WO1996025525A1 - Modifiers for aldoxime extractant of metal values - Google Patents
Modifiers for aldoxime extractant of metal values Download PDFInfo
- Publication number
- WO1996025525A1 WO1996025525A1 PCT/US1996/001116 US9601116W WO9625525A1 WO 1996025525 A1 WO1996025525 A1 WO 1996025525A1 US 9601116 W US9601116 W US 9601116W WO 9625525 A1 WO9625525 A1 WO 9625525A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reagent composition
- extraction reagent
- modifier
- carbon atoms
- copper
- Prior art date
Links
- 239000003607 modifier Substances 0.000 title claims abstract description 139
- FZENGILVLUJGJX-NSCUHMNNSA-N (E)-acetaldehyde oxime Chemical compound C\C=N\O FZENGILVLUJGJX-NSCUHMNNSA-N 0.000 title claims abstract description 46
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 22
- 239000002184 metal Substances 0.000 title claims abstract description 22
- 239000010949 copper Substances 0.000 claims abstract description 118
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 87
- 229910052802 copper Inorganic materials 0.000 claims abstract description 87
- 238000000605 extraction Methods 0.000 claims abstract description 69
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 27
- 239000002904 solvent Substances 0.000 claims abstract description 21
- 239000007864 aqueous solution Substances 0.000 claims abstract description 19
- 239000003350 kerosene Substances 0.000 claims abstract description 12
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 6
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 6
- 125000003118 aryl group Chemical group 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 100
- 239000003153 chemical reaction reagent Substances 0.000 claims description 61
- 239000000243 solution Substances 0.000 claims description 46
- -1 hydroxy aryl aldoxime Chemical compound 0.000 claims description 41
- 125000004432 carbon atom Chemical group C* 0.000 claims description 38
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 35
- 238000012546 transfer Methods 0.000 claims description 34
- 239000012074 organic phase Substances 0.000 claims description 24
- 150000002148 esters Chemical class 0.000 claims description 23
- 150000001875 compounds Chemical class 0.000 claims description 22
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical group FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 claims description 21
- 150000003839 salts Chemical class 0.000 claims description 16
- 125000001931 aliphatic group Chemical group 0.000 claims description 15
- 239000000654 additive Substances 0.000 claims description 14
- 230000000996 additive effect Effects 0.000 claims description 12
- 150000001408 amides Chemical class 0.000 claims description 12
- 150000002576 ketones Chemical class 0.000 claims description 12
- 150000002923 oximes Chemical class 0.000 claims description 12
- 239000008346 aqueous phase Substances 0.000 claims description 11
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 11
- 239000002253 acid Substances 0.000 claims description 10
- 150000001412 amines Chemical class 0.000 claims description 9
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 claims description 9
- 229940093635 tributyl phosphate Drugs 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 150000001298 alcohols Chemical class 0.000 claims description 8
- 125000000217 alkyl group Chemical group 0.000 claims description 8
- 150000002825 nitriles Chemical class 0.000 claims description 8
- 238000011084 recovery Methods 0.000 claims description 8
- MJUVQSGLWOGIOB-UHFFFAOYSA-N 2-[(Z)-hydroxyiminomethyl]-4-nonylphenol Chemical compound OC1=C(C=N/O)C=C(C=C1)CCCCCCCCC MJUVQSGLWOGIOB-UHFFFAOYSA-N 0.000 claims description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 7
- YEBIIRHMHYYWAR-UHFFFAOYSA-N 2-butoxyethoxymethylbenzene Chemical compound CCCCOCCOCC1=CC=CC=C1 YEBIIRHMHYYWAR-UHFFFAOYSA-N 0.000 claims description 5
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical group NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 claims description 5
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 claims description 5
- UIAMCVSNZQYIQS-KTKRTIGZSA-N oleonitrile Chemical compound CCCCCCCC\C=C/CCCCCCCC#N UIAMCVSNZQYIQS-KTKRTIGZSA-N 0.000 claims description 5
- 150000003462 sulfoxides Chemical class 0.000 claims description 5
- GMORVOQOIHISPT-UHFFFAOYSA-N 2-ethylhexanamide Chemical compound CCCCC(CC)C(N)=O GMORVOQOIHISPT-UHFFFAOYSA-N 0.000 claims description 4
- 125000005910 alkyl carbonate group Chemical group 0.000 claims description 4
- UWGTVLYQSJNUFP-CAPFRKAQSA-N 4-dodecyl-2-[(E)-hydroxyiminomethyl]phenol Chemical compound [H]\C(=N/O)C1=CC(CCCCCCCCCCCC)=CC=C1O UWGTVLYQSJNUFP-CAPFRKAQSA-N 0.000 claims description 3
- MTBLCSJCQJZFSI-UHFFFAOYSA-N 4-heptyl-2-(hydroxyiminomethyl)phenol Chemical compound CCCCCCCC1=CC=C(O)C(C=NO)=C1 MTBLCSJCQJZFSI-UHFFFAOYSA-N 0.000 claims description 3
- YRRCBRRCKPKZCF-UHFFFAOYSA-N 5,8-diethyldodecane-6,7-dione Chemical compound CCCCC(CC)C(=O)C(=O)C(CC)CCCC YRRCBRRCKPKZCF-UHFFFAOYSA-N 0.000 claims description 3
- ZZILRVYYTFVLGI-UHFFFAOYSA-N Pentanol-2-caprylat Natural products CCCCCCCC(=O)OC(C)CCC ZZILRVYYTFVLGI-UHFFFAOYSA-N 0.000 claims description 3
- NCDCLPBOMHPFCV-UHFFFAOYSA-N hexyl hexanoate Chemical compound CCCCCCOC(=O)CCCCC NCDCLPBOMHPFCV-UHFFFAOYSA-N 0.000 claims description 3
- YRHYCMZPEVDGFQ-UHFFFAOYSA-N methyl decanoate Chemical compound CCCCCCCCCC(=O)OC YRHYCMZPEVDGFQ-UHFFFAOYSA-N 0.000 claims description 3
- 229920000570 polyether Polymers 0.000 claims description 3
- 150000003856 quaternary ammonium compounds Chemical class 0.000 claims description 3
- 150000003512 tertiary amines Chemical class 0.000 claims description 3
- QSWRBFIQTJUYGA-UHFFFAOYSA-N 2-(hydroxyiminomethyl)-4-octylphenol Chemical compound CCCCCCCCC1=CC=C(O)C(C=NO)=C1 QSWRBFIQTJUYGA-UHFFFAOYSA-N 0.000 claims description 2
- CRKWWBFTYGZTBS-UHFFFAOYSA-N 8-methylnonyl acetate Chemical group CC(C)CCCCCCCOC(C)=O CRKWWBFTYGZTBS-UHFFFAOYSA-N 0.000 claims description 2
- UMVMVEZHMZTUHD-UHFFFAOYSA-N DL-Propylene glycol dibenzoate Chemical compound C=1C=CC=CC=1C(=O)OC(C)COC(=O)C1=CC=CC=C1 UMVMVEZHMZTUHD-UHFFFAOYSA-N 0.000 claims description 2
- 239000005640 Methyl decanoate Substances 0.000 claims description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims 3
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 claims 3
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims 2
- 125000005907 alkyl ester group Chemical group 0.000 claims 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims 2
- 229910052799 carbon Inorganic materials 0.000 claims 2
- HNSJWDQXCSDHFY-UHFFFAOYSA-N 1,3-diethyl-1-hexylurea Chemical compound CCCCCCN(CC)C(=O)NCC HNSJWDQXCSDHFY-UHFFFAOYSA-N 0.000 claims 1
- AEOLPHGBVSKUIW-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethoxymethylbenzene Chemical compound CCCCOCCOCCOCC1=CC=CC=C1 AEOLPHGBVSKUIW-UHFFFAOYSA-N 0.000 claims 1
- SWZMVPJGNFUOLG-UHFFFAOYSA-N 2-ethyl-n-hexylhexanamide Chemical compound CCCCCCNC(=O)C(CC)CCCC SWZMVPJGNFUOLG-UHFFFAOYSA-N 0.000 claims 1
- IEBAJFDSHJYDCK-UHFFFAOYSA-N 2-methylundecan-4-one Chemical compound CCCCCCCC(=O)CC(C)C IEBAJFDSHJYDCK-UHFFFAOYSA-N 0.000 claims 1
- QHBWOETXANVQER-UHFFFAOYSA-N 4-hexanoyloxybutyl hexanoate Chemical group CCCCCC(=O)OCCCCOC(=O)CCCCC QHBWOETXANVQER-UHFFFAOYSA-N 0.000 claims 1
- KVFJBGFUUKVTCS-UHFFFAOYSA-N C1(=C(C=CC=C1)NC(OCCCCCCCCCCC(C)C)=O)C Chemical compound C1(=C(C=CC=C1)NC(OCCCCCCCCCCC(C)C)=O)C KVFJBGFUUKVTCS-UHFFFAOYSA-N 0.000 claims 1
- VXCUURYYWGCLIH-UHFFFAOYSA-N Dodecanenitrile Chemical compound CCCCCCCCCCCC#N VXCUURYYWGCLIH-UHFFFAOYSA-N 0.000 claims 1
- 239000004721 Polyphenylene oxide Substances 0.000 claims 1
- 235000011037 adipic acid Nutrition 0.000 claims 1
- 239000001361 adipic acid Substances 0.000 claims 1
- 125000003545 alkoxy group Chemical group 0.000 claims 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical group CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 claims 1
- UXXXZMDJQLPQPH-UHFFFAOYSA-N bis(2-methylpropyl) carbonate Chemical compound CC(C)COC(=O)OCC(C)C UXXXZMDJQLPQPH-UHFFFAOYSA-N 0.000 claims 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 claims 1
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 claims 1
- 235000014113 dietary fatty acids Nutrition 0.000 claims 1
- 150000002009 diols Chemical class 0.000 claims 1
- CJMZLCRLBNZJQR-UHFFFAOYSA-N ethyl 2-amino-4-(4-fluorophenyl)thiophene-3-carboxylate Chemical compound CCOC(=O)C1=C(N)SC=C1C1=CC=C(F)C=C1 CJMZLCRLBNZJQR-UHFFFAOYSA-N 0.000 claims 1
- 239000000194 fatty acid Substances 0.000 claims 1
- 229930195729 fatty acid Natural products 0.000 claims 1
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 1
- 150000004715 keto acids Chemical class 0.000 claims 1
- QIYDQYBDGDYJKD-UHFFFAOYSA-N methyl 6-methylheptanoate Chemical compound COC(=O)CCCCC(C)C QIYDQYBDGDYJKD-UHFFFAOYSA-N 0.000 claims 1
- QYRYBAZBHGBWSV-UHFFFAOYSA-N n,n-dibutyl-2-ethylhexanamide Chemical compound CCCCC(CC)C(=O)N(CCCC)CCCC QYRYBAZBHGBWSV-UHFFFAOYSA-N 0.000 claims 1
- RYGJQVQEGCQNHM-UHFFFAOYSA-N n,n-dibutylbenzamide Chemical compound CCCCN(CCCC)C(=O)C1=CC=CC=C1 RYGJQVQEGCQNHM-UHFFFAOYSA-N 0.000 claims 1
- IRACWGPKDYUZEC-UHFFFAOYSA-N n,n-dibutyloctanamide Chemical compound CCCCCCCC(=O)N(CCCC)CCCC IRACWGPKDYUZEC-UHFFFAOYSA-N 0.000 claims 1
- VHRUBWHAOUIMDW-UHFFFAOYSA-N n,n-dimethyloctanamide Chemical compound CCCCCCCC(=O)N(C)C VHRUBWHAOUIMDW-UHFFFAOYSA-N 0.000 claims 1
- MIABUQPWMLYNHI-UHFFFAOYSA-N n-[(2-dodecylphenyl)methylidene]hydroxylamine Chemical compound CCCCCCCCCCCCC1=CC=CC=C1C=NO MIABUQPWMLYNHI-UHFFFAOYSA-N 0.000 claims 1
- NIXKBAZVOQAHGC-UHFFFAOYSA-N phenylmethanesulfonic acid Chemical class OS(=O)(=O)CC1=CC=CC=C1 NIXKBAZVOQAHGC-UHFFFAOYSA-N 0.000 claims 1
- 125000000542 sulfonic acid group Chemical group 0.000 claims 1
- 229940116411 terpineol Drugs 0.000 claims 1
- PZTAGFCBNDBBFZ-UHFFFAOYSA-N tert-butyl 2-(hydroxymethyl)piperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCCCC1CO PZTAGFCBNDBBFZ-UHFFFAOYSA-N 0.000 claims 1
- VARQGBHBYZTYLJ-UHFFFAOYSA-N tricosan-12-one Chemical compound CCCCCCCCCCCC(=O)CCCCCCCCCCC VARQGBHBYZTYLJ-UHFFFAOYSA-N 0.000 claims 1
- 239000003960 organic solvent Substances 0.000 abstract description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 2
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 21
- 238000012986 modification Methods 0.000 description 21
- 230000004048 modification Effects 0.000 description 21
- XUJLWPFSUCHPQL-UHFFFAOYSA-N 11-methyldodecan-1-ol Chemical compound CC(C)CCCCCCCCCCO XUJLWPFSUCHPQL-UHFFFAOYSA-N 0.000 description 18
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 18
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 18
- 238000002360 preparation method Methods 0.000 description 14
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 11
- SEGLCEQVOFDUPX-UHFFFAOYSA-N di-(2-ethylhexyl)phosphoric acid Chemical compound CCCCC(CC)COP(O)(=O)OCC(CC)CCCC SEGLCEQVOFDUPX-UHFFFAOYSA-N 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 238000010992 reflux Methods 0.000 description 11
- 239000000047 product Substances 0.000 description 10
- 239000011541 reaction mixture Substances 0.000 description 10
- 238000000638 solvent extraction Methods 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- BWZOPYPOZJBVLQ-UHFFFAOYSA-K aluminium glycinate Chemical compound O[Al+]O.NCC([O-])=O BWZOPYPOZJBVLQ-UHFFFAOYSA-K 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 239000000284 extract Substances 0.000 description 8
- XFRVVPUIAFSTFO-UHFFFAOYSA-N 1-Tridecanol Chemical compound CCCCCCCCCCCCCO XFRVVPUIAFSTFO-UHFFFAOYSA-N 0.000 description 7
- BCXIOLDAECLTCX-UHFFFAOYSA-N 1-methoxy-2-nonylbenzene Chemical compound CCCCCCCCCC1=CC=CC=C1OC BCXIOLDAECLTCX-UHFFFAOYSA-N 0.000 description 7
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 7
- UWNADWZGEHDQAB-UHFFFAOYSA-N 2,5-dimethylhexane Chemical group CC(C)CCC(C)C UWNADWZGEHDQAB-UHFFFAOYSA-N 0.000 description 6
- MWKAGZWJHCTVJY-UHFFFAOYSA-N 3-hydroxyoctadecan-2-one Chemical compound CCCCCCCCCCCCCCCC(O)C(C)=O MWKAGZWJHCTVJY-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- 238000005481 NMR spectroscopy Methods 0.000 description 5
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 5
- 239000012527 feed solution Substances 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 239000012312 sodium hydride Substances 0.000 description 5
- 229910000104 sodium hydride Inorganic materials 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000004566 IR spectroscopy Methods 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 4
- 229940073608 benzyl chloride Drugs 0.000 description 4
- 150000001733 carboxylic acid esters Chemical class 0.000 description 4
- 125000005594 diketone group Chemical group 0.000 description 4
- 238000000186 gas chromatography-infrared spectroscopy Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- GQKZBCPTCWJTAS-UHFFFAOYSA-N methoxymethylbenzene Chemical compound COCC1=CC=CC=C1 GQKZBCPTCWJTAS-UHFFFAOYSA-N 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- WCLDITPGPXSPGV-UHFFFAOYSA-N tricamba Chemical compound COC1=C(Cl)C=C(Cl)C(Cl)=C1C(O)=O WCLDITPGPXSPGV-UHFFFAOYSA-N 0.000 description 4
- 239000003039 volatile agent Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000008186 active pharmaceutical agent Substances 0.000 description 3
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 3
- 239000011260 aqueous acid Substances 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 235000013877 carbamide Nutrition 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 238000005363 electrowinning Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- GVTQQXMVSYYNCC-UHFFFAOYSA-N n-[(2-dodecoxyphenyl)methylidene]hydroxylamine Chemical compound CCCCCCCCCCCCOC1=CC=CC=C1C=NO GVTQQXMVSYYNCC-UHFFFAOYSA-N 0.000 description 3
- 238000005191 phase separation Methods 0.000 description 3
- 150000002989 phenols Chemical class 0.000 description 3
- 239000011369 resultant mixture Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- LTHNHFOGQMKPOV-UHFFFAOYSA-N 2-ethylhexan-1-amine Chemical compound CCCCC(CC)CN LTHNHFOGQMKPOV-UHFFFAOYSA-N 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- KXDAEFPNCMNJSK-UHFFFAOYSA-N Benzamide Chemical compound NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 235000019647 acidic taste Nutrition 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 239000012259 ether extract Substances 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 125000005027 hydroxyaryl group Chemical group 0.000 description 2
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- XKBGEWXEAPTVCK-UHFFFAOYSA-M methyltrioctylammonium chloride Chemical compound [Cl-].CCCCCCCC[N+](C)(CCCCCCCC)CCCCCCCC XKBGEWXEAPTVCK-UHFFFAOYSA-M 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- KCOLLAAYRLGNFV-UHFFFAOYSA-N n-(1-phenyltetradecylidene)hydroxylamine Chemical compound CCCCCCCCCCCCCC(=NO)C1=CC=CC=C1 KCOLLAAYRLGNFV-UHFFFAOYSA-N 0.000 description 2
- LTHCSWBWNVGEFE-UHFFFAOYSA-N octanamide Chemical compound CCCCCCCC(N)=O LTHCSWBWNVGEFE-UHFFFAOYSA-N 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229940124530 sulfonamide Drugs 0.000 description 2
- 150000003456 sulfonamides Chemical class 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 125000005270 trialkylamine group Chemical group 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 1
- CXLQZTCMSJWKCH-UHFFFAOYSA-N 1-ethyl-1-hexylurea Chemical compound CCCCCCN(CC)C(N)=O CXLQZTCMSJWKCH-UHFFFAOYSA-N 0.000 description 1
- DYQFCTCUULUMTQ-UHFFFAOYSA-N 1-isocyanatooctane Chemical compound CCCCCCCCN=C=O DYQFCTCUULUMTQ-UHFFFAOYSA-N 0.000 description 1
- CGLQOIMEUPORRI-UHFFFAOYSA-N 2-(1-benzoyloxypropan-2-yloxy)propyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC(C)OC(C)COC(=O)C1=CC=CC=C1 CGLQOIMEUPORRI-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- XFDQLDNQZFOAFK-UHFFFAOYSA-N 2-benzoyloxyethyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCCOC(=O)C1=CC=CC=C1 XFDQLDNQZFOAFK-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- WLVCBAMXYMWGLJ-UHFFFAOYSA-N 3-(chloromethyl)heptane Chemical compound CCCCC(CC)CCl WLVCBAMXYMWGLJ-UHFFFAOYSA-N 0.000 description 1
- QWGLNWHWBCINBS-UHFFFAOYSA-N 3-nonylphenol Chemical class CCCCCCCCCC1=CC=CC(O)=C1 QWGLNWHWBCINBS-UHFFFAOYSA-N 0.000 description 1
- MGYGFNQQGAQEON-UHFFFAOYSA-N 4-tolyl isocyanate Chemical compound CC1=CC=C(N=C=O)C=C1 MGYGFNQQGAQEON-UHFFFAOYSA-N 0.000 description 1
- RCEAKQYSPGVKEX-UHFFFAOYSA-N 5,8-diethyl-7-hydroxydodecan-6-one Chemical compound CCCCC(CC)C(O)C(=O)C(CC)CCCC RCEAKQYSPGVKEX-UHFFFAOYSA-N 0.000 description 1
- ZPQAKYPOZRXKFA-UHFFFAOYSA-N 6-Undecanone Chemical compound CCCCCC(=O)CCCCC ZPQAKYPOZRXKFA-UHFFFAOYSA-N 0.000 description 1
- PLLBRTOLHQQAQQ-UHFFFAOYSA-N 8-methylnonan-1-ol Chemical compound CC(C)CCCCCCCO PLLBRTOLHQQAQQ-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- YXLXNENXOJSQEI-UHFFFAOYSA-L Oxine-copper Chemical compound [Cu+2].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 YXLXNENXOJSQEI-UHFFFAOYSA-L 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000003436 Schotten-Baumann reaction Methods 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000006959 Williamson synthesis reaction Methods 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- ZGFJFQKXWDYUQY-UHFFFAOYSA-N carbonic acid 2-methylpropyl hydrogen carbonate Chemical compound C(OCC(C)C)(O)=O.C(O)(O)=O ZGFJFQKXWDYUQY-UHFFFAOYSA-N 0.000 description 1
- 150000003857 carboxamides Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- ANWCICBGKAHUEY-UHFFFAOYSA-N decyl carbamate Chemical compound CCCCCCCCCCOC(N)=O ANWCICBGKAHUEY-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000002035 hexane extract Substances 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002763 monocarboxylic acids Chemical group 0.000 description 1
- XTAZYLNFDRKIHJ-UHFFFAOYSA-N n,n-dioctyloctan-1-amine Chemical compound CCCCCCCCN(CCCCCCCC)CCCCCCCC XTAZYLNFDRKIHJ-UHFFFAOYSA-N 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical compound CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- VPCTXGPGNGKYHY-UHFFFAOYSA-N phosphoric acid;trioctyl phosphate Chemical compound OP(O)(O)=O.CCCCCCCCOP(=O)(OCCCCCCCC)OCCCCCCCC VPCTXGPGNGKYHY-UHFFFAOYSA-N 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- ORIHZIZPTZTNCU-YVMONPNESA-N salicylaldoxime Chemical compound O\N=C/C1=CC=CC=C1O ORIHZIZPTZTNCU-YVMONPNESA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B15/00—Obtaining copper
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C251/00—Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
- C07C251/32—Oximes
- C07C251/34—Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
- C07C251/48—Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/26—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
- C22B3/30—Oximes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- This invention relates to the extraction of metal values from aqueous solutions and in particular to modifiers for aldoxime extractant employed for extraction of metals, particularly copper values.
- the present invention relates generally to solvent extraction processes for recovery of metal values from aqueous solutions and, more particularly, to formulative procedures for developing improved solvent extraction reagents and to the use of such reagents in recovery of, e.g., copper values.
- the starting material for large scale solvent extraction processing of copper is an aqueous leach solution obtained from a body of ore which contains a mixture of metals in addition to copper.
- the leaching medium dissolves salts of copper and other metals as it trickles through the ore, to provide an aqueous solution of the mixture of metal values.
- the metal values are usually leached with sulfuric acid medium, providing an acidic aqueous solution, but can also be leached by ammonia to provide a basic aqueous solution.
- the aqueous solution is mixed in tanks with an extraction reagent which is dissolved in an organic solvent, e.g. , a kerosene.
- the reagent includes an extractant chemical which selectively forms metal- extractant complex with the copper ions in preference to ions of other metals.
- the step of forming the complex is called the extraction or loading stage of the solvent extraction process.
- phase separation The process of extraction is repeated through two or more mixer/settler stages, in order to more completely extract the desired metal.
- the depleted aqueous feedstock (raffinate) is either discharged or recirculated to the ore body for further leaching.
- the loaded organic phase containing the dissolved copper-extractant complex is fed to another set of mixer tanks, where it is mixed with an aqueous strip solution of concentrated sulfuric acid.
- the highly acid strip solution breaks apart the copper- extractant complex and permits the purified and concentrated copper to pass to the strip aqueous phase.
- the mixture is fed to another settler tank for phase separation. This process of breaking the copper-extractant complex is called the stripping stage, and the stripping operation is repeated through two or more mixer-settler stages to more completely strip the copper from the organic phase.
- the regenerated stripped organic phase is recycled to the extraction mixers to begin extraction again, and the strip aqueous phase is customarily fed to an electrowinning tank-house, where the copper metal values are deposited on plates by a process of electrodeposition.
- the solution known as spent electrolyte, is returned to the stripping mixers to begin stripping again.
- Modifiers of extraction and stripping equilibria are frequently incorporated in those commercial reagent formulations which include the so-called "strong" extractants. Such extractants are capable of forming a very stable complex association with copper at quite low pH's and, consequently, require the use of very highly acidic aqueous stripping solutions in order to effect the breakdown of the copper-extractant complex. Where extreme acidity of stripping solutions generates problems in employing conventional electrodeposition processes, modifiers are incorporated to shift equilibria in a manner facilitating stripping at lower acidities and to enhance overall metal extraction efficiency.
- a wide variety of modifier chemicals has been proposed for use in formulation of solvent extraction reagents for copper. These have included: long chain (C 6 to C 20 ) aliphatic alcohols such as isodecanol, 2-ethylhexanol, and tridecanol; long chain alkyl phenols such as nonylphenol.
- the minor proportion of kinetic additive present with the hydroxy aryl ketoxime extractant in the LIX®64N reagent formulation provides for kinetic enhancement in the use of the ketoxime
- the additive is less stable toward hydrolytic degradation than the ketoxime.
- the aliphatic ⁇ -hydroxy oxime thus tends to be depleted from continuous system more rapidly than the ketoxime.
- hydroxy aryl aldoxime extractants are less stable in use than ketoximes and are rendered even more unstable by the presence of large quantities of nonylphenol.
- Alkyl phenol equilibrium modifiers have also been noted to have severe deleterious effects on structural components of solvent extraction facilities, such as rubber linings, fittings, valves and the like.
- the combination of the modifier used in the extractant, with the contaminants present in the aqueous feedstock results in the generation of interfacial crud which must be continually removed from the solvent extraction circuit.
- U.S. Patent 4,507,268 to Henkel Corporation describes extraction reagents formulated with various oxime extractants, including hydroxyaryl aldoxime extractants, which are employed in water immiscible organic solvents, such as kerosene, with certain equilibrium modifiers such as, phenols and alcohols (tridecanol, a commercially available branched chain alcohol) or tributyl phosphate.
- hydroxyaryl aldoxime extractants which are employed in water immiscible organic solvents, such as kerosene
- certain equilibrium modifiers such as, phenols and alcohols (tridecanol, a commercially available branched chain alcohol) or tributyl phosphate.
- the patentee developed a "degree of modification" test.
- degree of modification designates the inverse ratio of (a) the stripped solvent copper level of an hydroxy aryl aldoxime extractant at equilibrium (expressed in terms of grams per liter of copper) extracted with an aqueous solution containing a fixed concentration of copper and sulfuric acid to (b) the stripped solvent copper level of the same extractant under the same conditions when a selected equilibrium modifier additive is present. Consistent with this definition, the presence of relatively small quantities of an equilibrium modifier will shift the extraction equilibrium slightly, resulting in minor diminution of aldoxime stripped solvent copper level at equilibrium, as will be reflected by a degree of modification value closely approaching 1.0, e.g., 0.99. Increased effective quantities of modifier under otherwise identical conditions will result in a more pronounced shift in extraction equilibrium and a more pronounced diminution of aldoxime stripped solvent copper level at equilibrium, as will be reflected by a degree of modification corresponding less than 1.0.
- the degree of modification resulting from a given molar ratio of equilibrium modifier to aldoxime in a reagent will vary depending on various factors, most significantly the chemical identity and nature of the equilibrium modifier, but also the conditions involved in determining the degree of modification of an aldoxime by a given equilibrium modifier.
- the temperature at which the determination is made should be about 24°C.
- the molar concentration of aldoxime (or mixture of aldoximes) in the diluent should be about 0.184 as determined by copper loading and titration and an aldoxime stock of approximately 94 percent purity (with the remainder being substantially alkyl phenol starting material residue) should be employed.
- the diluent should be Escaid 100 or a mixture of aliphatic and aromatic hydrocarbons closely approximating the constitution of Escaid 100.
- An atomic absorption methodology should be employed for determining copper content.
- the composition of the strip solution should be 150 g/l sulfuric acid and 30 g/l Cu *2 .
- U.S. Patent 4,142,952 similarly employed a mixture of 5-nonylphenols as a modifier for oximes such as 5-nonyl or 5-heptyl salicylaldoxime.
- U.S. patent 4,978,785 described the use of branched chain aliphatic or aromatic-aliphatic (or aliphatic) alcohols containing 14 to 30 carbon atoms or aliphatic or aromatic-aliphatic esters containing 10 to 30 carbon atoms wherein the ratio of the number of methyl carbon atoms to the number of non-methyl carbon atoms is higher than 1:5.
- Figure 1 is a graph representation of the modifier evaluation of extraction points of mixtures of nonylphenol (NP) and trioctylphosphate (TOP) with dodecyl salicylaldoxime extractant (DSAdO) .
- NP nonylphenol
- TOP trioctylphosphate
- DSAdO dodecyl salicylaldoxime extractant
- Figure 2 is a similar graph representation of the strip point of the mixture of NP and TOP.
- FIG 3 is another graph representation of the modifier evaluation extraction points of mixtures of isotridecanol (TDA) and trioctylphosphate (TOP) with dodecylsalicylaldoxime extractant (DSAdO) .
- Figure 4 is a similar graph representation of the modifier strip point of the mixtures of TDA, and TOP with DSAdO.
- the present invention provides alternative equilibrium modifiers for use with aldoxime extractants such as the hydroxy aryl aldoxime extractants. Efficient copper recovery is achieved by reagents which comprise mixtures of hydroxy aryl aldoximes and the modifiers to be described hereafter in more detail.
- Hydroxy aryl aldoxime extractants with which the modifiers of the present invention are particularly useful are those of the formula
- R is a saturated aliphatic group of about 1 to about 25 carbon atoms or an ethylenically unsaturated aliphatic group of 3 to about 25 carbon atoms, and the total number of carbon atoms in R a is from 3 to about 25.
- Preferred compounds are those wherein a is l, and R is a straight or branched chain alkyl group having from about 7 to about 12 carbon atoms and wherein R is attached in a position para to the hydroxyl group.
- R is a mixture of isomers.
- Compounds which are especially useful include 2-hydroxy-5-heptylbenzaldoxime, 2-hydroxy-5-octyl benzaldoxime, 2-hydroxy-5-nonylbenzaldoxime and 2-hydroxy- 5-dodecylbenzaldoxime.
- the present invention relates to reagent compositions, which are suitable for extracting copper from aqueous solutions containing copper values, i.e., copper salts, and to the process of extracting copper using such compositions.
- the extraction reagent compositions comprise a mixture of an hydroxy aryl aldoxime extractant and certain equilibrium modifiers in which the equilibrium modifier is present in an amount to provide a net copper transfer greater than that achieved by extraction with the aldoxime alone, without the presence of the modifier.
- a kinetic additive may optionally also be included.
- the reagent composition may optionally contain a kinetic additive in an amount of 0 to about 20 mole percent based on the aldoxime content.
- Such kinetic additives are well known to those skilled in the oxime extraction art for extracting copper, such as those disclosed in U.S. Patent 4,507,268 to Kordosky et al., including o-hydroxy oxime prepared according to Swanson, U.S. Patent 3,224,873 or U.K. Patent 1,537,828 and ⁇ , ⁇ -dioximes according to Koenders et al. , U.S. Patent 4,173,616.
- a preferred ⁇ - hydroxy oxime kinetic additive is 5,8-diethyl-7-hydroxy dodecane-6-oxime and a preferred dioxime kinetic additive is a mixture of l-(4 -alkylphenyl)-l,2-propanedione dioximes, according to Example 3 of U.S. Patent 4,176,616.
- Patent 4,928,788 also describes as modifiers certain branched chain aliphatic or aromatic aliphatic alcohols containing 14 to about 30 carbon atoms and certain aliphatic or aromatic aliphatic esters containing from 10 to 30 carbon atoms, wherein the ratio of the number of methyl carbon atoms to the number of non-methyl carbon atoms is higher than 1:5.
- the present invention accordingly provides alternative modifiers to those used in the past, which provide at least equivalent, and in many cases, improved results, in the net copper transfer, to those modifiers employed in the past.
- the present modifiers may optionally be employed in admixture with those used in the past to further modify the results.
- the modifiers of the present invention are employed in an amount to provide a net copper transfer greater than that achieved in the absence of the modifier.
- the amount of modifier can be further defined by means of the degree of modification determined as described in that patent and as earlier noted in the Related Art section above.
- the useful and preferred range of degree of modification will vary dependent on the particular modifier compound and it is accordingly difficult to define a general range which will apply to all the individual modifiers, other than as the amount thereof being an amount effective to provide a net copper transfer greater than that achieved in the absence of the modifier.
- the most desirable, useful degree of modification range was from about 0.75 up to, but less than, about 1.0, preferably from about 0.90 and approaching, but not including 1.0, i.e., 0.99, whereas with modifiers other than the phenols, such as alcohols, like tridecanol, or alkylphosphates, such as tributylphosphate, the useful range of degree of modification may be from about 0.66 or even lower up to, but less than, 1.0.
- the alternative modifiers of the present invention are a widely diverse group of compounds, including, but not limited to, certain simple carboxylic acid esters, oximes, nitriles, ketones, amides (carboxamides, sulfonamides or phosphora ides) , carbamates, sulfoxides, ureas, and phosphine oxides, all of which are found to be efficient modifiers for aldoxime extractant reagents in the process of extracting copper values from aqueous solutions, particularly copper containing acid leach solutions.
- the invention accordingly has several aspects.
- the invention is concerned with the reagent composition comprised of the water-insoluble aldoxime extractant formulated with at least one of the equilibrium modifiers noted earlier, optionally with a kineti additive.
- the reagents are formulated wit organic solvent solution of water-insoluble, wate immiscible aliphatic or aromatic solvents for use in process for the recovery of a metal, preferably copper fro aqueous solutions, typically acid solutions, which proces comprises:
- a wide variety of essentially water-immiscible liqui hydrocarbon solvents can be used in the copper recover process of the present invention. These include aliphati and aromatic hydrocarbons such as kerosene, benzene, toluene, xylene and the like.
- a choice of essentially water-immiscible liquid hydrocarbon solvents, or mixtures thereof for commercial operations will depend on a number of factors, including the plant design of the solvent extraction plant (mixer-settler units, Podbielna extractors) and the like.
- the preferred solvents for use in the recovery process of the present invention are the aliphatic and aromatic hydrocarbons having flash points of 130 degrees Fahrenheit and higher, and preferably at least 150°, and solubilities in water of less than 0.1% by weight.
- the solvents are essentially chemically inert.
- Representative commercial available solvents are Chevron ion exchange solvent (available from Standard Oil of California, having a flash point 195°F, Escaid 100 and 110 (available from Exxon-Europe having a flash point of 180°F) , Norpar 12 (available from Exxon-USA, flash point 160°F) , Conoco-C1214 (available from Conoco, flash point 160°F) , Aromatic 150 (an aromatic kerosene available from Exxon-USA, flash point 150°F) , and the other various kerosene and petroleum fractions available from other oil companies.
- Chevron ion exchange solvent available from Standard Oil of California, having a flash point 195°F
- Escaid 100 and 110 available from Exxon-Europe having a flash point of 180°F
- Norpar 12 available from Exxon-USA, flash point 160°F
- Conoco-C1214 available from Conoco, flash point 160°F
- Aromatic 150 an aromatic kerosene available from Exxon-USA,
- the organic solvent solutions will preferably contain from about 0.005 up to about 75% by weight of the aldoxime compounds, which typically will be employed at about 10-15%. Additionally, volume ratios of the organic:aqueous (0:A) phase will vary widely since the contacting of any quantity of the aldoxime organic solution with the copper containing aqueous leach solution will result in extraction of the copper values into the organic phase. For commercial practicality, however, the organic:aqueous phase ratios for extraction are preferably in the range of about 50:1 to 1:50.
- the copper is recovered from the organic phase by contacting the organic phase with an aqueous acid solution to strip the metal from the organic phase.
- the organic:aqueous phase ratios are preferably in the range of about 50:1 to 1:50, after which the copper is recovered from the aqueous strip solution by conventional methods, typically electrowinning or precipitation.
- the "degree of modification” is defined as the inverse ratio of (a) the stripped solvent copper concentration of an aldoxime extractant at equilibrium (g/l Cu) extracted from an aqueous solution containing 30 g/ Cu, 150 g/l H 2 S0 4 to (b) the stripped solvent coppe concentration of the same extractant under the sam conditions when a selected equilibrium modifier i present.
- Strip Point Determination a) Pipette 10 ml of strip Can use a graduate solution and 10 ml of instead of a modifier solution into pipette. a 30 or 60 ml separatory funnel. b) Shake for 3 minutes and let phases separate. c) Drain aqueous phase and add 10 ml of fresh strip solution. d) Repeat from b) above for a total of three contacts with fresh strip solution. e) Filter the organic phase through IPS paper. f) Analyze the organic for copper concentration via AA.
- Example 1 l The extraction isotherm point was determined by shaking 50 ml of fresh organic (0.188 M 5- nonylsalicylaldoxime and the indicated amount of modifier dissolved in Escaid 200, an aliphatic kerosene) with 50 ml of an aqueous feed solution containing 6 gpl of copper and 3 gpl of iron (III) as the sulfates with a pH of 1.9 for 30 minutes. The phases were separated, the organic was filtered, and then the copper content of the loaded organic phase was determined by atomic absorption spectroscopy.
- Vesatic acids a mixture of highly branched, mainly tertiary monocarboxylic acids having an average of 10 carbon atoms, a boiling range of 140°C-162°C at 20 min, and a flash point of 120°C (C.O.C. ) .
- Example 2 In substantially the same manner as Example 1, a number of modifier compounds were screened and evaluated for the effects of varying modifier concentrations which can be seen from Table 3 below. The modifier screening procedure in the interim was as follow:
- Strip solution 30 g/l CU. 150 g/l H 2 S0 4 in D.I. water.
- Extraction solution 6 g/l Cu, 6 g/l Fe, pH 1.50 in D.I water.
- Escaid 100 solutions of 0.176 molar DSAdO and modifier were prepared.
- the modifier levels tested were 0.025, 0.075, 0.10, and 0.20 molar.
- Each modifier solution and one additional solution containing only 0.176 molar DSAdO were tested as follows:
- the compounds of the present invention showed net copper transfer increases to above 3.0, and even exceeding 4.0 g/l at molarities varying from about 0.02 to about 0.25 with degrees of modification from about 0.2 up to about 0.95.
- the mole ratio of modifier/aldoxime will typically vary from about 0.2 to about 1.5, preferably from about 0.5 to about 1.2.
- the degree of modification will vary dependent on the particular modifier and aldoxime employed as the extractant. Typically however, the degree of modification as defined herein will vary between about 0.25 and approach 1.0, i.e., up to about 0.99, and preferably within the range of about 0.3 to about 0.9.
- modifiers fall within a variety of diverse classes of compounds, such as, alcohols and esters, polyethers, ester-ethers, oximes, ketones, nitriles, carbamates, amides, and salts of certain amine (trialkyl amines) and quaternary ammonium compounds, which modifier compounds contain aliphatic, aromatic or araliphatic groups having from about 4 to about 36 carbon atoms, the total number of carbon atoms in the compounds being sufficient to render the compounds water insoluble and soluble in the water insoluble and water immiscible hydrocarbon solvents employed for use with the water insoluble aldoxime.
- modifier compounds such as tridecanol, and those long chain branched alcohols and esters having up to 30 carbon atoms with a ratio of methyl groups to non-methyl groups above 1:5.
- the modifier compounds of the present invention may, if desired, be employed admixed with the modifiers employed in the past, such as phenols, tridecanol and other fatty alcohols and tributylphosphate, the highly branched alcohols or esters having a ratio of methyl to non-methyl groups above 1:5.
- nonyl anisole also excluded from the ether class is nonyl anisole. While, based on the other ethers exemplified, nonyl anisole might be expected to be useful as a modifier, as can be seen from Table 3 in particular, nonyl anisole appears to have an adverse effect on net copper transfer, showing a net copper transfer of only 1.87 g/l at mole ratios of modifier to aldoxime from 0.25 to 0.75, thus being substantially ineffective in view of the fact that the absence of any modifier resulted in a net copper transfer of 2.0 g/l. This does serve to illustrate however the unpredictability from one compound to another as to its utility as a modifier for aldoxime extractants in the process of recovery of copper from aqueous solutions containing copper, particularly aqueous acid solutions.
- the carboxylic acid amides were synthesized by a typical Schotten-Baumann type procedure.
- the desired starting amine (0.8 mole) and triethylamine (0.8 moles) were placed in a one liter round bottom flask fitted with a mechanical stirrer, addition funnel, and thermometer. The mixture was stirred and the corresponding carboxylic acid chloride (0.6 moles) added over a period of 30 minutes. Toluene was added as needed to keep the reaction mixture stirrable. The temperature was allowed to rise to 85°C. After addition was complete, the reaction mixture was allowed to stir for an additional 1-2 hours.
- the mixture was then cooled, washed three times with equal volumes of 5% by weight aqueous sodium bicarbonate solution and then three times with equal volumes of water.
- the product was then distilled under vacuum.
- the heartcut was identified by IR and NMR spectroscopy.
- the carboxylic acid esters were prepared by a strong acid catalyzed condensation of the carboxylic acid with the alcohol.
- the carboxylic acid (0.7 moles), alcohol (0.85 moles), p-toluenesulfonic acid (0.5 g) and toluene (25 ml) were placed in a 500 ml round bottom flask fitted with a stirrer and a Dean Stark trap for water removal.
- the reaction mixture was heated to reflux and then held at reflux until the theoretical amount of water had been collected.
- the reaction mixture was then cooled, washed twice with 5% by aqueous sodium carbonate and twice with water.
- the crude product was then fractionally distilled under vacuum.
- the heartcut was collected and its identity confirmed by IR and NMR spectroscopy.
- the starting sulfide was prepared by the reaction of 2-ethylhexyl chloride with sodium sulfide (See Reid, "Organic Chemistry of Bivalent Sulfur", Vol. 2, pp 16-21, 24-29, and Vol 3, pp 11-14 (I960)).
- the di-2- ethylhexylsulfide (0.775 moles) and acetone (1500 ml) were then placed in a magnetically stirred flask and 30% hydrogen peroxide added over a period of 10 minutes.
- the reaction mixture was allowed to stir at room temperature for 48 hours.
- a 10% by weight aqueous solution of sodium bisulfite (350 ml) was then added to the flask along with 350 ml of water.
- the resultant mixture was extracted with ether.
- the ether extract was washed with water, then saturated sodium chloride solution, dried and evaporated to a clear oil.
- IR analysis established that oxidation was not complete and the entire procedure was repeated.
- the final product was judged to be of high quality based on IR analysis.
- the alkyl carbonates were prepared by transesterification of dimethyl carbonate with a higher molecular weight alcohol. A mixture of the alcohol (4.1 moles), dimethyl carbonate (2.0 moles) and potassium carbonate (0.84 g) was heated to reflux and the methanol was slowly distilled,away. The excess alcohol and unreacted dimethyl carbonate were then removed under vacuum and the product distilled under vacuum. The product was identified by IR and NMR spectroscopy.
- Aliquat® 336 methylquat of Alamine® 336) , available from Henkel Corp, with dinonylnapthalenesulfonic acid, available from Pfaltz and Bauer, was prepared by mixing equivalent amounts of the Aliquat 336 with the acid in kerosene and washing with dilute sodium bicarbonate solution.
- Nonyl anisole was prepared from nonylphenol, available from Jefferson Chemicals, and methyl iodide under typical Williamson ether synthesis conditions.
- Nonylphenol 1.0 mole
- methyl iodide 1.2 moles
- potassium carbonate (1.25 moles)
- acetone a round bottom flask
- the reaction mixture was poured into water and extracted with ether.
- the ether extract was washed with saturated sodium chloride solution, dried and evaporated to an oil which was then purified by vacuum distillation.
- the product was analyzed as nonyl anisole by IR and NMR spectroscopy.
- Dodecylacetophenone oxime was prepared as described in European patent Application 557274.
- Example 10 Preparation of C21 Dinitrile
- Oleonitrile was prepared from oleic acid in same fashion as was the C-21 dinitrile above.
- the aqueous phase was back washed with hexane which was combined with the first hexane extract and stripped of volatiles at reduced pressure to leave 44 g of product which contained about 80% benzyl-2-butoxyethyl ether, 6% 2-butoxyethanol, 7% benzylchloride and 3% methyl benzyl ether.
- This was distilled to yield 1.4 g of forecut, BP to 80° C @ 0.6 mm which was discarded and 34 g of heart cut, BP 80° C @ 0.6 mm. The heart cut was judged to contain about 91% desired product.
- a mixture of 1,592 g (12.3 moles) of 2-ethylhexylamine and 261 g (4.35 moles) of urea was heated at reflux temperature for 24 hr. The mixture was cooled and about 420 g of 2-ethylhexyl amine was removed by distillation at pot temperatures of 115-200° C/l mm pressure. The residue was subject to a two pass distillation on a wiped film evaporator. The first pass produced 112 g of distillate at 200° C/0.3 mbar pressure which was discarded. The residue was distilled at 230° C/0.25 mbar to produce 1,035 g of product.
- Cut I BP to 135° C, 3.7 G discarded.
- Cut II BP 135-145° C, 60 G GC/IR showed 1% acyloin and 92% diketone.
- Cut III 145° C/l mm pressure, 16 g; GC/IR found 10% acyloin and 78% diketone.
- N-tolyl isotridecylcarbamate can be produced in a similar manner from p-tolyl isocyanate and isotridecyl alcohol.
- Another example of a mixture of modifier is the mixture of 0.01 molar tertiary amine, Alamine® 308/p- toluene sulfonic acid salt (ptsa) with various levels of isotridecanol (TDA) .
- TDA isotridecanol
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Extraction Or Liquid Replacement (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU47709/96A AU706964B2 (en) | 1995-02-16 | 1996-02-12 | Modifiers for aldoxime extractant of metal values |
EP96903718A EP0809714A4 (en) | 1995-02-16 | 1996-02-12 | MODIFIERS FOR PREDIOUS METAL ALDOXIME EXTRACTION SOLVENTS |
MX9704984A MX9704984A (es) | 1995-02-16 | 1996-02-12 | Modificadores para reactivo extractor de aldoxima de valores de metal. |
CA002213102A CA2213102C (en) | 1995-02-16 | 1996-02-12 | Modifiers for aldoxime extractant of metal values |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US38983295A | 1995-02-16 | 1995-02-16 | |
US08/389,832 | 1995-02-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996025525A1 true WO1996025525A1 (en) | 1996-08-22 |
Family
ID=23539898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1996/001116 WO1996025525A1 (en) | 1995-02-16 | 1996-02-12 | Modifiers for aldoxime extractant of metal values |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0809714A4 (es) |
CN (1) | CN1175982A (es) |
AR (1) | AR000969A1 (es) |
AU (1) | AU706964B2 (es) |
CA (1) | CA2213102C (es) |
MX (1) | MX9704984A (es) |
PE (1) | PE60796A1 (es) |
WO (1) | WO1996025525A1 (es) |
ZA (1) | ZA961155B (es) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7309474B2 (en) | 2003-04-17 | 2007-12-18 | Cytec Technology Corp. | Composition and process |
EP2049468A2 (en) * | 2006-08-11 | 2009-04-22 | Cognis IP Management GmbH | Highly-conductive copper extractant formulations |
CN116891949A (zh) * | 2023-06-06 | 2023-10-17 | 西部矿业股份有限公司 | 一种实现湿法铜萃取过程所产三相渣回收利用的工艺 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7993613B2 (en) * | 2006-12-21 | 2011-08-09 | Cognis Ip Management Gmbh | More efficient ether modifiers for copper extractant formulations |
US20090187060A1 (en) * | 2008-01-22 | 2009-07-23 | E-Z-Em, Inc. | Method and Formulation for Neutralizing Toxic Chemicals and Materials |
CN103952551B (zh) * | 2014-05-11 | 2015-12-09 | 四川之江高新材料股份有限公司 | 铜萃取剂lpa的制备方法 |
CN109504856B (zh) * | 2019-01-18 | 2020-07-17 | 重庆康普化学工业股份有限公司 | 一种抗硝化萃取剂及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3887679A (en) * | 1972-05-31 | 1975-06-03 | Falconbridge Nickel Mines Ltd | Separation of copper from cobalt |
US4002583A (en) * | 1972-12-18 | 1977-01-11 | Owens-Illinois, Inc. | Substrate coating composition |
US4507268A (en) * | 1982-01-25 | 1985-03-26 | Henkel Corporation | Solvent extraction |
US4978788A (en) * | 1985-05-16 | 1990-12-18 | Imperial Chemical Industries Plc | Composition and use of the composition for the extraction of metals from aqueous solution |
US5024821A (en) * | 1990-02-28 | 1991-06-18 | Ici Americas Inc. | Solvent extraction process |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4257973A (en) * | 1971-11-05 | 1981-03-24 | E. I. Du Pont De Nemours And Company | Process of making acids or esters from unsaturated compounds |
CA1338345C (en) * | 1988-06-14 | 1996-05-28 | Gary A. Kordosky | Nickel extraction with oxime extractants |
-
1996
- 1996-02-12 CA CA002213102A patent/CA2213102C/en not_active Expired - Lifetime
- 1996-02-12 MX MX9704984A patent/MX9704984A/es unknown
- 1996-02-12 AU AU47709/96A patent/AU706964B2/en not_active Expired
- 1996-02-12 CN CN96191996A patent/CN1175982A/zh active Pending
- 1996-02-12 EP EP96903718A patent/EP0809714A4/en not_active Withdrawn
- 1996-02-12 WO PCT/US1996/001116 patent/WO1996025525A1/en not_active Application Discontinuation
- 1996-02-13 ZA ZA961155A patent/ZA961155B/xx unknown
- 1996-02-15 PE PE1996000105A patent/PE60796A1/es not_active IP Right Cessation
- 1996-02-16 AR ARP960101407A patent/AR000969A1/es unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3887679A (en) * | 1972-05-31 | 1975-06-03 | Falconbridge Nickel Mines Ltd | Separation of copper from cobalt |
US4002583A (en) * | 1972-12-18 | 1977-01-11 | Owens-Illinois, Inc. | Substrate coating composition |
US4507268A (en) * | 1982-01-25 | 1985-03-26 | Henkel Corporation | Solvent extraction |
US4978788A (en) * | 1985-05-16 | 1990-12-18 | Imperial Chemical Industries Plc | Composition and use of the composition for the extraction of metals from aqueous solution |
US5024821A (en) * | 1990-02-28 | 1991-06-18 | Ici Americas Inc. | Solvent extraction process |
Non-Patent Citations (1)
Title |
---|
See also references of EP0809714A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7309474B2 (en) | 2003-04-17 | 2007-12-18 | Cytec Technology Corp. | Composition and process |
EP2049468A2 (en) * | 2006-08-11 | 2009-04-22 | Cognis IP Management GmbH | Highly-conductive copper extractant formulations |
EP2049468A4 (en) * | 2006-08-11 | 2010-09-22 | Cognis Ip Man Gmbh | HIGH CONDUCTIVE COPPER EXTRACTOR FORMULATIONS |
CN116891949A (zh) * | 2023-06-06 | 2023-10-17 | 西部矿业股份有限公司 | 一种实现湿法铜萃取过程所产三相渣回收利用的工艺 |
CN116891949B (zh) * | 2023-06-06 | 2024-05-03 | 西部矿业股份有限公司 | 一种实现湿法铜萃取过程所产三相渣回收利用的工艺 |
Also Published As
Publication number | Publication date |
---|---|
MX9704984A (es) | 1997-10-31 |
PE60796A1 (es) | 1997-01-07 |
ZA961155B (en) | 1996-07-30 |
EP0809714A1 (en) | 1997-12-03 |
CN1175982A (zh) | 1998-03-11 |
CA2213102C (en) | 2009-01-27 |
AU4770996A (en) | 1996-09-04 |
EP0809714A4 (en) | 1998-05-06 |
CA2213102A1 (en) | 1996-08-22 |
AR000969A1 (es) | 1997-08-27 |
AU706964B2 (en) | 1999-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6231784B1 (en) | Water insoluble composition of an aldoxime extractant and an equilibrium modifier | |
US7309474B2 (en) | Composition and process | |
US6177055B1 (en) | Process for extracting and recovering copper | |
US8475748B2 (en) | Metal solvent extraction reagents and use thereof | |
US6726887B1 (en) | Composition of oxime and hydroxy-ester for the solvent extraction of metals | |
CA2213102C (en) | Modifiers for aldoxime extractant of metal values | |
US8852549B2 (en) | Method for maintaining the ratio of the oxime to equilibrium modifier concentration in solvent extraction circuits | |
US7993613B2 (en) | More efficient ether modifiers for copper extractant formulations | |
CA2302353A1 (en) | Process for the extraction of metals from ammoniacal solution | |
US6261526B1 (en) | Nickel recovery process and compositions for use therein | |
US6210647B1 (en) | Process of recovery of metals from aqueous ammoniacal solutions employing an ammonia antagonist having only hydrogen bond acceptor properties | |
US6342635B1 (en) | Ketoximes, processes therefor, and copper extraction process | |
US6632410B2 (en) | Solvent extraction process | |
EP2548979B1 (en) | Method for maintaining the ratio of the oxime to equilibrium modifier concentration in solvent extraction circuits | |
US20040258590A1 (en) | Method for extracting copper from leach solutions at elevated temperatures | |
US20210381080A1 (en) | Reagent compositions for metal solvent extraction and methods of preparation and use thereof | |
CA2243552A1 (en) | Improved beta-diketones for the extraction of copper from aqueous ammoniacal solutions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 96191996.5 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN AZ BY KG KZ RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1996903718 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2213102 Country of ref document: CA Ref document number: 2213102 Country of ref document: CA Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 1996903718 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1996903718 Country of ref document: EP |