WO1996024709A1 - PRODUCTION OF THIN SINGLE-CRYSTAL SiC LAYERS - Google Patents

PRODUCTION OF THIN SINGLE-CRYSTAL SiC LAYERS Download PDF

Info

Publication number
WO1996024709A1
WO1996024709A1 PCT/EP1996/000496 EP9600496W WO9624709A1 WO 1996024709 A1 WO1996024709 A1 WO 1996024709A1 EP 9600496 W EP9600496 W EP 9600496W WO 9624709 A1 WO9624709 A1 WO 9624709A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sic
temperature
coated
substrate
Prior art date
Application number
PCT/EP1996/000496
Other languages
German (de)
French (fr)
Inventor
Joachim Bill
F. Frederick Lange
Thomas Wagner
Fritz Aldinger
Detlef Heimann
Original Assignee
MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. filed Critical MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.
Publication of WO1996024709A1 publication Critical patent/WO1996024709A1/en
Priority to US08/907,130 priority Critical patent/US6117233A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/023Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing from solids with amorphous structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • This invention relates to a method for producing single-crystalline thin layers of silicon carbide, which may also contain a doping element.
  • Silicon carbide is characterized by a combination of desirable properties, such as a high melting point, extreme hardness, good resistance to chemicals and mechanical damage, and moreover has favorable electronic properties, so that this material is a promising material, particularly in electronic applications , is seen.
  • desirable properties such as a high melting point, extreme hardness, good resistance to chemicals and mechanical damage, and moreover has favorable electronic properties, so that this material is a promising material, particularly in electronic applications , is seen.
  • Several methods are known from the prior art with which thin SiC layers can be produced on a suitable substrate, mostly Si. However, the production of single-crystalline layers is relatively complex.
  • Liaw and Davis describe a CVD process for producing single-crystalline SiC layers at at least about 1600 K and atmospheric pressure.
  • a buffer layer of carbon is first applied to a Si substrate using C 2 H. and then a single-crystalline SiC layer is produced using SiH 4 and C 2 H 4 in H 2 as the carrier gas.
  • a single-crystal SiC layer is produced on a Si substrate at temperatures between 1800 and 1900 ° C. using a starting material comprising polycrystalline silicon and SiC under vacuum.
  • SiC layers can thus be produced on suitable substrates by means of these CVD and sublimation processes known from the prior art, however, these techniques are only of limited suitability owing to their complicated process management and the associated high costs in industrial production, in particular of bulk goods.
  • Another process route for the production of SiC is based on the pyrolysis of element-organic polymers (precursors), such as polysilanes and polycarbosilanes. Both SiC fibers (Yajima et al., Nature 261 (1976) 683 to 685) and SiC layers (Chu et al., Springer Proceedings in Physics, Vol.
  • Another object of the invention is to provide a method for producing a single-crystalline SiC layer which contains doping elements in a predetermined concentration range.
  • Yet another object of the present invention is a single-crystalline SiC layer obtainable by the process according to the invention, or a solid coated therewith.
  • the object of the invention is achieved by a process for producing single-crystalline epitaxial SiC layers, which is characterized in that the substrate to be coated is coated with at least one carbon-containing polysilane, the adhering layer is pyrolyzed under protective gas at about 200 to 1100 ° C and so generated ceramic layer of amorphous SiC crystallized by holding at a temperature of over 700 ° C.
  • the amorphous SiC obtained after pyrolysis can be converted into single-crystalline SiC by holding for a sufficiently long period at a sufficiently high temperature.
  • SiC single crystals as well as Si wafers and single crystalline Al 2 O 3 , such as sapphires, are preferred, especially in technical applications, if appropriate also in doped form.
  • Suitable precursor polymers are in general all carbon-containing polysilanes and polycarbosilanes and mixtures thereof which give SiC under suitable pyrolysis conditions.
  • Suitable polymers as well as monomers and reaction pathways can be found in the review article by Laine and Babonneau (Chem. Mater. 5 (1993) 260 to 279), the disclosure of which is incorporated by reference herein.
  • Currently preferred polymers include polyvinyl silanes, and particularly polymethyl vinyl silane.
  • Carbon-containing polysilanes are applied to the substrate using conventional methods known to those skilled in the art.
  • a solid phase e.g. In the case of a powder coating, it is preferred to subsequently keep the coated substrate at a temperature above the melting temperature of the carbon-containing polysilane for a sufficient period of time in order to bring about a melting of the solid phase and thus a uniform layer application.
  • the carbon-containing polysilane is applied from a liquid phase, i.e. depending on the properties of the material used from a solution or melt.
  • Suitable solvents are all those in which the polymer is soluble and which do not affect the subsequent steps of the process. Typical examples of suitable solvents are toluene, hexane, xylene, etc.
  • the substrate to be coated is immersed in a solution or melt of the polymer.
  • the viscosity of the solution or melt by suitably adjusting the viscosity of the solution or melt, the speed at which the substrate is pulled out of the solution or melt, and the temperature, the thickness of the layer adhering to the substrate and thus of the single-crystal SiC layer finally produced can be advantageous Ways to be regulated.
  • the coated substrate is exposed for a sufficient period of time in an inert environment, such as a He, Ar or N 2 atmosphere, to a temperature sufficient to convert the adhering precursor layer thermally into a ceramic layer made of amorphous SiC.
  • the temperature range used in the pyrolysis begins at around 200 ° C., since decomposition can already be observed during the crosslinking phase of the polymer. In general, however, higher temperatures are used in the pyrolysis, for example from about 500 ° C. to 1100 ° C., preferably from 900 ° C. to 1100 ° C.
  • the time required depends on various parameters such as the precursor used, the layer thickness and the temperature and is generally from about 0.5 hours to 20 hours.
  • the course of the pyrolysis can be monitored by means of known techniques such as 13 C and 29 Si MAS NMR, as a result of which pyrolysis conditions suitable for individual applications can be determined by the experts.
  • the amorphous SiC layer is converted into an SiC single crystal by holding it at a suitable temperature and for a sufficient period of time.
  • the crystallization of the amorphous layer begins at around 700 ° C, depending on the precursor used. In other cases, however, it may be advantageous or even necessary to use higher temperatures, for example from about 1100 ° C. to 1600 ° C. or more than 1600 ° C. Suitable conditions for the respective application can be determined by the person skilled in the art using known techniques, e.g. by examining electron diffraction in the TEM.
  • Another object of the present invention is the production of SiC layers which contain a doping element.
  • Suitable doping elements are known to the person skilled in the art and include, for example, boron for p-doping and, for example, nitrogen or phosphorus for n-doping.
  • the doping elements can according to the inventive method be introduced advantageously by targeted synthesis of the precursors, so that homogeneous element distributions can be represented at the atomic level even in the preceramic state. For example, the introduction of boron via a hydroboration reaction of polyvinylsilanes, as described in Riedel et al. , (Journal of Material Science 28 (1993) 3931 to 3938). Analogously, polysilazanes can be used to incorporate nitrogen.
  • a polymer is accordingly used as the precursor which contains the desired foreign atom in the concentration range provided in the molecule.
  • mixtures of a precursor containing a foreign atom and an unmodified precursor can be used in a suitable ratio. It is an advantage of the method according to the invention for the production of doped SiC layers that by incorporating the foreign atoms into the precursors it is easy to maintain concentration ranges within narrow predetermined limits. Furthermore, a homogeneous element distribution is also achieved.
  • Coated substrates according to the present invention i.e. Solids which are coated with a single-crystalline SiC layer according to the method according to the invention comprise such a layer on at least part of the surface thereof. It is understood that one or more substantially flat surfaces can be completely or partially coated with single-crystal SiC.
  • the process according to the invention can also be used to apply a plurality of layers in succession to a substrate by suitable process control, these layers optionally being able to contain different doping elements.
  • concentration of a doping element within a single layer can be varied by suitable layer application.
  • the method according to the invention is thus a simple Stable new method for producing single-crystalline epitaxial layers from pure and doped silicon carbide and is due to its simple process procedure superior to the methods known from the prior art in terms of economy. Solids with an epitaxial monocrystalline SiC layer according to the invention are suitable for a large number of fields of application, in particular for electronic applications.
  • Figure 1 shows a schematic representation of the dip application process.
  • the reaction mixture is heated under reflux for 8 hours.
  • the soluble PVS are separated from the insoluble ones via a protective gas frit.
  • the higher molecular insoluble PVS content can be obtained by washing out the salt and then drying in vacuo. This reaction gives 120 g (52% yield) of soluble fractions and 90 g (38%) of insoluble PVS polymer.
  • Example 2 Production of Single-Crystalline Epitaxial SiC Layers on SiC Single Crystals
  • the synthesized polymethylvinylsilane was first dissolved in toluene.
  • the polysilane content in the solution was 15.9% by mass.
  • the viscosity was determined to be 1.3 mPas and the density was 0.87 g / cm 3 .
  • a substrate made of single-crystal SiC was then immersed in this solution, as shown in FIG. 1, and pulled out again at a constant speed.
  • the polymer layer adhering to the substrate was then pyrolyzed under an argon atmosphere at 1000 ° C.
  • the layer obtained consisted of amorphous SiC, as could be shown with the aid of electron diffraction in a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • this coated substrate was then aged in a graphite furnace at 1600 ° C. for a period of 10 h and then examined with electron diffraction in the TEM. From the diffraction pattern it was found that the layer is present in single crystal on the exposed substrate.
  • the thickness of the layer obtained is approximately 300 nm.

Abstract

Thin single-crystal SiC layers can be obtained by means of a pyrolytic process in which a substrate is coated with a polysilane containing carbon, the adhesive layer is pyrolyzed using a protective gas and the amorphous SiC layer thus obtained is crystallized through being maintained at a temperature of over 700 °C. In a particular application, the process may be used for producing SiC layers doped in a simple way, the doping material being added in the form of a silane compound.

Description

Herstellung einkristalliner dünner Schichten aus SiC Production of single-crystalline thin layers made of SiC
BESCHREIBUNGDESCRIPTION
Diese Erfindung betrifft ein Verfahren zur Herstellung von einkristallinen dünnen Schichten aus Siliciumcarbid, die ge¬ gebenenfalls auch ein Dotierungselement enthalten können.This invention relates to a method for producing single-crystalline thin layers of silicon carbide, which may also contain a doping element.
Siliciumcarbid (SiC) zeichnet sich durch eine Kombination wünschenswerter Eigenschaften, wie hohem Schmelzpunkt, extremer Härte, guter Beständigkeit gegenüber Chemikalien und mechani¬ scher Beschädigung aus und weist darüber hinaus günstige elektronische Eigenschaften auf, so daß dieses Material als vielversprechender Werkstoff, insbesondere in elektronischen Anwendungen, angesehen wird. Aus dem Stand der Technik sind mehrere Verfahren bekannt, mit denen dünne SiC-Schichten auf einem geeigneten Substrat, zumeist Si, hergestellt werden können. Die Erzeugung einkristalliner Schichten ist jedoch relativ aufwendig.Silicon carbide (SiC) is characterized by a combination of desirable properties, such as a high melting point, extreme hardness, good resistance to chemicals and mechanical damage, and moreover has favorable electronic properties, so that this material is a promising material, particularly in electronic applications , is seen. Several methods are known from the prior art with which thin SiC layers can be produced on a suitable substrate, mostly Si. However, the production of single-crystalline layers is relatively complex.
In Liaw und Davis (J. Electrochem. Soc. , 132 (1985) 642-648) wird ein CVD-Verfahren zur Herstellung einkristalliner SiC- Schichten bei mindestens etwa 1600 K und Atmosphärendruck beschrieben. Dabei wird zunächst unter Verwendung von C2H. eine Pufferschicht von Kohlenstoff auf ein Si-Substrat aufgebracht und anschließend unter Verwendung von SiH4 und C2H4 in H2 als Trägergas eine einkristalline SiC-Schicht erzeugt.Liaw and Davis (J. Electrochem. Soc., 132 (1985) 642-648) describe a CVD process for producing single-crystalline SiC layers at at least about 1600 K and atmospheric pressure. A buffer layer of carbon is first applied to a Si substrate using C 2 H. and then a single-crystalline SiC layer is produced using SiH 4 and C 2 H 4 in H 2 as the carrier gas.
In Abwandlung einer derartigen CVD-Strategie werden gemäß Sumakeris et al. , (Thin Solid Films 225 (1993) 219-224) unter Verwendung eines sogenannten ALE (Atomic Layer Epitaxie) Ver¬ fahrens einkristalline SiC-Schichten auf Si-Substraten herge¬ stellt. Dazu wird das Substrat in einem mehrstufigen Verfahren bei einer Probentemperatur von 820 bis 980°C einer Si2H6-Menge ausgesetzt, die einer monomolekularen Siliciumschicht ent¬ spricht, anschließend mit H2 gespült, danach einem Überschuß von C2H4 ausgesetzt und erneut mit H2 gespült. Im letztgenannten Spülschritt wird die Probe einer Heizquelle von 1450 bis 1700°C ausgesetzt, was zur Erzeugung des Einkristalls notwendig ist. Bei diesem Verfahren ist das oben genannte Aufbringen einer Kohlenstoffpufferschicht nicht erforderlich.In a modification of such a CVD strategy, according to Sumakeris et al. , (Thin Solid Films 225 (1993) 219-224) using a so-called ALE (Atomic Layer Epitaxy) method, produces single-crystal SiC layers on Si substrates. For this purpose, the substrate is exposed in a multistage process at a sample temperature of 820 to 980 ° C. to an amount of Si 2 H 6 which corresponds to a monomolecular silicon layer, then rinsed with H 2 , then an excess of Exposed to C 2 H 4 and rinsed again with H 2 . In the latter rinsing step, the sample is exposed to a heat source from 1450 to 1700 ° C, which is necessary to generate the single crystal. With this method, the above-mentioned application of a carbon buffer layer is not necessary.
Ein weiterer Ansatz zur Herstellung einkristalliner SiC- Schichten basiert auf Sublimationstechniken, wie z.B. in Anikin et al . , (Materials Science and Engineering, Bll (1992) 113-115) beschrieben. Dabei wird bei Temperaturen zwischen 1800 und 1900°C unter Verwendung eines Ausgangsmaterials, umfassend polykristallines Silicium und SiC unter Vakuum eine einkristal¬ line SiC-Schicht auf einem Si-Substrat hergestellt.Another approach to producing single-crystalline SiC layers is based on sublimation techniques, such as in Anikin et al. , (Materials Science and Engineering, Bll (1992) 113-115). A single-crystal SiC layer is produced on a Si substrate at temperatures between 1800 and 1900 ° C. using a starting material comprising polycrystalline silicon and SiC under vacuum.
Obwohl mittels dieser aus dem Stand der Technik bekannten CVD und Sublimationsverfahren somit einkristalline SiC-Schichten auf geeigneten Substraten hergestellt werden können, sind diese Techniken jedoch aufgrund ihrer komplizierten Verfahrensführung und den damit verbundenen hohen Kosten bei der industriellen Fertigung insbesondere von Massengütern nur bedingt geeignet. Ein anderer Verfahrensweg zur Herstellung von SiC beruht auf der Pyrolyse elementorganischer Polymere (Precusoren) , wie etwa Polysilanen und Polycarbosilanen. Durch dieses Verfahren wurden sowohl SiC-Fasern (Yajima et al . , Nature 261 (1976) 683 bis 685) als auch SiC-Schichten (Chu et al. , Springer Proceedings in Physics, Vol. 43, A orphous and Crystalline Silicon Carbide and Related Materials II, Springer-Verlag, Berlin, Heidelberg 1989, Seite 66 bis 71) hergestellt. Gemäß Chu werden zu beschichtende Substrate in eine Lösung oder Schmelze präkerami¬ scher Polymere, d.h. von Polycarbosilanpolymeren eingetaucht und das Polymer anschließend bei Temperaturen im Bereich von 500 bis 1500°C pyrolysiert, wobei amorphe Phasen und bei höheren Temperaturen mikrokristalline Phasen erhalten werden. Die Herstellung einkristalliner SiC-Schichten mittels eines derartigen Pyrolyseverfahrens ist aus dem Stand der Technik jedoch nicht bekannt. Es war somit eine Aufgabe der vorliegenden Erfindung ein Ver¬ fahren bereitzustellen, mit dem einkristalline SiC-Schichten hergestellt werden können und das sich gegenüber den aus dem Stand der Technik bekannten Verfahren durch eine einfachere Verfahrensführung und somit höhere Wirtschaftlichkeit auszeich¬ net.Although single-crystalline SiC layers can thus be produced on suitable substrates by means of these CVD and sublimation processes known from the prior art, however, these techniques are only of limited suitability owing to their complicated process management and the associated high costs in industrial production, in particular of bulk goods. Another process route for the production of SiC is based on the pyrolysis of element-organic polymers (precursors), such as polysilanes and polycarbosilanes. Both SiC fibers (Yajima et al., Nature 261 (1976) 683 to 685) and SiC layers (Chu et al., Springer Proceedings in Physics, Vol. 43, A orphous and Crystalline Silicon Carbide and Related Materials II, Springer-Verlag, Berlin, Heidelberg 1989, pages 66 to 71). According to Chu, substrates to be coated are immersed in a solution or melt of preceramic polymers, ie of polycarbosilane polymers, and the polymer is then pyrolyzed at temperatures in the range from 500 to 1500 ° C., giving amorphous phases and microcrystalline phases at higher temperatures. However, the production of single-crystalline SiC layers by means of such a pyrolysis process is not known from the prior art. It was therefore an object of the present invention to provide a process with which single-crystalline SiC layers can be produced and which is distinguished from the processes known from the prior art by a simpler process control and thus greater economy.
Ein weiterer Gegenstand der Erfindung ist es ein Verfahren zur Herstellung einer einkristallinen SiC-Schicht, die Dotierungs- elemente in einem vorbestimmten Konzentrationsbereich enthält, bereitzustellen.Another object of the invention is to provide a method for producing a single-crystalline SiC layer which contains doping elements in a predetermined concentration range.
Ein nochmals weiterer Gegenstand der vorliegenden Erfindung ist eine durch das erfindungsgemäße Verfahren erhältliche ein¬ kristalline SiC-Schicht, bzw. ein damit beschichteter Festkör¬ per.Yet another object of the present invention is a single-crystalline SiC layer obtainable by the process according to the invention, or a solid coated therewith.
Die erfindungsgemäße Aufgabe wird gelöst durch ein Verfahren zur Herstellung einkristalliner epitaktischer SiC-Schichten, das dadurch gekennzeichnet ist, daß man das zu beschichtende Substrat mit mindestens einem kohlenstoffhaltigen Polysilan überzieht, die anhaftende Schicht unter Schutzgas bei etwa 200 bis 1100°C pyrolysiert und die so erzeugte keramische Schicht aus amorphem SiC durch Halten auf einer Temperatur von über 700°C kristallisiert.The object of the invention is achieved by a process for producing single-crystalline epitaxial SiC layers, which is characterized in that the substrate to be coated is coated with at least one carbon-containing polysilane, the adhering layer is pyrolyzed under protective gas at about 200 to 1100 ° C and so generated ceramic layer of amorphous SiC crystallized by holding at a temperature of over 700 ° C.
Es wurde überraschenderweise festgestellt, daß das nach Pyrolyse erhaltene amorphe SiC durch das Halten für einen ausreichend langen Zeitraum bei einer ausreichend hohen Temperatur in einkristallines SiC überführt werden kann.It was surprisingly found that the amorphous SiC obtained after pyrolysis can be converted into single-crystalline SiC by holding for a sufficiently long period at a sufficiently high temperature.
Als zu beschichtende Substrate eignen sich im erfindungsgemäßen Verfahren im allgemeinen alle Materialien, die mit SiC Ein¬ kristallschichten kompatibel sind. Bevorzugt sind insbesondere im Hinblick auf technische Anwendungen SiC-Einkristalle, sowie Si-Waver und einkristallines Al203, wie etwa Saphire, gegeben- falls auch in dotierter Form. Als geeignete Precursorpolymere kommen im allgemeinen alle kohlenstoffhaltigen Polysilane und Polycarbosilane sowie Gemische davon in Betracht, die unter geeigneten Pyrolysebedin¬ gungen SiC ergeben. Geeignete Polymere sowie Monomere und Reaktionswege können dem Übersichtsartikel von Laine und Babonneau (Chem. Mater. 5 (1993) 260 bis 279) entnommen werden, dessen Offenbarung durch Referenz hierin aufgenommen wird. Derzeit bevorzugte Polymere umfassen Polyvinylsilane und insbesondere Polymethylvinylsilan.In the process according to the invention, all materials which are compatible with SiC single-crystal layers are generally suitable as substrates to be coated. SiC single crystals, as well as Si wafers and single crystalline Al 2 O 3 , such as sapphires, are preferred, especially in technical applications, if appropriate also in doped form. Suitable precursor polymers are in general all carbon-containing polysilanes and polycarbosilanes and mixtures thereof which give SiC under suitable pyrolysis conditions. Suitable polymers as well as monomers and reaction pathways can be found in the review article by Laine and Babonneau (Chem. Mater. 5 (1993) 260 to 279), the disclosure of which is incorporated by reference herein. Currently preferred polymers include polyvinyl silanes, and particularly polymethyl vinyl silane.
Das Aufbringen von kohlenstoffhaltigen Polysilanen auf das Substrat erfolgt unter Verwendung herkömmlicher, dem Fachmann bekannter Verfahren. Bei Auftrag einer Festphase, z.B. einer Pulverbeschichtung ist es bevorzugt, das beschichtete Substrat anschließend für einen ausreichenden Zeitraum bei einer Temperatur oberhalb der Schmelztemperatur des kohlenstoff¬ haltigen Polysilans zu halten, um ein Schmelzen der Festphase und somit einen gleichmäßigen Schichtauftrag zu bewirken. Bevorzugt wird das kohlenstoffhaltige Polysilan jedoch aus einer flüssigen Phase aufgebracht, d.h. in Abhängigkeit von den Eigenschaften des verwendeten Materials aus einer Lösung oder Schmelze. Als Lösungsmittel kommen alle diejenigen in Betracht, in denen das Polymer löslich ist und die die nachfolgenden Schritte des Verfahrens nicht beeinträchtigen. Typische Beispiele geeigneter Lösungsmittel sind Toluol, Hexan, Xylol etc.Carbon-containing polysilanes are applied to the substrate using conventional methods known to those skilled in the art. When ordering a solid phase, e.g. In the case of a powder coating, it is preferred to subsequently keep the coated substrate at a temperature above the melting temperature of the carbon-containing polysilane for a sufficient period of time in order to bring about a melting of the solid phase and thus a uniform layer application. Preferably, however, the carbon-containing polysilane is applied from a liquid phase, i.e. depending on the properties of the material used from a solution or melt. Suitable solvents are all those in which the polymer is soluble and which do not affect the subsequent steps of the process. Typical examples of suitable solvents are toluene, hexane, xylene, etc.
Als besonders vorteilhaft hat sich herausgestellt, den Schicht- auftrag in der Art durchzuführen, daß man das zu beschichtende Substrat in eine Lösung oder Schmelze des Polymers eintaucht. Auf diese Weise kann durch geeignete Einstellung der Viskosität der Lösung oder Schmelze, der Geschwindigkeit mit der das Substrat aus der Lösung oder Schmelze herausgezogen wird, und der Temperatur, die Dicke der am Substrat anhaftenden Schicht und somit der schließlich hergestellten einkristallinen SiC- Schicht auf vorteilhafte Weise geregelt werden. Nach Aufbringen der Polymerschicht wird das beschichtete Substrat für einen ausreichenden Zeitraum in einer inerten Umgebung, wie etwa einer He, Ar oder N2-Atomsphäre einer ausreichenden Temperatur ausgesetzt, um die anhaftende Precur- sorschicht thermisch in eine Keramikschicht aus amorphen SiC zu überführen. Der bei der Pyrolyse verwendete Temperaturbereich beginnt bei etwa 200°C, da bereits während der Vernetzungsphase des Polymers eine Zersetzung zu beobachten ist. Im allgemeinen werden jedoch bei der Pyrolyse höhere Temperaturen verwendet, beispielsweise von etwa 500°C bis 1100°C, bevorzugt von 900°C bis 1100°C. Die erforderliche Zeitdauer hängt von verschiedenen Parametern wie dem verwendeten Precursor, der Schichtdicke und der Temperatur ab und beträgt im allgemeinen von ca. 0,5 Stunden bis zu 20 Stunden. Der Verlauf der Pyrolyse kann mittels bekannter Techniken wie etwa 13C und 29Si MAS NMR überwacht werden, wodurch geeignete Pyrolysebedingungen für einzelne Anwendungen von den Fachleuten ermittelt werden können.It has proven particularly advantageous to carry out the layer application in such a way that the substrate to be coated is immersed in a solution or melt of the polymer. In this way, by suitably adjusting the viscosity of the solution or melt, the speed at which the substrate is pulled out of the solution or melt, and the temperature, the thickness of the layer adhering to the substrate and thus of the single-crystal SiC layer finally produced can be advantageous Ways to be regulated. After the application of the polymer layer, the coated substrate is exposed for a sufficient period of time in an inert environment, such as a He, Ar or N 2 atmosphere, to a temperature sufficient to convert the adhering precursor layer thermally into a ceramic layer made of amorphous SiC. The temperature range used in the pyrolysis begins at around 200 ° C., since decomposition can already be observed during the crosslinking phase of the polymer. In general, however, higher temperatures are used in the pyrolysis, for example from about 500 ° C. to 1100 ° C., preferably from 900 ° C. to 1100 ° C. The time required depends on various parameters such as the precursor used, the layer thickness and the temperature and is generally from about 0.5 hours to 20 hours. The course of the pyrolysis can be monitored by means of known techniques such as 13 C and 29 Si MAS NMR, as a result of which pyrolysis conditions suitable for individual applications can be determined by the experts.
Im darauffolgenden Verfahrensschritt wird die amorphe SiC- Schicht durch Halten bei einer geeigneten Temperatur und für eine ausreichende Zeitspanne in einen SiC-Einkristall über¬ führt. Die Kristallisation der amorphen Schicht beginnt in Abhängigkeit vom verwendeten Precursor ab etwa 700°C. In anderen Fällen kann es jedoch vorteilhaft oder sogar erforder¬ lich sein, höhere Temperaturen zu verwenden, beispielsweise von etwa 1100°C bis 1600°C oder mehr als 1600°C. Geeignete Bedin¬ gungen für die jeweilige Anwendung können vom Fachmann nach bekannten Techniken ermittelt werden, z.B. durch Untersuchung der Elektronenbeugung im TEM.In the subsequent process step, the amorphous SiC layer is converted into an SiC single crystal by holding it at a suitable temperature and for a sufficient period of time. The crystallization of the amorphous layer begins at around 700 ° C, depending on the precursor used. In other cases, however, it may be advantageous or even necessary to use higher temperatures, for example from about 1100 ° C. to 1600 ° C. or more than 1600 ° C. Suitable conditions for the respective application can be determined by the person skilled in the art using known techniques, e.g. by examining electron diffraction in the TEM.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Herstellung von SiC-Schichten, die ein Dotierungselement enthalten. Geeignete Dotierungselemente sind dem Fachmann bekannt und umfassen für eine p-Dotierung z.B. Bor und für eine n-Dotierung z.B. Stickstoff oder Phosphor. Die Dotierungs¬ elemente können gemäß dem erfindungsgemäßen Verfahren auf vorteilhafte Weise durch gezielte Synthese der Precursoren eingebracht werden, so daß bereits im präkeramischen Zustand homogene Elementverteilungen auf atomarer Ebene dargestellt werden können. Beispielsweise kann das Einführen von Bor über eine Hydroborierungsreaktion von Polyvinylsilanen, wie in Riedel et al. , (Journal of Material Science 28 (1993) 3931 bis 3938) beschrieben, bewerkstelligt werden. Analog können zum Einbau von Stickstoff Polysilazane verwendet werden.Another object of the present invention is the production of SiC layers which contain a doping element. Suitable doping elements are known to the person skilled in the art and include, for example, boron for p-doping and, for example, nitrogen or phosphorus for n-doping. The doping elements can according to the inventive method be introduced advantageously by targeted synthesis of the precursors, so that homogeneous element distributions can be represented at the atomic level even in the preceramic state. For example, the introduction of boron via a hydroboration reaction of polyvinylsilanes, as described in Riedel et al. , (Journal of Material Science 28 (1993) 3931 to 3938). Analogously, polysilazanes can be used to incorporate nitrogen.
Zur Herstellung dotierter SiC-Schichten verwendet man demgemäß als Precursor ein Polymer, das das gewünschte Fremdatom im vor¬ gesehenen Konzentrationsbereich im Molekül enthält. Alternativ dazu können auch Gemische eines Fremdatom enthaltenden Precur- sors und einem nicht modifizierten Precursor im geeigneten Verhältnis verwendet werden. Es ist ein Vorteil des erfindungs- gemäßen Verfahrens zur Herstellung dotierter SiC-Schichten, daß durch Einbau der Fremdatome in die Precurosen auf einfache Weise Konzentrationsbereiche innerhalb enger vorbestimmter Grenzen eingehalten werden können. Weiterhin wird auch eine homogene Elementverteilung erzielt.To produce doped SiC layers, a polymer is accordingly used as the precursor which contains the desired foreign atom in the concentration range provided in the molecule. Alternatively, mixtures of a precursor containing a foreign atom and an unmodified precursor can be used in a suitable ratio. It is an advantage of the method according to the invention for the production of doped SiC layers that by incorporating the foreign atoms into the precursors it is easy to maintain concentration ranges within narrow predetermined limits. Furthermore, a homogeneous element distribution is also achieved.
Beschichtete Substrate gemäß der vorliegenden Erfindung, d.h. Festkörper, die mit einer einkristallinen SiC-Schicht gemäß dem erfindungsgemäßen Verfahren beschichtet sind, umfassen eine derartige Schicht auf mindestens einem Teil der Oberfläche davon. Es versteht sich, daß eine oder mehrere im wesentlichen ebene Flächen vollständig oder teilweise mit einkristallinem SiC beschichtet sein können.Coated substrates according to the present invention, i.e. Solids which are coated with a single-crystalline SiC layer according to the method according to the invention comprise such a layer on at least part of the surface thereof. It is understood that one or more substantially flat surfaces can be completely or partially coated with single-crystal SiC.
Es ist für den Fachmann offensichtlich, daß mit dem erfindungs¬ gemäßen Verfahren durch geeignete Verfahrensführung auch mehrere Schichten nacheinander auf ein Substrat aufgebracht werden können, wobei diese Schichten gegebenenfalls unter¬ schiedliche Dotierungselemente enthalten können. Ebenso kann durch geeigneten Schichtauftrag die Konzentration eines Dotierungselements innerhalb einer einzigen Schicht variiert werden. Das erfindungsgemäße Verfahren ist somit eine lei- stungsfähige neue Methode zur Herstellung von einkristallinen epitaktischen Schichten aus reinem und dotierten Siliciumcarbid und ist aufgrund seiner einfachen Verfahrensführung den aus dem Stand der Technik bekannten Verfahren im Hinblick auf die Wirtschaftlichkeit überlegen. Festkörper mit einer epitakti¬ schen einkristallinen SiC-Schicht gemäß der Erfindung eignen sich für eine Vielzahl von Anwendungsgebieten, insbesondere für elektronische Anwendungen.It is obvious to the person skilled in the art that the process according to the invention can also be used to apply a plurality of layers in succession to a substrate by suitable process control, these layers optionally being able to contain different doping elements. Likewise, the concentration of a doping element within a single layer can be varied by suitable layer application. The method according to the invention is thus a simple Stable new method for producing single-crystalline epitaxial layers from pure and doped silicon carbide and is due to its simple process procedure superior to the methods known from the prior art in terms of economy. Solids with an epitaxial monocrystalline SiC layer according to the invention are suitable for a large number of fields of application, in particular for electronic applications.
Die folgenden Beispiele sollen in Verbindung mit Abbildung l das erfindungsgemäße Verfahren weiter erläutern. Abbildung 1 zeigt eine schematische Darstellung des Tauchauftragungsver- fahrens (Dip-Coating) .The following examples are intended to explain the process according to the invention in conjunction with FIG. 1. Figure 1 shows a schematic representation of the dip application process.
Beispiel 1 Darstellung des PolyvinylsilansExample 1 Representation of the polyvinylsilane
In einem 1000 ml Dreihalskolben mit Rückflußkühler, KPG-Rührer und Tropftrichter werden 154,03 g (6,7 mol) Natrium und eine Mischung aus 1200 ml Toluol und 50 ml Tetra- hydrofuran vorgelegt. Hierzu tropft man bei einer Temperatur von 100°C langsam eine Mischung aus 104,1 ml (115.04 g, 1.0 mol) Dichlormethylsilan, 121,3 ml Dichlordimethylsilan (129,06 g; 1,0 mol), 130,62 ml (141,07 g; 1,0 mol) Dichlor- methylvinylsilan und 88,8 ml (76,05 g, 0,7 mol) Chlortri- methylsilan zu. Das Reaktionsgemisch wird 8 Stunden unter Rückfluß erhitzt. Die löslichen PVS werden von den unlösli¬ chen über eine Schutzgasfritte abgetrennt. Der höhermoleku¬ lare unlösliche PVS-Anteil läßt sich durch Auswaschen des Salzes und anschließendem Trocknen im Vakuum erhalten. Man erhält bei dieser Umsetzung 120 g (52 % Ausbeute) lösliche Anteile und 90 g (38 %) unlösliches PVS Polymer.154.03 g (6.7 mol) of sodium and a mixture of 1200 ml of toluene and 50 ml of tetrahydrofuran are placed in a 1000 ml three-necked flask with reflux condenser, KPG stirrer and dropping funnel. A mixture of 104.1 ml (115.04 g, 1.0 mol) of dichloromethylsilane, 121.3 ml of dichlorodimethylsilane (129.06 g; 1.0 mol) and 130.62 ml (141 , 07 g; 1.0 mol) dichloromethylvinylsilane and 88.8 ml (76.05 g, 0.7 mol) chlorotrimethylsilane. The reaction mixture is heated under reflux for 8 hours. The soluble PVS are separated from the insoluble ones via a protective gas frit. The higher molecular insoluble PVS content can be obtained by washing out the salt and then drying in vacuo. This reaction gives 120 g (52% yield) of soluble fractions and 90 g (38%) of insoluble PVS polymer.
Beispiel 2 Herstellung einkristalliner epitaktischer SiC-Schichten auf SiC-Einkristallen Zur Auftragung des synthetisierten Polymethylvinylsilans auf das Substrat wurde dieses zunächst in Toluol gelöst. Der Gehalt der Lösung an Polysilan betrug 15,9 Masse... Die Visko¬ sität wurde zu 1,3 mPas, die Dichte zu 0,87 g/cm3 bestimmt. In diese Lösung wurde dann wie in Abb. 1 gezeigt, ein Sub¬ strat aus einkristallinem SiC eingetaucht und mit einer konstanten Geschwindigkeit wieder herausgezogen.Example 2 Production of Single-Crystalline Epitaxial SiC Layers on SiC Single Crystals To apply the synthesized polymethylvinylsilane to the substrate, it was first dissolved in toluene. The polysilane content in the solution was 15.9% by mass. The viscosity was determined to be 1.3 mPas and the density was 0.87 g / cm 3 . A substrate made of single-crystal SiC was then immersed in this solution, as shown in FIG. 1, and pulled out again at a constant speed.
Die dem Substrat anhaftende Polymerschicht wurde dann unter einer Argon-Atmosphäre bei 1000°C pyrolysiert. Die erhaltene Schicht bestand aus amorphem SiC, wie mit Hilfe der Elektro¬ nenbeugung im Transmissionselektronenmikroskop (TEM) gezeigt werden konnte. In einem nachfolgenden Schritt wurde dieses beschichtete Substrat dann in einem Graphit-Ofen bei 1600°C für eine Zeit von 10 h ausgelagert und anschließend mit der Elektronenbeugung im TEM untersucht. Aus dem Beugungsmuster ergab sich, daß die Schicht auf dem ausgelagerten Substrat einkristallin vorliegt. Die Dicke der erhaltenen Schicht beträgt etwa 300 nm. The polymer layer adhering to the substrate was then pyrolyzed under an argon atmosphere at 1000 ° C. The layer obtained consisted of amorphous SiC, as could be shown with the aid of electron diffraction in a transmission electron microscope (TEM). In a subsequent step, this coated substrate was then aged in a graphite furnace at 1600 ° C. for a period of 10 h and then examined with electron diffraction in the TEM. From the diffraction pattern it was found that the layer is present in single crystal on the exposed substrate. The thickness of the layer obtained is approximately 300 nm.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung einkristalliner epitaktischer SiC-Schichten, d a d u r c h g e k e n n z e i c h n e t , daß man das zu beschichtende Substrat mit mindestens einem kohlenstoffhaltigen Polysilan überzieht, die anhaftende Schicht unter Schutzgas bei etwa 200 bis 1100°C pyrolysiert und die so erzeugte keramische Schicht aus amorphem SiC durch Halten auf einer Tempera¬ tur von über 700°C kristallisiert.1. A process for producing single-crystalline epitaxial SiC layers, characterized in that the substrate to be coated is coated with at least one carbon-containing polysilane, the adhering layer is pyrolyzed under protective gas at about 200 to 1100 ° C and the ceramic layer made of amorphous SiC by holding crystallized at a temperature of over 700 ° C.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß man das zu beschichtende Substrat in eine Lösung oder Schmelze des kohlenstoffhaltigen Polysilans ein¬ taucht .2. The method of claim 1, d a d u r c h g e k e n n z e i c h n e t that one immerses the substrate to be coated in a solution or melt of the carbon-containing polysilane.
3. Verfahren nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , daß die Dicke der anhaftenden Schicht durch die Ein¬ stellung der Viskosität der Lösung oder Schmelze, der Geschwindigkeit, mit der das Substrat aus der Lösung oder Schmelze herausgezogen wird und die Temperatur geregelt wird.3. The method of claim 2, d a d u r c h g e k e n n z e i c h n e t that the thickness of the adhering layer by adjusting the viscosity of the solution or melt, the speed at which the substrate is pulled out of the solution or melt and the temperature is controlled.
4. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß man als kohlenstoffhaltiges Polysilan ein Polysilan oder Polycarbosilan verwendet.4. The method according to any one of the preceding claims, that the use of a polysilane or polycarbosilane as the carbon-containing polysilane.
5. Verfahren nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , daß man zur Erzielung einer dotierten SiC-Schicht der Lösung oder Schmelze das Dotierungselement in Form einer Verbindung des Dotierungselements zusammen mit einer Silanverbindung oder als das Dotierungselement im Mole¬ kül enthaltendes Polysilan zusetzt.5. The method according to claim 4, characterized in that to achieve a doped SiC layer of the solution or melt, the doping element in the form of a compound of the doping element together with one Silane compound or as polysilane containing the doping element in the molecule.
6. Verfahren nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , daß man hydroboriertes Polyvinylsilan zusetzt, um eine bordotierte SiC-Schicht zu erhalten.6. The method according to claim 5, d a d u r c h g e k e n n z e i c h n e t that hydroborated polyvinylsilane is added to obtain a boron-doped SiC layer.
7. Verfahren nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , daß man ein Polysilazan zusetzt, um eine N-dotierte SiC- Schicht zu erzeugen.7. The method of claim 5, d a d u r c h g e k e n n z e i c h n e t that a polysilazane is added to produce an N-doped SiC layer.
8. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß man die Pyrolyse bei einer Temperatur von 900°C bis 1100°C durchführt.8. The method according to any one of the preceding claims, d a d u r c h g e k e n n z e i c h n e t that one carries out the pyrolysis at a temperature of 900 ° C to 1100 ° C.
9. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß man die Kristallisation bei einer Temperatur von etwa 1100°C bis 1600°C durchführt.9. The method according to any one of the preceding claims, d a d u r c h g e k e n n z e i c h n e t that one carries out the crystallization at a temperature of about 1100 ° C to 1600 ° C.
10. Einkristalline epitaktische SiC-Schicht, d a d u r c h g e k e n n z e i c h n e t , daß sie erhältlich ist durch Überziehen eines zu be¬ schichtenden Substrats mit mindestens einem kohlenstoff¬ haltigen Polysilan, Pyrolysieren der anhaftenden Schicht bei etwa 200°C bis 1100°C unter Schutzgas und Kristalli¬ sieren der so erhaltenen keramischen Schicht aus amor¬ phem SiC durch Halten auf einer Temperatur von über 700°C.10. Single-crystalline epitaxial SiC layer, characterized in that it is obtainable by coating a substrate to be coated with at least one carbon-containing polysilane, pyrolyzing the adhering layer at about 200 ° C. to 1100 ° C. under protective gas and crystallizing the ceramic layer of amorphous SiC thus obtained by holding at a temperature of over 700 ° C.
11. Festkörper, der mit mindestens einer Schicht aus ein¬ kristallinem SiC beschichtet ist, d a d u r c h g e k e n n z e i c h n e t , daß er erhältlich ist durch Aufbringen mindestens eines kohlenstoffhaltigen Polysilans auf mindestens einen Teil der Oberfläche des Festkörpers, Pyrolysieren der an¬ haftenden Schicht bei etwa 200°C bis 1100°C unter Schutzgas und Kristallisieren der so erhaltenen kerami¬ schen Schicht aus amorphem SiC durch Halten auf einer Temperatur von über 700°C. 11. Solid body which is coated with at least one layer of monocrystalline SiC, characterized in that that it is obtainable by applying at least one carbon-containing polysilane to at least part of the surface of the solid, pyrolyzing the adhering layer at about 200 ° C. to 1100 ° C. under protective gas and crystallizing the ceramic layer thus obtained from amorphous SiC by holding at a temperature of over 700 ° C.
PCT/EP1996/000496 1995-02-07 1996-02-06 PRODUCTION OF THIN SINGLE-CRYSTAL SiC LAYERS WO1996024709A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/907,130 US6117233A (en) 1995-02-07 1997-08-06 Formation of single-crystal thin SiC films

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19503976.9 1995-02-07
DE19503976A DE19503976C1 (en) 1995-02-07 1995-02-07 Single crystal epitaxial silicon carbide layer prodn

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/907,130 Continuation US6117233A (en) 1995-02-07 1997-08-06 Formation of single-crystal thin SiC films

Publications (1)

Publication Number Publication Date
WO1996024709A1 true WO1996024709A1 (en) 1996-08-15

Family

ID=7753357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/000496 WO1996024709A1 (en) 1995-02-07 1996-02-06 PRODUCTION OF THIN SINGLE-CRYSTAL SiC LAYERS

Country Status (2)

Country Link
DE (1) DE19503976C1 (en)
WO (1) WO1996024709A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018224438A1 (en) 2017-06-09 2018-12-13 Psc Technologies Gmbh Method for producing layers of silicon carbide

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1072282C (en) * 1998-01-23 2001-10-03 西安理工大学 Film growth of silicon carbide monocrystal using silicon substrate beta-silicon carbide crystal
AT412207B (en) * 2003-03-11 2004-11-25 Arc Seibersdorf Res Gmbh PROTECTIVE COATINGS ON CARBON SUBSTRATES AND METHOD FOR THE PRODUCTION THEREOF
DE102009002129A1 (en) 2009-04-02 2010-10-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hard-coated bodies and methods for producing hard-coated bodies

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225032A (en) * 1991-08-09 1993-07-06 Allied-Signal Inc. Method of producing stoichiometric, epitaxial, monocrystalline films of silicon carbide at temperatures below 900 degrees centigrade

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241029A (en) * 1992-01-07 1993-08-31 Iowa State University Research Foundation, Inc. Diorganosilacetylene-alt-diorganosilvinylene polymers and a process of preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225032A (en) * 1991-08-09 1993-07-06 Allied-Signal Inc. Method of producing stoichiometric, epitaxial, monocrystalline films of silicon carbide at temperatures below 900 degrees centigrade

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHADDHA A K ET AL: "CHEMICAL VAPOR DEPOSITION OF SILICON CARBIDE THIN FILMS ON TITANIUM CARBIDE, USING 1,3 DISILACYCLOBUTANE", APPLIED PHYSICS LETTERS, vol. 62, no. 24, 14 June 1993 (1993-06-14), pages 3097 - 3098, XP000380944 *
KOJI TAKAHASHI ET AL: "EFFECT OF AL DOPING ON LOW-TEMPERATURE EPITAXY OF 3C-SIC/SI BY CHEMICAL VAPOR DEPOSITION USING HEXAMETHYLDISILANE AS A SOURCE MATERIAL", APPLIED PHYSICS LETTERS, vol. 61, no. 17, 26 October 1992 (1992-10-26), pages 2081 - 2083, XP000310008 *
N.NORDELL ET AL.: "Growth of SiC using hexamethyldisilane in a hydrogen-poor ambient", APPLIED PHYSICS LETTERS, vol. 64, no. 13, 28 March 1994 (1994-03-28), pages 1647 - 1649, XP000441242 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018224438A1 (en) 2017-06-09 2018-12-13 Psc Technologies Gmbh Method for producing layers of silicon carbide

Also Published As

Publication number Publication date
DE19503976C1 (en) 1996-05-09

Similar Documents

Publication Publication Date Title
Gong et al. Preparation and characterization of sol–gel derived (1 0 0)-textured Pb (Zr, Ti) O3 thin films: PbO seeding role in the formation of preferential orientation
DE112008003497B4 (en) Process for growing a silicon carbide single crystal
DE3933039C2 (en)
DE60223587T2 (en) PROCESS FOR SYNTHESIS OF A CONNECTION OF THE FORMULAS M sb n + 1 / sb AX sb n / sb, FILM FROM THE CONNECTION AND USE THEREOF
DE3719515A1 (en) Oxidation-resistant body made of carbon and process for its preparation
CA2010675A1 (en) Silicon-oxy-carbide glass and articles
DE3840781A1 (en) FIBER COMPOSITE CERAMICS AND METHOD FOR THEIR PRODUCTION
Singh et al. Preparation of BaF2 films by metalorganic chemical vapor deposition
DE19503976C1 (en) Single crystal epitaxial silicon carbide layer prodn
Escote et al. Microstructural and transport properties of LaNiO3− δ films grown on Si (111) by chemical solution deposition
JP2010070421A (en) METHOD FOR MANUFACTURING SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL
CN113718227B (en) Two-dimensional layered ternary compound and preparation method thereof
EP3634922A1 (en) Method for producing layers of silicon carbide
DE4302407A1 (en)
EP0411611A1 (en) Method for manufacturing carbon material good in resistance to oxidation
Termoss et al. High purity boron nitride thin films prepared by the PDCs route
DE102015106407A1 (en) Oxidation-resistant fillers in coating materials for refractory metals, their alloys and composites thereof
US6117233A (en) Formation of single-crystal thin SiC films
WO2014082815A1 (en) Method for producing hydridosilanes containing carbon
Ohya et al. Dielectric properties of lead zirconate titanate thin film fabricated on In2O3: Sn substrate by sol-gel method
DE102019215938A1 (en) Process for the production of reinforcement fibers coated with boron nitride and / or reinforcement fiber bundles coated with boron nitride, reinforcement fibers or reinforcement fiber bundles which can be produced by the process and their use
DE4210508C1 (en) Mixed diamond - silicon carbide coating with good adhesion - consists of intimate mixt. of diamond phase and cubic beta silicon carbide phase, which can vary across coating thickness
WO1996023086A1 (en) Production of ceramic coatings by reactive precipitation of polymeric ceramic pre-products
Heimann et al. Preceramic polymers for use as fiber coatings
DE102008013513B4 (en) Dielectric component with high relative permittivity, its use and crystalline substrate with integrated circuits

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08907130

Country of ref document: US

122 Ep: pct application non-entry in european phase