US20040258590A1 - Method for extracting copper from leach solutions at elevated temperatures - Google Patents

Method for extracting copper from leach solutions at elevated temperatures Download PDF

Info

Publication number
US20040258590A1
US20040258590A1 US10/829,597 US82959704A US2004258590A1 US 20040258590 A1 US20040258590 A1 US 20040258590A1 US 82959704 A US82959704 A US 82959704A US 2004258590 A1 US2004258590 A1 US 2004258590A1
Authority
US
United States
Prior art keywords
extraction reagent
copper
oxime
hydroxy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/829,597
Inventor
Gary Kordosky
R. Sudderth
Michael Virnig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis Corp
Original Assignee
Cognis Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Corp filed Critical Cognis Corp
Priority to US10/829,597 priority Critical patent/US20040258590A1/en
Priority to CA002525834A priority patent/CA2525834A1/en
Priority to BRPI0410211-8A priority patent/BRPI0410211A/en
Priority to PE2004000416A priority patent/PE20050218A1/en
Priority to PCT/US2004/012907 priority patent/WO2004104238A2/en
Priority to MXPA05011693A priority patent/MXPA05011693A/en
Priority to AU2004242077A priority patent/AU2004242077A1/en
Assigned to COGNIS CORPORATION (COGNIS CORP.) reassignment COGNIS CORPORATION (COGNIS CORP.) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KORDOSKY, GARY A., SUDDERTH, R. BRANTLEY, VIRNIG, MICHAEL J.
Publication of US20040258590A1 publication Critical patent/US20040258590A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/30Oximes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/40Mixtures
    • C22B3/402Mixtures of acyclic or carbocyclic compounds of different types
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • TXIB 2,2,4-trimethyl-1,3-pentanedioldiisobutyrate
  • TXIB belongs to a class of compounds called equilibrium modifiers which are disclosed in U.S. Pat. Nos. 4,507,268 and 6,231,784, the entire contents of each of which is incorporated herein by reference.
  • Modifiers alter the normal copper extraction ability of an extractant thereby allowing one to carefully select a blend of 5-nonylsalicylaldoxime and modifier that is optimum or near optimum for a particular copper solvent extraction application.
  • both of these compounds must be monitored using sophisticated analytical equipment and then the plant operators must calculate the amount of pure 5-nonylsalicylaldoxime which must be added on a regular basis along with the normal copper solvent reagent in order to maintain the proper blend of 5-nonylsalicylaldoxime to modifier in the plant organic.
  • the present invention pertains to a method for extracting copper from an aqueous copper solution wherein the aqueous copper solution has a temperature of at least 30° C.
  • the method comprises contacting the aqueous copper solution with an extraction reagent of the formula (I)
  • R is a linear or branched C 10-18 alkyl group and R 1 is H or CH 3 .
  • the extraction reagents according to the invention undergo degradation at a significantly lower rate than normally encountered with the use of conventional reagents in leach solutions having temperatures equal to or greater than 30° C.
  • the extractants according to the invention are compounds of the formula (I)
  • R is a linear or branched C 10-18 alkyl group and R 1 is H or CH 3 .
  • Compounds of formula (I) wherein R 1 is H may be prepared according to methods described in U.S. Pat. No. 4,020,105 or 4,020,106 or by oximation of aldehydes prepared according to U.S. Pat. No. 4,085,146, the entire contents of each of which is incorporated herein by reference.
  • Compounds of formula (I) wherein R 1 is CH 3 can be prepared according to the procedures disclosed in UK Patent 1,322,532.
  • Preferred extractants include 2-hydroxy-5-decylacetophenone oxime, 2-hydroxy-5-dodecylacetophenone oxime, 2-hydroxy-5-pentadecylacetophenone oxime, 5-decylsalicylaldoxime, 5-dodecylsalicylaldoxime, and 5-pentadecylsalicylaldoxime and mixtures thereof.
  • the extractants according to the invention can be and typically are dissolved in a commercial hydrocarbon solvent such as CONOSOL® 170ES, ORFOM® SX 7, ORFOM® SX 12, ORFOM® SX 11, Shellsol 2046 and similar solvents at a concentration greater than about 0.25 M.
  • the organic extractant may also contain an equilibrium modifier which can include an ester such as 2,2,4-trimethylpentane-1,3-diol diisobutyrate, di-n-butyl adipate, a ketone, an ether, or an alcohol such as tridecyl alcohol.
  • the organic extractant may contain additional oxime extractants.
  • the aqueous feed solution temperature range may be greater than or equal to 30° C., 35° C., or 40° C.
  • the concentration of copper in the aqueous feed solution will typically vary from about 5 gpl Cu to about 50 gpl Cu, most preferably it will be greater than 10 gpl Cu.
  • the leach liquor may result from pressure oxidation of a concentrate or a bio-oxidation process carried out on a concentrate.
  • a series of stability tests were carried out by continuously stirring an aqueous phase containing 30 gpl (grams per liter) Cu and 180 gpl sulfuric acid with an organic extractant phase at 45° C. Approximately 350 ml of the aqueous phase and 350 ml of the organic phase were placed in a standard 3-neck 1 liter round bottom glass flask fitted with an overhead stirrer motor, Teflon® paddle stirrer and a Friedrigs condenser. The flask was placed in a thermostated oil bath to control the temperature at 45° C. The agitator was set at 480 rpm. Samples of the organic were removed periodically and analyzed for copper max load and for oxime content.
  • Test 1 the organic phase was 0.0463 M in 5-nonylsalicylaldoxime, 0.0425 M in 5-dodecylsalicyladoxime, and 0.104 M in di-n-butyl adipate dissolved in CONOSOL® 170ES. The results are summarized in Table 1.
  • 5-nonylsalicylaldoxime has a half life of approximately 115 days, significantly less than 5-dodecylsalicylaldoxime, which has a half life of 220 days under these test conditions.
  • the half life of 5-nonylsalicylaldoxime was approximately 83 days while the half life of the 5-dodecylsalicylaldoxime was 170 days, significantly greater than that of the 5-nonylsalicylaldoxime.
  • the 2-hydroxy-5-nonylacetophenone oxime was significantly more stable than the two aldoximes. It is estimated to have a half life greater than 330 days under these test conditions.

Abstract

Copper is extracted from aqueous copper leach solutions wherein the leach solutions have a temperature of at least 30° C. The method comprises contacting the aqueous solution with an extraction reagent of the formula (I)
Figure US20040258590A1-20041223-C00001
wherein R is a linear or branched C10-18 alkyl group and R1 is H or CH3. These extraction reagents do not undergo any significant degradation normally encountered with the use of conventional reagents in leach solutions having temperatures equal to or greater than 30° C.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of copending provisional application Ser. No. 60/470,657 filed on May 15, 2003, the contents of which are incorporated herein by reference.[0001]
  • BACKGROUND OF THE INVENTION
  • Advances in leaching copper concentrates or high grade copper sulfide ores using either pressure leaching or leaching in stirred tanks with the assistance of ferric ion or bacteria results in leach solutions having a relatively high temperature. The temperatures of most leach liquors treated today is from about 15° C. to about 25° C. The leach solutions exiting pressure leach vessels or stirred tanks can be as high as 150° C. depending on the leaching technique. For several reasons, including the stability of the copper solvent extraction reagent, there are difficulties in treating leach solutions at these high temperatures via copper solvent extraction. As a result these leach solutions are cooled to not more than about 45 to 50° C. prior to entering the copper solvent extraction plant. [0002]
  • In a commercial copper solvent extraction (SX) plant that uses the elevated temperature leaching technology, the extraction molecule 5-nonylsalicylaldoxime has been used in admixture with 2,2,4-trimethyl-1,3-pentanedioldiisobutyrate, also known by the trade name TXIB. TXIB belongs to a class of compounds called equilibrium modifiers which are disclosed in U.S. Pat. Nos. 4,507,268 and 6,231,784, the entire contents of each of which is incorporated herein by reference. Modifiers alter the normal copper extraction ability of an extractant thereby allowing one to carefully select a blend of 5-nonylsalicylaldoxime and modifier that is optimum or near optimum for a particular copper solvent extraction application. [0003]
  • Of concern to operators of copper solvent extraction plants is the hydrolytic degradation of extractants such as 5-nonylsalicylaldoxime since degradation of the extractant represents both an additional cost and an operational problem. The additional cost arises because the reagent lost via degradation must be replaced. [0004]
  • The operational problem arises because the degradation of extractants such as 5-nonylsalicylaldoxime is at a higher rate than the degradation of the modifier so that over a period of time the ratio of 5-nonylsalicylaldoxime to modifier in the organic phase in the SX plant slowly decreases. As this ratio decreases the mixture of 5-nonylsalicylaldoxime to modifier will no longer be optimum for the particular copper solvent extraction plant. In order to maintain the mixture of 5-nonylsalicylaldoxime and TXIB at the optimum in the plant both of these compounds must be monitored using sophisticated analytical equipment and then the plant operators must calculate the amount of pure 5-nonylsalicylaldoxime which must be added on a regular basis along with the normal copper solvent reagent in order to maintain the proper blend of 5-nonylsalicylaldoxime to modifier in the plant organic. [0005]
  • Clearly then there exists a need for a copper extraction molecule that is more stable than 5-nonylsalicylaldoxime in order to reduce reagent loss by degradation and to reduce the number of sophisticated analyses that are required to maintain the proper ratio of copper extraction molecules to modifier. [0006]
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention pertains to a method for extracting copper from an aqueous copper solution wherein the aqueous copper solution has a temperature of at least 30° C. The method comprises contacting the aqueous copper solution with an extraction reagent of the formula (I) [0007]
    Figure US20040258590A1-20041223-C00002
  • wherein R is a linear or branched C[0008] 10-18 alkyl group and R1 is H or CH3. The extraction reagents according to the invention undergo degradation at a significantly lower rate than normally encountered with the use of conventional reagents in leach solutions having temperatures equal to or greater than 30° C.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The extractants according to the invention are compounds of the formula (I) [0009]
    Figure US20040258590A1-20041223-C00003
  • wherein R is a linear or branched C[0010] 10-18 alkyl group and R1 is H or CH3. Compounds of formula (I) wherein R1 is H may be prepared according to methods described in U.S. Pat. No. 4,020,105 or 4,020,106 or by oximation of aldehydes prepared according to U.S. Pat. No. 4,085,146, the entire contents of each of which is incorporated herein by reference. Compounds of formula (I) wherein R1 is CH3 can be prepared according to the procedures disclosed in UK Patent 1,322,532. Preferred extractants include 2-hydroxy-5-decylacetophenone oxime, 2-hydroxy-5-dodecylacetophenone oxime, 2-hydroxy-5-pentadecylacetophenone oxime, 5-decylsalicylaldoxime, 5-dodecylsalicylaldoxime, and 5-pentadecylsalicylaldoxime and mixtures thereof.
  • The extractants according to the invention can be and typically are dissolved in a commercial hydrocarbon solvent such as CONOSOL® 170ES, ORFOM® SX 7, ORFOM® SX 12, ORFOM® SX 11, Shellsol 2046 and similar solvents at a concentration greater than about 0.25 M. The organic extractant may also contain an equilibrium modifier which can include an ester such as 2,2,4-trimethylpentane-1,3-diol diisobutyrate, di-n-butyl adipate, a ketone, an ether, or an alcohol such as tridecyl alcohol. The organic extractant may contain additional oxime extractants. The aqueous feed solution temperature range may be greater than or equal to 30° C., 35° C., or 40° C. The concentration of copper in the aqueous feed solution will typically vary from about 5 gpl Cu to about 50 gpl Cu, most preferably it will be greater than 10 gpl Cu. The leach liquor may result from pressure oxidation of a concentrate or a bio-oxidation process carried out on a concentrate. [0011]
  • The following examples are meant to illustrate but not to limit the invention. [0012]
  • EXAMPLE
  • A series of stability tests were carried out by continuously stirring an aqueous phase containing 30 gpl (grams per liter) Cu and 180 gpl sulfuric acid with an organic extractant phase at 45° C. Approximately 350 ml of the aqueous phase and 350 ml of the organic phase were placed in a standard 3-neck 1 liter round bottom glass flask fitted with an overhead stirrer motor, Teflon® paddle stirrer and a Friedrigs condenser. The flask was placed in a thermostated oil bath to control the temperature at 45° C. The agitator was set at 480 rpm. Samples of the organic were removed periodically and analyzed for copper max load and for oxime content. [0013]
  • In Test 1, the organic phase was 0.0463 M in 5-nonylsalicylaldoxime, 0.0425 M in 5-dodecylsalicyladoxime, and 0.104 M in di-n-butyl adipate dissolved in CONOSOL® 170ES. The results are summarized in Table 1. [0014]
    TABLE 1
    Time 5-Nonylsalicylaldoxime 5-Dodecylsalicylaldoxime
    (Days) (m/l) (m/l)
    0 0.0463 0.0425
    56 0.0333 0.0362
    84 0.0273 0.0328
    112 0.0220 0.0292
    139 0.0189 0.0266
    168 0.0174 0.0260
    196 0.0146 0.0233
    224 0.0109 0.0189
    252 0.0084 0.0154
    260 0.0081 0.0149
  • Based on the data, 5-nonylsalicylaldoxime has a half life of approximately 115 days, significantly less than 5-dodecylsalicylaldoxime, which has a half life of 220 days under these test conditions. [0015]
  • In Test 2, the organic phase was 0.2640 M in 2-hydroxy-5-nonylacetophenone oxime (Ketoxime), 0.3091 M in 5-nonylsalicylaldoxime (C9 Aldox), and 0.0202 M 5-dodecylsalicylaldoxime (C12 Aldox) in CONOSOL® 170ES. The results are summarized in Table 2. [0016]
    TABLE 2
    Time Ketoxime C9 Aldox C12 Aldox
    (Days) (m/l) (m/l) (m/l)
    0 0.2640 0.3091 0.0202
    28 0.2403 0.2253 0.0158
    56 0.2243 0.1823 0.0134
    84 0.2086 0.1522 0.0123
    112 0.1947 0.1274 0.0113
    140 0.1833 0.1130 0.0107
    168 0.1709 0.1012 0.0098
    196 0.1611 0.0928 0.0089
    224 0.1529 0.0868 0.0081
    252 0.1475 0.0829 0.0078
  • Based on the data, the half life of 5-nonylsalicylaldoxime was approximately 83 days while the half life of the 5-dodecylsalicylaldoxime was 170 days, significantly greater than that of the 5-nonylsalicylaldoxime. The 2-hydroxy-5-nonylacetophenone oxime was significantly more stable than the two aldoximes. It is estimated to have a half life greater than 330 days under these test conditions. [0017]

Claims (19)

What is claimed is:
1. A method comprising extracting copper from an aqueous copper solution having a temperature of at least 30° C. by contacting the aqueous solution with an extraction reagent of the formula (I)
Figure US20040258590A1-20041223-C00004
wherein R is a linear or branched C10-18 alkyl group and R1 is H or CH3.
2. The method of claim 1 wherein the extraction reagent is further comprised of a hydrocarbon diluent.
3. The method of claim 1 wherein R is a linear or branched C10-18 alkyl group and R1 is H.
4. The method of claim 1 wherein R is a linear or branched C10-18 alkyl group and R1 is CH3.
5. The method of claim 1 wherein the extraction reagent is selected from the group consisting of 2-hydroxy-5-decylacetophenone oxime, 2-hydroxy-5-dodecylacetophenone oxime, 2-hydroxy-5-pentadecylacetophenone oxime, 5-decylsalicylaldoxime, 5-dodecylsalicylaldoxime and 5-pentadecylsalicylaldoxime.
6. The method of claim 5 wherein the extraction reagent is 5-dodecylsalicylaldoxime.
7. The method of claim 5 wherein the extraction reagent is 2-hydroxy-5-dodecylacetophenone oxime.
8. The method of claim 5 wherein the extraction reagent is 5-decylsalicylaldoxime.
9. The method of claim 5 wherein the extraction reagent is 2-hydroxy-5-decylacetophenone oxime.
10. The method of claim 5 wherein the extraction reagent is 2-hydroxy-5-pentadecylacetophenone oxime.
11. The method of claim 5 wherein the extraction reagent is 5-pentadecylsalicylaldoxime.
12. The method of claim 1 wherein the extraction reagent is further comprised of a modifier selected from the group consisting of an ester, a ketone, an ether and an alcohol.
13. The method of claim 12 wherein the alcohol is tridecanol.
14. The method of claim 12 wherein the ester is 2,2,4-trimethylpentane-1,3-diol diisobutyrate, di-n-butyl adipate.
15. The method of claim 1 wherein the temperature is 35° C.
16. A method comprising extracting copper from an aqueous copper solution having a temperature of at least 30° C. by contacting the aqueous solution with a composition comprising: (a) extraction reagent comprised of a compound of the formula (I)
Figure US20040258590A1-20041223-C00005
wherein R is a dodecyl group and R1 is H and (b) di-n-butyl adipate.
17. A method comprising extracting copper from an aqueous copper solution having a temperature of at least 30° C. by contacting the aqueous solution with a composition comprising: (a) extraction reagent comprised of a compound of the formula (I)
Figure US20040258590A1-20041223-C00006
wherein R is a nonyl group and R1 is CH3 and (b) di-n-butyl adipate.
18. The method of claim 16 wherein the temperature is 35° C.
19. The method of claim 17 wherein the temperature is 35° C.
US10/829,597 2003-05-15 2004-04-22 Method for extracting copper from leach solutions at elevated temperatures Abandoned US20040258590A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/829,597 US20040258590A1 (en) 2003-05-15 2004-04-22 Method for extracting copper from leach solutions at elevated temperatures
CA002525834A CA2525834A1 (en) 2003-05-15 2004-04-27 Method for extracting copper from leach solutions at elevated temperatures
BRPI0410211-8A BRPI0410211A (en) 2003-05-15 2004-04-27 method comprising extracting copper from an aqueous copper solution
PE2004000416A PE20050218A1 (en) 2003-05-15 2004-04-27 METHOD FOR EXTRACTING COPPER FROM LEACHING SOLUTIONS AT HIGH TEMPERATURES
PCT/US2004/012907 WO2004104238A2 (en) 2003-05-15 2004-04-27 Method for extracting copper from leach solutions at elevated temperatures
MXPA05011693A MXPA05011693A (en) 2003-05-15 2004-04-27 Method for extracting copper from leach solutions at elevated temperatures.
AU2004242077A AU2004242077A1 (en) 2003-05-15 2004-04-27 Method for extracting copper from leach solutions at elevated temperatures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US47065703P 2003-05-15 2003-05-15
US10/829,597 US20040258590A1 (en) 2003-05-15 2004-04-22 Method for extracting copper from leach solutions at elevated temperatures

Publications (1)

Publication Number Publication Date
US20040258590A1 true US20040258590A1 (en) 2004-12-23

Family

ID=33479262

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/829,597 Abandoned US20040258590A1 (en) 2003-05-15 2004-04-22 Method for extracting copper from leach solutions at elevated temperatures

Country Status (7)

Country Link
US (1) US20040258590A1 (en)
AU (1) AU2004242077A1 (en)
BR (1) BRPI0410211A (en)
CA (1) CA2525834A1 (en)
MX (1) MXPA05011693A (en)
PE (1) PE20050218A1 (en)
WO (1) WO2004104238A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2548979A1 (en) * 2011-07-22 2013-01-23 Cognis IP Management GmbH Method for maintaining the ratio of the oxime to equilibrium modifier concentration in solvent extraction circuits
WO2013016082A1 (en) * 2011-07-22 2013-01-31 Cognis Ip Management Gmbh Method for maintaining the ratio of the oxime to equilibrium modifier concentration in solvent extraction circuits

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020105A (en) * 1974-09-30 1977-04-26 Imperial Chemical Industries Limited Oxime
US4085146A (en) * 1975-12-15 1978-04-18 Imperial Chemical Industries Limited Process for preparing o-hydroxyarylaldehydes
US4507268A (en) * 1982-01-25 1985-03-26 Henkel Corporation Solvent extraction
US4697038A (en) * 1983-10-24 1987-09-29 501 Brunel University Metal extraction using a novel group of compounds and chemical purification method
US5908605A (en) * 1995-09-07 1999-06-01 Henkel Corporation Copper recovery process
US6113804A (en) * 1985-05-16 2000-09-05 Imperial Chemical Industries Plc Composition and use of the composition for the extraction of metals from aqueous solution
US6177055B1 (en) * 1998-09-14 2001-01-23 Henkel Corporation Process for extracting and recovering copper
US6210647B1 (en) * 1996-12-23 2001-04-03 Henkel Corporation Process of recovery of metals from aqueous ammoniacal solutions employing an ammonia antagonist having only hydrogen bond acceptor properties
US6231784B1 (en) * 1995-02-16 2001-05-15 Henkel Corporation Water insoluble composition of an aldoxime extractant and an equilibrium modifier
US20010029811A1 (en) * 2000-02-18 2001-10-18 Olafson Stephen M. Process for recovery of metals from metal-containing ores

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020105A (en) * 1974-09-30 1977-04-26 Imperial Chemical Industries Limited Oxime
US4085146A (en) * 1975-12-15 1978-04-18 Imperial Chemical Industries Limited Process for preparing o-hydroxyarylaldehydes
US4507268A (en) * 1982-01-25 1985-03-26 Henkel Corporation Solvent extraction
US4697038A (en) * 1983-10-24 1987-09-29 501 Brunel University Metal extraction using a novel group of compounds and chemical purification method
US6113804A (en) * 1985-05-16 2000-09-05 Imperial Chemical Industries Plc Composition and use of the composition for the extraction of metals from aqueous solution
US6277300B1 (en) * 1985-05-16 2001-08-21 Zeneca Limited Composition and use of composition for the extraction of metal values
US6231784B1 (en) * 1995-02-16 2001-05-15 Henkel Corporation Water insoluble composition of an aldoxime extractant and an equilibrium modifier
US5908605A (en) * 1995-09-07 1999-06-01 Henkel Corporation Copper recovery process
US6210647B1 (en) * 1996-12-23 2001-04-03 Henkel Corporation Process of recovery of metals from aqueous ammoniacal solutions employing an ammonia antagonist having only hydrogen bond acceptor properties
US6177055B1 (en) * 1998-09-14 2001-01-23 Henkel Corporation Process for extracting and recovering copper
US20010029811A1 (en) * 2000-02-18 2001-10-18 Olafson Stephen M. Process for recovery of metals from metal-containing ores

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2548979A1 (en) * 2011-07-22 2013-01-23 Cognis IP Management GmbH Method for maintaining the ratio of the oxime to equilibrium modifier concentration in solvent extraction circuits
WO2013016082A1 (en) * 2011-07-22 2013-01-31 Cognis Ip Management Gmbh Method for maintaining the ratio of the oxime to equilibrium modifier concentration in solvent extraction circuits
US8852549B2 (en) 2011-07-22 2014-10-07 Basf Corporation Method for maintaining the ratio of the oxime to equilibrium modifier concentration in solvent extraction circuits

Also Published As

Publication number Publication date
BRPI0410211A (en) 2006-05-09
AU2004242077A1 (en) 2004-12-02
PE20050218A1 (en) 2005-05-04
WO2004104238A3 (en) 2005-05-06
MXPA05011693A (en) 2006-02-13
CA2525834A1 (en) 2004-12-02
WO2004104238A2 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
RU2339715C2 (en) Composition and extraction method by means of metals dissolvent with usage of aldoxime or ketoxime extractants
EP1863944B1 (en) Modification of copper/iron selectivity in oxime-based copper solvent extraction systems
NO171319B (en) METHOD, PROCEDURE AND SOLUTION FOR EXTRACTION OF METALS FROM Aqueous SOLUTIONS OF METAL SALTS
US4582689A (en) Solvent extraction process
FI97395B (en) Nickelextraktionsprocess
US6231784B1 (en) Water insoluble composition of an aldoxime extractant and an equilibrium modifier
US5908605A (en) Copper recovery process
US6726887B1 (en) Composition of oxime and hydroxy-ester for the solvent extraction of metals
US6599414B1 (en) Solvent extraction processes for metal recovery
US6242625B1 (en) Process for extracting copper values from copper containing ores
US6432167B1 (en) Processes for the recovery of copper from aqueous solutions containing nitrate ions
EP0085522B1 (en) Solvent extraction
US20040258590A1 (en) Method for extracting copper from leach solutions at elevated temperatures
AU2002330990A1 (en) Improvements in solvent extraction processes for metal recovery
WO1996041668A1 (en) Gas sparging ammonia from organic extractant
US6596053B2 (en) Processes for the recovery of copper from aqueous solutions containing nitrate ions
US20180340264A1 (en) Methods and systems for controlling impurity metal concentration during metallurgic processes
US6210647B1 (en) Process of recovery of metals from aqueous ammoniacal solutions employing an ammonia antagonist having only hydrogen bond acceptor properties
US7993613B2 (en) More efficient ether modifiers for copper extractant formulations
CA2213102C (en) Modifiers for aldoxime extractant of metal values
US20210381080A1 (en) Reagent compositions for metal solvent extraction and methods of preparation and use thereof
EP2548979B1 (en) Method for maintaining the ratio of the oxime to equilibrium modifier concentration in solvent extraction circuits
CN1187147A (en) Process for removing and recovering ammonia from organic extraction phase in metal liquid-liquid extraction process

Legal Events

Date Code Title Description
AS Assignment

Owner name: COGNIS CORPORATION (COGNIS CORP.), PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KORDOSKY, GARY A.;SUDDERTH, R. BRANTLEY;VIRNIG, MICHAEL J.;REEL/FRAME:015029/0542

Effective date: 20040617

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION