1 0分間 、 手動で混合してシリコーンゲルコンパウンド 1 a bを作製した。 3—75, 1 g DMS—V22 and 19 g SE 1 885 A were weighed into a 225 mL glass bottle. The material in the glass bottle was mixed for 1 minute at a rotation speed of 2 000 rpm with a rotating / revolving mixer, and then defoamed for 30 seconds to produce a silicone compound 1a. Similarly, 225 ml glass bottles with 108 g AX75—150, 36 g AX35—125, 36 g AX3—75, 1 g DMS—V22 and 19 g SE 1 885 B Similarly, the material in the glass bottle was mixed and defoamed to prepare silicone compound 1b. 1 Weigh 50 g of silicone compound 1 a and 150 g of silicone compound 1 b into a plastic cup, then use a resin spatula for approximately 10 minutes. Manually mixed to make a silicone gel compound 1 ab.
[0165] 上述のアイオノマー樹脂 Z P E T積層フィルムから P E Tフィルムを除去 し、 深絞り成形可能なアイオノマー樹脂フィルムを得た。 図 2 ( B ) に示さ れるような真空加熱圧着装置として、 両面真空成型機 (布施真空株式会社製 ) を採用し、 該装置内に設置したアルミ製の型上にアイオノマ一樹脂フィル ムを固定した。 該フィルムの表面温度が 1 2 0 °Cになるように加熱条件を設 定した。 次いで、 上述した図 2 ( B ) 〜図 2 ( E ) で示されるような手順に 従って、 加熱したフィルムをエア一が巻き込まれないように型の表面に積層 し、 図 2 ( F ) に示されるような一体品を作製した。 [0165] The PET film was removed from the above-mentioned ionomer resin ZPET laminated film to obtain an ionomer resin film capable of deep drawing. A double-sided vacuum molding machine (manufactured by Fuse Vacuum Co., Ltd.) is used as a vacuum thermocompression bonding apparatus as shown in Fig. 2 (B), and an ionomer resin film is fixed on an aluminum mold installed in the apparatus. did. The heating conditions were set so that the surface temperature of the film would be 120 ° C. Next, according to the procedure shown in FIG. 2 (B) to FIG. 2 (E) described above, the heated film is laminated on the surface of the mold so that air is not entrapped, and shown in FIG. An integrated product was manufactured.
[0166] 剥離フィルムである Y B— 2上に補強基材であるガラスペーパー G M C 1 [0166] Glass paper G M C 1 as a reinforcing substrate on Y B-2 as a release film
0— M R 6を配置した後、 シリコーンゲルコンパウンド 1 a bを、 係るガラ スぺ一パ一上に 1 5 0 i mのギャップ間隔を有するナイフコーターで塗工し て、 底部外層を備える底部外層用積層シートを得た。  0—After MR 6 is placed, the silicone gel compound 1 ab is applied onto the glass spacer with a knife coater having a gap interval of 1 5 0 im, and the bottom outer layer is provided with a bottom outer layer. A sheet was obtained.
[0167] アイオノマ一樹脂フィルムで覆われた一体品の空洞部にシリコーンゲルコ [0167] Silicone gelco is formed in the hollow part of the integrated product covered with an ionomer resin film.
ンパウンド 1 a bを充填し、 次いで、 充填したシリコーンコンパウンド 1 a b上に、 エアーが巻き込まれないように底部外層用積層シートを積層した。 係るシートが型に均一に密着するように、 シ一ト上にゴムローラ一を適用し てシートを平坦化させ、 最終一体品を作製した。 最終一体品を 1 2 0 °Cの才 —ブンに 1 0分間静置してシリコーンゲルを加熱硬化させた。 次いで、 最終 一体品をオーブンから取り出して冷却し、 アイオノマー樹脂フィルムが型か ら除去されるように、 硬化させた三次元形状熱伝導性成形体を型から取り出 した。 次いで、 冷えて固くなる前に、 三次元形状熱伝導性成形体からアイ才 ノマー樹脂フィルムを除去し、 三次元形状熱伝導性成形体の評価サンプルを 得た。 ここで、 使用した型は、 図 1 1 に示されるような略正六角形の上部平 坦面を有する突起層が得られるような形状を備えており、 係る型から得られ た三次元形状熱伝導性成形体の評価サンプルは、 表 4に示されるような、 間 隙の幅 (A ) 、 突起層の高さ (B ) 、 突起層底面の外接円の直径 (C ) 、 テ ーパ一角度、 及び 1平方インチ当たりの突起数を有していた。 [0168] <例 1 0~ 1 1 > Compound 1 ab was filled, and then, a laminated sheet for the bottom outer layer was laminated on the filled silicone compound 1 ab so as not to entrain air. A rubber roller was applied on the sheet to flatten the sheet so that the sheet was uniformly adhered to the mold, and a final integrated product was produced. The final monolith was allowed to stand at 120 ° C. for 10 minutes to heat cure the silicone gel. Next, the final integrated product was taken out of the oven and cooled, and the cured three-dimensional shape heat conductive molded body was taken out of the mold so that the ionomer resin film was removed from the mold. Next, before cooling and solidifying, the eye-like resin film was removed from the three-dimensional shape heat conductive molded body, and an evaluation sample of the three-dimensional shape heat conductive molded body was obtained. Here, the mold used has such a shape that a projection layer having an approximately flat hexagonal upper flat surface as shown in Fig. 11 is obtained, and the three-dimensional shape heat conduction obtained from the mold is used. As shown in Table 4, the evaluation sample of the molded product is the gap width (A), the height of the projection layer (B), the diameter of the circumscribed circle on the bottom of the projection layer (C), and the taper angle. , And the number of protrusions per square inch. [0168] <Example 1 0 to 1 1>
表 4に示される、 間隙の幅 (A) 、 突起層の高さ (B) 、 突起層底面の外 接円の直径 (C) 、 テーパー角度、 1平方インチ当たりの突起数を満たす三 次元形状熱伝導性成形体が得られる型に変更した以外は、 例 9と同一の方法 で例 1 0及び例 1 1の評価サンプルを得た。  Three-dimensional shape satisfying the gap width (A), protrusion layer height (B), circumscribed circle diameter (C), taper angle, and number of protrusions per square inch shown in Table 4. Evaluation samples of Example 10 and Example 11 were obtained in the same manner as in Example 9 except that the mold was changed to a mold capable of obtaining a thermally conductive molded body.
[0169] <比較例 4>  [0169] <Comparative Example 4>
シリコーンコンパウンド 1 a bを 2枚の剥離ライナ一 (YB— 2) 間に適 用し、 該ライナー間のギャップを 2. 1 mmにセッ トしたナイフコ一ターへ ッ ドを通して厚さ 1. 5 mmのシリコーンゲルシ一卜を得た。 次いで、 この シートを 1 20°Cのオープン中で 20分間静置してシリコーンゲルシートを 硬化させた後、 4枚をラミネートすることで厚さ 6. Ommの評価サンプルを 得た。  Apply a silicone compound 1 ab between two release liners (YB-2) and pass through a knife coater head with a gap between the liners set to 2.1 mm. A silicone gel was obtained. Next, this sheet was allowed to stand for 20 minutes in an opening at 120 ° C. to cure the silicone gel sheet, and then four sheets were laminated to obtain an evaluation sample having a thickness of 6. Omm.
[0170] <比較例 5>  [0170] <Comparative Example 5>
シリコーンコンパウンド 1 a bを 2枚の剥離ライナー (Y B—2) 間に適 用し、 該ライナ一間のギャップを 2. 1 mmにセッ トしたナイフコ一ターへ ッドを通して厚さ 1. 5 mmのシリコーンゲルシートを得た。 次いで、 この シートを 1 20°Cのオーブン中で 20分間静置してシリコーンゲルシートを 硬化させた後、 3枚をラミネートすることで厚さ 4. 5 mmの評価サンプル を得た。  Silicone compound 1 ab is applied between two release liners (YB-2), with a thickness of 1.5 mm through the knife coat head with the gap between the liners set at 2.1 mm. A silicone gel sheet was obtained. Next, this sheet was allowed to stand in an oven at 120 ° C. for 20 minutes to cure the silicone gel sheet, and then the three sheets were laminated to obtain an evaluation sample having a thickness of 4.5 mm.
[0171] <比較例 6〉  [0171] <Comparative Example 6>
シリコーンコンパウンド 1 a bを 2枚の剥離ライナー (Y B— 2) 間に適 用し、 該ライナ一間のギャップを 2. 1 mmにセッ トしたナイフコーターへ ッ ドを通して厚さ 1. 5 mmのシリコーンゲルシートを得た。 次いで、 この シートを 1 20°Cのオーブン中で 20分間静置してシリコーンゲルシートを 硬化させた後、 2枚をラミネートすることで厚さ 3mmの評価サンプルを得 た。  Silicone compound 1 ab is applied between two release liners (YB-2), and a 1.5 mm thick silicone is passed through a knife coater head with the gap between the liners set at 2.1 mm. A gel sheet was obtained. Next, this sheet was allowed to stand in an oven at 120 ° C. for 20 minutes to cure the silicone gel sheet, and then an evaluation sample having a thickness of 3 mm was obtained by laminating the two sheets.
[0172] 例 9~ 1 1、 及び比較例 4〜 6における各評価サンプルの、 ァスカ一C硬 度、 圧縮応力 (1 mm圧縮時の応力) 、 熱抵抗 (1 mm圧縮時の熱抵抗) 及 〔〕 ¾SS^^^. ¾i ^fl8Θ8¾〜,I [0172] For each of the evaluation samples in Examples 9 to 11 and Comparative Examples 4 to 6, the Asker C hardness, compressive stress (stress at 1 mm compression), thermal resistance (thermal resistance at 1 mm compression) and [] ¾SS ^^^. ¾i ^ fl8Θ8¾〜, I
Figure imgf000052_0002
Figure imgf000052_0002
1 ) 間隔が突 層の圧縮変形によって完全に充填されるときの圧縮率 (/6)  1) Compression ratio when the gap is completely filled by compressive deformation of the projecting layer (/ 6)
底部外層上面の総面租のうち突起展底面の総面積が占める割合 (%) Percentage of the total area of the bottom surface of the protrusions out of the total surface area of the top surface of the outer bottom layer (%)
Figure imgf000052_0001
Figure imgf000052_0001
〔〕〕4 薄くなるにしたがい、 熱抵抗は低くなる傾向を呈するが、 圧縮応力及び引張 り接着強さは逆に高くなる傾向を呈していた。 その結果、 従来の平坦な放熱 シ一卜で熱抵抗の低い成形体を得ようとすると、 圧縮応力及び引張り接着強 さが高くなつてしまうため、 係る放熱シ一卜は、 被着体の破壊又はリワーク 性の悪化などをもたらしていた。 一方、 本開示の第 2の三次元形状熱伝導性 成形体の場合は、 例 9〜 1 1から分かるように、 成形体の厚さが、 比較例 6 のサンプルの厚さと同一又はそれ未満の構成であっても、 熱抵抗に加え、 圧 縮応力及び引張り接着強さも低く抑え得ることが確認された。 したがって、 本開示の第 2の三次元形状熱伝導性成形体は、 良好な熱伝導性が得られると ともに、 従来の平坦な放熱シートに比べて、 被着体に対する不具合を低減で きることが分かった。 〔〕〕Four As the thickness decreased, the thermal resistance tended to decrease, but the compressive stress and tensile bond strength tended to increase. As a result, when trying to obtain a molded product having a low thermal resistance with a conventional flat heat dissipation sheet, the compressive stress and the tensile adhesive strength increase, so that the heat dissipation sheet breaks the adherend. Or the reworkability deteriorated. On the other hand, in the case of the second three-dimensional shape thermally conductive molded body of the present disclosure, as can be seen from Examples 9 to 11, the thickness of the molded body is equal to or less than the thickness of the sample of Comparative Example 6. It was confirmed that even in the configuration, in addition to the thermal resistance, the compressive stress and the tensile bond strength can be kept low. Therefore, the second three-dimensional shape thermally conductive molded body of the present disclosure can obtain good thermal conductivity and reduce defects on the adherend as compared with the conventional flat heat dissipation sheet. I understood.
符号の説明 Explanation of symbols
1、 6 0 第 1の三次元形状熱伝導性成形体  1, 60 0 1st three-dimensional shape heat conductive molding
2、 1 3、 1 1 0 底部外層  2, 1 3, 1 1 0 Bottom outer layer
3、 1 2 中間部材  3, 1 2 Intermediate member
4 上部外層  4 Upper outer layer
1 0 上部外層積層フィルム  1 0 Upper outer layer laminated film
2 0 型  2 0 type
3 0 真空加熱圧着装置  3 0 Vacuum thermocompression bonding equipment
3 1 第 1真空室  3 1 1st vacuum chamber
3 2 第 2真空室  3 2 Second vacuum chamber
3 3 台座  3 3 pedestal
3 4 仕切り板  3 4 Partition plate
3 5 昇降台  3 5 Lift platform
4 0 一体品  4 0 Integrated product
5 0 最終一体品  5 0 Final integrated product
1 0 0 第 2の三次元形状熱伝導性成形体  1 0 0 Second three-dimensional shape thermally conductive molded body
1 0 2 剥離フィルム , 1 08 シリコーン系材料 補強基材 1 0 2 Release film , 1 08 Silicone material Reinforced substrate
突起層  Projection layer
間隙  Gap
第 1の高さ 1st height
第 2の高さ Second height
間隙の幅 Gap width
突起層の高さ Projection layer height
突起層底面の外接円の直径 Diameter of circumscribed circle on the bottom of the projection layer
第 2の三次元形状熱伝導性成形体の厚さ テーパー角 The thickness of the second three-dimensional shape heat conductive molded body Taper angle

Claims

n 0 1 3 C 8 n 0 1 3 C 8
WO 2018/078436 53 PCT/IB2017/001308 WO 2018/078436 53 PCT / IB2017 / 001308
請求の範囲  The scope of the claims
[請求項 1 ] 熱伝導性材料及びシリコーン系材料を含む、 三次元形状熱伝導性成 形体であって、  [Claim 1] A three-dimensionally shaped thermally conductive composition comprising a thermally conductive material and a silicone material,
該成形体は、 略平坦な底面と、 該底面内に位置する三次元形状部と を有し、 前記底面よリ上方の前記三次元形状部の高さが少なくとも 2 か所において相違する、 三次元形状熱伝導性成形体。  The molded body has a substantially flat bottom surface and a three-dimensional shape portion located in the bottom surface, and the height of the three-dimensional shape portion above the bottom surface is different in at least two places. Original shape heat conductive molding.
[請求項 2] 前記三次元形状部の少なくとも一部が、 シリコーン系材料を含む上 部外層で覆われている、 請求項 1 に記載の三次元形状熱伝導性成形体 [Claim 2] The three-dimensional shape thermally conductive molded article according to claim 1, wherein at least a part of the three-dimensional shape part is covered with an upper outer layer containing a silicone-based material.
[請求項 3] 不織布が底面側に内在している、 請求項 1又は 2に記載の三次元形 状熱伝導性成形体。 [Claim 3] The three-dimensional shape thermally conductive molded article according to claim 1 or 2, wherein the nonwoven fabric is inherently present on the bottom side.
[請求項 4] 前記三次元形状部の形状の少なくとも一部が、 略ドーム状又は略か まぼこ状である、 請求項 1 ~ 3の何れか一項に記載の三次元形状熱伝 導性成形体。  [Claim 4] The three-dimensional shape heat conduction according to any one of claims 1 to 3, wherein at least a part of the shape of the three-dimensional shape portion is substantially dome-shaped or substantially kamaboko-shaped. Molded product.
[請求項 5] 前記三次元形状部の形状が、 該形状部を適用する被着部材の形状と 略一致している、 請求項 1 〜 3の何れか一項に記載の三次元形状熱伝 導性成形体。  [Claim 5] The three-dimensional shape heat transfer according to any one of claims 1 to 3, wherein a shape of the three-dimensional shape portion substantially matches a shape of an adherend member to which the shape portion is applied. Conductive molded body.
[請求項 6] 前記成形体が、 前記底面を構成する底部外層と、 該底部外層を覆う ように配置される上部外層と、 前記底部外層と前記上部外層との間に 配置される中間部材とを含み、 上部外層、 中間部材及び底部外層が、 シリコ一ン系材料を含む、 請求項 1 〜 5の何れか一項に記載の三次元 形状熱伝導性成形体。  [Claim 6] The molded body comprises a bottom outer layer constituting the bottom surface, an upper outer layer disposed so as to cover the bottom outer layer, and an intermediate member disposed between the bottom outer layer and the upper outer layer. The three-dimensional shape thermally conductive molded body according to any one of claims 1 to 5, wherein the upper outer layer, the intermediate member, and the bottom outer layer include a silicon-based material.
[請求項 7] 前記上部外層及び前記底部外層、 又は前記底部外層及び前記 Φ間部 材が同一材料よリなリ一体化されている、 請求項 6に記載の三次元形 状熱伝導性成形体。  [Claim 7] The three-dimensional shape thermal conductive molding according to claim 6, wherein the upper outer layer and the bottom outer layer, or the bottom outer layer and the Φ inter-material are re-integrated from the same material. body.
[請求項 8] 前記上部外層がシリコーンゴムを含み、 前記中間部材はシリコーン ゲルを含み、 及び前記底部外層はシリコーンゴム又はシリコーンゲル を含む、 請求項 6又は 7に記載の三次元形状熱伝導性成形体。 贿 320 1 ? / 0 0 1 3 C 8[Claim 8] The three-dimensional shape thermal conductivity according to claim 6 or 7, wherein the upper outer layer includes silicone rubber, the intermediate member includes silicone gel, and the bottom outer layer includes silicone rubber or silicone gel. Molded body. 贿 320 1? / 0 0 1 3 C 8
WO 2018/078436 54 PCT/IB2017/001308 WO 2018/078436 54 PCT / IB2017 / 001308
[請求項 9] 前記中間部材が前記上部外層及びノ又は前記底部外層よりも柔軟で ある、 請求項 6 ~ 8の何れか一項に記載の三次元形状熱伝導性成形体 [Claim 9] The three-dimensional shape heat conductive molded body according to any one of claims 6 to 8, wherein the intermediate member is softer than the upper outer layer and the bottom outer layer or the bottom outer layer.
[請求項 10] 前記底面と、 該底面を除く三次元形状熱伝導性成形体の表面部分と のタック性が相違する、 請求項 1 ~ 9の何れか一項に記載の三次元形 状熱伝導性成形体。 [Claim 10] The three-dimensional shape heat according to any one of claims 1 to 9, wherein the bottom surface and the surface portion of the three-dimensional shape heat conductive molded body excluding the bottom surface are different in tackiness. Conductive molded body.
[請求項 1 1 ] 三次元形状熱伝導性成形体の製造方法であつて、  [Claim 1 1] A method for producing a three-dimensional shape thermally conductive molded body, comprising:
熱伝導性材料及びシリコーン系材料を含む混合物を準備する工程と 略平坦な底面と、 該底面内に位置する三次元形状部とを有し、 前記 底面より上方の前記三次元形状部の高さが少なくとも 2か所において 相違する成形体が得られる型を準備する工程と、  A step of preparing a mixture including a thermally conductive material and a silicone-based material; a substantially flat bottom surface; and a three-dimensional shape portion located in the bottom surface, wherein the height of the three-dimensional shape portion above the bottom surface Preparing a mold from which a molded body different in at least two places can be obtained;
前記型内面に接触し得るように、 伸長可能フィルムを型上に配置す る工程と、  Placing an extensible film on the mold so that it can contact the inner surface of the mold;
前記型に前記伸長可能フィルムを貼り合わせる工程と、 前記伸長可能フィルムを貼り合わせた前記型の空洞部に前記混合物 を充填し、 任意に成形体の底面となる部分に対して平坦化処理を行う 、 工程と、  The step of bonding the stretchable film to the mold, and filling the mixture into the cavity of the mold to which the stretchable film is bonded, and optionally performing a flattening process on the portion that becomes the bottom surface of the molded body The process,
前記型内の混合物を硬化させる工程と、  Curing the mixture in the mold;
任意に前記型を冷却後、 前記伸長可能フィルムを備える三次元形状 熱伝導性成形体を前記型から取り出し、 任意に前記伸長可能フィルム を除去し、 任意に型形状が付されていない部分を打ち抜き、 三次元形 状熱伝導性成形体を得る工程と、 を含む、 三次元形状熱伝導性成形体 の製造方法。  After optionally cooling the mold, a three-dimensional shape heat conductive molded body provided with the stretchable film is taken out of the mold, optionally the stretchable film is removed, and a portion not arbitrarily attached with the mold shape is punched out A method for producing a three-dimensional shape thermally conductive molded body, comprising: obtaining a three-dimensional shape thermally conductive molded body.
[請求項 12] 三次元形状熱伝導性成形体の製造方法であつて、  [Claim 12] A method for producing a three-dimensional shape thermally conductive molded body, comprising:
伸長可能フィルムと剥離フィルムとを含む積層フィルムの前記伸長 可能フィルム上に、 熱伝導性材料を含有する第 1のシリコーン系材料 を適用し、 硬化させて上部外層を形成する工程と、 PC麵 1 7 / 0 0 1 3 C 8Applying a first silicone-based material containing a heat conductive material on the stretchable film of the laminated film including the stretchable film and a release film, and curing the first silicone material to form an upper outer layer; PC 麵 1 7/0 0 1 3 C 8
WO 2018/078436 55 PCT/IB2017/001308 WO 2018/078436 55 PCT / IB2017 / 001308
前記上部外層を備える積層フィルムの剥離フィルムを除去した後、 型内面に前記伸長可能フィルムが接触し得るように、 該積層フィルム を型上に配置する工程であって、 前記型は、 略平坦な底面と、 該底面 内に位置する三次元形状部とを有し、 前記底面より上方の前記三次元 形状部の高さが少なくとも 2か所において相違する成形体が得られる 型である、 工程と、 After the release film of the laminated film having the upper outer layer is removed, the laminated film is placed on the mold so that the stretchable film can come into contact with the inner surface of the mold, and the mold is substantially flat A mold having a bottom surface and a three-dimensional shape portion located in the bottom surface, wherein a molded body is obtained in which the height of the three-dimensional shape portion above the bottom surface is different in at least two places; and ,
前記型に前記積層フィルムを貼り合わせる工程と、  Bonding the laminated film to the mold;
前記積層フィルムを貼り合わせた前記型の空洞部に、 熱伝導性材料 を含有する第 2のシリコーン系材料を含む中間部材を充填し、 任意に 成形体の底面側に位置する部分に対して平坦化処理を行う、 工程と、 任意に、 剥離フィルム上に熱伝導性材料を含有する第 3のシリコー ン系材料を適用して底部外層を形成し、 該底部外層が、 前記上部外層 と空洞部に充填した前記中間部材とを覆うように、 該底部外層を含む 剥離フィルムを、 該剥離フィルムが最表層となるように型上に配置す る工程と、  The cavity of the mold to which the laminated film is bonded is filled with an intermediate member containing a second silicone material containing a heat conductive material, and is optionally flat with respect to the portion located on the bottom side of the molded body Forming a bottom outer layer by applying a third silicon-based material containing a thermally conductive material on the release film, and the bottom outer layer includes the upper outer layer and the cavity. A step of disposing a release film including the bottom outer layer on the mold so that the release film is the outermost layer so as to cover the intermediate member filled in
前記中間部材を構成する第 2のシリコーン系材料、 及び存在する場 合は底部外層を構成する第 3のシリコーン系材料を硬化させる工程と 任意に前記型を冷却後、 前記伸長可能フィルム及び任意に存在する 前記剥離フィルムを備える三次元形状熱伝導性成形体を前記型から取 リ出し、 任意に前記伸長可能フィルム及び 又は任意に存在する前記 剥離フィルムを除去し、 任意に前記中間部材を含まない前記上部外層 部分及び存在する場合は前記底部外層部分を打ち抜き、 三次元形状熱 伝導性成形体を得る工程と、 を含む、 三次元形状熱伝導性成形体の製 造方法。  A step of curing the second silicone material comprising the intermediate member, and a third silicone material comprising the bottom outer layer, if any, and optionally cooling the mold, the stretchable film and optionally The three-dimensional shape heat conductive molded body provided with the release film present is removed from the mold, and optionally the stretchable film and / or the existing release film is removed, and optionally the intermediate member is not included. Punching out the upper outer layer portion and, if present, the bottom outer layer portion, to obtain a three-dimensional shape thermally conductive molded body, and a method for producing a three-dimensional shape thermally conductive molded body.
[請求項 13] 複数の突起層、 及び底部外層を備える、 三次元形状熱伝導性成形体  [Claim 13] A three-dimensional shape thermally conductive molded body comprising a plurality of projecting layers and a bottom outer layer.
であって、  Because
前記突起層が、 熱伝導性材料及びシリコーン系材料を含み、 2 C 8
Figure imgf000058_0001
前記底部外層が、 熱伝導性材料、 シリコーン系材料及び補強基材を 含み、
The protruding layer includes a heat conductive material and a silicone-based material, 2 C 8
Figure imgf000058_0001
The bottom outer layer includes a heat conductive material, a silicone-based material, and a reinforcing substrate,
前記突起層は、 隣接する突起層の底面外周部と接触しておらず、 隣 接する突起層間に間隙を有するように配置されており、  The protrusion layer is not in contact with the outer peripheral portion of the bottom surface of the adjacent protrusion layer, and is disposed so as to have a gap between the adjacent protrusion layers.
下記式 ( I )  The following formula (I)
[数 1] α?Υ= 100-X ( I ) [Equation 1] α? Υ = 100-X (I)
[式中、 αは 0. 70~1. 00であり、 Xは間隙が突起層の圧縮 変形によって完全に充填されるときの圧縮率 (%) であり、 Υは底部 外層上面の総面積のうち突起層底面の総面積が占める割合 (%) であ る。 ] [Where α is from 0.70 to 1.00, X is the compression ratio (%) when the gap is completely filled by compressive deformation of the protruding layer, and の is the total area of the top surface of the bottom outer layer Of this, it is the ratio (%) of the total area of the bottom of the projection layer. ]
を満足する、 三次元形状熱伝導性成形体。 Satisfying the three-dimensional shape heat conductive molding.
前記間隙の幅が略均等である、 請求項 1 3に記載の三次元形状熱伝 導性成形体。  The three-dimensional shape heat conductive molded body according to claim 13, wherein the gaps have substantially uniform widths.
前記突起層の上面が略平坦面である、 請求項 1 3又は 14に記載の 三次元形状熱伝導性成形体。  The three-dimensional shape thermally conductive molded body according to claim 13 or 14, wherein an upper surface of the protruding layer is a substantially flat surface.
前記略平坦面の形状が、 略正三角形、 略正方形、 略正五角形、 略正 六角形、 略長方形、 又は略波型形状であり、 前記突起層は、 前記形状 の各辺に沿つた断面部を有し、 隣接する突起層の前記形状における隣 接する各辺が略平行状態にある、 請求項 1 5に記載の三次元形状熱伝 導性成形体。  The shape of the substantially flat surface is a substantially regular triangle, a substantially square, a substantially regular pentagon, a substantially regular hexagon, a substantially rectangular shape, or a substantially wave shape, and the protruding layer is a cross-sectional portion along each side of the shape. The three-dimensional shape heat conductive molded body according to claim 15, wherein the adjacent sides in the shape of the adjacent projecting layers are in a substantially parallel state.
前記突起層のテーパー角が 80° ~90° である、 請求項 1 3~1 6の何れか一項に記載の三次元形状熱伝導性成形体。  The three-dimensional shape thermally conductive molded body according to any one of claims 13 to 16, wherein the protrusion layer has a taper angle of 80 ° to 90 °.
前記突起層のァス力一 C硬度が 0〜30である、 請求項 1 3~1 7 の何れか一項に記載の三次元形状熱伝導性成形体。  The three-dimensional shape thermally conductive molded article according to any one of claims 13 to 17, wherein the protrusion layer has a first force C hardness of 0 to 30.
三次元形状熱伝導性成形体を被着体に適用して 500/0圧縮したとき の接触面積が、 三次元形状熱伝導性成形体を被着体に圧縮せずに適用 PC 20"/ 0018C8The contact area when 500/0 compression is applied to a 3D-shaped thermally conductive molded body applied to the adherend is applied without compressing the 3D-shaped thermally conductive molded body to the adherend. PC 20 "/ 0018C8
WO 2018/078436 57 PCT/IB2017/001308 したときの接触面積に比較して 40%以上増加する、 請求項 1 3~ 1 8の何れか一項に記載の三次元形状熱伝導性成形体。 The three-dimensional shape thermally conductive molded article according to any one of claims 13 to 18, wherein the contact area is increased by 40% or more compared to the contact area when WO 2018/078436 57 PCT / IB2017 / 001308 is applied.
[請求項 20] 突起層を 5個/ i n c h 2以上有する、 請求項 1 3 ~ 1 9の何れか 一項に記載の三次元形状熱伝導性成形体。 [Claim 20] The three-dimensionally shaped thermally conductive molded article according to any one of claims 1 to 19, which has 5 protruding layers / inch 2 or more.
[請求項 21] 底部外層の厚さが 0. 5mm以下であり、 三次元形状熱伝導性成形 体の厚さが 4. Omm以下である、 請求項 1 3〜20の何れか一項に 記載の三次元形状熱伝導性成形体。 [Claim 21] The thickness of the bottom outer layer is 0.5 mm or less, and the thickness of the three-dimensional shape thermally conductive molded body is 4. Omm or less. Three-dimensional shape heat conductive molded body.
[請求項 22] 請求項 1 3〜2 1の何れか一項に記載の三次元形状熱伝導性成形体 の製造方法であって、  [Claim 22] A method for producing a three-dimensional shape thermally conductive molded article according to any one of claims 13 to 21, comprising:
熱伝導性材料及びシリコーン系材料を含む混合物を準備する工程と 三次元形状熱伝導性成形体の突起層及び間隙を形成し得る型を準備 する工程と、  Preparing a mixture containing a thermally conductive material and a silicone-based material; preparing a mold capable of forming a protruding layer and a gap of a three-dimensionally shaped thermally conductive molded body; and
前記型内面に接触し得るように、 伸長可能フィルムを型上に配置す る工程と、  Placing an extensible film on the mold so that it can contact the inner surface of the mold;
前記型に前記伸長可能フィルムを貼り合わせる工程と、  Bonding the stretchable film to the mold;
前記伸長可能フィルムを貼り合わせた前記型の空洞部に前記混合物 を充填する工程と、  Filling the mixture into the cavity of the mold with the stretchable film bonded together;
剥離フィルム上に底部外層を備える底部外層用積層体を、 底部外層 が空洞部に充填した混合物を覆い剥離フィルムが最表層となるように 型上に配置する工程と、  Placing the laminate for the bottom outer layer comprising the bottom outer layer on the release film on the mold so that the bottom outer layer covers the mixture filled in the cavity and the release film is the outermost layer;
前記混合物及び底部外層のシリコーン系材料を硬化させる工程と、 任意に前記型を冷却後、 前記伸長可能フィルムを備える三次元形状 熱伝導性成形体を前記型から取り出し、 任意に前記伸長可能フィルム 及び Z又は剥離フィルムを除去し、 三次元形状熱伝導性成形体を得る 工程と、 を含む、 三次元形状熱伝導性成形体の製造方法。  A step of curing the mixture and the silicone material of the bottom outer layer, and optionally cooling the mold, and then removing a three-dimensional shape thermally conductive molded body comprising the stretchable film from the mold, optionally the stretchable film and Removing the Z or the release film to obtain a three-dimensional shape thermally conductive molded body, and a method for producing a three-dimensional shape thermally conductive molded body.
[請求項 23] 前記伸長可能フィルムが、 ポリオレフイン樹脂、 ポリメチルペンテ ン樹脂、 アイオノマ一樹脂、 及びフッ素系樹脂から選択される少なく PCT/I32ft 7; n o n C 3 58 PCT/IB2017/001308 とも 1つの樹脂を含む、 請求項 1 1、 1 2又は 2 2に記載の三次元形 状熱伝導性成形体の製造方法。 [Claim 23] The stretchable film is at least selected from a polyolefin resin, a polymethylpentene resin, an ionomer resin, and a fluorine resin. The method for producing a three-dimensional shape thermally conductive molded article according to claim 11, 1, 2 or 22, wherein PCT / I32ft 7; non C 3 58 PCT / IB2017 / 001308 contains one resin.
PCT/IB2017/001308 2016-10-31 2017-10-31 Three-dimensionally shaped thermally conductive molded body, and manufacturing method thereof WO2018078436A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17832980.1A EP3533579A1 (en) 2016-10-31 2017-10-31 Three-dimensionally shaped thermally conductive molded body, and manufacturing method thereof
JP2018546927A JP7053484B2 (en) 2016-10-31 2017-10-31 Three-dimensional heat conductive molded body and its manufacturing method
CN201780067521.0A CN110198820B (en) 2016-10-31 2017-10-31 Three-dimensionally shaped thermally conductive molded body and method for producing same
US16/345,951 US20190329455A1 (en) 2016-10-31 2017-10-31 Three-dimensionally shaped thermally conductive molded body, and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-213184 2016-10-31
JP2016213184 2016-10-31
JP2017-151151 2017-08-03
JP2017151151A JP2018078272A (en) 2016-10-31 2017-08-03 Three-dimensionally shaped thermally conductive molded body, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2018078436A1 true WO2018078436A1 (en) 2018-05-03

Family

ID=61022372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/001308 WO2018078436A1 (en) 2016-10-31 2017-10-31 Three-dimensionally shaped thermally conductive molded body, and manufacturing method thereof

Country Status (1)

Country Link
WO (1) WO2018078436A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090735A1 (en) * 2018-11-02 2020-05-07 信越ポリマー株式会社 Voltage-resistant heat conductive member and voltage-resistant heat-conductive structure
WO2020121169A1 (en) * 2018-12-13 2020-06-18 3M Innovative Properties Company Thermally conductive molding, production method for the same, structure, and multilayer film
WO2022050160A1 (en) * 2020-09-02 2022-03-10 デクセリアルズ株式会社 Heat transmission members, method for manufacturing same, and heat release structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0297793A2 (en) * 1987-07-02 1989-01-04 AT&T Corp. Thermal conductor assembly
US20040118579A1 (en) * 2002-12-19 2004-06-24 3M Innovative Properties Company Flexible heat sink
US20080290504A1 (en) * 2007-05-22 2008-11-27 Centipede Systems, Inc. Compliant thermal contactor
US20150303129A1 (en) * 2012-11-09 2015-10-22 3M Innovative Properties Company Thermal interface compositions and methods for making and using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0297793A2 (en) * 1987-07-02 1989-01-04 AT&T Corp. Thermal conductor assembly
US20040118579A1 (en) * 2002-12-19 2004-06-24 3M Innovative Properties Company Flexible heat sink
US20080290504A1 (en) * 2007-05-22 2008-11-27 Centipede Systems, Inc. Compliant thermal contactor
US20150303129A1 (en) * 2012-11-09 2015-10-22 3M Innovative Properties Company Thermal interface compositions and methods for making and using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090735A1 (en) * 2018-11-02 2020-05-07 信越ポリマー株式会社 Voltage-resistant heat conductive member and voltage-resistant heat-conductive structure
JPWO2020090735A1 (en) * 2018-11-02 2021-09-30 信越ポリマー株式会社 Withstanding voltage heat conductive member and withstanding voltage heat conductive structure
JP7162073B2 (en) 2018-11-02 2022-10-27 信越ポリマー株式会社 Withstanding voltage heat conduction structure
WO2020121169A1 (en) * 2018-12-13 2020-06-18 3M Innovative Properties Company Thermally conductive molding, production method for the same, structure, and multilayer film
WO2022050160A1 (en) * 2020-09-02 2022-03-10 デクセリアルズ株式会社 Heat transmission members, method for manufacturing same, and heat release structure

Similar Documents

Publication Publication Date Title
JP7053484B2 (en) Three-dimensional heat conductive molded body and its manufacturing method
TWI670464B (en) Thermally conductive sheet, method for producing the same, heat dissipation member, and semiconductor device
TWI658550B (en) Manufacturing method of heat conductive sheet, heat conductive sheet, and heat radiation member
KR101681861B1 (en) Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
CN105378914B (en) Heat conductive sheet
CN101247715B (en) Thermal diffusion sheet and manufacturing method of the same
TWI331566B (en) Laminated body
KR20020070449A (en) Heat conductive sheet and method of producing the sheet
TWI801501B (en) Thermally conductive sheet
CN1893803A (en) Heat radiation member and production method for the same
JP2010171129A (en) Heat radiation structure
WO2018078436A1 (en) Three-dimensionally shaped thermally conductive molded body, and manufacturing method thereof
JP7160101B2 (en) Method for manufacturing semiconductor device, heat conductive sheet, and method for manufacturing heat conductive sheet
JP2017092345A (en) Heat conduction sheet and method of manufacturing the same, and semiconductor device
JP4530283B2 (en) Thermally conductive sheet and method for producing the same
JP4974609B2 (en) Film-like electronic equipment
JP7240429B2 (en) Heat dissipation materials and semiconductor modules
KR102530044B1 (en) Semiconductor device manufacturing method and thermal conductive sheet
JP2004095987A (en) Heat dissipating sheet and pdp panel
JPH1142730A (en) Thermal conductivity interface for electronic device
US20240117148A1 (en) Thermally conductive sheet, thermally conductive sheet supply form, thermally conductive sheet precursor, and method for manufacturing thermally conductive sheet
JP7338738B2 (en) Method for manufacturing semiconductor device, heat conductive sheet, and method for manufacturing heat conductive sheet
WO2022168729A1 (en) Thermally conductive sheet laminate and electronic equipment using same
EP4003722A1 (en) Thermally conductive laminate
JP2022119196A (en) Thermally conductive sheet laminate and electronic equipment using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17832980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018546927

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017832980

Country of ref document: EP

Effective date: 20190531