WO1996021098A1 - Fuel injection control device for an internal combustion engine - Google Patents

Fuel injection control device for an internal combustion engine Download PDF

Info

Publication number
WO1996021098A1
WO1996021098A1 PCT/JP1995/002765 JP9502765W WO9621098A1 WO 1996021098 A1 WO1996021098 A1 WO 1996021098A1 JP 9502765 W JP9502765 W JP 9502765W WO 9621098 A1 WO9621098 A1 WO 9621098A1
Authority
WO
WIPO (PCT)
Prior art keywords
adaptive
fuel
fuel injection
internal combustion
air
Prior art date
Application number
PCT/JP1995/002765
Other languages
French (fr)
Japanese (ja)
Inventor
Hidetaka Maki
Shusuke Akazaki
Yusuke Hasegawa
Yoichi Nishimura
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Publication of WO1996021098A1 publication Critical patent/WO1996021098A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • F02D2041/1416Observer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • F02D2041/1417Kalman filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/142Controller structures or design using different types of control law in combination, e.g. adaptive combined with PID and sliding mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1426Controller structures or design taking into account control stability
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/12Timing of calculation, i.e. specific timing aspects when calculation or updating of engine parameter is performed

Definitions

  • the present invention relates to a fuel injection control device for an internal combustion engine, and more specifically to a fuel injection control device that performs fuel injection control using adaptive control and can be realized on an actual machine.
  • the present applicant has also proposed a fuel injection control for an internal combustion engine using adaptive control in Japanese Patent Application No. 6-666, 594 or the like.
  • a fuel injection control device using the above-described adaptive control is mounted on an internal combustion engine, the operation time of the internal combustion engine increases and decreases due to fluctuations in the engine speed, and the microcomputer mounted on the internal combustion engine is also free from performance constraints. is not.
  • the normal fuel control cycle is every TDC, but it takes about 8 to 12 TDC from the injection of fuel to the detection of the control result.
  • an object of the present invention is to solve the above-mentioned problems, and to provide a fuel injection control device for an internal combustion engine ⁇ ⁇ in which an adaptive controller can be actually used in an actual machine while ensuring controllability.
  • an internal combustion engine fuel injection control device that determines an operation amount using an adaptive control law, adaptive control is continuously performed even in a running state in which the calculation time is reduced, such as at a high speed. It is an object of the present invention to provide a fuel injection control device for an internal combustion engine that achieves good controllability. Disclosure of the invention In order to achieve the above object, according to the present invention, there is provided a fuel injection amount control means for controlling a fuel injection amount of a multi-cylinder internal combustion engine, wherein the fuel injection amount is adaptively matched with a target value as an operation amount.
  • An adaptive controller that causes the adaptive controller to calculate an adaptive parameter used by the adaptive controller; and an adaptive parameter adjusting mechanism that calculates an adaptive parameter used by the adaptive controller.
  • the input is performed in synchronization with the fuel control cycle of the internal combustion engine, and the adaptive parameter adjustment mechanism adjusts the adaptive parameter according to at least one of the air-fuel ratio and the in-cylinder fuel amount based on a specific combustion cycle.
  • the adaptive parameter adjustment mechanism adjusts the adaptive parameter according to at least one of the air-fuel ratio and the in-cylinder fuel amount based on a specific combustion cycle. Is configured to perform the calculation of
  • the input to the adaptive parameter adjustment mechanism is configured to be performed in synchronization with a fuel control cycle of a specific cylinder of the internal combustion engine.
  • the adaptive controller is configured to operate in synchronization with a fuel control cycle of the internal combustion engine.
  • air-fuel ratio detection means for detecting the exhaust air-fuel ratio of the internal combustion engine
  • fuel injection quantity control means for controlling the fuel injection amount of the internal combustion engine for each fuel control cycle, and at least the detected exhaust air-fuel ratio based on the detected exhaust air-fuel ratio
  • the controller of the formula type is configured to operate in synchronization with a period longer than the fuel control cycle in a predetermined operation state. Further, the controller of the recurrence type is configured to be an adaptive controller.
  • the adaptive controller includes an adaptive parameter-evening adjusting mechanism for calculating an adaptive parameter used in the adaptive controller, and at least the detected exhaust air-fuel ratio is input to the adaptive parameter adjusting mechanism, and the adaptive parameter is adjusted.
  • the evening adjustment mechanism is configured to operate in synchronization with a longer cycle than the fuel control cycle in a predetermined operation state. Further, the cycle longer than the fuel control cycle is configured to have a value corresponding to an integral multiple of the combustion cycle.
  • the detected air-fuel ratio input to the controller of the recurrence type is configured to be a value based on a plurality of values detected in a cycle shorter than the operation cycle of the controller of the recurrence type.
  • the detected air-fuel ratio input by the adaptive parameter adjusting mechanism is The value is configured to be based on a plurality of values detected in a cycle shorter than the operation cycle of the meter adjustment mechanism.
  • the fuel injection amount control means for controlling the fuel injection amount of the internal combustion engine, an adaptive controller that operates so that the fuel injection amount is equal to a target value as an operation amount, and an adaptive parameter used in the adaptive controller.
  • a fuel injection control device for a fuel-burning engine comprising: an adaptive parameter adjusting mechanism for calculating; and an operating state detecting means for detecting an operating state of the internal combustion engine; and the adaptive controller according to the detected operating state.
  • the control period of at least one of the adaptive parameter adjustment mechanisms is changed.
  • control cycle of the adaptive parameter adjusting mechanism is configured to be equal to or longer than the control cycle of the adaptive controller.
  • control cycle of the adaptive parameter adjustment mechanism is configured to be an integral multiple of the control cycle of the adaptive controller.
  • control cycle of at least one of the adaptive controller and the adaptive parameter adjustment mechanism is changed at a cycle that is an integral multiple of the fuel control cycle.
  • the operating state is configured to be at least the engine speed.
  • FIG. 1 is a schematic diagram generally showing a fuel injection amount control device for an internal combustion engine according to the present application.
  • FIG. 2 is an explanatory diagram showing details of an exhaust gas recirculation mechanism in FIG.
  • FIG. 3 is an explanatory diagram showing details of a canister-purging mechanism in FIG.
  • FIG. 4 is an explanatory diagram showing valve timing characteristics of the variable valve timing mechanism in FIG.
  • FIG. 5 is a block diagram showing details of the control unit in FIG.
  • FIG. 6 is a main flow chart showing the operation of the fuel injection control device for an internal combustion engine according to the present application.
  • FIG. 7 is a block diagram functionally showing the operation of the flowchart shown in FIG.
  • FIG. 8 is a timing chart showing an example of the operation of the adaptive controller used in the fuel injection control device for the internal combustion engine according to the present application.
  • FIG. 9 is a timing chart showing another example of the operation of the adaptive controller used in the fuel injection control device for an internal combustion engine according to the present application.
  • FIG. 10 is a block diagram in which the configuration of the block diagram of FIG. 6 is rewritten focusing on the STR controller and the adaptive parameter adjustment mechanism.
  • FIG. 11 is a flowchart of FIG. 6 showing a subroutine “flow” showing the operation of calculating an average value such as a feedback correction coefficient based on the adaptive control law of the chart.
  • FIG. 12 is a timing chart for explaining the operation of calculating the flowchart of FIG.
  • FIG. 13 is a subroutine 'flow' chart for explaining the instability determination of the adaptive control system in the flow chart of FIG.
  • FIG. 14 is an explanatory diagram illustrating the flow of FIG. 13 and the determination of the instability of the chart.
  • FIG. 15 is an explanatory diagram similar to FIG. 14 for explaining the work of determining the instability of the flow chart of FIG.
  • FIG. 16 is a timing chart showing another example of the operation of the adaptive controller similar to FIG.
  • FIG. 17 is a timing chart showing another example of the operation of the adaptive controller similar to FIG.
  • FIG. 18 is a flow chart showing a second embodiment of the apparatus according to the present application.
  • FIG. 19 is an explanatory diagram showing the characteristics of the map used in the FIG. 18 flow chart.
  • FIG. 20 is an explanatory diagram showing characteristics of a table used in the flowchart of FIG.
  • FIG. 21 is an explanatory diagram showing the characteristics of a table similar to FIG. 20 used in the flowchart of FIG. 18.
  • FIG. 22 is an explanatory diagram showing the characteristics of the same table as FIG. 20 used in the flow and chart of FIG.
  • FIG. 23 shows a table similar to Fig. 20 used in Fig. 18 flow chart.
  • FIG. 4 is an explanatory diagram showing characteristics of the present invention.
  • FIG. 24 is a flow chart showing a third embodiment of the apparatus according to the present application.
  • FIG. 25 is a flowchart showing a fourth embodiment of the apparatus according to the present application.
  • FIG. 26 is an explanatory diagram showing the characteristics of the dead zone used in the flowchart of FIG. 25.
  • FIG. 27 is a flowchart showing a fifth embodiment of the apparatus according to the present application.
  • FIG. 28 is an explanatory diagram showing characteristics of the limit used in the flow chart of FIG. 27.
  • FIG. 29 is a flow chart showing a sixth embodiment of the apparatus according to the present application.
  • FIG. 30 is an explanatory diagram showing the characteristics of the map used in the flowchart of FIG. 29.
  • FIG. 31 is a flow chart showing a seventh embodiment of the apparatus according to the present application.
  • FIG. 32 is an explanatory diagram for explaining the work of the flowchart of FIG. 31.
  • FIG. 33 is a flow chart showing an eighth embodiment of the apparatus according to the present application.
  • FIG. 34 is a flow chart showing a ninth embodiment of the apparatus according to the present application.
  • FIG. 35 is a flowchart showing a tenth embodiment of the apparatus according to the present application.
  • FIG. 36 is a block diagram for explaining the operation of the flowchart of FIG. 35.
  • FIG. 37 is an explanatory diagram showing the relationship between the TDC of a multi-cylinder internal combustion engine and the air-fuel ratio of the exhaust system assembly.
  • FIG. 38 is an explanatory diagram showing the quality of the sample timing with respect to the actual air-fuel ratio.
  • FIG. 39 is a flowchart showing a sampling operation of the air-fuel ratio in the Sel-V block in the block diagram of FIG.
  • FIG. 40 is a block diagram showing an example in which the detection operation of the air-fuel ratio sensor described in the earlier application is modeled as one of explanatory diagrams of the observer in the block diagram of FIG.
  • FIG. 41 is a model obtained by dispersing the model shown in FIG.
  • FIG. 42 is a block diagram showing a true air-fuel ratio estimator modeling the detection behavior of the air-fuel ratio sensor.
  • FIG. 43 is a block diagram showing a model showing the behavior of the exhaust system of the internal combustion engine.
  • FIG. 6 is a data diagram showing a case in which is supplied.
  • FIG. 45 is a data diagram showing the air-fuel ratio of the collective part of the model in FIG. 43 when the input shown in FIG. 44 is given.
  • Figure 46 shows the air-fuel ratio of the collective part of the model in Fig. 43 when the input shown in Fig. 44 is given, taking into account the response delay of the LAF sensor, and the LAF sensor for the same case. It is a graph which compares the actual measurement value of an output.
  • FIG. 47 is a block diagram showing a configuration of a general observer.
  • FIG. 48 is a block diagram showing the structure of the observer used in the earlier application, which is the observer shown in the block diagram of FIG.
  • FIG. 49 is an explanatory block diagram showing a configuration in which the model shown in FIG. 43 and the observer shown in FIG. 48 are combined.
  • FIG. 50 is a block diagram showing feedback control of the air-fuel ratio in the block diagram of FIG.
  • FIG. 51 is an explanatory diagram showing characteristics of a timing map used in the flowchart of FIG.
  • FIG. 52 is an explanatory diagram for explaining the characteristics of FIG. 51 and showing sensor output characteristics with respect to engine speed and engine load.
  • FIG. 53 is a flow chart of FIG. Mining chart.
  • FIG. 54 is a flowchart showing an eleventh embodiment of the apparatus according to the present application.
  • FIG. 55 is a block diagram for explaining the operation of the flowchart of FIG. 54.
  • FIG. 56 is a flow chart of FIG. 54, which is a subroutine flow chart showing the work of determining the instability of the adaptive control system of the chart.
  • FIG. 57 is a timing chart for explaining the dead time in the calculation of the fuel injection amount of the internal combustion engine.
  • FIG. 1 is an overall view schematically showing a fuel injection control device for an internal combustion engine according to the present application.
  • reference numeral 10 denotes an OHC in-line four-cylinder internal combustion engine
  • the flow rate of intake air introduced from an air cleaner 14 disposed at the end of an intake pipe 12 is adjusted by a throttle valve 16. Meanwhile, the gas flows into the first to fourth cylinders via the surge tank 18 and the intake manifold 20 via two intake valves (not shown).
  • An injector 22 is provided near an intake valve (not shown) of each cylinder to inject fuel.
  • the air-fuel mixture injected and integrated with the intake air is ignited in each cylinder by an ignition plug (not shown) in the order of the first, third, fourth, and second cylinders, burns, and is burned by a piston (not shown). Is driven.
  • the exhaust gas is discharged to the exhaust manifold 24 through two exhaust valves (not shown), is purified through the exhaust pipe 26, and is purified by the catalyst device (three-way catalyst) 28, and is discharged outside the engine. It is exhausted.
  • the throttle valve 16 is mechanically disconnected from the accelerator pedal (not shown), and is controlled via the pulse motor M to an opening corresponding to the depression amount of the accelerator pedal and the operating state.
  • a bypass passage 32 is provided in the intake pipe 12 near the position where the throttle valve 16 is disposed, to bypass the throttle valve 16.
  • the internal combustion engine 100 is provided with an exhaust gas recirculation mechanism 100 for recirculating exhaust gas to the intake side.
  • the exhaust gas recirculation path 12 1 of the exhaust gas recirculation mechanism 100 has a first catalyst device 28 (FIG.
  • the other end 12 lb communicates with the downstream side of the throttle valve 16 (not shown in FIG. 2) of the intake pipe 12 on the upstream side of (omitted).
  • An exhaust gas recirculation valve (recirculation gas control valve) 122 for adjusting the amount of exhaust gas recirculated and a volume chamber 121c are provided in the middle of the exhaust gas recirculation path 121.
  • the exhaust air flow valve 122 is a solenoid valve having a solenoid 122 a.
  • the solenoid 122 a is connected to a control unit (ECU) 34 described later, and is controlled by an output from the control unit 34.
  • the valve opening is changed linearly.
  • the exhaust gas recirculation valve 122 is provided with a lift sensor 123 for detecting the valve opening, and the output is sent to the control unit 34.
  • a connection between the intake system of the internal combustion engine 10 and the fuel tank 36 is provided, and a canister / purge mechanism 200 is provided.
  • the purge mechanism 200 is provided between the upper part of the sealed fuel tank 36 and the downstream side of the throttle valve 16 of the intake pipe 12, as shown in FIG. It consists of a passage 2 21, a canister 2 3 containing a sorbent 2 3 1, and a purge passage 2 2 4.
  • a two-way valve 222 is installed in the middle of the steam supply passage 221.
  • a purge control valve 225 and a mixture of fuel gas containing fuel vapor flowing through the purge passage 224 are provided in the middle of the purge passage 224.
  • a flow meter 222 for detecting the flow rate and an HC concentration sensor 227 for detecting the HC concentration in the air-fuel mixture are provided.
  • the purge control valve (electromagnetic valve) 222 is connected to the control unit 34 as described later, and is controlled in accordance with a signal from the control unit 34 to linearly change the valve opening amount.
  • the positive pressure valve of the 2-way valve 222 is opened and opened. It flows into 223 and is adsorbed and stored by the adsorbent 231.
  • the purge control valve 225 is opened by the valve opening amount corresponding to the duty ratio of the on / off control signal from the control unit 34, the evaporated fuel temporarily stored in the canister 220 is discharged to the suction pipe. Due to the negative pressure in 12, the air is sucked into the intake pipe 12 through the purge control valve 2 25 together with the outside air sucked from the outside air intake port 2 32 and sent to each cylinder.
  • 2 ⁇ The negative pressure valve of the A-valve 222 is opened, and the fuel vapor temporarily stored in the canister 222 is returned to the fuel tank 36.
  • the internal combustion engine 10 includes a so-called variable valve timing mechanism 300 (shown as V / T in FIG. 1).
  • the variable valve timing mechanism 300 is described in, for example, Japanese Patent Application Laid-Open No. 2-275,043.
  • the valve timing V of the engine is controlled according to the operating state such as the engine speed Ne and the intake E force P. / T is switched between oV / T and HiV / T with the two types of timing characteristics shown in Fig. 4. However, since the mechanism itself is a known mechanism, the description is omitted.
  • the switching of the valve timing characteristics includes an operation of stopping one of the two intake valves.
  • a crank angle sensor 40 for detecting a crank angle position of a piston (not shown) is provided in a distribution box (not shown) of the internal combustion engine 10, and a throttle valve 16 for the throttle valve 16 is provided.
  • a throttle opening sensor 42 for detecting the opening degree and an absolute pressure sensor 4 for detecting the intake pressure Pb downstream of the throttle valve 16 as an absolute pressure are also provided.
  • An atmospheric pressure sensor 46 for detecting the atmospheric pressure Pa is provided at an appropriate position of the internal combustion engine 10
  • an intake air temperature sensor 48 for detecting the temperature of the intake air is provided upstream of the throttle valve 16.
  • a water temperature sensor 50 for detecting an engine cooling water temperature is provided at an appropriate position of the engine.
  • a valve timing (V / T) sensor 52 (not shown in FIG.
  • variable valve timing mechanism 300 1) for detecting a valve timing characteristic selected by the variable valve timing mechanism 300 via hydraulic pressure is also provided. Further, in the exhaust system, a wide area air-fuel ratio sensor 54 is provided in an exhaust system gathering section downstream of the exhaust manifold 24 and upstream of the catalyst device 28. These sensor outputs are sent to the control unit 34.
  • FIG. 5 is a block diagram showing details of the control unit 34.
  • the output of the wide-range air-fuel ratio sensor 54 is input to the detection circuit 62, where appropriate di-type processing is performed, and a linear proportional to the oxygen concentration in the exhaust gas in a wide range from lean to rich. It outputs a detection signal with various characteristics (hereinafter, this wide-range air-fuel ratio sensor is called “LAF sensor”).
  • LAF sensor this wide-range air-fuel ratio sensor
  • the output of the detection circuit 62 is input into the CPU via the multiplexer 66 and the AZD conversion circuit 68.
  • the CPU includes a CPU core 70, a ROM 72, and a RAM 74.
  • the output of the detection circuit 62 is more specifically described as having a predetermined crank angle (for example, 15 degrees). ) Is converted to AZD every time and sequentially stored in one of the buffers in the RAM 74.
  • the 12 buffers are numbered 0 to 11 later, as shown in Figure 53.
  • Analog sensor outputs from the throttle opening sensor 42 and the like are also taken into the CPU via the multiplexer 66 and the AZD conversion circuit 68, and stored in the RAM 74.
  • the CPU core 70 calculates a control value according to the order stored in the ROM 72 as described later, and drives the injector 22 of each cylinder via the drive circuit 82. Further, the CPU core 70 is provided with a magnetic valve 90 (opening / closing of a bypass passage 32 for adjusting the amount of secondary air) through drive circuits 84, 86, 88, and the above-mentioned electromagnetic valve for controlling exhaust gas recirculation. 1 2 2 and canister ⁇ Purge control solenoid valve 225 is driven. In FIG. 5, the illustration of the lift sensor 123, the flow meter 226, and the HC concentration sensor 227 is omitted.
  • FIG. 6 is a flow chart showing the operation of the control device according to the present application.
  • the engine speed Ne and the intake pressure Pb detected in S10 are read out, and the process proceeds to S12 to determine whether or not cranking is performed. Judge whether it is force.
  • the fuel cut is performed when the fuel supply is stopped, the fuel supply is stopped, and the fuel injection is performed when the throttle valve is in the fully closed position and the engine speed is equal to or higher than a predetermined value. Is controlled in an open loop.
  • the process proceeds to S16, in which a map is searched from the detected engine speed Ne and the intake pressure Pb to calculate a basic fuel fuel injection amount Tim. . Then, the process proceeds to S18, where it is determined whether the activation of the LAF sensor 54 is completed. This is performed, for example, by comparing the difference between the output power E of the LAF sensor 54 and its central power E with a predetermined value (for example, 0.4 V), and determining that activation has been completed when the difference is smaller than the predetermined value. . When it is determined that the activation has been completed, the process proceeds to S20, and it is determined whether or not the activation is in the feedback control area.
  • a predetermined value for example, 0.4 V
  • the injection amount is controlled by open lube. You.
  • the process proceeds to S22, where the LAF sensor detection value is read, and the process proceeds to S24, where the detected air-fuel ratio KACT (k) (k: sampling time. The same applies hereinafter. ). Then, the process proceeds to S26, in which the feedback correction coefficient K according to the PID control law is calculated to calculate AF (k).
  • the feedback correction coefficient KLAF based on the PID control law is calculated as follows.
  • DKAF (k) KCMD (k-d ') -KACT (k)
  • KCMD target air-fuel ratio (where d' indicates the dead time until KCMD is reflected in KACT, and thus means the target air-fuel ratio before the dead time control cycle)
  • KACT k: Indicates the detected air-fuel ratio (for the current control cycle)
  • KLAFP (k) DKAFOO xKP
  • KLAF I (k) KLAF I (k-1) + DKAF (k) x KI
  • KLAFD (k) (DKAFOO -DKAF (k-l)) xKD
  • the P term is obtained by multiplying the deviation by the proportional gain KP
  • the I term is obtained by adding the value obtained by multiplying the deviation by the edge gain KI to the previous value KLAFl (kl) of the feedback correction coefficient
  • the D term is obtained by multiplying the difference between the current value DKAFO of deviation and the previous value DKAF (kl) by the derivative gain KD.
  • each gain KP.KI.KD is determined according to the engine speed and the engine load, and more specifically, is set so that it can be searched from the engine speed Ne and the intake pressure Pb using a map. Keep it.
  • KLAF (k) KLAFP (k) + KLAF I (k) + KLAFD (k)
  • the current value KLAF (k) of the feedback correction coefficient based on the PID control law.
  • the offset is set because the feedback correction coefficient is obtained by multiplication correction. It is assumed that the value of 1.0 is included in the I term KLAFi (k) (that is, the initial value of KLAFKk) is 1.0.
  • the process proceeds to S30, in which the obtained basic fuel injection amount T im is multiplied by a target air-fuel ratio correction coefficient KCMDM (k) and another correction coefficient KTOTAL (the product of various correction coefficients performed by multiplication such as water temperature correction). Then, the required fuel injection amount T cyl (k) required by the internal combustion engine is determined.
  • the target air-fuel ratio is actually indicated by the equivalent ratio, and is used as a correction coefficient for the fuel injection amount. Since the charging efficiency of the intake air differs due to the heat of vaporization, the target air-fuel ratio is corrected for charging efficiency with appropriate characteristics to obtain the target air-fuel ratio correction coefficient KCMDM.
  • the program proceeds to S32, in which the required fuel injection amount Tcyl (k) is multiplied by one of the feedback correction coefficient KLAF (k) or KSTR (k) obtained in S26 or S28, and
  • the output fuel injection amount T out (k) is determined by adding the addition term TT0TAL to the product of.
  • the addition term TT0TAL indicates the total value of the correction coefficient performed by the added value such as the atmospheric pressure correction. (However, the invalid time of the indicator is added separately when the output fuel injection amount T out is output. Not included).
  • the output fuel injection amount is determined using the adhesion coefficient obtained by searching the adhesion coefficient map from the engine cooling water temperature, etc. for the determined output fuel injection amount out (k), and the output fuel injection amount is calculated.
  • Perform Tout (k) on the suction pipe wall adhesion correction (the value after adhesion correction is Tout-F (k)). Note that the correction of the suction pipe wall surface adhesion itself has no direct relation to the gist of the present invention, and a description thereof will be omitted.
  • the routine proceeds to S36, in which the output fuel injection amount T out-F (k) corrected for adhesion is output, and the processing ends.
  • the program proceeds to S38, in which the basic fuel injection amount Tim (k) is multiplied by the target air-fuel ratio correction coefficient KCMDM (k) and various correction coefficients KTOTAL, and The output fuel injection amount T out is calculated by adding the correction addition term TT0TAL to the product of, and the process proceeds to S34.
  • the process proceeds to S40 to search for the fuel injection amount Tier during cranking, and proceeds to S42 to output the fuel injection amount according to the start mode equation.
  • the power fuel injection amount Tout is calculated, and if it is determined in S14 that the fuel cut has occurred, the process proceeds to S44 where the output fuel injection amount Tout (k) is set to zero.
  • FIG. 7 is a block diagram showing the operation more functionally.
  • the illustrated device is based on the adaptive control technology previously proposed by the present applicant.
  • the STR controller consists of an adaptive controller consisting of an STR (Self-Tuning Regulatory Overnight) controller and an adaptive (control) parameter overnight adjustment mechanism that adjusts its adaptation (control) parameters (vector). Inputs the target value and control amount (plant output) of the feedback system for fuel injection amount control, receives the coefficient vector specified by the adaptive parameter adjustment mechanism, and calculates the output.
  • one of the adjustment rules (mechanisms) of adaptive control is the parameter adjustment rule proposed by ID Landau et al.
  • This method converts the adaptive control system into an equivalent feedback system consisting of a linear block and a non-linear block, so that for nonlinear blocks, Popov's integral inequality for input and output is satisfied, and the di-block is strongly positive.
  • This is a method that guarantees the stability of the adaptive control system by determining the adjustment rule.
  • the adjustment rule (adaptive rule) expressed in a recurrence formula is obtained by using at least one of the above-mentioned Popov's superstability theory or Lyapunov's direct method. It guarantees its stability.
  • the parameter adjustment mechanism identifies and estimates the scalar amount and each coefficient of the control element, and sends them to the STR controller as the adaptive parameters shown in Equation 3 above.
  • the parameter adjustment mechanism uses the manipulated variable u (i) of the brand and the controlled variable y (j) (i and j include past values) so that the deviation between the target value and the controlled variable becomes zero. Calculate the overnight hat.
  • the adaptive parameter 0 hat is specifically calculated as shown in Equation 8.
  • ⁇ 0 is the identification of the adaptive parameter.
  • the gain matrix (m + n + d order) that determines the estimated speed, and the asterisk (k) is the signal indicating the identification and estimation error, as shown in Equations 9 and 10, respectively. It is expressed by a simple recurrence formula.
  • Any of the decreasing gain algorithm, the variable gain algorithm, the fixed gain algorithm, and the fixed trace algorithm are suitable for the plant.
  • a 3 (k) l ⁇ Equation 1 1 ⁇ + T (kd) r (k-Dr (kd) ti (O)
  • the above-mentioned STR controller adaptive control
  • the air-fuel ratio and the adaptive parameter adjustment mechanism are outside the fuel injection amount calculation system, and the detected air-fuel ratio KACT (k) is the target air-fuel ratio KCMD (kd ') (where d' is the KCMD It operates so that it adaptively matches the dead time before it is reflected in KACT) and calculates the feedback correction coefficient KSTR (k).
  • the injection amount is supplied as an output fuel injection amount Tout (k) to the control brand (the internal combustion engine) via the adhesion correction compensator.
  • the feedback correction coefficient KSTR (k) and the detected air-fuel ratio KACT (k) are obtained and input to the adaptive parameter adjustment mechanism, where the adaptive parameter 0 hat (k) is calculated and input to the STR controller.
  • the target air-fuel ratio KCMD (k) is given as an input to the STR controller, and the feedback correction coefficient KSTR (k) is calculated using the recurrence formula so that the detected air-fuel ratio KACT0 matches the target air-fuel ratio KCMDOt -d ')
  • KCMD (kd ')-s. xy (k)-r, xKSTR (kl)-r 2 xKSTR (k-2)-r 3 xKSTR (k-3) bo
  • the detected air-fuel ratio KACT (k) and the target air-fuel ratio KCMD (k) are calculated by the controller (PID control law) described earlier in S26 of the flowchart in Fig. 6. PID is shown in the figure), and the second feedback correction coefficient KLAF (k) is calculated based on the PID control law in order to eliminate the deviation between the detected air-fuel ratio in the exhaust system collecting section and the target air-fuel ratio. . Either the feedback correction coefficient KSTR based on the adaptive control rule or the feedback correction coefficient KLAF based on the PID control law is used for calculating the fuel injection amount via the switching mechanism 400 in FIG.
  • the feedback correction coefficient KSTR (k) based on the adaptive control law is used instead.
  • the feedback correction coefficient KLAF (k) based on the PID control law is used.
  • the fuel injection amount of the internal combustion engine calculates the amount of radiation, and it takes some time for the calculated fuel to be compressed, exploded, and exhausted in the cylinder. Furthermore, considering the time required for the exhaust gas to reach the LAF sensor, the detection delay of the sensor itself, and the time required to calculate the amount of fuel actually sucked into the cylinder from the detected value, this time is further increased. growing. As described above, dead time is inevitably involved in controlling the fuel injection amount of the internal combustion engine. Assuming that the dead time is, for example, three times in the combustion cycle as described above by focusing on one cylinder, the TDC number becomes 12 TDC as shown in FIG. 8 when the internal combustion engine is four cylinders.
  • the “combustion cycle” is a four-stroke process consisting of suction, compression, explosion, and exhaust. In this embodiment, it corresponds to 4 TDC.
  • the number of elements of the adaptive parameter ⁇ hat (k) is m + n10d, as is apparent from Equation 3, and is proportional to the dead time d.
  • the dead time is 3 as in the previous example
  • the fuel injection control device for an internal combustion engine shown in the figure can cope with ever-changing operating conditions as much as possible, and reduces the amount of matrix calculations to reduce the load on the on-board computer.
  • the parameter adjustment mechanism is controlled in synchronization with the combustion cycle, and more specifically, only with a specified crank angle (TDC, etc.) of a specific cylinder (such as the first cylinder).
  • TDC crank angle
  • the plant output is input, and the above-mentioned adaptive parameter 6-hour hat is calculated.
  • the calculation of the adaptive parameter 0 hat is performed at a predetermined crank angle (such as TDC) of all cylinders, as is apparent from FIG.
  • a predetermined crank angle such as TDC
  • the fact that the STR controller operates in synchronization with a predetermined crank angle (such as TDC) of all cylinders to calculate the feedback correction coefficient is not different from the configuration shown in FIG.
  • the combustion cycle fuel control cycle
  • d 3
  • the number of elements in the adaptive parameter 0 hat 5
  • the calculation of the gain matrix ⁇ is reduced from 14 x 14 to 5 x 5 matrix operation, and the load on the in-vehicle convenience is reduced, and the operation can be processed within 1 TDC .
  • the large dead time of the controlled object generally impairs controllability compared to the case where the dead time is small, and in particular, becomes remarkable in adaptive control. Waste time can be greatly reduced, and controllability can be improved.
  • Equation 4 is replaced with Equation 13; Equation 8 is replaced with Equation 14; Equation 9 is replaced with Equation 15; It can be changed as shown in Equation 18.
  • Equation 18 u (k-4) u (k-8) u (k-12) y (k)]
  • KCMD (k-4xd ') -s 0 xKACT (k) -r, xKSTR (k-4)-r 2 xKSTR (k-8)-r 3 xKSTR (k-12) b
  • the control cycle (operation cycle) is set for each TDC of all cylinders, that is, synchronized with the TDC of all cylinders in the configuration shown in FIG. It is possible to reduce the order of matrices and vectors used in the calculation while calculating the adaptive parameters.
  • K indicates the number of combustion cycles
  • k indicates TDC.
  • FIG. 10 is a diagram in which the configuration of FIG.
  • inputting the blunt output to the parameter adjusting mechanism in synchronization with the combustion cycle to perform the operation (operation) means operating in synchronization with the predetermined crank angle of the specific cylinder. It is strongly affected by the air-fuel ratio.
  • the adaptive controller when controlling the stoichiometric air-fuel ratio, for example, if the exhaust gas air-fuel ratio of the specific cylinder is in the lean direction and that of the remaining cylinders is in the rich direction, the adaptive controller (STR controller) operates. In some cases, the amount is adjusted in the rich direction so as to match the target value, so that the air-fuel ratio of the remaining cylinders may further increase the rich tendency.
  • the plant output is input to the parameter adjustment mechanism in synchronization with the combustion cycle to operate it, thereby reducing the number of elements of the adaptive parameter and reducing the number of matrix operations. And reduce the influence of the exhaust gas air-fuel ratio of specific cylinders. To achieve this, the following operation is performed.
  • the parameter adjustment mechanism operates in synchronization with the combustion cycle, that is, operates in synchronization with a predetermined crank angle of a specific cylinder among the four cylinders.However, the control amount y (k) is changed between combustion cycles.
  • the average value of the detected air-fuel ratio KACT (k) for each TDC for example, the average value of the detected air-fuel ratio KACT (k), for example, a simple average value, is input to the parameter adjustment mechanism, and the exhaust gas air-fuel ratio for that specific cylinder is obtained. So that it is not greatly affected by
  • FIG. 11 is a subroutine flow chart showing the calculation work.
  • the predetermined operation region is a low rotation region including idle.
  • the process proceeds to S102, in which the presently calculated air-fuel ratio KACT (k) calculated for the cylinder in S24 of FIG.
  • KACT the previously calculated air-fuel ratio KACT (kl)
  • KA CT the previous and previous calculated air-fuel ratio KA CT
  • KACT the previous and previous calculated air-fuel ratio KACT (k-3) for the previous and previous combustion cylinders
  • the average value KACTAVE is obtained, and it is used as the control output y (k), which is the plant output.
  • control cycle is traced back three times, and the simple average value of the air-fuel ratios calculated during one combustion cycle for the four cylinders including the cylinder is obtained, and is set as the control amount y (k).
  • the process proceeds to S108, where the STR controller calculates a feedback correction coefficient KSTR (k) according to Equation 12 based on the input value, and then proceeds to S110 to calculate the feedback correction coefficient KSTR ( k), including the calculated values up to three control cycles before, that is, the average value of KSTR (k), KSTR (kl), KSTR (k-2) and KSTR (k-3) during one combustion cycle, for example, simple average Calculate the value AVEKSTR (k). That is, the control input KSTR (k), which is the feedback correction coefficient of the fuel calculation system, is output instead of the parameter adjustment mechanism side.
  • the average value of the air-fuel ratios of all cylinders is obtained and input to the parameter — evening adjustment mechanism as the control amount y (k), so that the equivalence ratio of the specific cylinder (for example, the first cylinder) Is not greatly affected by the exhaust gas air-fuel ratio.
  • the average value of the ⁇ ⁇ -hat for the four control cycles (one combustion cycle) corresponding to that of the four cylinders for the zero-parameter (k) of the adaptive parameter of the output side, not the input side of the parameter adjustment mechanism, Is obtained and input to the STR controller, so that the purpose of reducing the effect of the exhaust gas air-fuel ratio of the specific cylinder can be achieved also by smoothing.
  • the STR controller that outputs the KSTR (k), which is the feedback correction coefficient of the fuel calculation system has four control cycles (one combustion cycle) corresponding to those of the four cylinders. Since the average value of KSTR is determined, the effect of the exhaust gas air-fuel ratio of a specific cylinder can be similarly reduced.
  • the average value AVE- ⁇ hat (k) of the adaptive parameters at 0 Hz calculated in S 106 should not be used to calculate the identification error signal e asterisk shown in Equation 10. I do. That is, since the identification error signal e asterisk is a function that evaluates the magnitude of the error between the detected air-fuel ratio and the target air-fuel ratio, if the AVE-0 hat 0 obtained as described above is used in the calculation of Equation 10, the error is Because it may be inaccurate, it is useful to provide an operating area that uses AVE-0 hat (k) only for the calculation of Eq. 8, but not for the calculation of Eq.
  • the average values of the air-fuel ratio, 0 hat (k), and KSTR (k) are all used for S 102, S 106, and S 110, but any one of Or, of course, the appropriate two may be used.
  • the average value at the time of engine start or the restart of the operation of the STR controller if there is no past value, it goes without saying that an appropriate predetermined value is used.
  • the average value of the adaptive parameter 0 hat (k) and the feedback correction coefficient KSTR (k) it is not necessary to input those values to the parameter adjustment mechanism. This is because the feedback correction coefficient KSTR (k) calculated by the STR controller using the average value of the adaptive parameter 0 hat (k) has already reached a value that is not significantly affected by the exhaust gas air-fuel ratio of the specified cylinder. Because it is. Similarly, the average value of the feedback correction coefficient KSTR (k) calculated by the STR controller itself is a value that is not significantly affected by the exhaust gas air-fuel ratio of the specific cylinder.
  • FIG. 13 is a subroutine 'flow' chart showing the operation.
  • step S200 it is determined whether or not it is in the applicable area of the adaptive control system. For example, in an unstable combustion operation region such as an extremely low water temperature region, the accurate calculation air-fuel ratio KACT (k) is not obtained, so that the air-fuel ratio is outside the applicable region.In that case, the process proceeds to S210. Then, the output • fuel injection amount Tout (k) is calculated using the feedback correction coefficient KLAF (k) obtained by the PID control law. If it is determined that the adaptive control system is within the applicable area, the process proceeds to step S202, where the stability of the adaptive control system is determined using each element of the adaptive parameter 0 hat.
  • the transfer characteristic of the feedback correction coefficient KSTR (k) is expressed as in Equation 19.
  • KSTRCz-' (KC DCz- -SoKACTCz-O-Cr.z-' + r ⁇ + raZ " 3 )
  • Equation 21 The transfer function from KCMDCk) to the correction coefficient KSTR (k) is as shown in Equation 21.
  • the denominator function f (z) of the transfer function of Equation 21 b OZ 3 + rl Z 2 + r 2Z + r 3 + s 0 is one of the functions shown in FIG. Therefore, it is determined whether or not the real root is within the unit circle. That is, as shown in FIG. 15, it is determined whether or not f (1-1) ⁇ 0 or f (1)> 0. When the result is affirmative, the real root is within the unit circle, so that it can be easily determined whether the system is stable or not. Then, the process proceeds to S204 to determine whether or not the adaptive control system is unstable from the above.
  • the process proceeds to S206 to return the adaptive parameter vector 0 to the initial value. As a result, the stability of the system can be restored. Then, the process proceeds to S208, where the gain matrix ⁇ is corrected. Since the gain matrix ⁇ determines the change (convergence) speed of the parameter adjustment mechanism, this correction is performed so as to slow down the convergence speed. Here, each element of the gain matrix ⁇ is replaced with a smaller value. With this, the stability of the system can be restored similarly.
  • the correction coefficient KF (k) based on the PID control law is used as the feedback correction coefficient, and it is used as the required fuel injection amount Tcyl ( k) and add the addition term TT0TAL to the product to determine the output fuel injection amount Tout (k).
  • the process proceeds to S212, where the correction coefficient KST (k) by the adaptive control law is used as the feedback correction coefficient as shown in the figure.
  • the output fuel injection amount Tout (k) is calculated.
  • the average value of the feedback correction coefficient KSTR is obtained in S110 of the flowchart in FIG. 11, it goes without saying that the average value is used.
  • the output u (k) of the switching mechanism 400 is input to the STR controller and the parameter adjusting mechanism. This is to enable the calculation of the feedback correction coefficient KSTR by the adaptive control law even when the feedback correction coefficient KLAF by the PID control law is selected.
  • the parameter adjustment mechanism operates for each cylinder TDC
  • the number of elements in the adaptive parameter adjustment is 5 and the ⁇ matrix operation is 5
  • the load on the in-vehicle computer is reduced to X5, and the computation can be completed in 1 TDC with the in-vehicle computer of ordinary performance.
  • the STR controller also calculates the feedback correction coefficient KSTR for every cylinder TDC, and by changing the feedback correction coefficient KSTR for every cylinder TDC, can respond to changes in the operating state as much as possible. In addition, controllability can be improved by greatly reducing the dead time.
  • each cylinder when viewed from the cylinder-by-cylinder adjustment mechanism, each cylinder operates every combustion cycle.As a result, the cylinder always operates at a predetermined crank angle of the specified cylinder, for example, the first cylinder.
  • the feedback correction coefficient KSTR is determined based on the control amount for a specific cylinder, for example, when the air-fuel ratio of the first cylinder is rich and that of the other cylinders is lean, the feedback correction coefficient KSTR becomes empty. The decision was made to correct the fuel ratio in the lean direction, which spurred the leaning of the air-fuel ratio of the other cylinders. However, as a result of the average value for all cylinders, such inconvenience does not occur.
  • the adaptive parameter 0 hat is synchronized not with every cylinder TDC but with the combustion cycle of a specific cylinder.
  • This method is particularly effective when the operable time decreases as the engine speed increases.
  • the variation of the adaptation parameters required for each cylinder at 0 h is reduced, so that the controllability can be maintained even if the adaptation parameter of a specific cylinder is applied to all cylinders including other cylinders.
  • the calculation time can be shortened without deteriorating the controllability because the deterioration of is small.
  • Fig. 18 is a flow chart showing a second embodiment of the apparatus according to the present application, which is related to the setting of the gain matrix ⁇ ⁇ ⁇ used for calculating the feedback correction coefficient KSTR.
  • Equation 23 If all non-diagonal elements of gain matrix ⁇ are set to 0, it can be expressed as Equation 23, and the operation can be reduced to 5 multiplications Can be. 2 g
  • Equation 24 is obtained.
  • G 33. g ". G” corresponded to only one element of the change speed of each element of the adaptive parameters Isseki (hearts preparative (k) (k) If the off-diagonal elements of the gain matrix ⁇ are not 0, the calculation of the adaptive parameter 0 hat (k) as can be seen from Equations 2 2 and 24 Is given by the following equation 25.
  • Equations 2 2 and 24 Is given by the following equation 25.
  • Equation 25 Further, the inventors conducted a test, and found that the five setting elements g H to g 55 in the 55 matrix, assuming that some of them have the same value, have the adaptive parameter 6> hat (k) It has been found that the ratio of the change speed of each element is appropriate and the controllability is the best. For example, gugg sa g-g. With such placing, it is possible to reduce the Setti ring element into two g and g 66, it is possible to reduce the man-hours for Setti ring, for example, the internal variable T (kd) ⁇ r (k operation -d) is as few 26, n multiplication is 1 twice
  • Equation 2 6 On the other hand, if g H to g 44 take different values, the above operation becomes as shown in Equation 27, and the multiplication increases to 15 times.
  • r T (kd r ⁇ (kd) g, iu (kd) 2 + + g 55 y (kd) ; From number 2 and above, setting some of g ⁇ g ss to the same value The number of elements can be reduced, the calculation time can be further reduced, and the ratio of the change speed of each element of the adaptive parameter ⁇ hat (k) can be made appropriate, so that the controllability can be improved. At this time, if gu ⁇ gg ss gg is used, it goes without saying that the effect is most apparent.
  • g H to g 55 are determined by the RAM 74 in the control unit 34 according to the operating state. In the book. More specifically, it is stored according to the operating state of the control device of the engine such as canister purge, exhaust gas recirculation, etc., in addition to the operating state. In this case, gugss may be all the same value, all different values, or some same value. In addition,
  • the off-diagonal element of the gain matrix ⁇ may be used as long as the capacity of the RAM 74 or the operation time has room.
  • the engine operating parameters such as the engine speed Ne and the intake pressure Pb and the operating states of the exhaust gas recirculation mechanism or the canister / purge mechanism described above are read, and the program proceeds to S302. It is determined whether or not it is in the idle area. If the determination is affirmative, the process proceeds to S30 to search for the idle ⁇ map. On the other hand, when it is determined in S302 that the variable valve timing mechanism is not in the idle area, the process proceeds to S306, in which it is determined whether the variable valve timing mechanism is operated with the Hi valve timing characteristic, and the result is affirmed. If so, proceed to S308 to search for a ⁇ map for Hi valve timing. If not, proceed to S310 to search for a ⁇ map for L0 valve timing.
  • Fig. 19 shows the characteristics of the ⁇ map for L0 valve timing.
  • a matrix element g ⁇ gss is searched from the engine speed Ne and the intake pressure Pb.
  • the ⁇ maps for idle and Hi valve timing also have similar characteristics.
  • the value of the gain matrix ⁇ is searched based on the intake pressure Pb indicating the engine load, so that the optimal gain matrix value is obtained even in a deceleration operation state where the engine load fluctuates rapidly. be able to.
  • the process proceeds to S312, where it is determined whether the EGR (exhaust gas recirculation mechanism) is operating. Modify ⁇ . More specifically, the fuel correction coefficient KEGRN for the exhaust gas recirculation rate is searched from the table showing its characteristics in Fig. 20 to find the correction coefficient Kr EGR, and the obtained correction coefficient Kr EGR is multiplied by the gain matrix ⁇ . to correct.
  • the reason why the gain matrix is corrected according to the fuel correction coefficient KEGRN for the exhaust gas recirculation rate is that the correction coefficient Kr EGR is, as shown in the figure, a disturbance as the fuel correction coefficient KEGRN for the exhaust gas recirculation rate decreases as the exhaust gas recirculation rate increases.
  • the stability of the adaptive control system The gain matrix is set so as to decrease as the fuel correction coefficient KEGRN for the exhaust gas recirculation rate decreases, so as to enhance the performance.
  • the exhaust gas recirculation rate KEGRN is a coefficient for multiplying and correcting the fuel injection amount, and is determined to be, for example, 0.9.
  • the gist of the present invention is not in the determination of the exhaust gas recirculation rate itself, and the determination of the exhaust gas recirculation rate is described in, for example, Japanese Patent Application No. 6-294, 014 proposed earlier by the present applicant. Description is omitted.
  • a correction coefficient ⁇ ⁇ is obtained from the fuel correction coefficient KPUG for the purge mass by searching a table showing the characteristics in FIG. 21, and the obtained correction coefficient Kr PUG is multiplied by the gain matrix ⁇ for correction. .
  • the correction coefficient KrPUG is such that the fuel correction coefficient KPUG for the purge mass decreases as the purge mass increases, and the disturbance increases accordingly.Therefore, the gain matrix ⁇ ⁇ ⁇ ⁇ Is set to be small.
  • the fuel correction coefficient KPUG for the purge mass is also described in, for example, Japanese Patent Application Laid-Open Nos. Hei 6-101 and 522 previously proposed by the present applicant, and therefore the description thereof is omitted.
  • the process proceeds to S320 to correct the gain matrix ⁇ according to the detected atmospheric pressure Pa. More specifically, from the detected atmosphere EEPa, a table showing the characteristics shown in Fig. 22 is searched to find the correction coefficient KrPa, and the obtained correction coefficient ⁇ ⁇ ⁇ ⁇ is multiplied by the gain matrix ⁇ for correction. .
  • the reason for correcting the gain matrix ⁇ ⁇ according to the detected atmospheric pressure Pa is that the detected atmospheric pressure Pa decreases, that is, the charging efficiency decreases as the altitude at which the engine is located increases. Since the disturbance occurs to the data set at normal pressure, the gain matrix ⁇ is set to decrease as the detected atmospheric pressure Pa decreases so that the stability of the adaptive control system increases. .
  • a correction coefficient Kr TW is obtained by searching a table showing the characteristics in FIG. 23 from the detected water temperature Tw, and the obtained correction coefficient KrTW is multiplied by a gain matrix to perform correction.
  • the reason for correcting the gain matrix ⁇ according to the detected water temperature Tw is that the correction coefficient ⁇ ⁇ TW is as shown in the figure, and combustion does not occur when the detected water temperature Tw is at low or high water temperature. Since it becomes stable, it causes disturbance to the data set at room temperature.In order to increase the stability of the adaptive control system, reduce the gain matrix ⁇ at low or high water temperature. Is set.
  • the gain matrix for determining the change (convergence) speed of the adaptive parameter 0 hat is determined appropriately according to the operating state. And controllability is improved.
  • the second embodiment determines the gain matrix ⁇ with a fixed gain
  • the fixed gain algorithm has been described, but the calculation of the gain matrix r (k) is performed based on an operation rule other than the fixed gain algorithm such as the variable gain algorithm shown in Expression 9.
  • the calculation of the off-diagonal element of the gain matrix ⁇ 0 is not performed and the value is fixed to 0, thereby realizing the reduction of the amount of calculation and the simplification of the setting shown in the second embodiment. Needless to say, this is possible.
  • FIG. 24 is a flow chart showing a third embodiment of the apparatus according to the present application.
  • the gain matrix ⁇ is calculated with a fixed gain, but in the third embodiment, the calculation is performed using an algorithm other than the fixed gain, and the adaptive
  • the control result using parameters blue output, more specifically, the detected air-fuel ratio KACT
  • the optimal gain matrix ⁇ 0 can be always used in that region, and controllability is improved.
  • ⁇ 0 stored may be a processed value such as an average value between 4 TDCs.
  • the gain matrix r (kl) at that time starts as the initial value stored for each operation area
  • a map of the gain matrix ⁇ ⁇ similar to that shown in the second embodiment is searched from the engine speed Ne and the intake pressure Pb at S400, and the program proceeds to S402 to execute the An appropriate method was used to determine whether the behavior of the detected air-fuel ratio KACT, which is the output, was good, and if not, proceeded to S404 to calculate the gain matrix ⁇ 0, and proceeded to S406 to search. It is stored in a predetermined area of the map. If the result in S402 is affirmative, the process immediately proceeds to S406. Whether the behavior of the detected air-fuel ratio KACT in S402 is good or not is determined by, for example, determining that the detected air-fuel ratio KACT between 10 TDC is within a predetermined value of the target air-fuel ratio KCMD soil.
  • the third embodiment is configured as described above, when the behavior of the detected air-fuel ratio KACT is good, the calculation of the gain matrix ⁇ 0 is performed by a simple map search without using the arithmetic expression shown in Expression 9. Since it can be performed, the amount of calculation can be reduced. Furthermore, if the fluctuation of the detected air-fuel ratio KACT is not good, the optimal gain matrix ⁇ 0 is recalculated and learned for each operating region of the internal combustion engine to cope with the deterioration over time of the internal combustion engine. Since the behavior of the detection equivalence ratio KACT0 can always be improved, controllability can be improved.
  • FIG. 25 is a flow chart showing a fourth embodiment of the apparatus according to the present application.
  • a dead zone is provided in the characteristics of the detected air-fuel ratio KACT so that the adaptive control system does not become unstable.
  • the STR controller operates so that the detected air-fuel ratio KACT matches the target air-fuel ratio KCMD
  • the adaptive parameters Almost no change. Therefore, when the detected air-fuel ratio KACT fluctuates minutely from a small disturbance such as sensor noise, the adaptive control system is not affected by such a small disturbance, so that unnecessary overcorrection is not performed.
  • a dead zone was set near the target air-fuel ratio KCMD in the characteristics of the detected air-fuel ratio KACT.
  • the detected air-fuel ratio KACT was made the same in the range of KCMD-yS to KCMD + HI.
  • the detected air-fuel ratio KACT is compared with a predetermined lower limit value KCMD-8 at S500, and if it is determined that the detected air-fuel ratio KACT is higher than the predetermined value, the flow proceeds to S502.
  • the detected air-fuel ratio KACT is compared with the upper limit predetermined value KCMD + one.
  • the process proceeds to S504, where the detected air-fuel ratio KACT is set to a predetermined value, for example, the target air-fuel ratio KCMD.
  • the detected air-fuel ratio KACT is determined to be lower than the lower limit predetermined value KCMD-y8 in S500, or when the detected air-fuel ratio KACT is determined to be higher than the upper limit predetermined value KCMD + in S502. Terminates the program immediately. Therefore, in that case, the detected value is used as it is as the detected air-fuel ratio KACT.
  • a dead zone can be provided near the target air-fuel ratio KCMD in the characteristics of the detected air-fuel ratio KACT.
  • the fourth embodiment is configured as described above, for example, even when the detected air-fuel ratio KACT fluctuates minutely, the STR controller can operate stably without being affected by the fluctuation, and thus a good control result can be obtained. Can be obtained.
  • the target air-fuel ratio KCMD is set as the detected air-fuel ratio. However, any other value in the range from KCMD- ⁇ to KCMD + may be used.
  • FIG. 27 is a flow chart showing a fifth embodiment of the apparatus according to this application.
  • the fifth embodiment prevents instability of the adaptive control system as in the fourth embodiment, and provides upper and lower limit values for the identification error signal e asterisk to provide a stable adaptive parameter. I got an evening.
  • Equation 8 by limiting the value of the identification error signal e asterisk to a certain range or less, it is possible to limit the changing speed of the adaptive parameter 0 hat. As a result, it is possible to prevent overshoot from the optimal value of the adaptive parameter 0 hat (k) over time and consequently to operate the adaptive control system stably to obtain a good control result. Because you can.
  • the identification error signal e asterisk (k) calculated in S600 is compared with the upper limit a (shown in FIG. 28), and it is determined that the value is exceeded. If so, the process proceeds to S602, and a predetermined value, for example, the upper limit a is set as the identification error signal e asterisk (k). On the other hand, the identification error signal e If it is determined that the threshold value (k) is equal to or smaller than the upper limit value a, the processing proceeds to S604, where the calculated identification error signal e asterisk (k) is compared with the lower limit value b (shown in Fig. 28).
  • the process proceeds to S606, and the second predetermined value, for example, the lower limit value b is set as the identification error signal e (asterisk). If it is determined in S604 that the identification error signal e asterisk (k) is equal to or greater than the lower limit b, the program is immediately terminated. Therefore, in that case, the identification error signal e risk (k) remains the calculated value.
  • the changing speed of the adaptive parameter 0 hat (k) is limited by limiting the value of the identification error signal e asterisk (k) within a certain range. be able to. As a result, it is possible to prevent an overrun with respect to the optimum value of the adaptive parameter 0 hat (k), and to operate the adaptive control system stably to obtain a good control result.
  • the value of the identification error signal e asterisk (k) is set to the upper and lower limits, but may be an appropriate value between the upper and lower limits, or It may be an appropriate value.
  • FIG. 29 is a flow chart showing a sixth embodiment of the apparatus according to the present application.
  • the adaptive error 6> identification error signal e that determines the hat e is used as the denominator of the asterisk in the equation (10) By making the constant 1 variable, the rate of change was stabilized and controllability was improved.
  • the sixth embodiment is based on the premise that the adaptive control as shown in the drawing is realized by a low-level in-vehicle microcomputer by limiting the range of change of the intermediate variables used in the calculation by the adjusting mechanism. This is described in Japanese Patent Application Laid-Open No. Hei 6-161, 511 previously proposed by the present applicant, and therefore description thereof is omitted.
  • the identification error signal e asterisk (k) is calculated as shown in Expression 10. Now, suppose that (1 and y (k) are multiplied by 1 ⁇ 10 (hereinafter j)) and input to the parameter adjustment mechanism. (kl) is constant for a fixed gain). 1 1
  • the rate of change of the identification error signal e asterisk (k) is proportional to the rate of change (convergence) of the adaptive parameter 0 hat (k), so that 0 (k) is calculated using equation (8). Therefore, by giving a value other than j 2 , the rate of change of the adaptive parameter overnight (k) can be changed. Therefore, in the arithmetic expression of the denominator of the identification error signal easter risk (k) shown in Expression 29, i in the expression takes a value other than 1, that is, i ⁇ l.
  • e * (k) number 29 i + jr T (kd) r (kl) jr (kd)
  • the identification error signal e Adaptive parameter 6 due to risk (k) 6> Change in hat (k) (convergence) It is determined whether or not to perform an operation that makes the speed variable. If affirmative, the process proceeds to S702 and i is set to a value other than 1, More specifically, i is determined by searching a map showing the characteristics in FIG. 30 from the detected engine speed Ne and the intake pressure Pb.
  • the same change rate as before at the i and j 2 proceeds to S 704, multiplied by a coefficient j if negative in S 700 And
  • i 1100 is the center, for example, between 150 and 1200.
  • the smaller (i.e., 1/200) i the faster the change (convergence) of the adaptive parameter ⁇ (k), and the larger i (e.g., 1Z50), the more adaptive parameter.
  • the i-map value is more specifically large (for example, 1/50) at high rotation and high load, and small (for example, 1/2000) at low rotation and low load.
  • the adaptive parameter can be harmonized with the coefficient for the input.
  • the change speed of the evening hat is stable, and good controllability can be achieved.
  • the adaptive controller is not limited to the one shown in the first embodiment. As long as they operate based on the Landau et al.'S adjustment rule, all are valid including the MR ACS type adaptive controller.
  • FIG. 31 is a flow chart showing a seventh embodiment of the apparatus according to the present application.
  • the control cycle of the parameter adjustment mechanism and the STR controller shown in the first embodiment is made variable, and the operating state, specifically, The control cycle is determined according to the rotation speed.
  • the calculation load can be reduced as much as possible, and the operation can be performed even in the operation state where the calculation time is short, such as at high speed. It is possible to perform control and realize good controllability.
  • the device detected in S800 The engine speed Ne is compared with a predetermined value Nepl. If it is determined that the detected engine speed Ne is less than the predetermined value Nepl, the process proceeds to S802 and the detected engine speed Ne is determined by another predetermined value. Compare with Necl. When it is determined that the engine speed Ne detected in S802 is another predetermined value Necl not grooved, the process proceeds to S804, in which the parameter adjusting mechanism (abbreviated as P in FIG. 31) and the STR controller ( The control cycle (abbreviated as C in Fig. 1) is for each TDC.
  • the parameter adjusting mechanism abbreviated as P in FIG. 31
  • STR controller The control cycle (abbreviated as C in Fig. 1) is for each TDC.
  • FIG. 32 is an explanatory diagram of the operation of the flowchart shown in FIG. 31.
  • Nepl. Necl is in a relatively low rotation range as shown in FIG. Priority is given to both the parameter adjustment mechanism and the STR controller, as shown in Figs. 8 and 9, for each TDC.
  • the routine when it is determined that the engine speed Ne detected at S802 exceeds the predetermined value Necl, the routine proceeds to S806, where the detected engine speed Ne is compared with the predetermined value Nec2. If determined to be less than the value, the process proceeds to S808, where the parameter adjustment mechanism is operated every TDC, and the STR controller is operated every two TDCs. On the other hand, when it is determined that the engine speed Ne detected in S806 is equal to or more than the predetermined value Nec2, the process proceeds to S810, in which the parameter adjustment mechanism operates every TDC, and the STR controller operates every four TDC.
  • the process proceeds to S812 and compares the detected engine speed Ne with a predetermined value Nep2. When it is determined, the process proceeds to S814, and the detected engine speed Ne is compared with the predetermined value Nec3. When it is determined that the detected engine speed Ne is less than the predetermined value Nec3, the process proceeds to S816.
  • the parameter adjustment mechanism operates every two TDCs, and the STR controller operates every TDC.
  • the process proceeds to S818 and compares the detected engine speed Ne with the predetermined value Nec4. If it is determined that the STR controller is in operation, the process proceeds to S820, and the STR controller operates the parameter adjustment mechanism every 2 TDC. If the engine speed Ne detected in S818 is determined to be equal to or greater than the predetermined value Nec4, the process proceeds to S822, where the parameter adjustment mechanism is provided every 2 TDC, and the STR controller is provided every 4 TDC. Make it work.
  • step S824 the detected engine speed Ne is compared with the predetermined value Nep3, and it is determined that there is no groove.
  • step S826 the detected engine speed Ne is compared with a predetermined value Nec5. If it is determined that the detected engine speed Ne is less than the predetermined value Nec5, the process proceeds to step S828 to determine the parameter.
  • the adjustment mechanism operates every 4 TDCs, and the controller operates every TDC (shown in Fig. 16).
  • the process proceeds to S830 and compares the detected engine speed Ne with the predetermined value Nec6.
  • the process proceeds to S832
  • the parameter adjustment mechanism is operated every 4 TDC
  • the STR controller is operated every 2 TDC
  • the engine speed Ne detected in S830 is equal to or more than the predetermined value Nec6. If it is determined that this is the case, the procedure proceeds to S83, in which the parameter adjustment mechanism and the STR controller are operated every 4 TDC (as shown in Fig. 17).
  • the process proceeds to S836 to stop the adaptive controller STR.
  • control cycle of the STR controller and the parameter adjustment mechanism of the adaptive controller are determined in accordance with the engine speed. For example, adaptive control can be performed even in an operation state where the calculation time is short, and good controllability can be realized.
  • the operating state of the adaptive controller STR shown in FIG. 32 does not need to be provided in all of 1 to 10 (indicated by circled numbers in the figure), and depends on the capacity of the engine and the CPU of the control unit configuration. May be appropriately selected.
  • 1,3,5,9,10,0,1,3,6,9,10,0,7,7,9,10,0,1,10,0,1,4,7,7 It may be selected as 10 or the like.
  • the present invention is not limited to this, and may be determined in consideration of the engine load. In such a case, for example, in a high load state, there is little change in the adaptive parameter 0 hat, so it may be possible to process the parameter adjustment mechanism every 4 TDCs.
  • FIG. 33 shows an eighth embodiment of the apparatus according to the present application, and is a subroutine flow showing the operation of calculating the average value such as the feedback correction coefficient KSTR similar to FIG. 10 is a chart.
  • an average value is basically obtained for the element that determines the feedback correction coefficient KSTR, and a predetermined operating state is determined. That is, the calculation of the average value is stopped in the idle state.
  • an average value is not calculated in principle, and only when a predetermined operating state, specifically, when exhaust gas recirculation (EGR) is performed, the average value is calculated. The value was calculated.
  • EGR exhaust gas recirculation
  • the exhaust gas when the exhaust gas is recirculated in the exhaust gas recirculation mechanism described above, depending on the operation state, the exhaust gas is not evenly introduced into the four cylinders, and for example, a large amount of the exhaust gas is introduced into the cylinder close to the recirculation port 12 1 b. Exhaust gas may be inhaled and a small amount may be inhaled to distant cylinders.
  • the air-fuel ratio KACT (k) detected for each TDC is greatly affected by the specific cylinder, and if the detected air-fuel ratio KACT (k) is used, the equivalent
  • the control values of all cylinders are offset by the deviation of that cylinder, and the air-fuel ratio of other cylinders is shifted. Therefore, to avoid this, it is desirable to calculate the average value as shown in the figure.
  • EGR exhaust gas recirculation control
  • the eighth embodiment is configured as described above, even when the exhaust gas is recirculated, the controllability is improved without being greatly affected by the specific cylinder.
  • FIG. 34 shows a ninth embodiment of the apparatus according to the present application, which is a subroutine flow chart showing the operation of calculating the average value such as the feedback correction coefficient KSTR similar to FIG. 33.
  • the ninth embodiment is configured as described above, the controllability is improved without being greatly affected by the specific cylinder even when the purge and purge is performed.
  • FIGS. 35 and 36 are a door, a chart and a block diagram showing a tenth embodiment of the apparatus according to the present application.
  • the feedback loop (correction) of the exhaust system assembly equivalent ratio based on the PID control law is added to the configuration of the first embodiment.
  • a cylinder-specific feedback loop (correction coefficient #nKLAF) consisting of the same PID control law was inserted.
  • the above-mentioned applicant uses the observer previously proposed in Japanese Patent Application Laid-Open No. 5-180400 to empty the air of each cylinder.
  • the fuel ratio #n AZF (n: cylinder) is estimated, and the feedback correction coefficient for each cylinder is determined by using the PID control law according to the deviation between the estimated value and the target value of the predetermined cylinder-specific air-fuel ratio FZB # nKLAF was calculated and multiplied and corrected by the output fuel injection amount Tout.
  • the feedback correction coefficient #nKLAF for each cylinder is a value obtained by dividing the collection air-fuel ratio by the previous calculated value of the average value of the feedback correction coefficient #nKLAF for each cylinder (this is calculated as described above. This is called the target value j of the cylinder-specific air-fuel ratio FZB. Therefore, this is different from the target air-fuel ratio KCMD) and the deviation from the estimated air-fuel ratio # nA / F Determined using the PID control law. Since this is shown in Japanese Patent Application No. 5-251,138, which was separately proposed by the applicant, the description is omitted. The illustration of the adhesion correction compensator is omitted.
  • a sampling block (shown as Sel-VOBSV in the figure) for sampling the LAF sensor output at an appropriate timing is provided, and the same type of sampling block is used for the STR controller (see FIG. Is shown as Sel-VSTR).
  • sampling operation block is shown as “Set V0BSV” in FIG.
  • the behavior of the air-fuel ratio in the exhaust system assembly of the multi-cylinder internal combustion engine is clearly synchronized with the DC. Therefore, when the wide-range air-fuel ratio sensor described above is provided in the exhaust system of the internal combustion engine and the air-fuel ratio is sampled, it must be performed in synchronization with TDC. However, a sample of the control unit (ECU) that processes the detected output Depending on the timing, the behavior of the air-fuel ratio may not be accurately grasped. That is, for example, when the air-fuel ratio of the exhaust system collecting part with respect to TDC is as shown in Fig.
  • the air-fuel ratio recognized by the control unit is a completely different value depending on the sample timing as shown in Fig. 38. Becomes In this case, it is desirable to sample at a position where the actual change in the output of the air-fuel ratio sensor can be grasped as accurately as possible.
  • the change in the air-fuel ratio also depends on the exhaust gas arrival time to the sensor and the sensor reaction time. Among them, the time to reach the sensor varies depending on the exhaust gas pressure, exhaust gas volume, and the like. Furthermore, since sampling in synchronization with TDC means sampling based on the crank angle, it is inevitably affected by the engine speed. Thus, detection of the air-fuel ratio largely depends on the operating state of the engine. For this purpose, for example, in the technology described in Japanese Patent Application Laid-Open No. H11-313,644, the suitability of detection is determined at each predetermined crank angle. In the rotational speed range, it may not be possible to cope with the problem, and at the time when the detection is determined, the inflection point of the output of the air-fuel ratio sensor may be exceeded.
  • Fig. 39 is a flow chart showing the sampling operation of the LAF sensor.
  • the detection accuracy of the air-fuel ratio is closely related to the above-described estimation accuracy of the observer, the air-fuel ratio estimation by the observer will be briefly described before the description of FIG.
  • LAF (t) LAF (t)-aA / F (t) ⁇ Fig. 41 shows Equation 31 in a block diagram.
  • L AF (k + 1) H LAF (k) + (11) A / F (k)
  • Equation 31 the true air-fuel ratio can be obtained from the sensor output.
  • Equation 32 is obtained, and the value at Time k-1 1 can be inversely calculated from the value at Time k as in Equation 33.
  • a / F (k) ⁇ LAF (k + 1) one LAF (k) ⁇ / C l-a)
  • a / F (k-1) ⁇ LAF (k)-aLAF (k-1) ⁇ / (1-a
  • Equation 3 3 More specifically, if Equation 3 1 is represented by a transfer function using Z-transformation, Equation 34 is obtained.Therefore, the previous input air-fuel ratio is obtained by multiplying the inverse transfer function by the current LAF sensor output LAF. It can be estimated in real time.
  • Figure 42 shows a block diagram of the real-time AZF estimator.
  • Equation 3 5 That is, the air-fuel ratio of the collecting section is the sum of the past combustion history of each cylinder multiplied by the weight Cn (for example, 40% for the most recently burned cylinder, 30% before that, etc.). expressed.
  • This model is represented by a block diagram as shown in Fig. 43.
  • Equation 36 The equation of state is as shown in Equation 36.
  • Equation 3 6 If the air-fuel ratio of the collecting part is y (k), the output equation can be expressed as shown in Equation 37. x (k-3)
  • Equation 38 Equation 38 is obtained.
  • Fig. 4 shows the case where the air-fuel ratio of the three cylinders is set to 14.7: 1 and the fuel is supplied to only one cylinder at 12.0: 1 for the four-cylinder internal combustion engine.
  • Fig. 45 shows the air-fuel ratio of the collecting part at that time obtained by the above model.
  • a step-like output is obtained, but if the response delay of the LAF sensor is further taken into consideration, the sensor output will have a waveform that is smoothed as shown in Fig. 46 as "model output value".
  • the measured value J is the measured value of the LAF sensor output in the same case, but in comparison with this, it has been verified that the above model models the exhaust system of the multi-cylinder internal combustion engine well.
  • A-K C 0.0141 0.0423 0.9153 one 0.1411
  • Equation 43 the observer that receives y (k) as input, that is, the system matrix of the Kalman filter is expressed as Equation 44.
  • Equation 4 5 Figure 49 shows the combination of the above model and observer. The simulation results are omitted since they are shown in the earlier application, but by this, the air-fuel ratio of each cylinder can be accurately extracted from the air-fuel ratio of the collecting section.
  • the observer was able to estimate the air-fuel ratio of each cylinder from the air-fuel ratio of the collecting section, it was possible to control the air-fuel ratio for each cylinder using a control law such as PID.
  • a control law such as PID.
  • the feedback of the collecting part using the PID control rule from the sensor output (collecting part air-fuel ratio) and the target air-fuel ratio.
  • the feedback correction coefficient #nKLAF (n: cylinder) for each cylinder from the observer estimated value # nA / F.
  • the feedback correction coefficient #nKLAF for each cylinder is more specifically the cylinder air-fuel ratio.
  • the feedback correction coefficient for each cylinder #nKLAF is calculated using the PID law so as to eliminate the deviation between the target value obtained by dividing the average value for all cylinders by the previous calculation value and the estimated observer value # nA / F.
  • the air-fuel ratio of each cylinder converges to the air-fuel ratio of the collecting portion, and the air-fuel ratio of the collecting portion converges to the target air-fuel ratio.
  • the air-fuel ratio of all cylinders converges to the target air-fuel ratio.
  • the fuel injection amount #n Tout of each cylinder (specified by the injector opening time) is
  • a timing map for Hi V / T or LoV / T (described later) is prepared. Retrieval is performed, and the process advances to S1208 to sample a sensor output used for an observer operation for Hi or L0 valve timing. Specifically, a timing map is searched from the planned rotation speed Ne and the intake pressure Pb, and one of the above-mentioned 12 buffers is selected by its No., and the sampling number recorded there is recorded.
  • Fig. 51 is an explanatory diagram showing the characteristics of the timing map.
  • the characteristics are sampled at a faster crank angle as the engine speed Ne is lower or the intake pressure (load) Pb is higher. Is set to select the value.
  • “early” means a value sampled at a position closer to the previous TDC position (in other words, an old value).
  • a setting is made to select a crank angle that is slower as the engine speed Ne is higher or the intake pressure Pb is lower, that is, a value sampled at a crank angle closer to the later TDC position (in other words, a new value).
  • the inflection point for example, the first peak value is Assuming that the reaction time of the sensor is constant, as shown in FIG. 52, the lower the engine speed, the faster the crank angle. Also, it is expected that the higher the load, the higher the exhaust gas E power and exhaust gas volume, and hence the faster the exhaust gas flow rate, and the faster the arrival time at the sensor. For this reason, the sample timing was set as shown in Fig. 51.
  • an arbitrary value of the engine speed Nel is set to Nel-Lo for the L0 side and Ne-Hi for the Hi side
  • the arbitrary value of the intake pressure is set to Pb for the L0 side.
  • the map characteristics are: Pbl-Lo> Pbl-Hi
  • the process proceeds to S1210 to perform the operation of the observer matrix on HiV / T, and then proceeds to S1212 to perform the same operation on LoV / T. Then, the process proceeds to S1224 to judge the valve timing again, and according to the judgment result, the process proceeds to S12216 and S12218 to select the calculation result and finish.
  • the detection accuracy of the air-fuel ratio can be improved. That is, as shown in Fig. 53, since sampling is performed at relatively short intervals, the sampled value reflects the sensor output almost exactly, and the values sampled at the relatively short interval are sequentially recorded in the buffer group. In advance, the inflection point of the sensor output is predicted according to the engine speed and the intake pressure (load), and the corresponding value is selected from a group of buffers at a predetermined crank angle. Thereafter, an observer calculation is performed to estimate the air-fuel ratio of each cylinder, and as described in FIG. 50, feedback control of the air-fuel ratio for each cylinder is also possible.
  • the CPU core 70 can accurately recognize the maximum value and the minimum value of the sensor output. Therefore, with this configuration, when estimating the air-fuel ratio of each cylinder using the above-described observer, a value approximating the behavior of the actual air-fuel ratio can be used, and the estimation accuracy of the observer is improved. The accuracy when performing the cylinder-by-cylinder air-fuel ratio feedback control described with reference to FIG. 50 is also improved. .
  • the details are described in detail in Japanese Patent Application No. 6-243, 277 previously proposed by the present applicant, and further description will be omitted.
  • this Set VSTR is also obtained according to the same procedure as that performed with Sel-VOBSV, that is, the procedure shown in the flow chart similar to FIG.
  • Set V0BSV detects the air-fuel ratio at the most convenient timing for the cylinder-by-cylinder air-fuel ratio estimation by the observer (for example, the timing at which the weight coefficient C of the above-mentioned server becomes optimal for the model).
  • the Sel-VSTR is shown in Fig. 51 shown in Set V0BSV so that it is the most convenient timing to operate the STR (for example, the detection timing of the air-fuel ratio most affected by the cylinder in the latest exhaust stroke).
  • the air-fuel ratio is detected using the same map as in the above.
  • the tenth embodiment will be described with reference to the flow chart of FIG. 35, and the same steps as those of the first embodiment will be performed through steps S110 to S110. Proceed to 1 1 1 2 to detect the sampling of the LAF sensor output by Sel-VSTR, that is, the air-fuel ratio KACT (k). Then, the process proceeds to S111, where a feedback correction coefficient KSTR is calculated in the same manner as in the first embodiment. More specifically, this is performed using the flowchart of FIG. 11 used in the first embodiment.
  • the input to the parameter adjuster is synchronized with the combustion cycle while calculating the adaptive parameters as in the first embodiment.
  • the computational load on the parameter adjustment mechanism is greatly reduced, enabling the use of an adaptive controller for the actual machine while ensuring controllability, and at the same time, reducing inter-cylinder variability.
  • the average value of the air-fuel ratio KACT or the average value of the adaptive parameter over one combustion cycle for all cylinders is obtained and input to the parameter adjusting mechanism, and the STR controller Since the average value of the output of the cylinder is also obtained, it is not greatly affected by the combustion state of the specific cylinder.
  • the adaptive parameter overnight or the average value of the KSTR may be obtained similarly to the second embodiment, or the air-fuel ratio KACT and the adaptive parameter zero hat may be obtained. It goes without saying that the average value may be obtained together. Also, the target air-fuel ratio KCMD (k) may be the same value for all cylinders.
  • the second, third, fourth, fifth, sixth, and seventh embodiments are described.
  • the descriptions of the embodiments, the eighth embodiment and the ninth embodiment are all appropriate.
  • FIG. 54 and FIG. 55 are a flow chart and a block diagram showing a first embodiment of the device according to the present application.
  • the STR controller and the parameter adjustment mechanism were inserted in series in the fuel injection amount calculation system. That is, similarly to the first embodiment, the basic fuel injection amount T im is multiplied by the target air-fuel ratio correction coefficient KCMDM0 and the various correction coefficients KT0TAL to obtain the required fuel injection amount T cyKk), and then the corrected request Fuel injection Enter the quantity Tcyl (k) into the STR controller.
  • the average value KACT AVE or 0 hat AVE is obtained from the detected exhaust system air-fuel ratio in the same manner as in the first embodiment, and the STR controller dynamically determines the required fuel injection amount T cyl (k). Correction is performed and the corrected fuel injection amount G fuel-str (k) is calculated.
  • the feedback correction coefficient KLAF of the collecting section is obtained from the detected air-fuel ratio of the exhaust system using the PID control law and multiplied by the required fuel injection amount TcyKk) to correct the corrected fuel injection amount G f ue 1 -KLAF. Calculate (k).
  • the STR controller adjusts the output fuel fuel adaptively so that the actual intake fuel amount (more precisely, the estimated intake fuel amount) G fuel (k) matches the target fuel amount Tcyl (k). Calculate the quantity G fuel-str (k) and supply it to the internal combustion engine as the output fuel injection quantity Tout (k).
  • the correction of the wall adhesion in the virtual blunt is described in detail in Japanese Patent Application No. Hei 4-200331 (Japanese Patent Application Laid-Open No. Hei 6-176681) previously proposed by the present applicant. Since the gist of this invention is not there, the explanation is omitted.
  • the actual intake fuel amount G fuel (k) can be obtained by dividing the detected air amount by the detected air-fuel ratio, but in the case of the embodiment, the air amount detector (air flow meter ), The target intake fuel amount (required injection amount) T cyl O is multiplied by the detected air-fuel ratio. As a result, the actual intake fuel amount can be obtained in a manner equivalent to detecting and obtaining the air amount. As described above, in this control, the target air-fuel ratio and the detected air-fuel ratio are actually expressed as equivalent ratios.
  • the calculated value is further divided by the target air-fuel ratio to obtain the actual intake fuel amount. That is, when the target air-fuel ratio is the stoichiometric air-fuel ratio, the actual intake fuel amount is
  • Actual intake fuel amount demanded injection amount (target intake fuel amount)
  • target intake fuel amount X detected air-fuel ratio (equivalent ratio).
  • target air-fuel ratio is other than the stoichiometric air-fuel ratio
  • Actual intake fuel amount (required injection amount (target intake fuel amount) X detected air-fuel ratio (equivalent ratio)) Target air-fuel ratio (equivalent ratio)
  • the flow proceeds to S132 via S13320 to S1322, and determines the instability of the adaptive control system (STR controller) as in the first embodiment.
  • STR controller adaptive control system
  • FIG. 56 is a subroutine 'flow' chart showing the operation.
  • the stability of the STR control system is determined using each element of the adaptive parameter 0 hat.
  • the fuel injection amount Gfuel-STR (k) calculated by the STR controller is calculated as in Equation 46.
  • Tout-str (z) + raZ- '+ rsZ- 3 )
  • Equation 4 7 the transfer function of the virtual blunt is as shown in Equation 4 7.
  • Gfuel (z- 1 ) z- 3 Gfuel-str (z- ') * ... Transfer from Tcyl (k) to injection quantity Gfuel-STR (k) from Equation 4 7 and Equation 4 6
  • the number looks like the number 4 8.
  • Gfuel-str (z- 1) Tcyl (z- 1)
  • a correction coefficient KSTR (k) according to the adaptive control law is used as a feedback correction coefficient. Use the corrected fuel injection amount G fuel-str (k) using, and add the addition term TT0TAL to determine the output fuel injection amount Tout (k).
  • the program then proceeds to 1326 to output the output fuel injection amount and finish.
  • the calculation of the average value such as the air-fuel ratio is different from the previous embodiment, and is not limited to the predetermined crank angle of the specific cylinder, but is performed at the predetermined crank angle of each cylinder. May be. Note that the remaining configuration is not different from the previous embodiment.
  • the configuration is as described above, and as in the first embodiment, the input to the parameter adjustment mechanism may be synchronized with the combustion cycle while calculating the adaptive parameter.
  • the computational load of the parameter adjustment mechanism is greatly reduced, and it is possible to use an adaptive controller for the actual machine while ensuring controllability.
  • the controllability can be improved by reducing the dead time.
  • the average value of the control amounts of all the cylinders is determined to obtain the parameter. Since it is input to the evening adjustment mechanism, it is not significantly affected by the combustion state of the specific cylinder.
  • the simple average value is shown as the average value.
  • the present invention is not limited to this, and may be a weighted average value, a moving average value, a weighted moving average value, or the like.
  • the average value during one combustion cycle in which the input to the parameter adjustment mechanism is performed in synchronization is obtained, the average value before two combustion cycles may be obtained, or less than one combustion cycle, for example, two Alternatively, an average value between 3 TDCs may be obtained.
  • the Se-VOBSV and the Set VSTR As described above, it is natural that it is only necessary to separately provide the Se-VOBSV and the Set VSTR and detect the optimal air-fuel ratio for each, but depending on the characteristics of the engine and the layout of the exhaust system, the Se-VOBSV and Since the Se-VSTR shows almost the same detected air-fuel ratio in almost all operating regions, in such a case, these sampling functions are unified to detect the air-fuel ratio, and the output is used for both the observer and the STR. May be used as input. For example, only the Set V0BSV shown in FIG. 36 may be used, and the output may be used for the observer and the STR.
  • the equivalent ratio is actually used as the air-fuel ratio in the first embodiment and the like, it goes without saying that the air-fuel ratio and the equivalent ratio may be separately determined. Further, the feedback correction coefficient KSTR. # NKLAF.KLAF is obtained as a multiplication term, but may be obtained as an addition value.
  • the STR is taken as an example of the adaptive controller, but MRACS (model reference adaptive control) may be used.
  • the output of a single air-fuel ratio sensor provided in the exhaust system converging section is used, but the present invention is not limited to this, and the air-fuel ratio detected by providing the air-fuel ratio sensor for each cylinder is used for each cylinder. Fuel ratio feedback control may be performed.
  • a fuel injection amount control means for controlling a fuel injection amount of a multi-cylinder internal combustion engine, an adaptive controller for adaptively matching the fuel injection amount to a target value as an operation amount, and the adaptive control
  • An adaptive parameter adjustment mechanism for calculating an adaptive parameter used in the fuel injector, the fuel injection control device for a multi-cylinder internal combustion engine comprising: -The input to the evening adjustment mechanism is performed in synchronization with the specific combustion cycle of the internal combustion engine, and the adaptive parameter adjustment mechanism determines whether at least one of the air-fuel ratio and the in-cylinder fuel amount in the fuel control cycle of the internal combustion engine.
  • the amount of matrix operation can be reduced and the load on the in-vehicle view can be reduced, and the calculation can be completed within one TDC even in the usual in-vehicle view.
  • a parameter adjustment mechanism must be used for each fuel control cycle for each TDC. Even when operating, the input used by the adaptive parameter adjustment mechanism is set to the value for each combustion cycle, thereby improving control performance, reducing dead time, and calculating the number of internal variables. Can be reduced.
  • the adaptive parameter The evening adjustment mechanism can be operated in synchronization with the fuel control cycle of the specific cylinder, the operation time can be further reduced, and the adaptive control can be continued even at high rotation speed.
  • the adaptive controller since the adaptive controller is configured to operate in synchronization with the fuel control cycle of the internal combustion engine, the adaptive controller receives the adaptive parameter and calculates the feedback correction coefficient regardless of the calculation cycle of the adaptive parameter.
  • the adaptive controller is configured to operate every fuel control cycle such as TDC, and even if the number of calculations of the parameter adjustment mechanism is reduced to one in the combustion cycle, the fuel Since the feedback correction coefficient is calculated for each fuel control cycle, feedback control of the air-fuel ratio can always be optimally performed.
  • air-fuel ratio detection means for detecting the exhaust air-fuel ratio of the internal combustion engine
  • fuel injection quantity control means for controlling the fuel injection amount of the internal combustion engine for each fuel control cycle, and at least the detected exhaust air-fuel ratio based on the detected exhaust air-fuel ratio
  • a fuel injection control device for an internal combustion engine comprising: a controller of a recurrence type in which the fuel injection amount is made to coincide with a target value as an operation amount by using a controller of a gasification type.
  • the controller is configured to operate in a predetermined operating state in synchronization with a cycle longer than the fuel control cycle.
  • the “predetermined operating state” specifically means a time when the internal combustion engine is rotating at a high speed. That is, the time that can be used for one operation is reduced at the time of high rotation, but adaptive control can be continued even at the time of high rotation by configuring as described above.
  • the adaptive control can be continued even in the running down state where the calculation time is short, such as at the time of high rotation, and good air-fuel ratio controllability can be secured.
  • the controller of the recurrence type is configured as an adaptive controller
  • the feedback correction coefficient is adaptively adjusted by using an adaptive control algorithm having a parameter adjustment mechanism using an adjustment rule such as Landau.
  • the load on the onboard computer can be reduced by reducing the amount of computation by the adaptive controller, which has a long operation time, especially among the recursive type controllers, and even an ordinary onboard computer can use 1 TDC. The operation can be completed within.
  • the adaptive controller includes an adaptive parameter adjusting mechanism for calculating an adaptive parameter used therein, and at least the detected exhaust air-fuel ratio is input to the adaptive parameter adjusting mechanism, and the adaptive parameter adjusting mechanism is controlled by a predetermined parameter. Since the operation is performed in synchronization with the cycle longer than the fuel control cycle in the operating state, in addition to the above-described effects and effects, the adaptive parameter adjustment mechanism is used to control the fuel control cycle of the specific cylinder. The calculation can be performed in synchronization with the rotation speed, the calculation time can be further reduced, and the adaptive control can be continued even at a high rotation speed.
  • the cycle longer than the fuel control cycle was configured, more specifically, as described above, to be a value corresponding to an integral multiple of the combustion cycle.
  • the detected air-fuel ratio input to the controller of the recurrence type is configured to be a value based on a plurality of values detected in a cycle shorter than the operation cycle of the controller of the recurrence type. Therefore, in addition to the above-described effects and effects, for example, by operating the plurality of values as an average value of a plurality of detected values, it is possible to always operate at a predetermined crank angle of a specific cylinder. Also, there is no inconvenience that strongly reflects only the combustion state of the specific cylinder.
  • the detected air-fuel ratio input by the adaptive parameter adjustment mechanism is configured to be a value based on a plurality of values detected in a cycle shorter than the operation cycle of the adaptive parameter adjustment mechanism.
  • a fuel injection amount control means for controlling a fuel injection amount of the internal combustion engine, an adaptive controller which operates so that the fuel injection amount becomes an operation amount so as to match a target value, and an adaptation used in the adaptive controller
  • a fuel injection control device for an internal combustion engine comprising: an adaptive parameter overnight adjusting mechanism for calculating a parameter; and operating state detecting means for detecting an operating state of the internal combustion engine, comprising: Since the control cycle of at least one of the adaptive controller and the adaptive parameter adjusting mechanism is configured to be changed, the adaptive control is continued even in an operation state in which the calculation load is reduced and the calculation time is reduced, such as at high rotation. And good controllability can be obtained.
  • control cycle of the adaptive parameter adjustment mechanism is set to be equal to or longer than the control cycle of the adaptive controller, the calculation load is further reduced, and the calculation time during high rotation and the like is reduced. Adaptive control can be more easily inherited even in an operating state where the vehicle is running, and good controllability can be obtained.
  • control cycle of the adaptive parameter adjustment mechanism is configured to be an integral multiple of the control cycle of the adaptive controller
  • the operation of the adaptive parameter adjustment mechanism which requires a particularly long time, is calculated by the control cycle of the STR controller. This is executed once every two or more times, which effectively reduces the amount of computation while ensuring controllability, and results in a relative increase in the number of computations by the STR controller that actually performs the fuel control.
  • adaptive control can be continued while maintaining good controllability even in an operation state in which the calculation time is reduced, such as at high rotations, and good controllability can be obtained.
  • the control cycle of at least one of the adaptive controller and the adaptive parameter adjustment mechanism is changed at a cycle that is an integral multiple of the fuel control cycle, the operation amount obtained by the adaptive controller is changed to an integer of the fuel control cycle.
  • the operation load can be further reduced and the operation time can be reduced, such as during high-speed operation. Can easily succeed to adaptive control and obtain good controllability o
  • the operation state is configured to be at least the engine speed, it is possible to reliably detect an operation downtime in which the operation time is reduced, such as at high engine speed, thereby reducing the operation load. Therefore, even in such an operating state, it is possible to continue adaptive control and obtain good controllability.
  • an air-fuel ratio detecting means provided in an exhaust system of the internal combustion engine and detecting an exhaust air-fuel ratio; an operating state detecting means for detecting an operating state of the internal combustion engine including at least an engine speed and an engine load; A fuel injection amount determining means for determining a fuel injection amount of each cylinder at a predetermined crank angle of each cylinder based on at least the detected operating state of the internal combustion engine; and A fuel injection means for injecting fuel into individual cylinders based on the information, an adaptive controller and an adaptive parameter adjusting mechanism for estimating an adaptive parameter, and the adaptive controller outputs an output of the air-fuel ratio detecting means.
  • Fuel injection control for an internal combustion engine comprising: feedback means for correcting the fuel injection amount so as to match a control amount obtained based on at least the target value.
  • the first embodiment to the eleventh embodiment can obtain the above-described functions and effects in the configuration of each embodiment.
  • Good controllability in the fuel control device of the internal combustion engine in other words, more accurate control of the exhaust gas air-twist ratio becomes possible. It is needless to say that the most effective operation and effect can be obtained by configuring all the embodiments in consideration of the operating state of the engine.
  • first embodiment to the eleventh embodiment can be classified into several types according to their operations and effects.
  • the first embodiment relates to the application of an adaptive controller to a fuel control device of an internal combustion engine.
  • the operation and effect of preventing deterioration of controllability when switching the ID controller can be obtained.
  • the seventh embodiment is equivalent to an actual application example of the first embodiment.
  • the operation and effect of ensuring the excellent controllability of the adaptive controller can be obtained in all operating states.
  • the second embodiment and the third embodiment relate to the operation method of the adaptive controller.
  • the second embodiment improves the controllability (computation accuracy) of the adaptive controller, expands the computation processing capability, and increases the control characteristics by appropriately setting the gain matrix ⁇ of the adaptive controller according to the operating state of the engine.
  • the function and effect that the setting of the camera becomes easy can be obtained.
  • the gain matrix ⁇ of the adaptive controller is set from the behavior of the blunt output, and the operation and effect of improving the controllability (calculation accuracy) of the adaptive controller and expanding the calculation processing capability are obtained.
  • the fourth embodiment relates to processing of an input signal to an adaptive controller.
  • the fourth embodiment has a configuration in which a dead band is provided in the detected air-twist ratio, which is the input to the adaptive controller, to prevent the controllability (calculation accuracy) of the adaptive controller from deteriorating due to a small change in the detected air-twist ratio. The effect of stopping is obtained.
  • the fifth embodiment and the sixth embodiment relate to the calculation method of the adaptive controller, particularly to the changing speed of the adaptive parameter.
  • an operation and an effect of improving the control stability of the adaptive controller can be obtained by providing a configuration in which a change speed of the adaptive parameter used in the adaptive controller is limited.
  • the operation and effect of improving the controllability (calculation accuracy) of the adaptive controller can be obtained by a configuration in which the change speed of the adaptive parameter used in the adaptive controller is calculated and stabilized.
  • the eighth and ninth embodiments relate to a calculation method of the adaptive controller, particularly to a calculation method of the adaptive controller in a specific operation state.
  • the calculation method of the adaptive controller is changed in accordance with the specific operating state, whereby the bias of the air-twist ratio for each cylinder due to the specific operating state of the adaptive controller is adjusted. Can be eliminated.
  • the tenth embodiment relates to a method for calculating the fuel injection amount by the adaptive controller and the cylinder-by-cylinder air twist ratio control means.
  • the tenth embodiment eliminates the deviation of the air twist ratio for each cylinder
  • the configuration in which the air-twist ratio control means by the adaptive controller is added to the means the bias of the air-twist ratio for each cylinder can be eliminated, and the action and effect of improving the controllability (calculation accuracy) of the adaptive controller can be obtained.
  • the configuration that optimizes the detection timing of the air-twist ratio according to the operating state of the engine improves the accuracy (detection) of the detection and calculation of the air-twist ratio for each cylinder and the controllability (operation accuracy) of the adaptive controller. Can be obtained.
  • the eleventh embodiment relates to a method of connecting an adaptive controller to a plant.
  • the operation and effect of improving the controllability (calculation accuracy) of the adaptive controller can be obtained by the configuration of directly calculating the fuel injection amount.
  • the stability of the adaptive controller is determined from the adaptive parameters used in the adaptive controller, the operation and effect of improving the control stability of the adaptive controller and expanding the arithmetic processing capability can be obtained.
  • the controllability (operation accuracy) of the adaptive controller is improved and the operation processing capability is expanded. , Get the effect.
  • the seventh embodiment, and the fourth embodiment are used in combination, it is possible to obtain an action and an effect of improving the controllability (operation accuracy) of the adaptive controller and expanding the operation processing capability.
  • the effect of improving the controllability (calculation accuracy) of the adaptive controller and expanding the calculation processing capability is obtained. , Get the effect.
  • the bias of the air-twist ratio for each cylinder due to the specific operation state of the adaptive controller can be eliminated. Improvement of controllability (computation accuracy) of the adaptive controller and expansion of computational processing capacity Action and effect.
  • the bias of the air-twist ratio for each cylinder can be eliminated, and the controllability (calculation accuracy) of the adaptive controller and the calculation processing can be improved.
  • the effect of expanding capacity is obtained.
  • the control stability of the adaptive controller is improved, the controllability (calculation accuracy) of the adaptive controller is improved, and the processing capacity is improved.
  • the effect of expanding is obtained.
  • it is effective to determine the stability of the adaptive parameters used in the adaptive controller according to the first embodiment in each embodiment.
  • the second embodiment, the third embodiment, and the fourth embodiment are used in combination, it is possible to obtain the action and effect of improving the controllability (operation accuracy) of the adaptive controller and expanding the operation processing capability.
  • the controllability (operation accuracy) of the adaptive controller is improved and the operation processing capability is expanded. , Get the effect.
  • the bias of the air-twist ratio for each cylinder due to the specific operation state of the adaptive controller can be eliminated.
  • the effect of improving the controllability (calculation accuracy) of the adaptive controller and expanding the calculation processing capacity can be obtained.
  • the bias of the air-twist ratio for each cylinder can be eliminated, so that the controllability (calculation accuracy) of the adaptive controller and the calculation processing can be improved.
  • the effect of expanding capacity is obtained.
  • the operation and effect of improving the controllability (operation accuracy) of the adaptive controller and expanding the operation processing capability can be obtained.
  • the stability of the adaptive controller is determined from the adaptive parameters used in the adaptive controller in the first embodiment, the operation and effect of improving the control stability of the adaptive controller and expanding the arithmetic processing capability can be achieved. can get.
  • the effect of improving the controllability (computation accuracy) of the adaptive controller and increasing the computation processing capability can be obtained.
  • the bias of the air-twist ratio for each cylinder caused by the specific operation state of the adaptive controller can be eliminated, and the adaptive controller can be controlled.
  • the operation and effect of improving the performance (operation accuracy) and expanding the operation processing capacity can be obtained.
  • the bias of the air-twist ratio for each cylinder can be eliminated, and the controllability (computation accuracy) of the adaptive controller can be improved and the computation processing capacity can be increased. The effect can be obtained.
  • the bias of the air-twist ratio for each cylinder can be eliminated, and the controllability (computation accuracy) of the adaptive controller can be improved and the computation processing capacity can be increased.
  • the effect can be obtained.
  • the stability of the adaptive controller is determined from the adaptive parameters used in the adaptive controller in the eleventh embodiment, it is possible to improve the control stability of the adaptive controller and expand the arithmetic processing capability. Action and effect can be obtained.
  • the bias of the air-twist ratio for each cylinder due to the specific operating state of the adaptive controller is also eliminated. As a result, it is possible to obtain the function and effect of improving the controllability (calculation accuracy) of the adaptive controller and expanding the processing capacity.
  • the bias of the air-twist ratio for each cylinder can be eliminated, and the controllability (computation accuracy) of the adaptive controller and the computation processing can be improved.
  • the effect of expanding capacity is obtained.
  • the fifth embodiment, the sixth embodiment, and the first embodiment are used in combination, it is possible to obtain the effect of improving the controllability (operation accuracy) of the adaptive controller and expanding the operation processing capability.
  • the stability of the adaptive controller is determined from the adaptive parameters used in the adaptive controller in the first embodiment, the operation and effect of improving the control stability of the adaptive controller and expanding the arithmetic processing capability can be achieved. can get.
  • the eighth and ninth embodiments are used in combination with the tenth embodiment, the bias of the air-twist ratio for each cylinder can be eliminated, and the controllability (calculation accuracy) of the adaptive controller and the calculation processing can be improved. The effect of expanding capacity is obtained.
  • the bias of the air-twist ratio for each cylinder can be eliminated, and the controllability (computation accuracy) of the adaptive controller and the computation processing capacity can be increased. Action and effect can be obtained.
  • the stability of the adaptive controller is determined from the adaptive parameters used in the adaptive controller in the eleventh embodiment, the operation and effect of improving the control stability of the adaptive controller and expanding the arithmetic processing capability are improved. can get.

Abstract

In a case where a feedback correction coefficient is suitably calculated using a control algorithm having an adaptative parameter regulating mechanism employing the Landau's regulation law, even when the parameter regulating mechanism is operated for each fuel control cycle for each TDC, an input used in the parameter regulating mechanism should be a value for each combustion cycle such as TDC in a specific cylinder. In addition, an adaptative controller and the parameter regulating mechanism for calculating an adaptative parameter used in the adaptative controller are operated in synchronism with a combustion cycle, and the control cycle of the adaptative controller and the parameter regulating mechanism is changed in accordance with the number of revolutions of the engine. This makes it possible to reduce a matrix operation volume so as to reduce in turn the load of an on-vehicle computer, thereby making it possible not only to complete an operation within one TDC but also to improve the controllability by reducing idle time. Thus, it is possible to continue the adaptative control even in a driving situation such as at a high revolution when the operation time tends to be reduced, thereby making it possible to obtain a good controllability.

Description

明細書  Specification
内燃機関の燃料噴射制御装置  Fuel injection control device for internal combustion engine
技術分野 Technical field
この発明は内燃機関の燃料噴射制御装置に関し、 より具体的には適応制御を用 いて燃料噴射制御を行って実機上でも実現できるようにしたものに関する。 背景技術  The present invention relates to a fuel injection control device for an internal combustion engine, and more specifically to a fuel injection control device that performs fuel injection control using adaptive control and can be realized on an actual machine. Background art
近時、 内燃機関においても適応制御理論が導入され、 気筒に実際に吸入される 燃料量が目標燃料量に一致するように現代制御理論の一つである最適レギユレ一 夕を用いて制御する技術が提案されており、 その例としては特開平 1一 1 1 0 , Recently, adaptive control theory has also been introduced for internal combustion engines, and technology is used to control the amount of fuel actually drawn into cylinders using the optimal regulation system, which is one of modern control theories, so that the amount of fuel actually matches the target amount of fuel. Japanese Patent Application Laid-Open No. H11-110,
8 5 3号の技術を挙げることができる。 The technology of 85.3 can be mentioned.
また、 本出願人も特願平 6— 6 6 , 5 9 4号などにおいて適応制御を用いた内 燃機関の燃料噴射制御を提案している。 ところで、 内燃機関に上記した適応制御 を用いた燃料噴射制御装置を搭載するとき、 内燃機関の演算時間は機関回転数の 変動により増減すると共に、 搭載するマイクロコンピュー夕も性能上の制約から 自由ではない。 また、 通常の燃料制御サイクルは T D Cごとであるが、 燃料を噴 射してから制御結果を検出するまでに 8〜 1 2 T D C程度必要であるため、 8〜 The present applicant has also proposed a fuel injection control for an internal combustion engine using adaptive control in Japanese Patent Application No. 6-666, 594 or the like. By the way, when a fuel injection control device using the above-described adaptive control is mounted on an internal combustion engine, the operation time of the internal combustion engine increases and decreases due to fluctuations in the engine speed, and the microcomputer mounted on the internal combustion engine is also free from performance constraints. is not. The normal fuel control cycle is every TDC, but it takes about 8 to 12 TDC from the injection of fuel to the detection of the control result.
1 2制御サイクルの無駄時間が存在する。 制御対象の無駄時間が大きいことは、 少ない場合に比して一般的に制御性が悪化する。 特に、 適応制御においては、 こ れが顕著である。 There is a dead time of 12 control cycles. When the dead time of the controlled object is large, the controllability generally deteriorates compared to when the dead time is small. This is particularly remarkable in adaptive control.
従って、 この発明の目的は上記した課題を解決し、 制御性を確保しつつ実機に 適応制御器を現実に使用できるようにした内燃機閱の燃料噴射制御装置を提供す る ^と!^あ 。  Therefore, an object of the present invention is to solve the above-mentioned problems, and to provide a fuel injection control device for an internal combustion engine し た in which an adaptive controller can be actually used in an actual machine while ensuring controllability. Oh.
更には、 適応制御則を用いて操作量を決定する内燃機関の燃料噴射制御装置に おいて、 高回転時などの演算時間が減少する運転伏態においても継铳的に適応制 御を行って良好な制御性を得るようにした内燃機関の燃料噴射制御装置を提供す ることを目的とする。 発明の開示 上記の目的を達成するために、 この発明にあっては、 多気筒内燃機関の燃料噴 射量を制御する燃料噴射量制御手段と、 前記燃料噴射量を操作量として目標値に 適応的に一致させる適応制御器と、 および前記適応制御器で用いる適応パラメ一 夕を算出する適応パラメータ調整機構と、 を備えた多気筒内燃機関の燃料噴射制 御装置において、 前記適応パラメ一夕調整機構への入力を前記内燃機関の燃料制 御サイクルに同期させて行うと共に、 前記適応パラメ一夕調整機構は特定の燃焼 サイクルに基づく空燃比および筒内燃料量の少なくともいずれかに応じて適応パ ラメ一夕の演算を行う如く構成した。 Furthermore, in an internal combustion engine fuel injection control device that determines an operation amount using an adaptive control law, adaptive control is continuously performed even in a running state in which the calculation time is reduced, such as at a high speed. It is an object of the present invention to provide a fuel injection control device for an internal combustion engine that achieves good controllability. Disclosure of the invention In order to achieve the above object, according to the present invention, there is provided a fuel injection amount control means for controlling a fuel injection amount of a multi-cylinder internal combustion engine, wherein the fuel injection amount is adaptively matched with a target value as an operation amount. An adaptive controller that causes the adaptive controller to calculate an adaptive parameter used by the adaptive controller; and an adaptive parameter adjusting mechanism that calculates an adaptive parameter used by the adaptive controller. The input is performed in synchronization with the fuel control cycle of the internal combustion engine, and the adaptive parameter adjustment mechanism adjusts the adaptive parameter according to at least one of the air-fuel ratio and the in-cylinder fuel amount based on a specific combustion cycle. Is configured to perform the calculation of
更には、 前記適応パラメ一夕調整機構への入力は、 前記内燃機関の特定の気筒 の燃料制御サイクルに同期させて行う如く構成した。  Further, the input to the adaptive parameter adjustment mechanism is configured to be performed in synchronization with a fuel control cycle of a specific cylinder of the internal combustion engine.
更には、 前記適応制御器は、 前記内燃機関の燃料制御サイクルに同期させて作 動させる如く構成した。  Further, the adaptive controller is configured to operate in synchronization with a fuel control cycle of the internal combustion engine.
更には、 内燃機関の排気空燃比を検出する空燃比検出手段と、 内燃機関の燃料 噴射量を燃料制御サイクルごとに制御する燃料噴射量制御手段と、 および少なく とも検出された排気空燃比に基づいて漸化式形式の制御器を用 t、て前記燃料噴射 量を操作量として目標値に一致させる漸化式形式の制御器と、 を備えた内燃機関 の燃料噴射制御装置において、 前記渐化式形式の制御器を所定の運転状憨におい ては前記燃料制御サイクルより長い周期に同期させて作動させる如く構成した。 更には、 前記漸化式形式の制御器は、 適応制御器である如く構成した。  Furthermore, air-fuel ratio detection means for detecting the exhaust air-fuel ratio of the internal combustion engine, fuel injection quantity control means for controlling the fuel injection amount of the internal combustion engine for each fuel control cycle, and at least the detected exhaust air-fuel ratio based on the detected exhaust air-fuel ratio A controller of a recurrence type in which a controller of a recurrence type is used as a manipulated variable to use a controller of a recurrence type, and a fuel injection control device for an internal combustion engine, comprising: The controller of the formula type is configured to operate in synchronization with a period longer than the fuel control cycle in a predetermined operation state. Further, the controller of the recurrence type is configured to be an adaptive controller.
更には、 前記適応制御器はそこで用いる適応パラメ一夕を算出する適応パラメ —夕調整機構を備え、 前記適応パラメ一夕調整機構に少なくとも検出された排気 空燃比を入力すると共に、 前記適応パラメ一夕調整機構を所定の運転状態におい ては前記燃料制御サイクルより長い周期に同期させて作動させる如く構成した。 更には、 前記燃料制御サイクルより長い周期は、 燃焼サイクルの整数倍に相当 する値である如く構成した。  Further, the adaptive controller includes an adaptive parameter-evening adjusting mechanism for calculating an adaptive parameter used in the adaptive controller, and at least the detected exhaust air-fuel ratio is input to the adaptive parameter adjusting mechanism, and the adaptive parameter is adjusted. The evening adjustment mechanism is configured to operate in synchronization with a longer cycle than the fuel control cycle in a predetermined operation state. Further, the cycle longer than the fuel control cycle is configured to have a value corresponding to an integral multiple of the combustion cycle.
更には、 前記漸化式形式の制御器に入力する検出空燃比は、 前記漸化式形式の 制御器の作動周期よりも短い周期で検出された複数の値に基づく値である如く構 成した。  Further, the detected air-fuel ratio input to the controller of the recurrence type is configured to be a value based on a plurality of values detected in a cycle shorter than the operation cycle of the controller of the recurrence type. .
更には、 前記適応パラメータ調整機構が入力する検出空燃比は、 前記適応パラ メータ調整機構の作動周期よりも短い周期で検出された複数の値に基づく値であ る如く構成した。 Further, the detected air-fuel ratio input by the adaptive parameter adjusting mechanism is The value is configured to be based on a plurality of values detected in a cycle shorter than the operation cycle of the meter adjustment mechanism.
更には、 内燃機関の燃料噴射量を制御する燃料噴射量制御手段、 前記燃料噴射 量を操作量として目摞値に一致するように作動する適応制御器、 および前記適応 制御器で用いる適応パラメータを算出する適応パラメータ調整機構、 からなる內 燃機関の燃料噴射制御装置において、 前記内燃機関の運転状態を検出する運転状 態検出手段、 を備え、 前記検出された運転状態に応じて前記適応制御器および適 応パラメータ調整機構の少なくとも一方の制御周期を変える如く構成した。  Further, the fuel injection amount control means for controlling the fuel injection amount of the internal combustion engine, an adaptive controller that operates so that the fuel injection amount is equal to a target value as an operation amount, and an adaptive parameter used in the adaptive controller. A fuel injection control device for a fuel-burning engine, comprising: an adaptive parameter adjusting mechanism for calculating; and an operating state detecting means for detecting an operating state of the internal combustion engine; and the adaptive controller according to the detected operating state. In addition, the control period of at least one of the adaptive parameter adjustment mechanisms is changed.
更には、 前記適応パラメータ調整機構の制御周期を、 前記適応制御器の制御周 期と同一かそれより大きくする如く構成した。  Furthermore, the control cycle of the adaptive parameter adjusting mechanism is configured to be equal to or longer than the control cycle of the adaptive controller.
更には、 前記適応パラメータ調整機構の制御周期を、 前記適応制御器の制御周 期の整数倍とする如く構成した。  Furthermore, the control cycle of the adaptive parameter adjustment mechanism is configured to be an integral multiple of the control cycle of the adaptive controller.
更には、 前記適応制御器および適応パラメータ調整機構の少なくとも一方の制 御周期を、 燃料制御周期の整数倍の周期で変える如く構成した。  Further, the control cycle of at least one of the adaptive controller and the adaptive parameter adjustment mechanism is changed at a cycle that is an integral multiple of the fuel control cycle.
更には、 前記運転状態は、 少なくとも機関回転数である如く構成した。 図面の簡単な説明  Furthermore, the operating state is configured to be at least the engine speed. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この出願に係る内燃機関の燃料噴射量制御装置を全体的に示す概略 図である。  FIG. 1 is a schematic diagram generally showing a fuel injection amount control device for an internal combustion engine according to the present application.
第 2図は、 第 1図中の排気還流機構の詳細を示す説明図である。  FIG. 2 is an explanatory diagram showing details of an exhaust gas recirculation mechanism in FIG.
第 3図は、 第 1図中のキヤニス夕 ·パージ機構の詳細を示す説明図である。 第 4図は、 第 1図中の可変バルブタイミング機構のバルブタイミング特性を示 す説明図である。  FIG. 3 is an explanatory diagram showing details of a canister-purging mechanism in FIG. FIG. 4 is an explanatory diagram showing valve timing characteristics of the variable valve timing mechanism in FIG.
第 5図は、 第 1図中の制御ュニッ トの詳細を示すブロック図である。  FIG. 5 is a block diagram showing details of the control unit in FIG.
第 6図は、 この出願に係る内燃機関の燃料噴射制御装置の動作を示すメイン · フロー 'チヤ一トである。  FIG. 6 is a main flow chart showing the operation of the fuel injection control device for an internal combustion engine according to the present application.
第 7図は、 第 6図フロー 'チャートの動作を機能的に示すプロック図である。 第 8図は、 この出願に係る内燃機閱の燃料噴射制御装置で用いる適応制御器の 動作の例を示すタイミング ·チヤ一トである。 第 9図は、 この出願に係る内燃機関の燃料噴射制御装置で用いる適応制御器の 動作の別の例を示すタイミング 'チャートである。 FIG. 7 is a block diagram functionally showing the operation of the flowchart shown in FIG. FIG. 8 is a timing chart showing an example of the operation of the adaptive controller used in the fuel injection control device for the internal combustion engine according to the present application. FIG. 9 is a timing chart showing another example of the operation of the adaptive controller used in the fuel injection control device for an internal combustion engine according to the present application.
第 1 0図は、 第 6図ブロック図の構成を S T Rコントローラと適応パラメ一夕 調整機構とに焦点をおいて書き直したプロック図である。  FIG. 10 is a block diagram in which the configuration of the block diagram of FIG. 6 is rewritten focusing on the STR controller and the adaptive parameter adjustment mechanism.
第 1 1図は、 第 6図フロー 'チャートの適応制御則によるフィードバック補正 係数などの平均値の演算作業を示すサブルーチン 'フロー 'チャートである。 第 1 2図は、 第 1 1図フロー ·チャートの演算作業を説明するタイミング 'チ ヤートである。  FIG. 11 is a flowchart of FIG. 6 showing a subroutine “flow” showing the operation of calculating an average value such as a feedback correction coefficient based on the adaptive control law of the chart. FIG. 12 is a timing chart for explaining the operation of calculating the flowchart of FIG.
第 1 3図は、 第 6図フロー ·チャートの適応制御系の不安定判別を説明するサ ブルーチン ' フロー 'チヤ一トである。  FIG. 13 is a subroutine 'flow' chart for explaining the instability determination of the adaptive control system in the flow chart of FIG.
第 1 4図は、 第 1 3図フロー,チャートの不安定判別を説明する説明図である o  FIG. 14 is an explanatory diagram illustrating the flow of FIG. 13 and the determination of the instability of the chart.
第 1 5図は、 第 1 3図フロー ·チャートの不安定判別作業を説明する第 1 4図 と同様の説明図である。  FIG. 15 is an explanatory diagram similar to FIG. 14 for explaining the work of determining the instability of the flow chart of FIG.
第 1 6図は、 第 8図と同様の適応制御器の動作の別の例を示すタイミング ·チ ャ一卜である。  FIG. 16 is a timing chart showing another example of the operation of the adaptive controller similar to FIG.
第 1 7図は、 第 8図と同様の適応制御器の動作の別の例を示すタイミング ·チ ャ一トである。  FIG. 17 is a timing chart showing another example of the operation of the adaptive controller similar to FIG.
第 1 8図は、 この出願に係る装置の第 2の実施の形態を示すフロー ·チャート である。  FIG. 18 is a flow chart showing a second embodiment of the apparatus according to the present application.
第 1 9図は、 第 1 8図フロー ·チヤ一トで使用するマップの特性を示す説明図 である。  FIG. 19 is an explanatory diagram showing the characteristics of the map used in the FIG. 18 flow chart.
第 2 0図は、 第 1 8図フロー ·チャートで使用するテーブルの特性を示す説明 図である。  FIG. 20 is an explanatory diagram showing characteristics of a table used in the flowchart of FIG.
第 2 1図は、 第 1 8図フロー 'チヤ一トで使用する第 2 0図と同様のテーブル の特性を示す説明図である。  FIG. 21 is an explanatory diagram showing the characteristics of a table similar to FIG. 20 used in the flowchart of FIG. 18.
第 2 2図は、 第 1 8図フロー,チヤートで使用する第 2 0図と同様のテーブル の特性を示す説明図である。  FIG. 22 is an explanatory diagram showing the characteristics of the same table as FIG. 20 used in the flow and chart of FIG.
第 2 3図は、 第 1 8図フロー ·チヤ一トで使用する第 2 0図と同様のテーブル の特性を示す説明図である。 Fig. 23 shows a table similar to Fig. 20 used in Fig. 18 flow chart. FIG. 4 is an explanatory diagram showing characteristics of the present invention.
第 2 4図は、 この出願に係る装置の第 3の実施の形態を示すフロー,チャート である。  FIG. 24 is a flow chart showing a third embodiment of the apparatus according to the present application.
第 2 5図は、 この出願に係る装置の第 4の実施の形態を示すフロー■チャート である。  FIG. 25 is a flowchart showing a fourth embodiment of the apparatus according to the present application.
第 2 6図は、 第 2 5図フロー 'チヤ一卜で使用する不感帯の特性を示す説明図 である。  FIG. 26 is an explanatory diagram showing the characteristics of the dead zone used in the flowchart of FIG. 25.
第 2 7図は、 この出願に係る装置の第 5の実施の形態を示すフロー ·チャート である。  FIG. 27 is a flowchart showing a fifth embodiment of the apparatus according to the present application.
第 2 8図は、 第 2 7図フロー ·チヤ一卜で使用するリミッ夕の特性を示す説明 図である。  FIG. 28 is an explanatory diagram showing characteristics of the limit used in the flow chart of FIG. 27.
第 2 9図は、 この出願に係る装置の第 6の実施の形態を示すフロー ·チャート である。  FIG. 29 is a flow chart showing a sixth embodiment of the apparatus according to the present application.
第 3 0図は、 第 2 9図フロー 'チヤ一トで使用するマップの特性を示す説明図 である。  FIG. 30 is an explanatory diagram showing the characteristics of the map used in the flowchart of FIG. 29.
第 3 1図は、 この出願に係る装置の第 7の実施の形態を示すフロー ■チヤ一ト である。  FIG. 31 is a flow chart showing a seventh embodiment of the apparatus according to the present application.
第 3 2図は、 第 3 1図フロー ·チヤ一卜の作業を説明する説明図である。  FIG. 32 is an explanatory diagram for explaining the work of the flowchart of FIG. 31.
第 3 3図は、 この出願に係る装置の第 8の実施の形態を示すフロー ·チャート である。  FIG. 33 is a flow chart showing an eighth embodiment of the apparatus according to the present application.
第 3 4図は、 この出願に係る装置の第 9の実施の形態を示すフロー 'チャート である。  FIG. 34 is a flow chart showing a ninth embodiment of the apparatus according to the present application.
第 3 5図は、 この出願に係る装置の第 1 0の実施の形態を示すフロー ·チヤ一 トである。  FIG. 35 is a flowchart showing a tenth embodiment of the apparatus according to the present application.
第 3 6図は、 第 3 5図フロー 'チヤ一トの動作を説明するプロック図である。 第 3 7図は、 多気筒内燃機関の T D Cと排気系集合部の空燃比との関係を示す 説明図である。  FIG. 36 is a block diagram for explaining the operation of the flowchart of FIG. 35. FIG. 37 is an explanatory diagram showing the relationship between the TDC of a multi-cylinder internal combustion engine and the air-fuel ratio of the exhaust system assembly.
第 3 8図は、 実際の空燃比に対するサンプルタイミングの良否を示す説明図で あ 。 第 3 9図は、 第 3 6図ブロック図の S el-Vブロックでの出空燃比のサンプリン グ作業を示すフロー 'チャートである。 FIG. 38 is an explanatory diagram showing the quality of the sample timing with respect to the actual air-fuel ratio. FIG. 39 is a flowchart showing a sampling operation of the air-fuel ratio in the Sel-V block in the block diagram of FIG.
第 4 0図は、 第 3 6図プロック図のオブザーバの説明図の 1つで先の出願で述 ベた空燃比センサの検出動作をモデル化した例を示すプロック図である。  FIG. 40 is a block diagram showing an example in which the detection operation of the air-fuel ratio sensor described in the earlier application is modeled as one of explanatory diagrams of the observer in the block diagram of FIG.
第 4 1図は、 第 4 0図に示すモデルを周期厶 Tで雔散化したモデルである。 第 4 2図は、 空燃比センサの検出挙動をモデル化した真の空燃比推定器を示す プロック線図である。  FIG. 41 is a model obtained by dispersing the model shown in FIG. FIG. 42 is a block diagram showing a true air-fuel ratio estimator modeling the detection behavior of the air-fuel ratio sensor.
第 4 3図は、 内燃機関の排気系の挙動を示すモデルを表すブロック棣図である o  FIG. 43 is a block diagram showing a model showing the behavior of the exhaust system of the internal combustion engine.
第 4 4図は、 第 4 3図に示すモデルを用いて 4気筒内燃機関について 3気筒の 空燃比を 1 4 . 7 : 1に、 1気筒の空燃比を 1 2 . 0 : 1にして燃料を供給する 場合を示すデータ図である。 4 4 figure 4 3 1 the air-fuel ratio of the three cylinders for four-cylinder internal combustion engine with the model shown in FIG. 4 7:. 1, 1 air-fuel ratio of one cylinder 2 0:. In the first fuel FIG. 6 is a data diagram showing a case in which is supplied.
第 4 5図は、 第 4 4図に示す入力を与えたときの第 4 3図モデルの集合部の空 燃比を表すデータ図である。  FIG. 45 is a data diagram showing the air-fuel ratio of the collective part of the model in FIG. 43 when the input shown in FIG. 44 is given.
第 4 6図は、 第 4 4図に示す入力を与えたときの第 4 3図モデルの集合部の空 燃比を L A Fセンサの応答遅れを考慮して表したデータと、 同じ場合の L A Fセ ンサ出力の実測値を比較するグラフ図である。  Figure 46 shows the air-fuel ratio of the collective part of the model in Fig. 43 when the input shown in Fig. 44 is given, taking into account the response delay of the LAF sensor, and the LAF sensor for the same case. It is a graph which compares the actual measurement value of an output.
第 4 7図は、 一般的なオブザーバの構成を示すブロック線図である。  FIG. 47 is a block diagram showing a configuration of a general observer.
第 4 8図は、 第 3 6図ブロック図に示したオブザーバで、 先の出願で用いるォ ブザーバの構成を示すプロック線図である。  FIG. 48 is a block diagram showing the structure of the observer used in the earlier application, which is the observer shown in the block diagram of FIG.
第 4 9図は、 第 4 3図に示すモデルと第 4 8図に示すオブザーバを組み合わせ 'た構成を示す説明プロック図である。  FIG. 49 is an explanatory block diagram showing a configuration in which the model shown in FIG. 43 and the observer shown in FIG. 48 are combined.
第 5 0図は、 第 3 6図プロック図における空燃比のフィードバック制御を示す ブロック図である。  FIG. 50 is a block diagram showing feedback control of the air-fuel ratio in the block diagram of FIG.
第 5 1図は、 第 3 9図フロー 'チヤ一トで使用するタイミングマップの特性を 示す説明図である。  FIG. 51 is an explanatory diagram showing characteristics of a timing map used in the flowchart of FIG.
第 5 2図は、 第 5 1図の特性を説明する、 機閱回転数および機関負荷に対する センサ出力特性を示す説明図である。  FIG. 52 is an explanatory diagram for explaining the characteristics of FIG. 51 and showing sensor output characteristics with respect to engine speed and engine load.
第 5 3図は、 第 3 9図フロー 'チヤ一トでのサンプリング動作を説明するタイ ミング ·チャートである。 FIG. 53 is a flow chart of FIG. Mining chart.
第 5 4図は、 この出願に係る装置の第 1 1の実施の形態を示すフロー ·チヤ一 トである。  FIG. 54 is a flowchart showing an eleventh embodiment of the apparatus according to the present application.
第 5 5図は、 第 5 4図フロー 'チヤ一卜の動作を説明するプロック図である。 第 5 6図は、 第 5 4図フロー 'チヤートの適応制御系の不安定判別作業を示す サブルーチン ' フロー 'チヤ一トである。  FIG. 55 is a block diagram for explaining the operation of the flowchart of FIG. 54. FIG. 56 is a flow chart of FIG. 54, which is a subroutine flow chart showing the work of determining the instability of the adaptive control system of the chart.
第 5 7図は、 内燃機関の燃料噴射量演算での無駄時間を説明するタイミング - チヤ一トである。 発明を実施するための最良の形態  FIG. 57 is a timing chart for explaining the dead time in the calculation of the fuel injection amount of the internal combustion engine. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面に即してこの発明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
第 1図はこの出願に係る内燃機関の燃料噴射制御装置を概略的に示す全体図で める  FIG. 1 is an overall view schematically showing a fuel injection control device for an internal combustion engine according to the present application.
図において、 符号 1 0は O H C直列 4気筒の内燃機関を示しており、 吸気管 1 2の先端に配置されたエアクリーナ 1 4から導入された吸気は、 スロッ トル弁 1 6でその流量を調節されつつサージタンク 1 8と吸気マニホルド 2 0を経て、 2 個の吸気弁 (図示せず) を介して第 1から第 4気筒へと流入される。 各気筒の吸 気弁 (図示せず) の付近にはインジェクタ 2 2が設けられて燃料を噴射する。 噴 射されて吸気と一体となつた混合気は、 各気筒内で図示しない点火ブラグで第 1 、 第 3、 第 4、 第 2気筒の順で点火されて燃焼してピストン (図示せず) を駆動 する。  In the figure, reference numeral 10 denotes an OHC in-line four-cylinder internal combustion engine, and the flow rate of intake air introduced from an air cleaner 14 disposed at the end of an intake pipe 12 is adjusted by a throttle valve 16. Meanwhile, the gas flows into the first to fourth cylinders via the surge tank 18 and the intake manifold 20 via two intake valves (not shown). An injector 22 is provided near an intake valve (not shown) of each cylinder to inject fuel. The air-fuel mixture injected and integrated with the intake air is ignited in each cylinder by an ignition plug (not shown) in the order of the first, third, fourth, and second cylinders, burns, and is burned by a piston (not shown). Is driven.
' 燃焼後の排気ガスは、 2個の排気弁 (図示せず) を介して排気マニホルド 2 4 に排出され、 排気管 2 6を経て触媒装置 (三元触媒) 2 8で浄化されて機関外に 排出される。 上記で、 スロッ トル弁 1 6はアクセルペダル (図示せず) とは機械 的に切り離され、 パルスモータ Mを介してアクセルペダルの踏み込み量および運 転状態に応じた開度に制御される。 また、 吸気管 1 2には、 スロッ トル弁 1 6の 配置位置付近にそれをバイパスするバイパス路 3 2が設けられる。  '' After combustion, the exhaust gas is discharged to the exhaust manifold 24 through two exhaust valves (not shown), is purified through the exhaust pipe 26, and is purified by the catalyst device (three-way catalyst) 28, and is discharged outside the engine. It is exhausted. As described above, the throttle valve 16 is mechanically disconnected from the accelerator pedal (not shown), and is controlled via the pulse motor M to an opening corresponding to the depression amount of the accelerator pedal and the operating state. In addition, a bypass passage 32 is provided in the intake pipe 12 near the position where the throttle valve 16 is disposed, to bypass the throttle valve 16.
ここで、 内燃機関 1 0には、 排気ガスを吸気側に還流させる排気還流機構 1 0 0が設けられる。 第 2図を参照して説明すると、 排気還流機構 1 0 0の排気還流路 1 2 1は、 一 端 1 2 1 aが排気管 2 6の第 1の触媒装置 2 8 (第 2図に図示省略) の上流側に 、 他端 1 2 l bが吸気管 1 2のスロッ トル弁 1 6 (第 2図で図示省略) の下流側 に連通する。 この排気還流路 1 2 1の途中には、 排気還流量を調節する排気還流 弁 (還流ガス制御弁) 1 2 2および容積室 1 2 1 cが、 設けられる。 この排気遝 流弁 1 2 2はソレノイド 1 2 2 aを有する電磁弁であり、 ソレノイド 1 2 2 aは 後述する制御ュニッ ト (E C U ) 3 4に接铳され、 制御ュニット 3 4からの出力 によってその弁開度をリニアに変化させる。 排気還流弁 1 2 2には、 その弁開度 を検出するリフ トセンサ 1 2 3が設けられ、 その出力は制御ュニッ ト 3 4に送出 される。 Here, the internal combustion engine 100 is provided with an exhaust gas recirculation mechanism 100 for recirculating exhaust gas to the intake side. Explaining with reference to FIG. 2, the exhaust gas recirculation path 12 1 of the exhaust gas recirculation mechanism 100 has a first catalyst device 28 (FIG. The other end 12 lb communicates with the downstream side of the throttle valve 16 (not shown in FIG. 2) of the intake pipe 12 on the upstream side of (omitted). An exhaust gas recirculation valve (recirculation gas control valve) 122 for adjusting the amount of exhaust gas recirculated and a volume chamber 121c are provided in the middle of the exhaust gas recirculation path 121. The exhaust air flow valve 122 is a solenoid valve having a solenoid 122 a. The solenoid 122 a is connected to a control unit (ECU) 34 described later, and is controlled by an output from the control unit 34. The valve opening is changed linearly. The exhaust gas recirculation valve 122 is provided with a lift sensor 123 for detecting the valve opening, and the output is sent to the control unit 34.
更に、 内燃機関 1 0の吸気系と燃料タンク 3 6との間も接続され、 キヤニスタ •パージ機構 2 0 0が設けられる。  Furthermore, a connection between the intake system of the internal combustion engine 10 and the fuel tank 36 is provided, and a canister / purge mechanism 200 is provided.
キヤニス夕 ■パージ機構 2 0 0は第 3図に示す如く、 密閉された燃料タンク 3 6の上部と吸気管 1 2のスロッ トル弁 1 6の下流側との間に構成された、 蒸気供 給通路 2 2 1、 吸着剤 2 3 1を内蔵するキヤニス夕 2 2 3、 及びパージ通路 2 2 4からなる。 蒸気供給通路 2 2 1の途中には 2ゥヱイバルブ 2 2 2が装着され、 パージ通路 2 2 4の途中にはパージ制御弁 2 2 5、 パージ通路 2 2 4を流れる燃 料蒸気を含む混合気の流量を検出する流量計 2 2 6、 および該混合気中の H C濃 度を検出する H C濃度センサ 2 2 7が設けられる。 パージ制御弁 (電磁弁) 2 2 5は後述の如く制御ュニッ ト 3 4に接続され、 それからの信号に応じて制御され て開弁量をリニアに変化させる。  As shown in FIG. 3, the purge mechanism 200 is provided between the upper part of the sealed fuel tank 36 and the downstream side of the throttle valve 16 of the intake pipe 12, as shown in FIG. It consists of a passage 2 21, a canister 2 3 containing a sorbent 2 3 1, and a purge passage 2 2 4. A two-way valve 222 is installed in the middle of the steam supply passage 221.A purge control valve 225 and a mixture of fuel gas containing fuel vapor flowing through the purge passage 224 are provided in the middle of the purge passage 224. A flow meter 222 for detecting the flow rate and an HC concentration sensor 227 for detecting the HC concentration in the air-fuel mixture are provided. The purge control valve (electromagnetic valve) 222 is connected to the control unit 34 as described later, and is controlled in accordance with a signal from the control unit 34 to linearly change the valve opening amount.
このキヤニス夕 ·パージ機構によれば、 燃料タンク 3 6内で発生した燃料蒸気 (燃料べーパ) は、 所定の設定量に達すると 2ゥヱイバルブ 2 2 2の正圧バルブ を押し開き、 キヤニス夕 2 2 3に流入し、 吸着剤 2 3 1によって吸着され貯蔵さ れる。 制御ュニッ ト 3 4からのオンオフ制御信号のデューティ比に応じた開弁量 だけパージ制御弁 2 2 5が開弁されると、 キヤニス夕 2 2 3に一時貯えられてい た蒸発燃料は、 吸入管 1 2内の負圧により、 外気取込口 2 3 2から吸入された外 気と共にパージ制御弁 2 2 5を経て吸気管 1 2へ吸引され、 各気筒へ送られる。 また外気などで燃料タンク 3 6が冷却されて燃料タンク内の負圧が増すと、 2ゥ エイバルブ 22 2の負圧バルブが開弁し、 キヤニス夕 2 2 3に一時貯えられてい た蒸発燃料は燃料タンク 3 6へ戻される。 According to this purging mechanism, when the fuel vapor (fuel vapor) generated in the fuel tank 36 reaches a predetermined set amount, the positive pressure valve of the 2-way valve 222 is opened and opened. It flows into 223 and is adsorbed and stored by the adsorbent 231. When the purge control valve 225 is opened by the valve opening amount corresponding to the duty ratio of the on / off control signal from the control unit 34, the evaporated fuel temporarily stored in the canister 220 is discharged to the suction pipe. Due to the negative pressure in 12, the air is sucked into the intake pipe 12 through the purge control valve 2 25 together with the outside air sucked from the outside air intake port 2 32 and sent to each cylinder. When the fuel tank 36 is cooled by the outside air and the negative pressure in the fuel tank increases, 2 ゥ The negative pressure valve of the A-valve 222 is opened, and the fuel vapor temporarily stored in the canister 222 is returned to the fuel tank 36.
更に、 内燃機関 1 0は、 いわゆる可変バルブタイミング機構 3 0 0 (第 1図に V/T と示す) を備える。 可変バルブタイミング機構 3 0 0は例えば、 特開平 2— 2 7 5, 0 4 3号公報に記載されており、 機関回転数 Neおよび吸気 E力 P な どの運転状態に応じて機関のバルブタイミング V/T を第 4図に示す 2種のタイミ ング特性し oV/T, HiV/Tの間で切り換える。 但し、 それ自体は公知な機構なので、 説明は省略する。 尚、 このバルブタイミング特性の切り換えには、 2個の吸気弁 の一方を休止する動作を含む。  Further, the internal combustion engine 10 includes a so-called variable valve timing mechanism 300 (shown as V / T in FIG. 1). The variable valve timing mechanism 300 is described in, for example, Japanese Patent Application Laid-Open No. 2-275,043. The valve timing V of the engine is controlled according to the operating state such as the engine speed Ne and the intake E force P. / T is switched between oV / T and HiV / T with the two types of timing characteristics shown in Fig. 4. However, since the mechanism itself is a known mechanism, the description is omitted. The switching of the valve timing characteristics includes an operation of stopping one of the two intake valves.
第 1図において内燃機関 1 0のディストリビュー夕 (図示せず) 内にはビスト ン (図示せず) のクランク角度位置を検出するクランク角センサ 4 0が設けられ ると共に、 スロッ トル弁 1 6の開度を検出するスロッ トル開度センサ 4 2、 スロ ッ トル弁 1 6下流の吸気圧力 Pb を絶対圧力で検出する絶対圧センサ 4 も設け られる。 また、 内燃機関 1 0の適宜位置には大気圧 Pa を検出する大気圧センサ 4 6が設けられ、 スロッ トル弁 1 6の上流側には吸入空気の温度を検出する吸気 温センサ 4 8が設けられると共に、 機関の適宜位置には機関冷却水温を検出する 水温センサ 5 0が設けられる。 また、 油圧を介して可変バルブタイミング機構 3 0 0の選択するバルブタイミング特性を検出するバルブタイミング (V/T ) セン サ 5 2 (第 1図で図示省略) も設けられる。 更に、 排気系において、 排気マニホ ルド 2 4の下流側で触媒装置 2 8の上流側の排気系集合部には、 広域空燃比セン サ 5 4が設けられる。 これらセンサ出力は、 制御ュニッ ト 3 4に送られる。  In FIG. 1, a crank angle sensor 40 for detecting a crank angle position of a piston (not shown) is provided in a distribution box (not shown) of the internal combustion engine 10, and a throttle valve 16 for the throttle valve 16 is provided. A throttle opening sensor 42 for detecting the opening degree and an absolute pressure sensor 4 for detecting the intake pressure Pb downstream of the throttle valve 16 as an absolute pressure are also provided. An atmospheric pressure sensor 46 for detecting the atmospheric pressure Pa is provided at an appropriate position of the internal combustion engine 10, and an intake air temperature sensor 48 for detecting the temperature of the intake air is provided upstream of the throttle valve 16. In addition, a water temperature sensor 50 for detecting an engine cooling water temperature is provided at an appropriate position of the engine. Further, a valve timing (V / T) sensor 52 (not shown in FIG. 1) for detecting a valve timing characteristic selected by the variable valve timing mechanism 300 via hydraulic pressure is also provided. Further, in the exhaust system, a wide area air-fuel ratio sensor 54 is provided in an exhaust system gathering section downstream of the exhaust manifold 24 and upstream of the catalyst device 28. These sensor outputs are sent to the control unit 34.
第 5図は、 制御ユニッ ト 3 4の詳細を示すブロック図である。 広域空燃比セン サ 5 4の出力は検出回路 6 2に入力され、 そこで適宜な棣型化処理が行われてリ 一ンからリツチにわたる広い範囲において排気ガス中の酸素濃度に比例したリ二 ァな特性からなる検出信号を出力する (以下、 この広域空燃比センサを 「LAF センサ」 と呼ぶ) 。  FIG. 5 is a block diagram showing details of the control unit 34. The output of the wide-range air-fuel ratio sensor 54 is input to the detection circuit 62, where appropriate di-type processing is performed, and a linear proportional to the oxygen concentration in the exhaust gas in a wide range from lean to rich. It outputs a detection signal with various characteristics (hereinafter, this wide-range air-fuel ratio sensor is called “LAF sensor”).
検出回路 6 2の出力は、 マルチプレクサ 6 6および AZD変換回路 6 8を介し て C PU内に入力される。 C PUは CPUコア 7 0、 ROM72、 RAM7 4を 備え、 検出回路 6 2の出力はより詳しくは、 所定のクランク角度 (例えば 1 5度 ) ごとに AZD変換され、 RAM74内のバッファの 1つに順次格納される。 1 2個のバッファには後で第 5 3図に示すように、 0から 1 1までの No. が付さ れる。 また、 スロッ トル開度センサ 4 2などのアナログセンサ出力も同様にマル チプレクサ 6 6および AZD変換回路 6 8を介して CPU内に取り込まれ、 RA M7 4に格納される。 The output of the detection circuit 62 is input into the CPU via the multiplexer 66 and the AZD conversion circuit 68. The CPU includes a CPU core 70, a ROM 72, and a RAM 74. The output of the detection circuit 62 is more specifically described as having a predetermined crank angle (for example, 15 degrees). ) Is converted to AZD every time and sequentially stored in one of the buffers in the RAM 74. The 12 buffers are numbered 0 to 11 later, as shown in Figure 53. Analog sensor outputs from the throttle opening sensor 42 and the like are also taken into the CPU via the multiplexer 66 and the AZD conversion circuit 68, and stored in the RAM 74.
またクランク角センサ 4 0の出力は波形整形回路 7 6で波形整形された後、 力 ゥンタ 78で出力値がカウントされ、 カウント値は CPU内に入力される。 CP Uにおいて CPUコア 7 0は、. ROM7 2に格納された命合に従って後述の如く 制御値を演算し、 駆動回路 8 2を介して各気筒のインジ クタ 22を駆動する。 更に、 C PUコア 70は、 駆動回路 84, 8 6, 8 8を介して鼋磁弁 9 0 ( 2次 空気量を調節するバイパス路 3 2の開閉) 、 および前記した排気還流制御用電磁 弁 1 2 2ならびにキヤニス夕 ·パージ制御用電磁弁 225を駆動する。 尚、 第 5 図でリフトセンサ 1 23、 流量計 22 6および HC濃度センサ 227の図示は省 B各した。  After the output of the crank angle sensor 40 is shaped by the waveform shaping circuit 76, the output value is counted by the power counter 78, and the count value is input into the CPU. In the CPU, the CPU core 70 calculates a control value according to the order stored in the ROM 72 as described later, and drives the injector 22 of each cylinder via the drive circuit 82. Further, the CPU core 70 is provided with a magnetic valve 90 (opening / closing of a bypass passage 32 for adjusting the amount of secondary air) through drive circuits 84, 86, 88, and the above-mentioned electromagnetic valve for controlling exhaust gas recirculation. 1 2 2 and canister ・ Purge control solenoid valve 225 is driven. In FIG. 5, the illustration of the lift sensor 123, the flow meter 226, and the HC concentration sensor 227 is omitted.
- 第 6図は、 出願に係る制御装置の動作を示すフロー 'チャートである。  -FIG. 6 is a flow chart showing the operation of the control device according to the present application.
以下説明すると、 先ず S 1 0において検出した機関回転数 Neおよび吸気圧力 Pb などを読み出し、 S 1 2に進んでクランキングか否か判断し、 否定されると きは S 1 4に進んでフューエル力ッ トか否か判断する。 フユ一エル力ッ トは、 所 定の運転状態、 例えばスロッ トル弁開度が全閉位置にあり、 かつ機関回転数が所 定値以上であるときに行われ、 燃料供給が停止されて噴射量はオープンループで 制御される。  First, the engine speed Ne and the intake pressure Pb detected in S10 are read out, and the process proceeds to S12 to determine whether or not cranking is performed. Judge whether it is force. The fuel cut is performed when the fuel supply is stopped, the fuel supply is stopped, and the fuel injection is performed when the throttle valve is in the fully closed position and the engine speed is equal to or higher than a predetermined value. Is controlled in an open loop.
S 1 4でフューエルカツ トではないと判断されたときは S 1 6に進み、 検出し た機関回転数 N eと吸気圧力 Pbとからマップを検索して基本燃料燃料噴射量 T imを算出する。 次いで S 1 8に進んで LAFセンサ 54の活性化が完了したか否 か判定する。 これは例えば、 LAFセンサ 54の出力電 Eとその中心電 Eとの差 を所定値 (例えば 0. 4V) と比較し、 差が所定値より小さいとき活性化が完了 したと判定することで行う。 活性化が完了したと判断されるときは S 20に進み 、 フィードバック制御領域か否か判断する。 高回転、 全開増量、 ないしは高水温 などにより運転伏態が変化したようなときは、 噴射量はオープンルーブ制御され る。 S 2 0でフィードバック制御領域と判断されるときは S 2 2に進み、 L A F センサ検出値を読み込み、 S 2 4に進んで検出値から検出空燃比 KACT(k) ( k : サンプリング時刻。 以下同じ) を求める。 次いで S 2 6に進んで P I D制御則に よるフィードバック補正係数 Kし AF(k) を演算する。 If it is determined in S14 that the fuel cut is not a fuel cut, the process proceeds to S16, in which a map is searched from the detected engine speed Ne and the intake pressure Pb to calculate a basic fuel fuel injection amount Tim. . Then, the process proceeds to S18, where it is determined whether the activation of the LAF sensor 54 is completed. This is performed, for example, by comparing the difference between the output power E of the LAF sensor 54 and its central power E with a predetermined value (for example, 0.4 V), and determining that activation has been completed when the difference is smaller than the predetermined value. . When it is determined that the activation has been completed, the process proceeds to S20, and it is determined whether or not the activation is in the feedback control area. If the operating state changes due to high rotation, full throttle, or high water temperature, the injection amount is controlled by open lube. You. When it is determined that the feedback control area is determined in S20, the process proceeds to S22, where the LAF sensor detection value is read, and the process proceeds to S24, where the detected air-fuel ratio KACT (k) (k: sampling time. The same applies hereinafter. ). Then, the process proceeds to S26, in which the feedback correction coefficient K according to the PID control law is calculated to calculate AF (k).
この P I D制御則によるフィードバック補正係数 KLAFは、 以下の通り演算され る。  The feedback correction coefficient KLAF based on the PID control law is calculated as follows.
先ず、 目標空燃比 KCMDと検出空燃比 KACTの制御偏差 DKAFを  First, the control deviation DKAF between the target air-fuel ratio KCMD and the detected air-fuel ratio KACT
DKAF(k) =KCMD(k-d' ) -KACT(k)  DKAF (k) = KCMD (k-d ') -KACT (k)
と求める。 上記で KCMD(k-d' ) : 目標空燃比 (ここで d ' は KCMDが KACTに反映さ れるまでの無駄時間を示し、 よって無駄時間制御周期前の目標空燃比を意味する ) 、 KACT(k :検出空燃比 (今回制御周期の) を示す。 尚、 この明細書で空燃比 は目標値 KCMDも検出値 KACTも実際は当量比、 即ち、 MstZM= 1 で示してい る (Mst:理論空燃比、 M = AZF (A :空気消費量、 F :燃料消費量、 ス :空 気過剰率) ) 。 And ask. In the above, KCMD (kd '): target air-fuel ratio (where d' indicates the dead time until KCMD is reflected in KACT, and thus means the target air-fuel ratio before the dead time control cycle), KACT (k: Indicates the detected air-fuel ratio (for the current control cycle) In this specification, the air-fuel ratio is actually expressed as the equivalence ratio, ie, MstZM = 1, for both the target value KCMD and the detected value KACT (Mst: theoretical air-fuel ratio, Mst = AZF (A: Air consumption, F: Fuel consumption, S: Excess air ratio)).
次いで、 それに所定の係数を乗じて P項 KLAFP(k)、 I項 KLAFI(k)、 および D項 K FD(k)を  Then, multiply it by a given coefficient to get the P-term KLAFP (k), I-term KLAFI (k), and D-term KFD (k).
P項: KLAFP(k) = DKAFOO xKP  P term: KLAFP (k) = DKAFOO xKP
I項: KLAF I (k) = KLAF I (k- 1 ) + DKAF (k) x KI  Term I: KLAF I (k) = KLAF I (k-1) + DKAF (k) x KI
D項: KLAFD(k) = (DKAFOO -DKAF(k-l) ) xKD  Term D: KLAFD (k) = (DKAFOO -DKAF (k-l)) xKD
と求める。 And ask.
このように P項は偏差に比例ゲイン KPを乗じて求め、 I項は偏差に稜分ゲイン KIを乗じて得た値をフィ一ドバック補正係数の前回値 KLAFl (k-l)に加算して求め 、 D項は偏差の今回値 DKAFO と前回値 DKAF(k-l) の差に微分ゲイン KDを乗じて 求める。 尚、 各ゲイン KP. KI. KDは、 機関回転数と機関負荷に応じて求められ、 よ り具体的にはマップを用いて機関回転数 N eと吸気圧力 P bとから検索できるよ うに設定しておく。 最後に、 よって得た値を  Thus, the P term is obtained by multiplying the deviation by the proportional gain KP, and the I term is obtained by adding the value obtained by multiplying the deviation by the edge gain KI to the previous value KLAFl (kl) of the feedback correction coefficient, The D term is obtained by multiplying the difference between the current value DKAFO of deviation and the previous value DKAF (kl) by the derivative gain KD. Note that each gain KP.KI.KD is determined according to the engine speed and the engine load, and more specifically, is set so that it can be searched from the engine speed Ne and the intake pressure Pb using a map. Keep it. Finally, the value obtained by
KLAF (k) = KLAFP(k) + KLAF I (k) + KLAFD (k)  KLAF (k) = KLAFP (k) + KLAF I (k) + KLAFD (k)
と合算して P I D制御則によるフィードバック補正係数の今回値 KLAF(k) とする 。 尚、 この場合、 乗算補正によるフィードバック補正係数とするため、 オフセッ ト分である 1 . 0は I項 KLAFi (k)に含まれているものとする (即ち、 KLAFKk)の 初期値は 1 . 0とする) 。 And the current value KLAF (k) of the feedback correction coefficient based on the PID control law. In this case, the offset is set because the feedback correction coefficient is obtained by multiplication correction. It is assumed that the value of 1.0 is included in the I term KLAFi (k) (that is, the initial value of KLAFKk) is 1.0.
第 6図フロー *チヤートにおいては続いて S 2 8に進んで適応制御則によるフ イードバック補正係数 KSTR(k) を演算する。 この適応制御則によるフィードバッ ク補正係数 KSTR(k) につレ、ては後で詳しく説明する。  Fig. 6 Flow * In the chart, the process proceeds to S28, where the feedback correction coefficient KSTR (k) based on the adaptive control law is calculated. The feedback correction coefficient KSTR (k) based on this adaptive control law will be described later in detail.
続いて S 3 0に進み、 求めた基本燃料噴射量 T imに目標空燃比補正係数 KCMDM( k)およびその他の補正係数 KTOTAL (水温補正など乗算で行う各種の補正係数の積 算値) を乗算し、 内燃機関が要求する要求燃料噴射量 T cyl (k)を決定する。 この 制御においては前述の通り目標空燃比を実際には当量比で示すと共に、 それを燃 料噴射量の補正係数としても用いる。 尚、 詳しくは気化熱で吸入空気の充塡効率 が相違することから、 目標空燃比に適宜な特性で充填効率補正を施して目標空燃 比補正係数 KCMDM とする。  Then, the process proceeds to S30, in which the obtained basic fuel injection amount T im is multiplied by a target air-fuel ratio correction coefficient KCMDM (k) and another correction coefficient KTOTAL (the product of various correction coefficients performed by multiplication such as water temperature correction). Then, the required fuel injection amount T cyl (k) required by the internal combustion engine is determined. In this control, as described above, the target air-fuel ratio is actually indicated by the equivalent ratio, and is used as a correction coefficient for the fuel injection amount. Since the charging efficiency of the intake air differs due to the heat of vaporization, the target air-fuel ratio is corrected for charging efficiency with appropriate characteristics to obtain the target air-fuel ratio correction coefficient KCMDM.
続いて S 3 2に進んで要求燃料噴射量 T cyl (k)に、 S 2 6もしくは S 2 8で求 めたフィードバック補正係数 KLAF(k) もしくは KSTR(k) のいずれかを乗算し、 そ の積に加算項 TT0TALを加算して出力燃料噴射量 T out (k)を決定する。 ここで、 加 算項 TT0TALは、 気圧補正など加算値で行う補正係数の合計値を示す (但し、 イン ジ ク夕の無効時間などは出力燃料噴射量 T out の出力時に別途加算されるので 、 これに含まれない) 。  Then, the program proceeds to S32, in which the required fuel injection amount Tcyl (k) is multiplied by one of the feedback correction coefficient KLAF (k) or KSTR (k) obtained in S26 or S28, and The output fuel injection amount T out (k) is determined by adding the addition term TT0TAL to the product of. Here, the addition term TT0TAL indicates the total value of the correction coefficient performed by the added value such as the atmospheric pressure correction. (However, the invalid time of the indicator is added separately when the output fuel injection amount T out is output. Not included).
続いて S 3 4に進んで決定した出力燃料噴射量丁 out (k)に機関冷却水温などか ら付着係数マップを検索して得られる付着係数を用いて付着補正を行い、 出力燃 料噴射量 T out (k)の吸気管壁面付着補正 (付着補正後の値を Tout-F (k) とする ) を行う。 尚、 この吸気管壁面付着補正自体はこの発明の要旨と直接の関連を有 しないので、 説明は省略する。 次いで S 3 6に進んで付着補正した出力燃料噴射 量 T out-F(k)を出力して終わる。  Then, proceeding to S34, the output fuel injection amount is determined using the adhesion coefficient obtained by searching the adhesion coefficient map from the engine cooling water temperature, etc. for the determined output fuel injection amount out (k), and the output fuel injection amount is calculated. Perform Tout (k) on the suction pipe wall adhesion correction (the value after adhesion correction is Tout-F (k)). Note that the correction of the suction pipe wall surface adhesion itself has no direct relation to the gist of the present invention, and a description thereof will be omitted. Next, the routine proceeds to S36, in which the output fuel injection amount T out-F (k) corrected for adhesion is output, and the processing ends.
尚、 S 1 8ないし S 2 0で否定されたときは S 3 8に進み、 基本燃料噴射量 T im(k) に目標空燃比補正係数 KCMDM(k)と各種補正係数 KTOTALを乗じると共に、 そ の積に補正加算項 TT0TALを加算して出力燃料噴射量 T out を算出し、 S 3 4以降 に進む。 また S 1 2でクランキングと判断されたときは S 4 0に進んでクランキ ング時の燃料噴射量 T i er を検索し、 S 4 2に進んで始動モードの式によって出 力燃料噴射量 Tout を算出すると共に、 S 1 4でフューエルカツ 卜と判断される ときは S 4 4に進んで出力燃料噴射量 Tout(k)を零とする。 If the result in S18 or S20 is negative, the program proceeds to S38, in which the basic fuel injection amount Tim (k) is multiplied by the target air-fuel ratio correction coefficient KCMDM (k) and various correction coefficients KTOTAL, and The output fuel injection amount T out is calculated by adding the correction addition term TT0TAL to the product of, and the process proceeds to S34. When cranking is determined in S12, the process proceeds to S40 to search for the fuel injection amount Tier during cranking, and proceeds to S42 to output the fuel injection amount according to the start mode equation. The power fuel injection amount Tout is calculated, and if it is determined in S14 that the fuel cut has occurred, the process proceeds to S44 where the output fuel injection amount Tout (k) is set to zero.
次に、 第 6図フロー 'チヤ一卜の S 28で触れた適応制御則を用いたフィード バック補正係数 KSTR(k) の演算について説明する。  Next, the calculation of the feedback correction coefficient KSTR (k) using the adaptive control law mentioned in S28 of the flowchart of FIG. 6 will be described.
第 7図はその動作をより機能的に示すブロック図である。  FIG. 7 is a block diagram showing the operation more functionally.
図示の装置は、 本出願人が先に提案した適応制御技術を前提とする。 それは S TR (セルフチューニングレギユレ一夕) コントローラからなる適応制御器とそ の適応 (制御) パラメ一夕 (べク トル) を調整する適応 (制御) パラメ一夕調整 機構とからなり、 STRコントローラは、 燃料噴射量制御のフィードバック系の 目標値と制御量 (プラント出力) を入力し、 適応パラメータ調整機構によって同 定された係数べク トルを受け取って出力を算出する。  The illustrated device is based on the adaptive control technology previously proposed by the present applicant. The STR controller consists of an adaptive controller consisting of an STR (Self-Tuning Regulatory Overnight) controller and an adaptive (control) parameter overnight adjustment mechanism that adjusts its adaptation (control) parameters (vector). Inputs the target value and control amount (plant output) of the feedback system for fuel injection amount control, receives the coefficient vector specified by the adaptive parameter adjustment mechanism, and calculates the output.
このような適応制御において、 適応制御の調整則 (機構) の一つに、 I . D. ランダウらの提案したパラメ一夕調整則がある。 この手法は、 適応制御システム を線形プロックと非線形プロックとから構成される等価フィードバック系に変換 し、 非線形ブロックについては入出力に関するポポフの積分不等式が成立し、 棣 形プロックは強正実となるように調整則を決めることによって、 適応制御システ 厶の安定を保証する手法である。 即ち、 ランダウらの提案したパラメ一夕調整則 においては、 漸化式形式で表される調整則 (適応則) が、 上記したポポフの超安 定論ないしはリャプノフの直接法の少なくともいづれかを用いることでその安定 性を保証している。  In such adaptive control, one of the adjustment rules (mechanisms) of adaptive control is the parameter adjustment rule proposed by ID Landau et al. This method converts the adaptive control system into an equivalent feedback system consisting of a linear block and a non-linear block, so that for nonlinear blocks, Popov's integral inequality for input and output is satisfied, and the di-block is strongly positive. This is a method that guarantees the stability of the adaptive control system by determining the adjustment rule. In other words, in the parameter adjustment rule proposed by Landau et al., The adjustment rule (adaptive rule) expressed in a recurrence formula is obtained by using at least one of the above-mentioned Popov's superstability theory or Lyapunov's direct method. It guarantees its stability.
この手法は、 例えば !"コンビユートロール j (コロナ社刊) No. 27, 2 8 頁〜 4 1頁、 ないしは 「自動制御ハンドブック」 (オーム社刊) 7 0 3頁〜 70 7頁、 A Survey of Model Reference Adaptive Techniques - Theory and Application" I.D. LANDAU 「Automaticaj Vol. 10, pp. 353 - 379, 1974、 "Unification of Discrete Time Explicit Model Reference Adaptive Control Designs" I.D. LANDAU ほか 「Automatica」 Vol. 17, No. 4, pp. 593-611, 1981 、 および" Combining Model Reference Adaptive Controllers and Stochastic Self-tuning Regulators" I.D. LANDAU 「Automaticaj Vol. 18. No. 1, pp. 77 -84. 1982 に記載されているように、 公知技術となっている。 図示例の適応制御技術では、 このランダウらの調整則を用いた。 以下説明する と、 ランダウらの調整則では、 離散系の制御対象の伝達閟数8 -1)/八 -') の 分母分子の多項式を数 1および数 2のようにおいたとき、 パラメータ調整機構が 同定する適応パラメ一夕 0ハット 00 (? (k) に同じ。 以下同様) は、 数 3のよ うにべクトル (転置べクトル) で示される。 またパラメ一夕調整機構への入力^ (k) は、 数 4のように定められる。 ここでは、 m= 1、 n = 1、 d= 3の場合、 即ち、 1次系で 3制御サイクル分の無駄時間を持つブラントを例に つに t This technique is for example! "Combitrol j (Corona) No. 27, pages 28-41, or" Automatic Control Handbook "(Ohm) pages 73-707, A Survey of Model Reference Adaptive Techniques- Theory and Application "ID LANDAU" Automaticaj Vol. 10, pp. 353-379, 1974, "Unification of Discrete Time Explicit Model Reference Adaptive Control Designs" ID LANDAU et al. "Automatica" Vol. 17, No. 4, pp. 593- 611, 1981, and "Combining Model Reference Adaptive Controllers and Stochastic Self-tuning Regulators" ID LANDAU "Automaticaj Vol. 18. No. 1, pp. 77-84. I have. In the adaptive control technique shown in the figure, the adjustment law of Landau et al. Was used. Explaining, in Landau et al tuning rules, transfer of the control target of the discrete system閟数8 - 1) / eight - ') when placed polynomials of the denominator molecules as equations 1 and 2, the parameter adjusting mechanism The adaptive parameter that is identified by 0 is the hat 0 (the same as? (K); the same applies to the following) and is expressed as a vector (transposed vector) as shown in Equation 3. The input ^ (k) to the parameter adjustment mechanism is defined as in Equation 4. Here, when m = 1, n = 1, d = 3, that is, for a blunt having a dead time of three control cycles in the primary system, t
A (z -') =l+a , z - 1. + a„ z " 数 1 B (z-1) = b o+b j z"1 bm z 数 2 A (z-') = l + a, z-1. + a „z" number 1 B (z- 1 ) = bo + bjz " 1 b m z number 2
¾T(k) = [bo(k). BR(Z-', k), SCz"1, k)] ¾ T (k) = [bo (k). BR (Z- ', k), SCz " 1 , k)]
= [bo(k), r ,(k), ,+d- i(k). So(k). .sn-,(k)3 = [bo (k), r, (k),, + d- i (k). So (k). .s n- , (k) 3
= [bo(k). r !(k), r2(k). r 3(k),s。(k)] 数 3 T(k) = [u(k). , u(k-m-d+l), y (k), , y(k-n+l) ] = [bo (k). r! (k), r 2 (k). r 3 (k), s. (K)] number 3 T (k) = [u (k)., U (km-d + l), y (k),, y (k-n + l)]
= [u(k). u (k-1), u (k-2). u (k-3). y (k) ] 数 4 ここで、 数 3に示される適応パラメ一夕 6>ハツ トは、 ゲインを決定するスカラ 量 bOハツ ト (k) 、 操作量を用いて表現される制御要素 BRハツト(Z— k)お よび制御量を用いて表現される制御要素 S (Z k)からなり、 それぞれ数 5か ら数 7のように表される。 bo — k) = 1/b 数 5 BR(Z k)= z_1+ r2 z •d- I )= [u (k). u (k-1), u (k-2). u (k-3). y (k)] Equation 4 where the adaptive parameter shown in Equation 3 is 6> Is a scalar quantity bO hat (k) that determines the gain, a control element BR hat (Zk) expressed using the manipulated variable, and a control element S (Zk) expressed using the control variable. And are represented as Equations 5 to 7, respectively. bo — k) = 1 / b number 5 BR (Z k) = z _1 + r 2 zd-I)
-2 + + l- 1 Z  -2 + + l- 1 Z
-3 -3
Z + Γ2 Z— 2+ Γ3 Z 数 6 Z + Γ 2 Z— 2 + Γ3 Z number 6
S (Z_I, k)= So + Sj z _1+ - · · + s„-, z-(n- S (Z _I , k) = So + Sj z _1 +-· + s „-, z- (n-
= s。 · · ·数 7 パラメータ調整機構はこれらのスカラ量や制御要素の各係数を同定 ·推定し、 前記した数 3に示す適応パラメ一夕 0ハツトとして、 STRコントローラに送る 。 パラメータ調整機構は、 ブラントの操作量 u ( i ) および制御量 y ( j) (i , jは過去値を含む) を用いて目標値と制御量との偏差が零となるように適応パ ラメ一夕 ハツ トを算出する。 適応パラメータ 0ハツ トは、 具体的には数 8のよ うに計算される。 数 8で、 Γ0 は適応バラメータの同定 .推定速度を決定する ゲイン行列 (m + n + d次) 、 eアスタリスク(k) は同定 ·推定誤差を示す信号 で、 それぞれ数 9および数 10のような漸化式で表される。 = s. Equation 7 The parameter adjustment mechanism identifies and estimates the scalar amount and each coefficient of the control element, and sends them to the STR controller as the adaptive parameters shown in Equation 3 above. The parameter adjustment mechanism uses the manipulated variable u (i) of the brand and the controlled variable y (j) (i and j include past values) so that the deviation between the target value and the controlled variable becomes zero. Calculate the overnight hat. The adaptive parameter 0 hat is specifically calculated as shown in Equation 8. In Equation 8, Γ0 is the identification of the adaptive parameter. The gain matrix (m + n + d order) that determines the estimated speed, and the asterisk (k) is the signal indicating the identification and estimation error, as shown in Equations 9 and 10, respectively. It is expressed by a simple recurrence formula.
0(k)
Figure imgf000017_0001
(k) · · ·数 8
0 (k)
Figure imgf000017_0001
(k)
1 A2(k)r(k-1) Γ (k-d) rT (k-d) r(k-l) r(k) =· r(k-l)- λ ,(k) A,(k) + A2(k)rT (k-d) r(k-l) ζ (k-d) 1 A 2 (k) r (k-1) Γ (kd) r T (kd) r (kl) r (k) = r (kl) -λ, (k) A, (k) + A 2 ( k) r T (kd) r (kl) ζ (kd)
• · ·数 9
Figure imgf000018_0001
· · · Number 9
Figure imgf000018_0001
e* (k) = · · ·数 1 0 l+ T(k-d)r(k-l)r(k-d) また数 9中の λ 1 (k) , λ 2(k) の選び方により、 種々の具体的なァルゴリズ ムが与えられる。 例えば、 λ 1 (k) = 1 , A 2(k) = λ (0 < λ < 2) とすると 漸減ゲインアルゴリズム (λ= 1の場合には最小自乗法) 、 λ 10 = λ 1 (0 く; 1 1 く 1 ) , λ 2(Ι = λ 2 (0くス 2く λ) とすると可変ゲインァルゴリズ ム (λ 2 = 1の場合には重み付き最小自乗法) 、 λ 1 (k) /λ 2(k) =σとおき 、 ス 3が数 1 1のように表されるとき、 λ 1 (k) =ス 3とおくと固定トレースァ ルゴリズムとなる。 また、 ス 10 = 1 , λ 2(k) = 0のとき固定ゲインァルゴ リズムとなる。 この場合は数 9から明らかな如く、 Γ0Ο =r(k-l) となり、 よ つて Γ0 =Γの固定値となる。 燃料噴射ないし空燃比などの時変プラントには 、 漸減ゲインアルゴリズム、 可変ゲインアルゴリズム、 固定ゲインアルゴリズム 、 および固定トレースアルゴリズ厶のいずれもが適している。
Figure imgf000018_0002
e * (k) = ··· Equation 1 0 l + T (kd) r (kl) r (kd) Depending on the choice of λ 1 (k) and λ 2 (k) in Equation 9, various specific Algorithm is given. For example, if λ 1 (k) = 1, A 2 (k) = λ (0 <λ <2), then the gradual gain algorithm (least square method if λ = 1), λ 10 = λ 1 (0 1 1 く 1), λ 2 (Ι = λ 2 (0 2 2 く λ), variable gain algorithm (weighted least squares method when λ 2 = 1), λ 1 (k) / λ If 2 (k) = σ and S 3 is expressed as in Equation 11, then λ 1 (k) = S 3 will result in a fixed trace algorithm, and S 10 = 1, λ 2 ( A fixed gain algorithm is obtained when k) = 0. In this case, as is clear from Equation 9, Γ0Ο = r (kl), and thus a fixed value of Γ0 = 。. Any of the decreasing gain algorithm, the variable gain algorithm, the fixed gain algorithm, and the fixed trace algorithm are suitable for the plant.
Figure imgf000018_0002
A3(k) = l · . . ·数 1 1 σ+ T (k-d)r(k-Dr(k-d) ti (O) ここで、 第 7図にあっては、 前記した STRコントローラ (適応制御器) と適 応パラメ一夕調整機構とは燃料噴射量演算系の外におかれ、 検出空燃比 KACT(k) が目標空燃比 KCMD(k-d' ) (ここで d' は前述の如く KCMDが KACTに反映されるま での無駄時間) に適応的に一致するように動作してフィードバック補正係数 KSTR (k) を演算する。 即ち、 STRコントローラは、 適応パラメ一夕調整機構によつ て適応的に同定された係数べクトル 0ハツ ト(k) を受け取って目標空燃比 KCMD(k -d* ) に一致するようにフィードバック補偾器を形成する。 演算されたフィード バック補正係数 KSTR(k) は要求燃料噴射量 Tcyl(k)に乗算され、 補正された燃料 噴射量が出力燃料噴射量 Tout (k)として付着補正補償器を介して制御ブラント ( '内燃機関) に供給される。 A 3 (k) = l ···· Equation 1 1 σ + T (kd) r (k-Dr (kd) ti (O) Here, in FIG. 7, the above-mentioned STR controller (adaptive control) The air-fuel ratio and the adaptive parameter adjustment mechanism are outside the fuel injection amount calculation system, and the detected air-fuel ratio KACT (k) is the target air-fuel ratio KCMD (kd ') (where d' is the KCMD It operates so that it adaptively matches the dead time before it is reflected in KACT) and calculates the feedback correction coefficient KSTR (k). Receiving the coefficient vector 0 (k), which has been uniquely identified, forms a feedback complementer to match the target air-fuel ratio KCMD (k -d *) Computed feedback correction coefficient KSTR (k ) Is multiplied by the required fuel injection amount Tcyl (k), and the corrected fuel The injection amount is supplied as an output fuel injection amount Tout (k) to the control brand (the internal combustion engine) via the adhesion correction compensator.
このように、 フィードバック補正係数 KSTR(k) および検出空燃比 KACT(k) が求 められて適応パラメータ調整機構に入力され、 そこで適応バラメータ 0ハツ ト(k ) が算出されて S T Rコントローラに入力される。 S T Rコントローラには入力 として目標空燃比 KCMD(k) が与えられ、 検出空燃比 KACT0 が目標空燃比 KCMDOt -d' )に一致するように漸化式を用いてフィードバック補正係数 KSTR(k) を算出す In this way, the feedback correction coefficient KSTR (k) and the detected air-fuel ratio KACT (k) are obtained and input to the adaptive parameter adjustment mechanism, where the adaptive parameter 0 hat (k) is calculated and input to the STR controller. You. The target air-fuel ratio KCMD (k) is given as an input to the STR controller, and the feedback correction coefficient KSTR (k) is calculated using the recurrence formula so that the detected air-fuel ratio KACT0 matches the target air-fuel ratio KCMDOt -d ') You
^> ο ^> ο
フィードバック補正係数 KSTR(k) は、 具体的には数 1 2に示すように求められ o STR(k) =  Specifically, the feedback correction coefficient KSTR (k) is obtained as shown in equation (12) .o STR (k) =
KCMD(k-d' )- s。xy(k)- r , xKSTR(k-l)- r 2 xKSTR(k-2)- r 3 xKSTR(k-3) b o KCMD (kd ')-s. xy (k)-r, xKSTR (kl)-r 2 xKSTR (k-2)-r 3 xKSTR (k-3) bo
• · '数 1 2 他方、 検出空燃比 KACT(k) と目標空燃比 KCMD(k) とは、 第 6図フロー · チヤ一 卜の S 2 6で先に説明した P I D制御則による制御器 (図に P I Dと示す) にも 入力され、 排気系集合部の検出空燃比と目標空燃比との偏差を解消すべく P I D 制御則に基づいて第 2のフィードバック補正係数 KLAF(k) が算出される。 適応制 御則によるフィ一ドバック補正係数 KSTRと P I D制御則によるフィードバック補 正係数 KLAFは、 第 7図の切換機構 4 0 0を介していずれか一方が燃料噴射量の演 算に用いられる。 そして、 後述の如く適応制御系 (S T Rコントローラ) の動作 が不安定と判別されたとき、 もしくは適応制御系の適応領域外の場合、 適応制御 則に基づくフィードバック補正係数 KSTR(k) に代えて、 P I D制御則によるフィ ードバック補正係数 KLAF(k) が使用される。  On the other hand, the detected air-fuel ratio KACT (k) and the target air-fuel ratio KCMD (k) are calculated by the controller (PID control law) described earlier in S26 of the flowchart in Fig. 6. PID is shown in the figure), and the second feedback correction coefficient KLAF (k) is calculated based on the PID control law in order to eliminate the deviation between the detected air-fuel ratio in the exhaust system collecting section and the target air-fuel ratio. . Either the feedback correction coefficient KSTR based on the adaptive control rule or the feedback correction coefficient KLAF based on the PID control law is used for calculating the fuel injection amount via the switching mechanism 400 in FIG. Then, when the operation of the adaptive control system (STR controller) is determined to be unstable, as described later, or when the adaptive control system is out of the adaptive range, the feedback correction coefficient KSTR (k) based on the adaptive control law is used instead. The feedback correction coefficient KLAF (k) based on the PID control law is used.
ところで、 内燃機関の燃料噴射量を制御するとき、 第 5 7図に示すように、 噴 射量を演算し、 演算された燃料が気筒内で圧縮、 爆発、 排気されるまでにある程 度の時間を要する。 更に、 排気ガスが LAFセンサに到達するまでの時間やセン サ自体の検出遅れ、 更には検出値から実際に気筒に吸入された燃料量を演算する に要する時間までを考えると、 この時間は更に大きくなる。 このように内燃機関 の燃料噴射量制御においては無駄時間が必然的に伴う。 1気筒に注目して無駄時 間を例えば前述の如く燃焼サイクルで 3回分とすると、 TD C数では内燃機関が 4気筒のとき、 第 8図に示す如く、 1 2TDCとなる。 尚、 ここで" 燃焼サイク ノレ" は、 吸入、 圧縮、 爆発、 排気からなる 4行程で、 この実施の形態の場合は 4 TDCに相当する。 By the way, when controlling the fuel injection amount of the internal combustion engine, as shown in FIG. It calculates the amount of radiation, and it takes some time for the calculated fuel to be compressed, exploded, and exhausted in the cylinder. Furthermore, considering the time required for the exhaust gas to reach the LAF sensor, the detection delay of the sensor itself, and the time required to calculate the amount of fuel actually sucked into the cylinder from the detected value, this time is further increased. growing. As described above, dead time is inevitably involved in controlling the fuel injection amount of the internal combustion engine. Assuming that the dead time is, for example, three times in the combustion cycle as described above by focusing on one cylinder, the TDC number becomes 12 TDC as shown in FIG. 8 when the internal combustion engine is four cylinders. Here, the “combustion cycle” is a four-stroke process consisting of suction, compression, explosion, and exhaust. In this embodiment, it corresponds to 4 TDC.
上記した適応制御器 (STRコントローラ) において、 適応パラメータ Θハツ ト(k) の要素の数は、 数 3から明らかな通り、 m+n十 d個となって、 無駄時間 dに比例する。 先の例の如く無駄時間を 3とすると、 刻々と変化する運転状態に 対応すべく、 STRコントローラと適応パラメータ調整機構を T DC同期で動作 させるとき、 適応パラメ一夕 0ハツ ト(k) の要素の数は、 m = n= 1とおいても 、 第 8図に示す如く d= 1 2 ( 3燃焼サイクル X 4 TDC) となり、 m + n + d = 1 4となる。 その結果、 ゲイン行列 Γの演算が 1 4 X 1 4の行列演算となり、 演算量が多くなつて車載コンピュータの負荷が増加し、 通例の車載コンピュー夕 の性能では、 機関回転数の上昇に伴い、 1 TDC内に演算を完了することが困難 となると同時に、 前述の通り、 無駄時間の回数の増加は制御性の悪化を招く。  In the above adaptive controller (STR controller), the number of elements of the adaptive parameter Θhat (k) is m + n10d, as is apparent from Equation 3, and is proportional to the dead time d. Assuming that the dead time is 3 as in the previous example, when the STR controller and the adaptive parameter adjustment mechanism are operated in synchronization with TDC in order to cope with the ever-changing operation state, the adaptive parameter 0 h (k) Even if the number of elements is m = n = 1, as shown in FIG. 8, d = 1 2 (3 combustion cycles X 4 TDC), and m + n + d = 1. As a result, the calculation of the gain matrix と な り becomes a 14 × 14 matrix operation, and the load on the on-board computer increases as the amount of calculation increases, and the performance of a normal on-board computer increases as the engine speed increases. It is difficult to complete the operation within one TDC, and at the same time, as described above, an increase in the number of dead times leads to a deterioration in controllability.
そこで、 図示に係る内燃機関の燃料噴射制御装置では、 刻々と変化する運転状 態に可能な限り対応できると共に、 行列演算量を低減して車載コンピュー夕の負 荷を軽減するようにした。 具体的には、 第 9図に示す如く、 パラ'メータ調整機構 には燃焼サイクル、 より具体的には特定気筒 (第 1気筒など) の所定のクランク 角度 (TDCなど) のみに同期させて制御プラント出力を入力させ、 前記した適 応パラメ一夕 6»ハツ トを演算させる。  In view of this, the fuel injection control device for an internal combustion engine shown in the figure can cope with ever-changing operating conditions as much as possible, and reduces the amount of matrix calculations to reduce the load on the on-board computer. Specifically, as shown in Fig. 9, the parameter adjustment mechanism is controlled in synchronization with the combustion cycle, and more specifically, only with a specified crank angle (TDC, etc.) of a specific cylinder (such as the first cylinder). The plant output is input, and the above-mentioned adaptive parameter 6-hour hat is calculated.
ここで、 適応パラメータ 0ハッ トの演算は第 9図から明らかな如く、 全気筒の 所定のクランク角度 (TDCなど) で行う。 尚、 STRコントローラが全気筒の 所定のクランク角度 ( T D Cなど) に同期して動作してフィードバック補正係数 を算出することは第 8図に示した構成と異ならない。 このように、 例えば燃焼サイクル (燃料制御サイクル) 、 即ち、 特定の気筒の 所定のクランク角度のみに同期させて動作させると、 d = 3となり、 適応パラメ 一夕 0ハツトの要素数は m + n + d = 5となり、 ゲイン行列 Γの演算は 1 4 X 1 4から 5 X 5の行列演算に減少し、 車載コンビユー夕の負荷が軽減して 1 TDC 内で演算を処理することが可能となる。 前述の如く、 制御対象の無駄時間が大き いことは、 少ない場合に比して一般的に制御性は悪化し、 特に、 適応制御におい ては顕著となるが、 上記のように構成したことで無駄時間を大幅な低減させるこ とができ、 制御性を向上させることができる。 Here, the calculation of the adaptive parameter 0 hat is performed at a predetermined crank angle (such as TDC) of all cylinders, as is apparent from FIG. Note that the fact that the STR controller operates in synchronization with a predetermined crank angle (such as TDC) of all cylinders to calculate the feedback correction coefficient is not different from the configuration shown in FIG. Thus, for example, when the combustion cycle (fuel control cycle), that is, the operation is performed in synchronization with only a predetermined crank angle of a specific cylinder, d = 3, and the number of elements in the adaptive parameter 0 hat is m + n + d = 5, and the calculation of the gain matrix 減少 is reduced from 14 x 14 to 5 x 5 matrix operation, and the load on the in-vehicle convenience is reduced, and the operation can be processed within 1 TDC . As described above, the large dead time of the controlled object generally impairs controllability compared to the case where the dead time is small, and in particular, becomes remarkable in adaptive control. Waste time can be greatly reduced, and controllability can be improved.
上記は、 具体的には、 数 1ないし数 1 2の制御サイクル kを気筒毎にとること で、 実現可能となる。 より具体的には、 4気筒の内燃機関の場合、 数 4を数 1 3 に、 数 8を数 1 4に、 数 9を数 1 5に、 数 1 0ないし数 1 2を数 1 6ないし数 1 8のように変更すれば良い。
Figure imgf000021_0001
u(k-4) u(k— 8) u(k— 12) y(k)] · · ·数 1 3
The above can be realized by taking several control cycles k of several to one for each cylinder. More specifically, in the case of a four-cylinder internal combustion engine, Equation 4 is replaced with Equation 13; Equation 8 is replaced with Equation 14; Equation 9 is replaced with Equation 15; It can be changed as shown in Equation 18.
Figure imgf000021_0001
u (k-4) u (k-8) u (k-12) y (k)]
^ (k) = 0 (k - ) + Γ (k- ) Γ (k- xd)e* (k) · ■ ·数 1 4 r(k) = ^ (k) = 0 (k-) + Γ (k-) Γ (k- xd) e * (k)
λ 2 (k) Γ (k - 4) Γ (k - d) T (k - xd) Γ (k - 4)λ 2 (k) Γ (k-4) Γ (k-d) T (k-xd) Γ (k-4)
Γ (k-4) Γ (k-4)
Λ ,(k) λ ! (k) + λ 2(k) T(k-4xd) Γ (k-4) r (k-4xd) ,, (k) λ! (K) + λ 2 (k) T (k-4xd) Γ (k-4) r (k-4xd)
• . '数 1 5 2 o •. 'Number 1 5 2 o
D(z" 1 )y(k)— 0 T(k— 4 ) (k一 4xd) D (z " 1 ) y (k) — 0 T (k— 4) (k-1 4xd)
e*(k) = 数 1 6  e * (k) = number 1 6
+ rT(k-4xd)r(k-4)r(k-4xd)
Figure imgf000022_0001
+ r T (k-4xd) r (k-4) r (k-4xd)
Figure imgf000022_0001
A3(k)= 1一 A 3 (k) = 1
び + T(k-4x<l) Γ (k一 4) Γ (k-4xd) ti (O) And + T (k-4x <l) Γ (k-1 4) Γ (k-4xd) ti (O)
数 1  Number 1
KSTR(k) = KSTR (k) =
KCMD(k-4xd' )-s0xKACT(k)-r ,xKSTR(k-4)- r 2xKSTR(k-8)- r 3xKSTR(k-12) b KCMD (k-4xd ') -s 0 xKACT (k) -r, xKSTR (k-4)-r 2 xKSTR (k-8)-r 3 xKSTR (k-12) b
数 1 8 これにより、 第 9図に示す構成においても、 第 8図に示す構成と同様に制御周 期 (動作サイクル) を全気筒の TDC毎にとる、 即ち、 全気筒の TDCに同期さ せて適応パラメ一夕を演算しながら、 演算で用いる行列、 ベクトルの次数を滅ら すことが可能となる。 もちろん、 制御サイクルを気筒別にとり、 数 1ないし数 1 2の制御サイクル kを K ==気筒数 X kとおくことで気筒別に内部変数を持つ構成 にしても、 同様に動作することは言うまでもない。 尚、 ここでの Kは燃焼サイク ル数を、 kは TDCを示す。 第 1 0図は第 8図の構成を STRコントローラとパ ラメ一夕調整機構とに焦点をおいて書き直した図である。 第 1 0図において、 S T Rコントローラの作動周期 m X T D Cとパラメ一夕調整機構の作動周期 n X T DCとをそれぞれ m=n= 1 とすれば、 第 8図と第 9図に示す構成となる。 ここ で、 パラメータ調整機構の入力周期を TDCに同期させ、 無駄時間を d = 2とす れば、 第 8図の構成となる。 一方、 パラメ一夕調整機構の入力周期を燃焼サイク ルに同期させ、 無駄時間を d = 3とすれば、 第 9図の構成となる。 Accordingly, in the configuration shown in FIG. 9 as well, the control cycle (operation cycle) is set for each TDC of all cylinders, that is, synchronized with the TDC of all cylinders in the configuration shown in FIG. It is possible to reduce the order of matrices and vectors used in the calculation while calculating the adaptive parameters. Of course, even if the control cycle is set for each cylinder and the control cycle k of Equations 1 to 12 is set to K == the number of cylinders X k, and the configuration has internal variables for each cylinder, it goes without saying that the same operation is performed. . Here, K indicates the number of combustion cycles, and k indicates TDC. FIG. 10 is a diagram in which the configuration of FIG. 8 is rewritten focusing on the STR controller and the parameter adjusting mechanism. In FIG. 10, if the operation cycle m XTDC of the STR controller and the operation cycle n XT DC of the parameter adjusting mechanism are respectively set to m = n = 1, the configuration shown in FIGS. 8 and 9 is obtained. Here, if the input cycle of the parameter adjustment mechanism is synchronized with TDC and the dead time is d = 2, the configuration shown in FIG. 8 is obtained. On the other hand, the input cycle of the If the dead time is d = 3, the configuration shown in Fig. 9 is obtained.
しかしながら、 ブラント出力を燃焼サイクルに同期させてパラメータ調整機構 に入力して演算 (動作) させることは、 特定気筒の所定クランク角度に同期させ て動作させることになるため、 常にその特定気筒の排気ガス空燃比の影響を強く 受けることになる。 その結果、 理論空燃比に制御するときなど、 その特定気筒の 排気ガス空燃比が例えばリ一ン方向にあり残余の気筒のそれがリッチ方向にある とすると、 適応制御器 (S T Rコントローラ) は操作量をリツチ方向に調整して 目標値に一致させるように動作してしまい、 それによつて残余の気筒の空燃比は 更にリツチ傾向が高くなつてしまう場合がある。  However, inputting the blunt output to the parameter adjusting mechanism in synchronization with the combustion cycle to perform the operation (operation) means operating in synchronization with the predetermined crank angle of the specific cylinder. It is strongly affected by the air-fuel ratio. As a result, when controlling the stoichiometric air-fuel ratio, for example, if the exhaust gas air-fuel ratio of the specific cylinder is in the lean direction and that of the remaining cylinders is in the rich direction, the adaptive controller (STR controller) operates. In some cases, the amount is adjusted in the rich direction so as to match the target value, so that the air-fuel ratio of the remaining cylinders may further increase the rich tendency.
その意図から、 図示の装置では、 後述の如く、 プラント出力をパラメ一夕調整 機構に燃焼サイクルに同期させて入力させて動作させることで適応パラメ一夕の 要素の数を減少させて行列演算量を軽減すると共に、 特定気筒の排気ガス空燃比 の影響を強く受けないようにした。 これを実現させるためには、 以下のように動 作させる。  For that purpose, in the illustrated device, as will be described later, the plant output is input to the parameter adjustment mechanism in synchronization with the combustion cycle to operate it, thereby reducing the number of elements of the adaptive parameter and reducing the number of matrix operations. And reduce the influence of the exhaust gas air-fuel ratio of specific cylinders. To achieve this, the following operation is performed.
パラメ一夕調整機構は燃焼サイクルに同期して動作、 即ち、 4気筒のうちの特 定気筒の所定のクランク角度に同期して動作させることになるが、 制御量 y (k) を燃焼サィクル間の各気筒の所定クランク角度、 例えば T D Cごとに検出空燃比 KACT(k) の平均値、 例えば単純平均値、 として求めてパラメ一夕調整機構に入力 することで、 その特定気筒の排気ガス空燃比に大きく影響されることがないよう にした。  The parameter adjustment mechanism operates in synchronization with the combustion cycle, that is, operates in synchronization with a predetermined crank angle of a specific cylinder among the four cylinders.However, the control amount y (k) is changed between combustion cycles. The average value of the detected air-fuel ratio KACT (k) for each TDC, for example, the average value of the detected air-fuel ratio KACT (k), for example, a simple average value, is input to the parameter adjustment mechanism, and the exhaust gas air-fuel ratio for that specific cylinder is obtained. So that it is not greatly affected by
更に、 所定クランク角度ごとに、 パラメータ調整機構が算出する適応パラメ一 夕 0ハツ トについても平均値を求めると共に、 S T Rコントローラが算出するフ イードバック補正係数 KSTR0 についても平均値を求めるようにし、 それによつ て一層特定気筒の排気ガス空燃比に大きく影響されることがないようにした。 第 1 1図はその演算作業を示すサブルーチン ·フロー 'チャートである。  Furthermore, for each predetermined crank angle, an average value is calculated for the adaptive parameter zero hat calculated by the parameter adjustment mechanism, and an average value is also calculated for the feedback correction coefficient KSTR0 calculated by the STR controller. As a result, the exhaust gas air-fuel ratio of the specific cylinder is not greatly affected. FIG. 11 is a subroutine flow chart showing the calculation work.
同図に従って説明すると、 先ず S 1 0 0で機関が所定の運転領域にあるか否か 判断する。 ここで、 所定の運転領域とはアイドルを含む低回転領域とする。 S 1 0 0で所定の運転領域にないと判断されるときは S 1 0 2に進み、 第 6図の S 2 4で当該気筒について算出された今回算出空燃比 KACT(k) 、 前回燃焼気筒につい ての前回算出空燃比 KACT(k-l) 、 前前回燃焼気筒についての前前回算出空燃比 KA CT(k-2) 、 前前前回燃焼気筒についての前前前回算出空燃比 KACT(k-3) の平均値 KACTAVE を求め、 それをプラント出力である制御量 y (k) とする。 即ち、 制御周 期を 3回前まで遡り、 当該気筒を含む 4気] ¾について 1燃焼サイクルの間に算出 された空燃比の単純平均値を求め、 制御量 y (k) とする。 この手法で、 特定気筒 の排気ガス空燃比の影響を低減することができる。 Referring to the figure, first, in S100, it is determined whether or not the engine is in a predetermined operating range. Here, the predetermined operation region is a low rotation region including idle. When it is determined in S100 that the cylinder is not in the predetermined operation range, the process proceeds to S102, in which the presently calculated air-fuel ratio KACT (k) calculated for the cylinder in S24 of FIG. About Of the previously calculated air-fuel ratio KACT (kl), the previous and previous calculated air-fuel ratio KA CT (k-2) for the previous and previous combustion cylinders, and the previous and previous calculated air-fuel ratio KACT (k-3) for the previous and previous combustion cylinders The average value KACTAVE is obtained, and it is used as the control output y (k), which is the plant output. That is, the control cycle is traced back three times, and the simple average value of the air-fuel ratios calculated during one combustion cycle for the four cylinders including the cylinder is obtained, and is set as the control amount y (k). With this method, the effect of the exhaust gas air-fuel ratio of a specific cylinder can be reduced.
続いて S 1 0 4に進み、 第 7図末尾に示すように、 パラメータ調整機構で今求 めた制御量 y (1 などから数 3に従って適応バラメータ 0ハツト(10 を算出し、 S T Rコントローラに入力する。  Then, proceed to S104, and as shown at the end of Fig. 7, calculate the adaptive parameter 0 hat (10 from the control amount y (1 etc.) obtained by the parameter adjustment mechanism according to Equation 3 and input it to the STR controller. I do.
続いて、 S 1 0 6に進み、 今回算出する適応パラメータ 6>ハツト(k) を含めた 3制御周期前までの算出値、 即ち、 1燃焼サイクル間の øハツ ト(k) 、 0ハツ ト (k-1) 、 0ハツ ト(k-2) および 0ハツト(k-3) の平均値、 例えば単純平均値 AVE - 0ハツ ト(k) を演算する。 即ち、 バラメータ調整機構の入力側ではなく、 その出 力側の適応パラメータ 0ハツ ト(k) について 4気筒のそれに対応する 4制御周期 分 ( 1燃焼サイクル) の 6>ハツ トの平均値を求めて S T Rコントローラに入力す る。 この手法を用いても、 S T Rコントローラに対して 4気筒の 0ハッ ト(k) の 平均値を入力しても特定気筒の排気ガス空燃比の影 Sを低滅すると言う目的を達 成することができる。 尚、 0ハツトは数 3に示すようにべクトルとして求められ るため、 その平均値は、 ベクトルの各要素 s 0 , r 1 . r 2 , r 3 , b 0の平均 値を求めることで算出する。 尚、 いずれかの要素について平均値を求め、 他の要 素はそれに比例するように変化量を求め、 それらから 0ハツ トの平均値を算出し ても良い。 S 1 0 6では、 その意味を含めて 0ハツ トの平均値を求める式を模式 的に示した。  Then, proceed to S106, and calculate the adaptive parameter 6> the calculated value up to three control cycles before including the hat (k) this time, that is, ø hat (k), 0 hat during one combustion cycle. An average value of (k-1), 0 hat (k-2) and 0 hat (k-3), for example, a simple average value AVE-0 hat (k) is calculated. That is, the average value of 6> hat for four control cycles (one combustion cycle) corresponding to that of four cylinders is calculated for the adaptive parameter 0 hat (k) on the output side, not on the input side of the parameter adjustment mechanism. Input to the STR controller. Even if this method is used, the objective of reducing the shadow S of the exhaust gas air-fuel ratio of a specific cylinder can be achieved even if an average value of 0 hat (k) of four cylinders is input to the STR controller. Can be. Since 0 hat is calculated as a vector as shown in Equation 3, its average value is calculated by calculating the average value of each element s0, r1, r2, r3, b0 of the vector. I do. Note that an average value may be obtained for any of the elements, the change amount may be obtained for other elements in proportion thereto, and an average value of 0 hat may be calculated from them. In S106, a formula for calculating the average value of 0 hats including the meaning is schematically shown.
続いて S 1 0 8に進み、 S T Rコントローラにおいて入力値に基づいて数 1 2 に従ってフィードバック補正係数 KSTR(k) を算出し、 次いで S 1 1 0に進み、 上 で今回演算したフィードバック補正係数 KSTR(k) を含む 3制御周期前までの算出 値、 即ち、 1燃焼サイクル間の KSTR(k), KSTR(k-l), KSTR(k-2) および KSTR(k-3) の平均値、 例えば単純平均値 AVEKSTR(k)を演算する。 即ち、 パラメ一夕調整機構 側ではなく、 燃料演算系のフィードバック補正係数である制御入力 KSTR(k) を出 力する S T Rコントローラについて 4気筒のそれに対応する 4制御周期分 ( 1燃 焼サイクル) の KSTRの平均値を求めても、 特定気筒の排気ガス空燃比の影響を低 減すると言う目的を達成することができるからである。 Then, the process proceeds to S108, where the STR controller calculates a feedback correction coefficient KSTR (k) according to Equation 12 based on the input value, and then proceeds to S110 to calculate the feedback correction coefficient KSTR ( k), including the calculated values up to three control cycles before, that is, the average value of KSTR (k), KSTR (kl), KSTR (k-2) and KSTR (k-3) during one combustion cycle, for example, simple average Calculate the value AVEKSTR (k). That is, the control input KSTR (k), which is the feedback correction coefficient of the fuel calculation system, is output instead of the parameter adjustment mechanism side. To achieve the purpose of reducing the effect of the exhaust gas air-fuel ratio of a specific cylinder even if the average value of the KSTR for the four control cycles (one combustion cycle) corresponding to that of the four cylinders is obtained for the STR controller to be applied. Because it can be.
他方、 S 1 0 0で所定の運転領域にあると判断されるときは S 1 1 2に進んで y (k) の演算、 即ち、 当該気筒について第 6図の S 2 4で求めた今回算出当量比 KACT(k) をそのまま制御量 (ブラント出力) とする。 そして、 S I 1 4に進んで 先の S 1 0 と同様に適応パラメ一夕 0ハツ ト(k) を算出し、 S 1 1 6に進んで S 1 0 8と同様にフィードバック補正係数 KSTR(k) を算出する。  On the other hand, if it is determined in S100 that the engine is in the predetermined operating range, the process proceeds to S112, where y (k) is calculated, that is, the current calculation obtained in S24 of FIG. The equivalent ratio KACT (k) is used as it is as the control amount (blunt output). Then, proceeding to SI 14, the adaptive parameter 0 hat (k) is calculated in the same manner as in the previous S 10, and proceeding to S 116, the feedback correction coefficient KSTR (k ) Is calculated.
このように、 全気筒の空燃比の平均値が求められ、 制御量 y (k) としてパラメ —夕調整機構に入力されるので、 特定気筒 (例えば第 1気筒) の当量比、 より具 体的には排気ガス空燃比に大きく影響されることがない。 更に、 S T Rコント口 ーラ出力についても最新値 u (k) = KSTR(k) を含む 4制御周期分の値が用いられ て信号ベク トル^が求められ、 パラメ一夕調整機構に入力されるので、 特定気筒 の排気ガス空燃比の影響は更に減少する。  In this way, the average value of the air-fuel ratios of all cylinders is obtained and input to the parameter — evening adjustment mechanism as the control amount y (k), so that the equivalence ratio of the specific cylinder (for example, the first cylinder) Is not greatly affected by the exhaust gas air-fuel ratio. Furthermore, for the STR controller output, the signal vector ^ is obtained using the values for the four control cycles including the latest value u (k) = KSTR (k) and input to the parameter adjustment mechanism Therefore, the effect of the exhaust gas air-fuel ratio of the specific cylinder is further reduced.
また、 パラメ一夕調整機構の入力側ではなく、 その出力側の適応パラメ一夕 0 ハツ ト(k) について 4気筒のそれに対応する 4制御周期分 ( 1燃焼サイクル) の Θハツ 卜の平均値を求めて S T Rコントローラに入力するようにしたので、 その 平滑化によっても、 特定気筒の排気ガス空燃比の影響を低減すると言う目的を達 成することができるからである。 更に、 パラメ一夕調整機構側ではなく、 燃料演 算系のフィ一ドバック補正係数である KSTR(k) を出力する S T Rコントローラに ついても、 4気筒のそれに対応する 4制御周期分 ( 1燃焼サイクル) の KSTRの平 均値を求めるようにしたので、 同様に特定気筒の排気ガス空燃比の影響を低減す ることができる。  Also, the average value of the パ ラ -hat for the four control cycles (one combustion cycle) corresponding to that of the four cylinders for the zero-parameter (k) of the adaptive parameter of the output side, not the input side of the parameter adjustment mechanism, Is obtained and input to the STR controller, so that the purpose of reducing the effect of the exhaust gas air-fuel ratio of the specific cylinder can be achieved also by smoothing. Furthermore, instead of the parameter adjustment mechanism, the STR controller that outputs the KSTR (k), which is the feedback correction coefficient of the fuel calculation system, has four control cycles (one combustion cycle) corresponding to those of the four cylinders. Since the average value of KSTR is determined, the effect of the exhaust gas air-fuel ratio of a specific cylinder can be similarly reduced.
他方、 S 1 0 0で機関が所定の運転領域、 具体的にはアイドルを含む低回転領 域にあるか否か判断し、 肯定されるときは平均値を算出しないようにしたので、 不都合が生じることがない。 即ち、 低回転時は制御サイクルが長くなるため、 L A Fセンサの応答遅れが無視できるようになる。 逆に、 検出空燃比 KACT(k) とそ の平均値 KACTAVE の位相が第 1 2図のようにずれるため、 制御系の無駄時間が変 化したのと同じ現象が起きる。 そのため、 位相がずれている KACTAVE(k)を用いて 適応制御を行うと、 ハンチングなどの悪影響が起こる可能性がある。 そのために 、 アイドル運転時など低回転状態にあってこの影響を受けるときは、 平滑化を停 止するようにした。 On the other hand, in S100, it is determined whether or not the engine is in a predetermined operating region, specifically, a low rotation region including idling, and when the result is affirmative, the average value is not calculated. Will not occur. That is, the control cycle becomes longer at low rotations, so that the response delay of the LAF sensor can be ignored. Conversely, since the phase of the detected air-fuel ratio KACT (k) and its average value KACTAVE are shifted as shown in Fig. 12, the same phenomenon occurs as when the dead time of the control system changes. Therefore, using KACTAVE (k) which is out of phase, Adaptive control may have adverse effects such as hunting. For this reason, smoothing is stopped when the engine is in a low rotation state such as during idling and is affected by this.
尚、 上記において、 S 1 0 6で算出する適応パラメ一夕 0ハツ 卜の平均値 AVE- βハッ ト(k) は、 数 1 0に示す同定誤差信号 eアスタリスクの算出には用いない こととする。 即ち、 同定誤差信号 eアスタリスクは検出空燃比と目標空燃比との 誤差の大きさを評価する関数なので、 上記の如く求めた AVE- 0ハッ ト 0 を数 1 0の算出に用いると、 誤差が不正確となる場合があるため、 AVE- 0ハツ ト(k) は 数 8の算出のみ用い、 数 1 0の算出には用いない運転領域を設けることが有益で ある。  Note that, in the above, the average value AVE-β hat (k) of the adaptive parameters at 0 Hz calculated in S 106 should not be used to calculate the identification error signal e asterisk shown in Equation 10. I do. That is, since the identification error signal e asterisk is a function that evaluates the magnitude of the error between the detected air-fuel ratio and the target air-fuel ratio, if the AVE-0 hat 0 obtained as described above is used in the calculation of Equation 10, the error is Because it may be inaccurate, it is useful to provide an operating area that uses AVE-0 hat (k) only for the calculation of Eq. 8, but not for the calculation of Eq.
また、 上記において、 S 1 0 2 , S 1 0 6 , S 1 1 0で空燃比、 0ハツ ト(k) 、 KSTR(k) の平均値を全て用いるようにしたが、 いずれか 1つ、 もしくは適切な 2つを用いても良いことは言うまでもない。 また、 機関始動時ないしは S T Rコ ントローラの演算再開の平均値の演算において、 過去値がないときは、 適宜な所 定値を用いることも言うまでもない。  In the above description, the average values of the air-fuel ratio, 0 hat (k), and KSTR (k) are all used for S 102, S 106, and S 110, but any one of Or, of course, the appropriate two may be used. In addition, in the calculation of the average value at the time of engine start or the restart of the operation of the STR controller, if there is no past value, it goes without saying that an appropriate predetermined value is used.
尚、 適応パラメ一夕 0ハツ ト(k) やフィードバック補正係数 KSTR(k) の平均値 を求める場合には、 それらの値をパラメータ調整機構に対して必ずしも入力させ る必要がない。 これは、 適応バラメータ 0ハツ ト(k) の平均値を用いて S T Rコ ン トローラで算出されるフィードバック補正係数 KSTR(k) は、 特定気筒の排気ガ ス空燃比に大きく影響されない値に既になつているからである。 同様に、 S T R コントローラで算出されるフィードバック補正係数 KSTR(k) の平均値も、 その値 自体が特定気筒の排気ガス空燃比に大きく影響されない値になっているからであ る。  When calculating the average value of the adaptive parameter 0 hat (k) and the feedback correction coefficient KSTR (k), it is not necessary to input those values to the parameter adjustment mechanism. This is because the feedback correction coefficient KSTR (k) calculated by the STR controller using the average value of the adaptive parameter 0 hat (k) has already reached a value that is not significantly affected by the exhaust gas air-fuel ratio of the specified cylinder. Because it is. Similarly, the average value of the feedback correction coefficient KSTR (k) calculated by the STR controller itself is a value that is not significantly affected by the exhaust gas air-fuel ratio of the specific cylinder.
第 6図フロー .チャートの S 3 2で示したフィードバック補正係数の選択につ いて説明する。  The selection of the feedback correction coefficient indicated by S32 in the flowchart of FIG. 6 will be described.
第 1 3図はその作業を示すサブルーチン 'フロー 'チヤ一トである。  FIG. 13 is a subroutine 'flow' chart showing the operation.
同図に従って説明すると、 先ず S 2 0 0で適応制御系の適用領域にあるか否か 判断する。 例えば、 極低水温域などの燃焼不安定運転領域などでは、 正確な算出 空燃比 KACT(k) が求まらないため適用領域外とし、 その場合には S 2 1 0に進ん で P I D制御則によって求めたフィードバック補正係数 KLAF(k) を使用して出力 • 燃料噴射量 Tout(k)を算出する。 適用領域にあると判断されるときは S 202に 進んで適応パラメ一夕 0ハツ 卜の各要素を用いて適応制御系の安定性を判別する 具体的には、 S TRコントローラが算出するフィ一ドバック補正係数 KSTR(k) の伝達特性は、 数 1 9のように表される。 Referring to the figure, first, in S200, it is determined whether or not it is in the applicable area of the adaptive control system. For example, in an unstable combustion operation region such as an extremely low water temperature region, the accurate calculation air-fuel ratio KACT (k) is not obtained, so that the air-fuel ratio is outside the applicable region.In that case, the process proceeds to S210. Then, the output • fuel injection amount Tout (k) is calculated using the feedback correction coefficient KLAF (k) obtained by the PID control law. If it is determined that the adaptive control system is within the applicable area, the process proceeds to step S202, where the stability of the adaptive control system is determined using each element of the adaptive parameter 0 hat. The transfer characteristic of the feedback correction coefficient KSTR (k) is expressed as in Equation 19.
KSTRCz-')= {KC DCz- -SoKACTCz-O-Cr.z-' + r^^ + raZ"3) KSTRCz-') = (KC DCz- -SoKACTCz-O-Cr.z-' + r ^^ + raZ " 3 )
xKSTRCz"')} / b。 · · ·数 1 9 ここで、 付着補正が正しく、 燃料演算系の外乱が存在しない状態を仮定すると 、 KSTR(k) と KACT(k) の伝達特性は、 数 20のようになる。  xKSTRCz "')} / b. ········································································ 1 9 Here, assuming that the adhesion correction is correct and there is no disturbance in the fuel operation system, the transfer characteristics of KSTR (k) and KACT (k) are It looks like 20.
KACT(z-') = z-3KSTR(z-1) · · ·数 20 KACT (z- ') = z- 3 KSTR (z- 1 )
KCMDCk) から補正係数 KSTR(k) の伝達関数は、 数 21のようになる。 The transfer function from KCMDCk) to the correction coefficient KSTR (k) is as shown in Equation 21.
KSTRCz"1) 1 KSTRCz " 1 ) 1
数 21 Number 21
KCMD(z一1) b。z3+ nz2 + r2z + r3 + s0 KCMD (z- 1 ) b. z 3 + nz 2 + r 2 z + r 3 + s 0
···
Figure imgf000027_0001
ここで、 b 0はゲインを決定するスカラ量であるため、 0あるいは負となり得 ないので、 数 21の伝達関数の分母関数 f (z) =b OZ3 +r l Z2 +r 2Z + r 3 + s 0は、 第 1 4図に示す関数のいずれかになる。 そこで、 実根が単位円 内にあるか否かを判別する、 即ち、 第 15図に示すように、 f (一 1) < 0ない し f ( 1) > 0であるか否かを判別すれば、 肯定されるときは実根が単位円内に あることになるので、 それから系が安定しているか否かを容易に判定することが できる。 そこで S 2 0 4に進んで上記から適応制御系が不安定か否か判断し、 肯定され るときは S 2 0 6に進んで適応パラメータべクトル 0ノヽッ 卜を初期値に戻す。 こ れにより、 系の安定を回復することができる。 続いて S 2 0 8に進んでゲイン行 列 Γを補正する。 ゲイン行列 Γはバラメータ調整機構の変化 (収束) 速度を決定 するものであることから、 この補正は収束速度を遅くするように行う。 ここでは 、 ゲイン行列 Γの各要素を小さい値に置換する。 それによつても同様に系の安定 を回復することができる。 統いて S 2 1 0に進み、 図示の如く、 適応制御系が不 安定であることからフィードバック補正係数としては P I D制御則による補正係 数 K F(k) を用い、 それを要求燃料噴射量 Tcyl (k) に乗じると共に、 その積に 加算項 TT0TALを加算して出力燃料噴射量 Tout (k)を決定する。
····
Figure imgf000027_0001
Here, since b 0 is a scalar quantity that determines the gain, it cannot be 0 or negative, so the denominator function f (z) of the transfer function of Equation 21 = b OZ 3 + rl Z 2 + r 2Z + r 3 + s 0 is one of the functions shown in FIG. Therefore, it is determined whether or not the real root is within the unit circle. That is, as shown in FIG. 15, it is determined whether or not f (1-1) <0 or f (1)> 0. When the result is affirmative, the real root is within the unit circle, so that it can be easily determined whether the system is stable or not. Then, the process proceeds to S204 to determine whether or not the adaptive control system is unstable from the above. If the result is affirmative, the process proceeds to S206 to return the adaptive parameter vector 0 to the initial value. As a result, the stability of the system can be restored. Then, the process proceeds to S208, where the gain matrix Γ is corrected. Since the gain matrix Γ determines the change (convergence) speed of the parameter adjustment mechanism, this correction is performed so as to slow down the convergence speed. Here, each element of the gain matrix Γ is replaced with a smaller value. With this, the stability of the system can be restored similarly. Then, as shown in the figure, since the adaptive control system is unstable, as shown in the figure, the correction coefficient KF (k) based on the PID control law is used as the feedback correction coefficient, and it is used as the required fuel injection amount Tcyl ( k) and add the addition term TT0TAL to the product to determine the output fuel injection amount Tout (k).
尚、 S 2 0 4で適応制御系が不安定ではないと判断されるときは S 2 1 2に進 んで、 図示の如く、 フィードバック補正係数として適応制御則による補正係数 KS T (k) を用いて出力燃料噴射量 Tout (k)を算出する。 このとき、 第 1 1図フロー • チヤ一トの S 1 1 0でフィードバック補正係数 KSTRの平均値が求められている ときは、 その平均値を使用することは言うまでもない。  If it is determined in S204 that the adaptive control system is not unstable, the process proceeds to S212, where the correction coefficient KST (k) by the adaptive control law is used as the feedback correction coefficient as shown in the figure. To calculate the output fuel injection amount Tout (k). At this time, if the average value of the feedback correction coefficient KSTR is obtained in S110 of the flowchart in FIG. 11, it goes without saying that the average value is used.
尚、 第 7図プロック図において、 切換機構 4 0 0の出力 u (k) は、 S T Rコン トローラおよびパラメ一夕調整機構に入力される。 これは、 P I D制御則による フィードバック補正係数 KLAFが選択されたときも適応制御則によるフィードバッ ク補正係数 KSTRの演算を可能にするためである。  In the block diagram of FIG. 7, the output u (k) of the switching mechanism 400 is input to the STR controller and the parameter adjusting mechanism. This is to enable the calculation of the feedback correction coefficient KSTR by the adaptive control law even when the feedback correction coefficient KLAF by the PID control law is selected.
この実施の形態においては上記のように構成した結果、 パラメ一夕調整機構は 全気筒 T D Cごとに動作するにも関わらず、 適応パラメ一夕の要素の数が 5とな つて Γ行列演算は 5 X 5に減少して車載コンピュータの負荷が軽減し、 通例の性 能の車載コンピュータで 1 T D C間に演算を完了することが可能となる。 他方、 S T Rコントローラも全気筒 T D Cごとにフィードバック補正係数 KSTRを算出す ると共に、 その変更を全気筒 T D Cごとに行うことで運転状態の変化に対して極 力対応することができる。 また、 無駄時間の大幅な削減により、 制御性を向上さ せることが可能となる。  In this embodiment, as a result of the above-described configuration, although the parameter adjustment mechanism operates for each cylinder TDC, the number of elements in the adaptive parameter adjustment is 5 and the Γ matrix operation is 5 The load on the in-vehicle computer is reduced to X5, and the computation can be completed in 1 TDC with the in-vehicle computer of ordinary performance. On the other hand, the STR controller also calculates the feedback correction coefficient KSTR for every cylinder TDC, and by changing the feedback correction coefficient KSTR for every cylinder TDC, can respond to changes in the operating state as much as possible. In addition, controllability can be improved by greatly reducing the dead time.
更に、 パラメ一夕調整機構では気筒別に見ると、 燃焼サイクルごとに作動する 結果、 特定気筒、 例えば第 1気筒の所定クランク角度で常に動作することになる 力、 当該燃焼サイクル間の残余の気筒群を含む全てについての検出空燃比 (制御 量) の平均値を求め、 その平均値をパラメータ調整機構に入力する、 ないしは適 応パラメ一夕 0ハツ 卜の平均値を求める、 ないしは S T Rコントローラの出力た るフィ一ドバック補正係数 KSTRの平均値を求めて使用するようにしたので、 特定 気筒の燃焼伏態のみを強く反映する不都合がない。 Furthermore, when viewed from the cylinder-by-cylinder adjustment mechanism, each cylinder operates every combustion cycle.As a result, the cylinder always operates at a predetermined crank angle of the specified cylinder, for example, the first cylinder. Calculate the average value of the detected air-fuel ratio (control amount) for all the cylinders including the remaining cylinders during the combustion cycle, and input the average value to the parameter adjustment mechanism, or apply the Since the average value is calculated or the average value of the feedback correction coefficient KSTR, which is the output of the STR controller, is calculated and used, there is no inconvenience that only the combustion state of a specific cylinder is strongly reflected.
即ち、 特定気筒についての制御量に基づいてフィードバック補正係数 KSTRを求 めるとすると、 例えば第 1気筒の空燃比がリツチで他の気筒のそれがリーンであ るとき、 フィードバック補正係数 KSTRは空燃比をリ一ン方向に修正するべく決定 され、 他の気筒の空燃比のリーン化に拍車がかけられてしまうが、 全気筒の平均 値とする結果、 そのような不都合が生じない。  That is, if the feedback correction coefficient KSTR is determined based on the control amount for a specific cylinder, for example, when the air-fuel ratio of the first cylinder is rich and that of the other cylinders is lean, the feedback correction coefficient KSTR becomes empty. The decision was made to correct the fuel ratio in the lean direction, which spurred the leaning of the air-fuel ratio of the other cylinders. However, as a result of the average value for all cylinders, such inconvenience does not occur.
尚、 更なる簡素化のためには、 第 1 6図に示す如く、 適応パラメ一夕 0ハッ ト を全気筒 T D Cごとではなく、 特定気筒の燃焼サイクルに同期させて、 即ち、 4 T D Cに 1度演算し、 S T Rコントローラでその適応パラメ一夕 0ハツ トを気筒 数回、 同じ値を用いるように構成しても良い (第 1 0図において m = 1 , n = 4 とした場合に相当) 。  For further simplification, as shown in Fig. 16, the adaptive parameter 0 hat is synchronized not with every cylinder TDC but with the combustion cycle of a specific cylinder. The STR controller may be configured to use the same value for the adaptive parameter 0 hat several times a cylinder several times (corresponding to the case where m = 1 and n = 4 in Fig. 10). .
この手法は、 機関の回転数の上昇に伴う演算可能時間の減少時などに特に有効 である。 高回転時には各気筒ごとに必要とされる適応パラメ一夕 0ハツ トのばら つきが少なくなるため、 特定気筒の適応パラメータ 6>ハツ トを他の気筒を含む全 気筒に用いても、 制御性の悪化が少ないことから、 制御性を悪化させることなく 、 演算時間を短縮することができる。  This method is particularly effective when the operable time decreases as the engine speed increases. At high engine speeds, the variation of the adaptation parameters required for each cylinder at 0 h is reduced, so that the controllability can be maintained even if the adaptation parameter of a specific cylinder is applied to all cylinders including other cylinders. The calculation time can be shortened without deteriorating the controllability because the deterioration of is small.
更には、 第 1 7図に示すように、 S T Rコントローラも燃焼サイクルに同期さ せて 4 T D Cに 1度のみ動作させるようにすれば、 構成を一層簡略にすることが できる。 制御精度は低下するが、 この構成でもある程度の効果を挙げることがで きる (第 1 0図において m = n = 4とした場合に相当) 。  Furthermore, as shown in FIG. 17, if the STR controller is operated only once every 4 TDC in synchronization with the combustion cycle, the configuration can be further simplified. Although the control accuracy is reduced, some effects can be obtained with this configuration (corresponding to the case where m = n = 4 in Fig. 10).
第 1 8図は、 この出願に係る装置の第 2の実施の形態を示すフロー .チャート であり、 フィードバック補正係数 KSTRの演算に用いるゲイン行列 Γの設定に関す o  Fig. 18 is a flow chart showing a second embodiment of the apparatus according to the present application, which is related to the setting of the gain matrix 用 い る used for calculating the feedback correction coefficient KSTR.
フィ一ドバック補正係数 KSTRの演算には前述の数 1ないし数 1 2から明らかな 如く、 ゲイン行列 r (k) を必要とする。 第 2の実施の形態は、 数 9において; U = 1 , λ2 = 0、 即ち、 固定ゲインアルゴリズムを用いた場合において、 この - イン行列 Γ0 の非対角要素を全て 0にすることにより、 演算時間の短縮とセ ン ティングの容易化を図った。 The calculation of the feedback correction coefficient KSTR requires a gain matrix r (k) as is clear from the above equations (1) to (12). The second embodiment is based on Equation 9; = 1, λ 2 = 0, that is, when the fixed gain algorithm is used, the off-diagonal elements of this -in matrix Γ0 are all set to 0 to reduce the calculation time and facilitate the setting. Was.
説明のために、 一例として内部変数 Γ (k-d) の演算を行う場合を考える。 ケ ィン行列 Γを 5 X 5の行列とする第 1の実施の形態の場合では、 Γの演算は数 2 2のように行われ、 乗算が 25回、 加算が 20回必要となる。  For the sake of explanation, consider the case where the operation of the internal variable Γ (k-d) is performed as an example. In the case of the first embodiment in which the key matrix Γ is a 5 × 5 matrix, the calculation of Γ is performed as shown in Expression 22 and 25 multiplications and 20 additions are required.
u(k-l-d) u (k-l-d)
Γ Ck-d) u(k-2-d)  Γ Ck-d) u (k-2-d)
u(k-3-d) y(k-d) u (k-3-d) y (k-d)
Figure imgf000030_0001
に gi,u(k-d) + g12u(k-l-d) + + g15y(k-d)
Figure imgf000030_0001
To gi, u (kd) + g 12 u (kld) + + g 15 y (kd)
gsiuCk-d) + + gS5y(k-d) 数 22 これをゲイン行列 Γの非対角要素を全て 0とおくと、 数 23のように表すこと ができ、 演算は乗算 5回に短縮することができる。 2 g gsiuCk-d) + + g S5 y (kd) Equation 22 If all non-diagonal elements of gain matrix Γ are set to 0, it can be expressed as Equation 23, and the operation can be reduced to 5 multiplications Can be. 2 g
gl 1 gl2 gl3 gl4 gl S u(k-d) gl 1 gl2 gl3 gl4 gl S u (k-d)
g21 g22 g23 g24 g26 u(k-l-d)  g21 g22 g23 g24 g26 u (k-l-d)
Γ (k一 d)= gsi g32 g33 g34 g3 S u(k-2-d)  Γ (k-d) = gsi g32 g33 g34 g3 S u (k-2-d)
5  Five
g、 k41 g42 g" g" g" u(k-3-d)  g, k41 g42 g "g" g "u (k-3-d)
g51 gS2 g63 gS4 g55 y(k-d)
Figure imgf000031_0001
g51 gS2 g63 gS4 g55 y (kd)
Figure imgf000031_0001
g22u(k-l-d) g 22 u (kld)
数 2 3 g5sy(k-d) Number 2 3 g 5 sy (kd)
また、 ゲイン行列 Γの非対角要素を全て 0にすることにより、 適応パラメータ Θ J ト(k) の演算を行う場合、 数 24のようになる。 In addition, when the non-diagonal elements of the gain matrix Γ are all set to 0 to calculate the adaptive parameter Θ J (k), Equation 24 is obtained.
0,(k-l) 02(k-l) 0, (kl) 0 2 (kl)
^(k) = 03(k - 1) + Γ rCk-d)e*(k) ^ (k) = 0 3 (k-1) + Γ rCk-d) e * (k)
6>4(k-l) e* (k) 数 2 4 6> 4 (kl) e * (k) number 2 4
Figure imgf000032_0001
その結果、 行列要素 g u . g 2 2. g 33. g ". g "は、 適応パラメ一夕( ハツ ト(k) の各要素の変化速度を (k) の 1つのみの要素に対応した値で、 独立して セッティングすることができる。 もし、 ゲイン行列 Γの非対角要素が 0でなけれ ば、 数 2 2および数 2 4から分かるように、 適応パラメータ 0ハツ ト(k) の演算 は数 2 5の如くとなり、 0ハッ ト(1 の 1つの要素の変化速度を決定するのに、 ζ (k-d) の全ての要素に対応した 5つの変数を考慮する必要があり、 セッティ ン グに困難を伴う。 ゲイン行列 Γの非対角要素を全て 0にすることにより、 演算時 間を短縮し、 セッティングを容易にすることが可能となる。
Figure imgf000032_0001
As a result, the matrix elements gu. G 2 2. G 33. g ". G" corresponded to only one element of the change speed of each element of the adaptive parameters Isseki (hearts preparative (k) (k) If the off-diagonal elements of the gain matrix Γ are not 0, the calculation of the adaptive parameter 0 hat (k) as can be seen from Equations 2 2 and 24 Is given by the following equation 25. In order to determine the rate of change of one element of 0 hat (1), it is necessary to consider five variables corresponding to all elements of ζ (kd). By setting all off-diagonal elements of the gain matrix 0 to 0, the calculation time can be reduced and the setting can be facilitated.
Figure imgf000033_0001
Figure imgf000033_0001
数 25 更に、 発明者達がテストを行ったところ、 Γ行列において g H〜g 55の 5つの セッティ ング要素は、 その幾つかを同じ値とすると、 適応パラメ一夕 6>ハッ ト(k ) の各要素の変化速度の割合が適正となって、 最も制御性が良くなることが判明 した。 例えば、 g u g g sa g - gとおく場合である。 このようにおく と、 セッティ ング要素を gと g 66の 2つに低減することができ、 セッティ ングの ための工数を削減することができると共に、 例えば内部変数の T (k-d) Γ r(k -d) の演算は数 26のようになり、 乗算が 1 2回となる n Equation 25 Further, the inventors conducted a test, and found that the five setting elements g H to g 55 in the 55 matrix, assuming that some of them have the same value, have the adaptive parameter 6> hat (k) It has been found that the ratio of the change speed of each element is appropriate and the controllability is the best. For example, gugg sa g-g. With such placing, it is possible to reduce the Setti ring element into two g and g 66, it is possible to reduce the man-hours for Setti ring, for example, the internal variable T (kd) Γ r (k operation -d) is as few 26, n multiplication is 1 twice
Figure imgf000034_0001
Figure imgf000034_0001
= g {u(k-d)2+u(k-l-d): +u(k-3-d)2} +g55y(k-d); = g {u (kd) 2 + u (kld) : + u (k-3-d) 2 } + g 55 y (kd) ;
数 2 6 それに対し、 g H〜g 44がそれぞれ別々の値をとる場合には上記演算は数 2 7 のようになり、 乗算が 1 5回に増加する。 rT(k-d r Γ (k-d) = g,iu(k-d)2+ +g55y(k-d); 数 2 以上から、 g ^ g ssのうち、 幾つかを同じ値とすることで、 セッティ ング要 素の数を減少させることができ、 演算時間を更に短縮することが可能となる。 ま た、 適応パラメータ øハツ ト(k) の各要素の変化速度の割合を適正にできるため 、 制御性も良好となる。 このとき、 g u ^ g g ss g g とすると、 そ の効果が最も表れることは言うまでもない。 Equation 2 6 On the other hand, if g H to g 44 take different values, the above operation becomes as shown in Equation 27, and the multiplication increases to 15 times. r T (kd r Γ (kd) = g, iu (kd) 2 + + g 55 y (kd) ; From number 2 and above, setting some of g ^ g ss to the same value The number of elements can be reduced, the calculation time can be further reduced, and the ratio of the change speed of each element of the adaptive parameter ø hat (k) can be made appropriate, so that the controllability can be improved. At this time, if gu ^ gg ss gg is used, it goes without saying that the effect is most apparent.
更に、 例えば燃焼が不安定なため、 プラント出力も不安定となる運転領域を例 にとると、 上記の g55を小さくすることにより、 s o(k) のハンチングなどを抑 えることができる。 このように、 ゲイン行列 Γの非対角要素を 0にすることによ り、 制御特性のセッティ ングが容易となるメリ ッ トは大である。 また、 運転領域 によってゲイン行列 Γを持ち替えることにより、 常に機関にとって最適な制御性 を得ることが可能となる。 Furthermore, for example, because the combustion is unstable, taking the operating region even plant output becomes unstable as an example, by reducing the above g 55, it is possible to obtain such suppression hunting so (k). As described above, setting the off-diagonal element of the gain matrix 0 to 0 has a great advantage that the control characteristics can be easily set. In addition, by changing the gain matrix に よ っ て depending on the operating region, it is possible to always obtain the optimal controllability for the engine.
その場合、 g H〜g 55は、 運転状態に応じて制御ュニッ ト 34内の RAM74 に記億しておく。 より具体的には、 運転伏態に加え、 キヤニス夕 ·パージ、 排気 還流などの機関の制御デバイスの動作状態に応じて記憶しておく。 このとき、 g u g s sは全て同じ値でも、 全て違う値でも、 幾つか同じ値でも良い。 尚、 またIn that case, g H to g 55 are determined by the RAM 74 in the control unit 34 according to the operating state. In the book. More specifically, it is stored according to the operating state of the control device of the engine such as canister purge, exhaust gas recirculation, etc., in addition to the operating state. In this case, gugss may be all the same value, all different values, or some same value. In addition,
、 この場合、 R A M 7 4の容量ないしは演算時間に余裕があれば、 ゲイン行列 Γ の非対角要素を用いても良い。 In this case, the off-diagonal element of the gain matrix Γ may be used as long as the capacity of the RAM 74 or the operation time has room.
上記を前提として、 第 1 8図フロー ·チヤ一トに従ってこの出願に係る装置の 第 2の実施の形態を説明する。  On the basis of the above, a second embodiment of the apparatus according to the present application will be described with reference to a flow chart of FIG.
先ず、 S 3 0 0において機関回転数 N e、 吸気圧力 P bなどの機関運転パラメ 一夕および前述の排気還流機構ないしキヤニス夕 ·パージ機構の動作状態を読み 込み、 S 3 0 2に進んでアイ ドル領域にあるか否か判断し、 肯定されるときは S 3 0 に進んでアイ ドル用の Γマップを検索する。 他方、 S 3 0 2でアイ ドル領 域にはないと判断されるときは S 3 0 6に進んで可変バルブタイミング機構が H iバルブタイミング特性で運転されているか否か判断し、 肯定されるときは S 3 0 8に進んで H iバルブタイミング用の Γマップを検索すると共に、 否定される ときは S 3 1 0に進んで L 0バルブタイミング用の Γマップを検索する。  First, in S300, the engine operating parameters such as the engine speed Ne and the intake pressure Pb and the operating states of the exhaust gas recirculation mechanism or the canister / purge mechanism described above are read, and the program proceeds to S302. It is determined whether or not it is in the idle area. If the determination is affirmative, the process proceeds to S30 to search for the idle Γ map. On the other hand, when it is determined in S302 that the variable valve timing mechanism is not in the idle area, the process proceeds to S306, in which it is determined whether the variable valve timing mechanism is operated with the Hi valve timing characteristic, and the result is affirmed. If so, proceed to S308 to search for a Γ map for Hi valve timing. If not, proceed to S310 to search for a Γ map for L0 valve timing.
第 1 9図に L 0バルブタイミング用の Γマップの特性を図示する。 このマップ は図示の如く、 機関回転数 N eと吸気圧力 P bとから行列要素 g ^ g s sを検索 する。 尚、 アイドル用および H iバルブタイミング用の Γマップも同様の特性を 備える。 また、 このマップは、 機関負荷を示す吸気圧力 P bによりゲイン行列 Γ の値を検索しているため、 機関負荷の急変動時である減速運転状態などにおいて も、 最適なゲイン行列の値を得ることができる。  Fig. 19 shows the characteristics of the Γ map for L0 valve timing. As shown in this map, a matrix element g ^ gss is searched from the engine speed Ne and the intake pressure Pb. The Γ maps for idle and Hi valve timing also have similar characteristics. In this map, the value of the gain matrix Γ is searched based on the intake pressure Pb indicating the engine load, so that the optimal gain matrix value is obtained even in a deceleration operation state where the engine load fluctuates rapidly. be able to.
続いて S 3 1 2に進んで E G R (排気還流機構) が動作しているか否か判断し 、 肯定されるときは S 3 1 4に進んで排気還流率に対する燃料補正係数 KEGRN に 応じてゲイン行列 Γを修正する。 より具体的には排気還流率に対する燃料補正係 数 KEGRN から第 2 0図にその特性を示すテーブルを検索して補正係数 Kr EGR を 求め、 求めた補正係数 Kr EGR をゲイン行列 Γに乗算して補正する。 排気還流率 に対する燃料補正係数 KEGRN に応じてゲイン行列を修正する理由は、 補正係数 K r EGR は図示の如く、 排気還流量が増加するに従い排気還流率に対する燃料補正 係数 KEGRN が減少するのに従って外乱が大きくなることから、 適応制御系の安定 性が高まるように、 排気還流率に対する燃料補正係数 KEGRN が減少するにつれて ゲイン行列 Γを小さくするように設定される。 Then, the process proceeds to S312, where it is determined whether the EGR (exhaust gas recirculation mechanism) is operating. Modify Γ. More specifically, the fuel correction coefficient KEGRN for the exhaust gas recirculation rate is searched from the table showing its characteristics in Fig. 20 to find the correction coefficient Kr EGR, and the obtained correction coefficient Kr EGR is multiplied by the gain matrix Γ. to correct. The reason why the gain matrix is corrected according to the fuel correction coefficient KEGRN for the exhaust gas recirculation rate is that the correction coefficient Kr EGR is, as shown in the figure, a disturbance as the fuel correction coefficient KEGRN for the exhaust gas recirculation rate decreases as the exhaust gas recirculation rate increases. , The stability of the adaptive control system The gain matrix is set so as to decrease as the fuel correction coefficient KEGRN for the exhaust gas recirculation rate decreases, so as to enhance the performance.
尚、 この排気還流率 KEGRN は燃料噴射量を乗算補正する係数であって、 例えば 0 . 9などと決定される。 しかし、 この発明の要旨は排気還流率の決定自体には なく、 また排気還流率の決定は例えば本出願人が先に提案した特願平 6— 2 9 4 , 0 1 4号に述べられているので、 説明は省略する。  The exhaust gas recirculation rate KEGRN is a coefficient for multiplying and correcting the fuel injection amount, and is determined to be, for example, 0.9. However, the gist of the present invention is not in the determination of the exhaust gas recirculation rate itself, and the determination of the exhaust gas recirculation rate is described in, for example, Japanese Patent Application No. 6-294, 014 proposed earlier by the present applicant. Description is omitted.
続いて S 3 1 6に進み、 キヤニスタ ·パージ機構が動作しているか否か判断し 、 肯定されるときは S 3 1 8に進んでパージ質量に応じてゲイン行列 Γを修正す る。 より具体的にはパージ質量に対する燃料補正係数 KPUGから第 2 1図にその特 性を示すテーブルを検索して補正係数 ΚΓΡΙ Ϊ 求め、 求めた補正係数 Kr PUG を ゲイン行列 Γに乗算して補正する。 補正係数 KrPUG は図示の如く、 パージ質量 が増加するに従ってパージ質量に対する燃料補正係数 KPUGが滅少し、 それにつれ て外乱が大きくなることから、 パージ質量に対する燃料補正係数 KPUGが^少する につれてゲイン行列 Γが小さくなるように設定される。 尚、 パージ質量に対する 燃料補正係数 KPUGについても例えば本出願人が先に提案した特開平 6 - 1 0 1 , 5 2 2号に述べられているので、 説明は省略する。  Subsequently, the flow proceeds to S316 to determine whether the canister / purge mechanism is operating. If the result is YES, the flow proceeds to S318 to correct the gain matrix て according to the purge mass. More specifically, a correction coefficient ΚΓΡΙ Ϊ is obtained from the fuel correction coefficient KPUG for the purge mass by searching a table showing the characteristics in FIG. 21, and the obtained correction coefficient Kr PUG is multiplied by the gain matrix 補正 for correction. . As shown in the figure, the correction coefficient KrPUG is such that the fuel correction coefficient KPUG for the purge mass decreases as the purge mass increases, and the disturbance increases accordingly.Therefore, the gain matrix に つ れ てIs set to be small. The fuel correction coefficient KPUG for the purge mass is also described in, for example, Japanese Patent Application Laid-Open Nos. Hei 6-101 and 522 previously proposed by the present applicant, and therefore the description thereof is omitted.
続いて S 3 2 0に進んで検出した大気圧 P aに応じてゲイン行列 Γを修正する 。 より具体的には検出した大気 EE P aから第 2 2図にその特性を示すテーブルを 検索して補正係数 K r Pa求め、 求めた補正係数 Κ Γ ΡΑをゲイン行列 Γに乗算して 補正する。 検出した大気圧 P aに応じてゲイン行列 Γを修正する理由は、 検出し た大気圧 P aが減少する、 即ち、 機関が位置する高度が増加するにつれて充塡効 率が低下することから、 常圧でセッティングされたデータに対して外乱を生じる ため、 適応制御系の安定性が高まるように、 検出した大気圧 P aが減少するにつ れてゲイン行列 Γを小さくするように設定される。  Subsequently, the process proceeds to S320 to correct the gain matrix Γ according to the detected atmospheric pressure Pa. More specifically, from the detected atmosphere EEPa, a table showing the characteristics shown in Fig. 22 is searched to find the correction coefficient KrPa, and the obtained correction coefficient Κ Γ 乗 算 is multiplied by the gain matrix Γ for correction. . The reason for correcting the gain matrix 応 じ according to the detected atmospheric pressure Pa is that the detected atmospheric pressure Pa decreases, that is, the charging efficiency decreases as the altitude at which the engine is located increases. Since the disturbance occurs to the data set at normal pressure, the gain matrix Γ is set to decrease as the detected atmospheric pressure Pa decreases so that the stability of the adaptive control system increases. .
続いて S 3 2 2に進んで検出した水温 T wに応じてゲイン行列 Γを修正する。 より具体的には検出した水温 T wから第 2 3図にその特性を示すテーブルを検索 して補正係数 Kr TW求め、 求めた補正係数 KrTWをゲイン行列 Γに乗算して補正 する。 検出した水温 T wに応じてゲイン行列 Γを修正する理由は、 補正係数 Κ Γ TWは図示の如く、 検出した水温 T wが低水温または高水温にあるときは燃焼が不 安定となることから、 常温でセッティングされたデータに対して外乱を生じるた め、 適応制御系の安定性が高めるように、 低水温または高水温にあるときはゲイ ン行列 Γを小さくするように設定される。 Then, the process proceeds to S322 to correct the gain matrix Γ according to the detected water temperature Tw. More specifically, a correction coefficient Kr TW is obtained by searching a table showing the characteristics in FIG. 23 from the detected water temperature Tw, and the obtained correction coefficient KrTW is multiplied by a gain matrix to perform correction. The reason for correcting the gain matrix Γ according to the detected water temperature Tw is that the correction coefficient Κ Γ TW is as shown in the figure, and combustion does not occur when the detected water temperature Tw is at low or high water temperature. Since it becomes stable, it causes disturbance to the data set at room temperature.In order to increase the stability of the adaptive control system, reduce the gain matrix Γ at low or high water temperature. Is set.
第 2の実施の形態は上記の如く、 適応パラメータ 0ハツ トの変化 (収束) 速度 を決定するゲイン行列を運転状態に応じて適正に決定するようにしたので、 安定 した適応パラメータの変化速度を得ることができ、 制御性が向上する。  As described above, in the second embodiment, the gain matrix for determining the change (convergence) speed of the adaptive parameter 0 hat is determined appropriately according to the operating state. And controllability is improved.
尚、 第 2の実施の形態はゲイン行列 Γを固定ゲインで決定するものであるが、 可変ゲインアルゴリズムを用いることも可能であり、 その際にはゲイン行列 Γの 各要素の初期値を上記のように運転状態で修正し、 運転状態が変化したときに所 定値としても良い。  Although the second embodiment determines the gain matrix Γ with a fixed gain, it is also possible to use a variable gain algorithm, in which case the initial value of each element of the gain matrix Γ is It is also possible to make corrections in the operating state as described above, and to set the values when the operating state changes.
更に、 第 2の実施の形態においては、 固定ゲインアルゴリズムで説明したが、 ゲイン行列 r (k) の演算を数 9に示した可変ゲインアルゴリズムなどの固定ゲイ ンアルゴリズム以外の演算則に基づいて行う場合、 ゲイン行列 Γ 0 の非対角要 素の演算を行わず、 0と固定することにより、 上記第 2の実施の形態で示した演 算量の低減とセッティ ングの容易化を実現することが可能なことは、 言うまでも ない。  Further, in the second embodiment, the fixed gain algorithm has been described, but the calculation of the gain matrix r (k) is performed based on an operation rule other than the fixed gain algorithm such as the variable gain algorithm shown in Expression 9. In this case, the calculation of the off-diagonal element of the gain matrix Γ 0 is not performed and the value is fixed to 0, thereby realizing the reduction of the amount of calculation and the simplification of the setting shown in the second embodiment. Needless to say, this is possible.
第 2 4図はこの出願に係る装置の第 3の実施の形態を示すフロー ·チヤ一トで のる。  FIG. 24 is a flow chart showing a third embodiment of the apparatus according to the present application.
第 1の実施の形態および第 2の実施の形態においてはゲイン行列 Γを固定ゲイ ンで演算したが、 第 3の実施の形態は固定ゲイン以外のアルゴリズムで用いて演 算し、 そのときの適応パラメータを用いた制御結果 (ブラント出力、 より具体的 には検出空燃比 KACT) が良好な挙動を示したとき、 演算値を機関の運転状態に応 じて記憶しておけば、 再びその領域でゲイン行列 Γ 0 を演算する必要がなくな ると同時に、 その領域で最適なゲイン行列 Γ 0 を常に用いることができるよう になり、 制御性が向上する。 このとき格納する Γ 0 は、 4 T D C間の平均値な どの加工値を用いても良い。 尚、 固定ゲインアルゴリズムから、 ゲイン行列 Γを 演算する場合は、 ブラント出力の挙動が良好ではないと判断された場合となる。 そのときのゲイン行列 r (k-l) は運転領域ごとに格納された初期値として始める 上記を前提に第 2 4図を参照して説明する。 これは第 3の実施の形態のフロー 'チャートの第 1 8図の S 3 0 8 , S 3 1 0もしくは S 3 0 4などのゲイン行列 Γのマップ検索時に行う作業である。 In the first embodiment and the second embodiment, the gain matrix Γ is calculated with a fixed gain, but in the third embodiment, the calculation is performed using an algorithm other than the fixed gain, and the adaptive When the control result using parameters (blunt output, more specifically, the detected air-fuel ratio KACT) shows good behavior, if the calculated value is stored according to the operating state of the engine, it can be used again in that region. It is not necessary to calculate the gain matrix Γ 0, and at the same time, the optimal gain matrix Γ 0 can be always used in that region, and controllability is improved. At this time, 加工 0 stored may be a processed value such as an average value between 4 TDCs. Note that when the gain matrix Γ is calculated from the fixed gain algorithm, it is determined that the behavior of the brand output is not good. The gain matrix r (kl) at that time starts as the initial value stored for each operation area The description will be made with reference to FIG. 24 on the premise of the above. This is an operation to be performed when searching for a map of a gain matrix の such as S308, S310, or S304 in FIG. 18 of the flowchart of the third embodiment.
以下説明すると、 S 4 0 0で機関回転数 N eと吸気圧力 P bとから第 2の実施 の形態で示したと同様のゲイン行列 Γのマップを検索し、 S 4 0 2に進んでブラ ント出力たる検出空燃比 KACTの挙動が良好か否かを適宜な手法で判断し、 否定さ れるときは S 4 0 4に進んでゲイン行列 Γ 0 を演算し、 S 4 0 6に進んで検索 したマップの所定領域に格納する。 尚、 S 4 0 2で肯定されるときは直ちに S 4 0 6に進む。 S 4 0 2における検出空燃比 KACTの挙動の良否の判断は、 例えば 1 0 T D C間の検出空燃比 KACTが目標空燃比 KCMD土所定値以内に入っていれば良好 と判断することで行う。  In the following, a map of the gain matrix 同 様 similar to that shown in the second embodiment is searched from the engine speed Ne and the intake pressure Pb at S400, and the program proceeds to S402 to execute the An appropriate method was used to determine whether the behavior of the detected air-fuel ratio KACT, which is the output, was good, and if not, proceeded to S404 to calculate the gain matrix Γ0, and proceeded to S406 to search. It is stored in a predetermined area of the map. If the result in S402 is affirmative, the process immediately proceeds to S406. Whether the behavior of the detected air-fuel ratio KACT in S402 is good or not is determined by, for example, determining that the detected air-fuel ratio KACT between 10 TDC is within a predetermined value of the target air-fuel ratio KCMD soil.
第 3の実施の形態は上記の如く構成したので、 検出空燃比 KACTの挙動が良好な 場合は、 ゲイン行列 Γ 0 の演算を数 9に示した演算式を用いずに、 単なるマツ プ検索によって行うことができるため、 演算量を低減することができる。 更に、 検出空燃比 KACTの举動が良好ではない場合に、 最適なゲイン行列 Γ 0 を演算し 直し、 内燃機関の運転領域ごとに学習することにより、 内燃機関の経時劣化など にも対応することができ、 常に検出当量比 KACT0 の挙動が良好となるようにす ることができるため、 制御性を向上させることができる。  Since the third embodiment is configured as described above, when the behavior of the detected air-fuel ratio KACT is good, the calculation of the gain matrix Γ 0 is performed by a simple map search without using the arithmetic expression shown in Expression 9. Since it can be performed, the amount of calculation can be reduced. Furthermore, if the fluctuation of the detected air-fuel ratio KACT is not good, the optimal gain matrix Γ0 is recalculated and learned for each operating region of the internal combustion engine to cope with the deterioration over time of the internal combustion engine. Since the behavior of the detection equivalence ratio KACT0 can always be improved, controllability can be improved.
第 2 5図はこの出願に係る装置の第 4の実施の形態を示すフロー,チャートで あ 。  FIG. 25 is a flow chart showing a fourth embodiment of the apparatus according to the present application.
第 4の実施の形憨においては、 適応制御系が不安定にならないように、 検出空 燃比 KACTの特性に不感帯を設けた。 即ち、 S T Rコントローラは検出空燃比 KACT が目標空燃比 KCMDに一致するように動作するため、 S T Rコントローラに入力す る検出空燃比 KACTが目標空燃比 KCMDに一致していれば、 適応パラメ一夕はほとん ど変化しない。 そこで、 検出空燃比 KACTがセンサノイズなどの微小な外乱から微 小に変動するとき、 それによつて適応制御系がその微小な外乱などに影響されて 不要な過補正を行うことがないように、 第 2 6図に示す如く、 検出空燃比 KACTの 特性に、 目標空燃比 KCMDの付近に不感帯を設けた。 詳しくは KCMD - ySから KCMD + ひの範囲においては検出空燃比 KACTの値が同一である如くした。 第 2 1図フロー 'チャートを参照して説明すると、 S 5 0 0で検出空燃比 KACT を下限の所定値 KCMD - 8と比較し、 それ以上と判断されるときは S 5 0 2に進ん で検出空燃比 KACTを上限の所定値 KCMD+ひと比較する。 S 5 0 2で検出空燃比が 所定値 KCMD+ α以下と判断されるときは S 5 0 4に進んで検出空燃比 KACTを所定 の値、 例えば目標空燃比 KCMDとする。 尚、 S 5 0 0で検出空燃比 KACTが下限の所 定値 KCMD— y8を下回ると判断されるとき、 ないしは S 5 0 2で検出空燃比 KACTが 上限の所定値 KCMD+ を上回ると判断されるときは、 直ちにプログラムを終了す る。 従って、 その場合は検出値をそのまま検出空燃比 KACTとすることになる。 以 上の処理により、 第 2 6図に示す如く、 検出空燃比 KACTの特性に、 目標空燃比 KC MDの付近で不感帯を設けることができる。 In the fourth embodiment, a dead zone is provided in the characteristics of the detected air-fuel ratio KACT so that the adaptive control system does not become unstable. In other words, since the STR controller operates so that the detected air-fuel ratio KACT matches the target air-fuel ratio KCMD, if the detected air-fuel ratio KACT input to the STR controller matches the target air-fuel ratio KCMD, the adaptive parameters Almost no change. Therefore, when the detected air-fuel ratio KACT fluctuates minutely from a small disturbance such as sensor noise, the adaptive control system is not affected by such a small disturbance, so that unnecessary overcorrection is not performed. As shown in Fig. 26, a dead zone was set near the target air-fuel ratio KCMD in the characteristics of the detected air-fuel ratio KACT. Specifically, the detected air-fuel ratio KACT was made the same in the range of KCMD-yS to KCMD + HI. Referring to the flow chart of FIG. 21, the detected air-fuel ratio KACT is compared with a predetermined lower limit value KCMD-8 at S500, and if it is determined that the detected air-fuel ratio KACT is higher than the predetermined value, the flow proceeds to S502. The detected air-fuel ratio KACT is compared with the upper limit predetermined value KCMD + one. If it is determined in S502 that the detected air-fuel ratio is equal to or smaller than the predetermined value KCMD + α, the process proceeds to S504, where the detected air-fuel ratio KACT is set to a predetermined value, for example, the target air-fuel ratio KCMD. When the detected air-fuel ratio KACT is determined to be lower than the lower limit predetermined value KCMD-y8 in S500, or when the detected air-fuel ratio KACT is determined to be higher than the upper limit predetermined value KCMD + in S502. Terminates the program immediately. Therefore, in that case, the detected value is used as it is as the detected air-fuel ratio KACT. Through the above processing, as shown in FIG. 26, a dead zone can be provided near the target air-fuel ratio KCMD in the characteristics of the detected air-fuel ratio KACT.
第 4の実施の形態は上記の如く構成したので、 例えば検出空燃比 KACTが微小に 変動するときも、 S T Rコントローラはその影響を受けることなく、 安定に動作 することができ、 よって良好な制御結果を得ることができる。 尚、 S 5 0 2にお 、て目標空燃比 KCMDを検出空燃比としたが、 それ以外の KCMD— βから KCMD + の 範囲の適宜な値としても良い。  Since the fourth embodiment is configured as described above, for example, even when the detected air-fuel ratio KACT fluctuates minutely, the STR controller can operate stably without being affected by the fluctuation, and thus a good control result can be obtained. Can be obtained. In S502, the target air-fuel ratio KCMD is set as the detected air-fuel ratio. However, any other value in the range from KCMD-β to KCMD + may be used.
第 2 7図はこの出願に係る装置の第 5の実施の形態を示すフロー 'チャートで あ 0  FIG. 27 is a flow chart showing a fifth embodiment of the apparatus according to this application.
第 5の実施の形態は第 4の実施の形態と同様に適応制御系の不安定化を防止す るものであり、 同定誤差信号 eアスタリスクに上下限リ ミッ夕を設けて安定した 適応パラメ一夕を得るようにした。  The fifth embodiment prevents instability of the adaptive control system as in the fourth embodiment, and provides upper and lower limit values for the identification error signal e asterisk to provide a stable adaptive parameter. I got an evening.
即ち、 数 8から明らかな如く、 同定誤差信号 eアスタリスクの値をある一定以 内の範囲に制限することで、 適応パラメ一夕 0ハツ トの変化速度を制限すること ができる。 それによつて、 適応パラメ一夕 0ハッ ト(k) の最適値に対するオーバ —シュートを防止することができ、 結果的に適応制御系を安定に動作させて、 良 好な制御結果を得ることができるからである。  That is, as is apparent from Equation 8, by limiting the value of the identification error signal e asterisk to a certain range or less, it is possible to limit the changing speed of the adaptive parameter 0 hat. As a result, it is possible to prevent overshoot from the optimal value of the adaptive parameter 0 hat (k) over time and consequently to operate the adaptive control system stably to obtain a good control result. Because you can.
第 2 7図フロー 'チヤートに従って説明すると、 先ず S 6 0 0で算出した同定 誤差信号 eアスタリスク(k) を上限値 a (第 2 8図に示す) と比較し、 それを超 えていると判断されるときは S 6 0 2に進んで所定値、 例えば上限値 aを同定誤 差信号 eアスタリスク(k) とする。 他方、 S 6 0 0で同定誤差信号 eァスタリス ク(k) が上限値 a以下と判断されるときは S 6 0 4に進んで算出した同定誤差信 号 eアスタリスク(k) を下限値 b (第 2 8図に示す) と比較し、 それ未満と判断 されるときは S 6 0 6に進んで第 2の所定値、 例えば下限値 bを同定誤差信号 e アスタリスクお) とする。 尚、 S 6 0 4で同定誤差信号 eアスタリスク(k) が下 限値 b以上と判断されるときは、 直ちにプログラムを終了する。 従って、 その場 合は同定誤差信号 eァス夕リスク(k) は算出値のままとする。 Explaining in accordance with the flowchart of FIG. 27, first, the identification error signal e asterisk (k) calculated in S600 is compared with the upper limit a (shown in FIG. 28), and it is determined that the value is exceeded. If so, the process proceeds to S602, and a predetermined value, for example, the upper limit a is set as the identification error signal e asterisk (k). On the other hand, the identification error signal e If it is determined that the threshold value (k) is equal to or smaller than the upper limit value a, the processing proceeds to S604, where the calculated identification error signal e asterisk (k) is compared with the lower limit value b (shown in Fig. 28). When it is determined that the value is less than the predetermined value, the process proceeds to S606, and the second predetermined value, for example, the lower limit value b is set as the identification error signal e (asterisk). If it is determined in S604 that the identification error signal e asterisk (k) is equal to or greater than the lower limit b, the program is immediately terminated. Therefore, in that case, the identification error signal e risk (k) remains the calculated value.
第 5の実施の形態は上記の如く構成したので、 同定誤差信号 eアスタリスク(k ) の値をある一定以内の範囲に制限することで、 適応パラメータ 0ハツ ト(k) の 変化速度を制限することができる。 それによつて、 適応パラメ一夕 0ハツ ト(k) の最適値に対するオーバーンユートを防止することができ、 適応制御系を安定に 動作させて、 良好な制御結果を得ることができる。  Since the fifth embodiment is configured as described above, the changing speed of the adaptive parameter 0 hat (k) is limited by limiting the value of the identification error signal e asterisk (k) within a certain range. be able to. As a result, it is possible to prevent an overrun with respect to the optimum value of the adaptive parameter 0 hat (k), and to operate the adaptive control system stably to obtain a good control result.
尚、 S 6 0 2ないし S 6 0 6において同定誤差信号 eアスタリスク(k) の値を 上下限値としたが、 上下限値の間の適宜な値としても良く、 あるいは上下限値付 近の適宜な値としても良い。  In S602 to S606, the value of the identification error signal e asterisk (k) is set to the upper and lower limits, but may be an appropriate value between the upper and lower limits, or It may be an appropriate value.
第 2 9図はこの出願に係る装置の第 6の実施の形態を示すフロー 'チャートで める。  FIG. 29 is a flow chart showing a sixth embodiment of the apparatus according to the present application.
第 6の実施の形態では、 第 1の実施の形態に示した S T Rコントローラにおい て、 適応パラメ一夕 6>ハツ トを決定する同定誤差信号 eアスタリスクの、 数 1 0 の算出式の分母に用いる定数 1を可変とすることで、 その変化速度を安定させ、 制御性を向上させるようにした。  In the sixth embodiment, in the STR controller shown in the first embodiment, the adaptive error 6> identification error signal e that determines the hat e is used as the denominator of the asterisk in the equation (10) By making the constant 1 variable, the rate of change was stabilized and controllability was improved.
この第 6の実施の形態は、 バラメ一夕調整機構で演算に用いる中間変数の変化 範囲を制限して図示の如き適応制御を低レベルの車載マイクロコンピュータで実 現させる技術を前提とする。 それについては本出願人が先に提案した特開平 6— 1 6 1 , 5 1 1号公報に記載されているので、 説明は省略する。  The sixth embodiment is based on the premise that the adaptive control as shown in the drawing is realized by a low-level in-vehicle microcomputer by limiting the range of change of the intermediate variables used in the calculation by the adjusting mechanism. This is described in Japanese Patent Application Laid-Open No. Hei 6-161, 511 previously proposed by the present applicant, and therefore description thereof is omitted.
即ち、 理論式ではこの同定誤差信号 eアスタリスク(k) は、 数 1 0のように算 出される。 今、 (1 および y (k) に 1ノ1 0 (以下 jとする) を乗算してパラ メータ調整機構に入力するとし、 その分母に注目すると、 数 2 8のようになる ( ゲイン行列 r (k-l) は固定ゲインの場合、 一定となる) 。 1 1 That is, in the theoretical formula, the identification error signal e asterisk (k) is calculated as shown in Expression 10. Now, suppose that (1 and y (k) are multiplied by 1 × 10 (hereinafter j)) and input to the parameter adjustment mechanism. (kl) is constant for a fixed gain). 1 1
1 + rT(k-d)r(k-l) ζ (k-d) · · ·数 281 + r T (kd) r (kl) ζ (kd)
10 10 ここで、 右項は (k) , y(k) に乗算する係数の自乗となり、 この係数が 1以 下の小さい値の場合 (例の場合は 1/1 02 = 1Z1 00) 、 左項 = 1に比べて 極端に小さくなつてしまう。 このため、 右項がどのように変化しても同定誤差信 号 eアスタリスク(k) の分母は 1に近い値となり、 係数を乗算する前と同定誤差 信号 eアスタリスク(k) の変化速度が変わってしまう。 この問題を解決するため に、 左項を 1以外の値にすれば良い。 目安としては、 上記の係数を jとすると、 j 2 とおけば、 係数 jを乗算する前と同じ変化速度とすることができる。 10 10 Here, the right term is the square of the coefficient by which (k) and y (k) are multiplied. If this coefficient is a small value of 1 or less (in the example, 1/10 2 = 1Z1 00), It is much smaller than left term = 1. Therefore, no matter how the right term changes, the denominator of the identification error signal e asterisk (k) is close to 1, and the rate of change of the identification error signal e asterisk (k) before multiplication by the coefficient changes. Would. To solve this problem, set the left term to a value other than 1. As a guideline, the coefficients of the When j, if put and j 2, can be the same change rate as before multiplication coefficient j.
逆に、 同定誤差信号 eアスタリスク(k) の変化速度は適応パラメ一夕 0ハッ ト (k) の変化 (収束) 速度に比例するため、 即ち、 0(k) は数 8を用いて算出され るため、 j 2 以外の値を持たせることにより、 適応パラメ一夕 0ハッ ト(k) の変 化速度を変更することができる。 よって、 数 29に示す同定誤差信号 eァスタリ スク(k) の分母の演算式において、 式中の iが 1以外の値をとる、 即ち、 i≠ l の値をとるようにした。
Figure imgf000041_0001
Conversely, the rate of change of the identification error signal e asterisk (k) is proportional to the rate of change (convergence) of the adaptive parameter 0 hat (k), so that 0 (k) is calculated using equation (8). Therefore, by giving a value other than j 2 , the rate of change of the adaptive parameter overnight (k) can be changed. Therefore, in the arithmetic expression of the denominator of the identification error signal easter risk (k) shown in Expression 29, i in the expression takes a value other than 1, that is, i ≠ l.
Figure imgf000041_0001
e* (k) = 数 29 i+jrT(k-d)r(k-l)jr(k-d) 第 29図フロー ·チヤ一トを参照して説明すると、 先ず S 700で同定誤差信 号 eァス夕リスク(k) による適応パラメータ 6>ハツ ト(k) の変化 (収束) 速度を 可変とする動作を行うか否か判断し、 肯定されるときは S 702に進んで iを 1 以外の値、 より具体的には検出した機関回転数 Neと吸気圧力 Pbとから第 30 図にその特性を示すマップを検索して iを求める。 他方、 S 700で否定される ときは S 704に進んで iを j 2 とおいて、 係数 jを乗算する前と同じ変化速度 とする。 尚、 jは定数なので、 第 3 0図に示すマップ特性において、 iの値は j 2 を考慮した値、 例えば i = j 2 x 0 . 5ないし i = j 2 x 2などと設定する。 具体的には、 jは通常 1より小さい値に設定するが、 例えば j = 1 / 1 0とす ると、 S 7 0 0で否定される場合には i = j 2 = 1 Z 1 0 0となる。 よって、 S 7 0 0で肯定される場合でも、 i = 1 1 0 0を中心に、 例えば 1 5 0〜 1 2 0 0の間となるように第 3 0図において iマップ値を設定する。 このとき、 i が小さい (例えば 1 / 2 0 0 ) ほど、 適応パラメ一夕 Θハツ ト(k) の変化 (収束 ) 速度は大きくなり、 iが大きい (例えば 1 Z 5 0 ) ほど、 適応パラメ一夕 0ハ ッ ト(k) の変化 (収束) 速度は小さくなる。 従って、 第 3 0図において iマップ 値は、 より具体的には、 高回転で高負荷状態では大きく (例えば 1 / 5 0 ) 、 低 回転で低負荷では小さく (例えば 1 / 2 0 0 ) なるように設定する。 e * (k) = number 29 i + jr T (kd) r (kl) jr (kd) Referring to the flow chart of FIG. 29, first, the identification error signal e Adaptive parameter 6 due to risk (k) 6> Change in hat (k) (convergence) It is determined whether or not to perform an operation that makes the speed variable. If affirmative, the process proceeds to S702 and i is set to a value other than 1, More specifically, i is determined by searching a map showing the characteristics in FIG. 30 from the detected engine speed Ne and the intake pressure Pb. On the other hand, the same change rate as before at the i and j 2 proceeds to S 704, multiplied by a coefficient j if negative in S 700 And Incidentally, j is so constant, in the map characteristic shown in the third 0 Figure, the value of i is set a value in consideration of j 2, for example, i = j 2 x 0. 5 no such to i = j 2 x 2 and. Specifically, j is usually set to a value smaller than 1. For example, if j = 1/10, i = j 2 = 1 Z 1 0 0 if negated by S 7 0 0 Becomes Therefore, even if the result is affirmative in S700, the i-map value is set in FIG. 30 so that i = 1100 is the center, for example, between 150 and 1200. At this time, the smaller (i.e., 1/200) i, the faster the change (convergence) of the adaptive parameter Θ (k), and the larger i (e.g., 1Z50), the more adaptive parameter. The change (convergence) speed of 0 hat (k) overnight decreases. Accordingly, in FIG. 30, the i-map value is more specifically large (for example, 1/50) at high rotation and high load, and small (for example, 1/2000) at low rotation and low load. Set as follows.
第 6の実施の形態は上記の如く構成したので、 適応パラメ一夕 0ハツ トを決定 する同定誤差信号 eァスタリスクの定数を可変にすることで、 入力に対する係数 との調和がとれて適応パラメ一夕 0ハツ トの変化速度が安定し、 良好な制御性を 達成することができる。  Since the sixth embodiment is configured as described above, by changing the constant of the identification error signal easter risk that determines the adaptive parameter at 0 Hz, the adaptive parameter can be harmonized with the coefficient for the input. The change speed of the evening hat is stable, and good controllability can be achieved.
尚、 第 6の実施の形態においては第 1の実施の形態で用いた S T Rコントロ一 ラを例にとったが、 適応制御器は第 1の実施の形態に図示のものに限られるので はなく、 ランダウらの調整則に基づいて動作するものであれば、 MR A C S型の 適応制御器も含めて全て妥当する。  Although the STR controller used in the first embodiment is taken as an example in the sixth embodiment, the adaptive controller is not limited to the one shown in the first embodiment. As long as they operate based on the Landau et al.'S adjustment rule, all are valid including the MR ACS type adaptive controller.
第 3 1図フロー · チヤ一トはこの出願に係る装置の第 7の実施の形態を示すフ ロー ·チヤートである。  FIG. 31 is a flow chart showing a seventh embodiment of the apparatus according to the present application.
第 7の実施の形態においては、 第 1の実施の形態に示したパラメ一夕調整機構 と S T Rコントローラの制御サイクルについて、 それらの制御サイクルを可変と すると共に、 運転状態、 具体的には機閟回転数に応じて制御サイクルを決定する ようにした。 即ち、 適応制御器のバラメータ調整機構もしくはコン トローラの制 御周期を運転状態に応じて可変にすることで、 演算負荷を可能な限り低減して高 回転時など演算時間が少ない運転状態においても適応制御を行うことを可能とし 、 良好な制御性を実現するようにした。  In the seventh embodiment, the control cycle of the parameter adjustment mechanism and the STR controller shown in the first embodiment is made variable, and the operating state, specifically, The control cycle is determined according to the rotation speed. In other words, by changing the parameter control mechanism of the adaptive controller or the control cycle of the controller in accordance with the operation state, the calculation load can be reduced as much as possible, and the operation can be performed even in the operation state where the calculation time is short, such as at high speed. It is possible to perform control and realize good controllability.
第 3 1図フロー · チヤ一トを参照して説明すると、 先ず S 8 0 0で検出した機 閭回転数 Neを所定値 Nepl と比較し、 検出した機関回転数 N eが所定値 Nepl 未満と判断されるときは S 8 0 2に進んで進んで検出した機関回転数 Neを別の 所定値 Necl と比較する。 そして S 8 02で検出した機関回転数 Neが別の所定 値 Necl 未溝と判断されるときは S 8 04に進んでパラメータ調整機構 (第 3 1 図で Pと略称) と STRコントローラ (第 3 1図で Cと略称) の制御周期は TD Cごととする。 Referring to the flowchart of FIG. 31 and the flowchart, first, the device detected in S800 The engine speed Ne is compared with a predetermined value Nepl.If it is determined that the detected engine speed Ne is less than the predetermined value Nepl, the process proceeds to S802 and the detected engine speed Ne is determined by another predetermined value. Compare with Necl. When it is determined that the engine speed Ne detected in S802 is another predetermined value Necl not grooved, the process proceeds to S804, in which the parameter adjusting mechanism (abbreviated as P in FIG. 31) and the STR controller ( The control cycle (abbreviated as C in Fig. 1) is for each TDC.
第 32図は第 3 1図フロー 'チヤ一トの動作の説明図であり、 図示の如く所定 値 Nepl. Necl が比較的低い回転域にあるときは演算時間に余裕があることから 、 制御精度を優先させてパラメ一夕調整機構と STRコン トローラとも、 第 8図 および第 9図に示す如く、 全 TDCごとに動作させる。  FIG. 32 is an explanatory diagram of the operation of the flowchart shown in FIG. 31. When the predetermined value Nepl. Necl is in a relatively low rotation range as shown in FIG. Priority is given to both the parameter adjustment mechanism and the STR controller, as shown in Figs. 8 and 9, for each TDC.
第 3 1図において S 8 0 2で検出した機関回転数 Neが所定値 Necl を超える と判断されるときは S 8 0 6に進んで検出した機関回転数 Neを所定値 Nec2 と 比較し、 それ未満と判断されるときは S 8 08に進んでパラメ一夕調整機構は T DCごとに、 STRコントローラは 2 TDCごとに動作させる。 他方、 S 8 0 6 で検出した機関回転数 Neが所定値 Nec2以上と判断されるときは S 8 1 0に進 んでパラメータ調整機構は T DCごとに、 STRコントローラは 4 TDCごとに 動作させる。  In FIG. 31, when it is determined that the engine speed Ne detected at S802 exceeds the predetermined value Necl, the routine proceeds to S806, where the detected engine speed Ne is compared with the predetermined value Nec2. If determined to be less than the value, the process proceeds to S808, where the parameter adjustment mechanism is operated every TDC, and the STR controller is operated every two TDCs. On the other hand, when it is determined that the engine speed Ne detected in S806 is equal to or more than the predetermined value Nec2, the process proceeds to S810, in which the parameter adjustment mechanism operates every TDC, and the STR controller operates every four TDC.
また、 S 8 0 0で検出した機関回転数 Neを所定値 Nepl 以上と判断されると きは S 8 1 2に進んで検出した機関回転数 Neを所定値 Nep2 と比較し、 それ未 潢と判断されるときは S 8 1 4に進んで検出した機関回転数 Neを所定値 Nec3 と比較し、 そこで検出した機関回転数 Neが所定値 Nec3未満と判断されるとき は S 8 1 6に進んでパラメ一夕調整機構は 2 TDCごとに、 STRコントローラ は TDCごとに動作させる。  When it is determined that the engine speed Ne detected in S800 is equal to or greater than the predetermined value Nepl, the process proceeds to S812 and compares the detected engine speed Ne with a predetermined value Nep2. When it is determined, the process proceeds to S814, and the detected engine speed Ne is compared with the predetermined value Nec3. When it is determined that the detected engine speed Ne is less than the predetermined value Nec3, the process proceeds to S816. The parameter adjustment mechanism operates every two TDCs, and the STR controller operates every TDC.
他方、 S 8 1 4で検出した機関回転数 Neが所定値 Nec3 以上と判断されると きは S 8 1 8に進んで検出した機閟回転数 Neを所定値 Nec4 と比較し、 それ未 満と判断されるときは S 8 20に進んでパラメ一夕調整機構も STRコントロー ラは 2TDCごとに動作させる。 また、 S 8 1 8で検出した機関回転数 Neが所 定値 Nec4 以上と判断されるときは S 822に進んでパラメ一夕調整機構は 2 T DCごとに、 STRコントロ一ラは 4 TDCごとに動作させる。 更に、 S 8 1 2で検出した機関回転数 Neが所定値 Nep2 以上と判断されると きは S 8 24に進んで検出した機関回転数 Neを所定値 Nep3 と比較し、 それ未 溝と判断されるときは S 8 26に進んで検出した機関回転数 Neを所定値 Nec5 と比較し、 そこで検出した機関回転数 Neが所定値 Nec5 未満と判断されるとき は S 8 2 8に進んでパラメータ調整機構は 4 TDCごとに、 コントローラは TD Cごとに動作させる (第 1 6図に示す) 。 On the other hand, when it is determined that the engine speed Ne detected in S814 is equal to or greater than the predetermined value Nec3, the process proceeds to S818 and compares the detected engine speed Ne with the predetermined value Nec4. If it is determined that the STR controller is in operation, the process proceeds to S820, and the STR controller operates the parameter adjustment mechanism every 2 TDC. If the engine speed Ne detected in S818 is determined to be equal to or greater than the predetermined value Nec4, the process proceeds to S822, where the parameter adjustment mechanism is provided every 2 TDC, and the STR controller is provided every 4 TDC. Make it work. Further, when it is determined that the engine speed Ne detected in S8 12 is equal to or more than the predetermined value Nep2, the process proceeds to S824 and the detected engine speed Ne is compared with the predetermined value Nep3, and it is determined that there is no groove. In step S826, the detected engine speed Ne is compared with a predetermined value Nec5.If it is determined that the detected engine speed Ne is less than the predetermined value Nec5, the process proceeds to step S828 to determine the parameter. The adjustment mechanism operates every 4 TDCs, and the controller operates every TDC (shown in Fig. 16).
他方、 S 8 2 6で検出した機関回転数 Neが所定値 Nec5 以上と判断されると きは S 8 3 0に進んで検出した機関回転数 Neを所定値 Nec6 と比較し、 それ未 満と判断されるときは S 8 32に進んでパラメ一夕調整機構は 4 TDCごとに、 STRコントローラは 2 TDCごとに動作させると共に、 S 8 3 0で検出した機 関回転数 Neが所定値 Nec6 以上と判断されるときは S 8 3 に進んでパラメ一 夕調整機構も STRコントローラも 4 TDCごとに動作させる (第 1 7図に示す ) 。 尚、 S 8 24で検出した機関回転数 Neが所定値 Nep3以上と判断されると きは S 8 3 6に進んで適応制御器 STRを停止させる。  On the other hand, if it is determined that the engine speed Ne detected in S826 is equal to or higher than the predetermined value Nec5, the process proceeds to S830 and compares the detected engine speed Ne with the predetermined value Nec6. When it is determined, the process proceeds to S832, the parameter adjustment mechanism is operated every 4 TDC, the STR controller is operated every 2 TDC, and the engine speed Ne detected in S830 is equal to or more than the predetermined value Nec6. If it is determined that this is the case, the procedure proceeds to S83, in which the parameter adjustment mechanism and the STR controller are operated every 4 TDC (as shown in Fig. 17). When it is determined that the engine speed Ne detected in S824 is equal to or more than the predetermined value Nep3, the process proceeds to S836 to stop the adaptive controller STR.
第 7の実施の形態は上記の如く、 機関回転数に応じて適応制御器のパラメータ 調整機構と STRコントローラの制御サイクルを決定するようにしたので、 演算 負荷を可能な限り低減して高回転時など演算時間が少ない運転状態においても適 応制御を行うことを可能とし、 良好な制御性を実現することができる。  As described above, in the seventh embodiment, the control cycle of the STR controller and the parameter adjustment mechanism of the adaptive controller are determined in accordance with the engine speed. For example, adaptive control can be performed even in an operation state where the calculation time is short, and good controllability can be realized.
尚、 上記で、 第 32図に示す適応制御器 STRの作動状態は 1〜 1 0 (図では 丸付き数字で示す) の全て備える必要はなく、 機関や制御ュニッ ト構成の CPU の能力に応じて適宜選択しても良い。 例えば、 1 , 3, 5, 9, 1 0、 ないし 1 , 3, 6, 9, 1 0、 なぃし 1, 7, 9, 1 0、 ないし 1 , 1 0、 ないし 1 , 4 , 7, 1 0などと選択しても良い。  In the above, the operating state of the adaptive controller STR shown in FIG. 32 does not need to be provided in all of 1 to 10 (indicated by circled numbers in the figure), and depends on the capacity of the engine and the CPU of the control unit configuration. May be appropriately selected. For example, 1,3,5,9,10,0,1,3,6,9,10,0,7,7,9,10,0,1,10,0,1,4,7,7 It may be selected as 10 or the like.
更に、 運転状態として機関回転数を使用したが、 それに限られるものではなく 、 機関負荷も加味して決定しても良い。 その場合は、 例えば高負荷伏態において は適応パラメータ 0ハツ トの変化が少ないため、 パラメータ調整機構を 4 TD C ごとに処理することも考えられよう。  Furthermore, although the engine speed was used as the operating state, the present invention is not limited to this, and may be determined in consideration of the engine load. In such a case, for example, in a high load state, there is little change in the adaptive parameter 0 hat, so it may be possible to process the parameter adjustment mechanism every 4 TDCs.
第 33図はこの出願に係る装置の第 8の実施の形態を示す、 第 1 1図と同様の フィードバック補正係数 KSTRなどの平均値の演算作業を示すサブルーチン · フロ 一■チャートである。 FIG. 33 shows an eighth embodiment of the apparatus according to the present application, and is a subroutine flow showing the operation of calculating the average value such as the feedback correction coefficient KSTR similar to FIG. 10 is a chart.
第 1の実施の形態の場合には特定気筒の排気空燃比の影響を避けるために、 原 則的にフィードバック補正係数 KSTRを決定する要素について平均値を求めるよう にすると共に、 所定の運転伏態、 即ち、 アイドル状態では平均値の算出を中止す るようにした。  In the case of the first embodiment, in order to avoid the influence of the exhaust air-fuel ratio of the specific cylinder, an average value is basically obtained for the element that determines the feedback correction coefficient KSTR, and a predetermined operating state is determined. That is, the calculation of the average value is stopped in the idle state.
第 8の実施の形態は第 1の実施の形態と対照的に、 原則的に平均値を算出しな いと共に、 所定の運転伏態、 具体的には排気還流 (E G R ) 実行時のみ、 平均値 を算出するようにした。  In the eighth embodiment, in contrast to the first embodiment, an average value is not calculated in principle, and only when a predetermined operating state, specifically, when exhaust gas recirculation (EGR) is performed, the average value is calculated. The value was calculated.
これについて説明すると、 前記した排気還流機構において排気ガスが還流され るとき、 運転状態によっては、 排気ガスが 4気筒に均等に導入されずに、 例えば 還流口 1 2 1 bに近い気筒に多量の排気ガスが吸入され、 遠い気筒には僅かの量 しか吸入されない状態が起こる可能性がある。 従って、 そのような場合には、 T D Cごとに検出する空燃比 KACT(k) は、 特定気筒の影響を大きく受けることにな り、 その検出空燃比 KACT(k) を用いると、 その気筒の当量比のみを目標空燃比に 合わせようとして全気筒の制御値がその気筒のずれ分だけオフセッ トし、 他気筒 の空燃比がずれてしまう。 従って、 それを回避するために、 図示の如く、 平均値 を求めることが望ましい。  To explain this, when the exhaust gas is recirculated in the exhaust gas recirculation mechanism described above, depending on the operation state, the exhaust gas is not evenly introduced into the four cylinders, and for example, a large amount of the exhaust gas is introduced into the cylinder close to the recirculation port 12 1 b. Exhaust gas may be inhaled and a small amount may be inhaled to distant cylinders. Therefore, in such a case, the air-fuel ratio KACT (k) detected for each TDC is greatly affected by the specific cylinder, and if the detected air-fuel ratio KACT (k) is used, the equivalent In order to adjust only the ratio to the target air-fuel ratio, the control values of all cylinders are offset by the deviation of that cylinder, and the air-fuel ratio of other cylinders is shifted. Therefore, to avoid this, it is desirable to calculate the average value as shown in the figure.
第 3 3図に従って説明すると、 S 9 0 0で E G R (排気還流制御) が実行され ているか否か判断し、 肯定されるとき S 9 0 2以降に進んで第 1 1図に関して第 1の実施の形態と述べたと同様に KACTAVE などの平均値を求める。 他方、 S 9 0 0で否定されたときは S 9 1 2以降に進み、 第 1 1図に関して第 1の実施の形態 で述べたと同様の処理を行う。  Referring to FIG. 33, it is determined whether or not EGR (exhaust gas recirculation control) is being executed in S900, and when the result is affirmative, the process proceeds to S902 and thereafter, and the first operation is performed with respect to FIG. The average value of KACTAVE etc. is obtained in the same way as described in the above form. On the other hand, if the result in S900 is negative, the process proceeds to S912, and the same processing as described in the first embodiment with reference to FIG. 11 is performed.
第 8の実施の形態は上記の如く構成したので、 排気ガスが還流されるときも特 定気筒の影響を大きく受けることがなく、 制御性が向上する。  Since the eighth embodiment is configured as described above, even when the exhaust gas is recirculated, the controllability is improved without being greatly affected by the specific cylinder.
第 3 4図はこの出願に係る装置の第 9の実施の形態を示す、 第 3 3図と同様の フィードバック補正係数 KSTRなどの平均値の演算作業を示すサブルーチン · フロ 一 ·チヤートである。  FIG. 34 shows a ninth embodiment of the apparatus according to the present application, which is a subroutine flow chart showing the operation of calculating the average value such as the feedback correction coefficient KSTR similar to FIG. 33.
排気還流実行時と同様に、 キヤニスタ ·パージが実行されてガスが供給される とき、 運転状態によっては、 ガスが気筒に均一に導入されない場合が生じて第 8 の実施の形態で述べたと同様の問題が生じ得る。 第 9の実施の形態はそれに対処 した。 As in the case of the exhaust gas recirculation, when the gas is supplied after the canister purge is executed, the gas may not be uniformly introduced into the cylinder depending on the operating condition. The same problem as described in the embodiment may occur. The ninth embodiment addressed this.
第 3 4図に従って説明すると、 S 1 0 0 0でキヤニス夕 ·パージが実行されて いるか否か判断し、 肯定されるとき S 1 0 0 2以降に進んで第 1 1図に関して第 1の実施の形態で述べたと同様に KACTAVE などの平均値を求める。 他方、 S 1 0 0 0で否定されたときは S 1 0 1 2以降に進み、 第 9図に関して第 1の実施の形 態で述べたと同様の処理を行う。  Explaining with reference to FIG. 34, it is determined at S1000 whether or not the purge is being performed.If the result is affirmative, the process proceeds to S1002 and thereafter to perform the first operation with respect to FIG. The average value of KACTAVE etc. is obtained in the same way as described in the form. On the other hand, if the result in S100 is negative, the process proceeds to S102 and thereafter, and the same processing as described in the first embodiment with reference to FIG. 9 is performed.
第 9の実施の形態は上記の如く構成したので、 キヤニス夕 ·パージが実行され るときも特定気筒の影響を大きく受けることがなく、 制御性が向上する。  Since the ninth embodiment is configured as described above, the controllability is improved without being greatly affected by the specific cylinder even when the purge and purge is performed.
尚、 図示はしないが、 その他にも大気圧 P aが低い場合、 即ち、 高地に位置す るとき、 あるいは低水温時、 あるいはリーンバーン運転時など、 燃焼が不安定な 状態にあるときは、 同様に平均値を求めるが望ましく、 それによつて制御性を向 上させることができる。  Although not shown, when the atmospheric pressure Pa is low, that is, when the combustion is unstable, such as when the vehicle is located at a high altitude, at a low water temperature, or during lean burn operation, Similarly, it is desirable to obtain an average value, whereby controllability can be improved.
第 3 5図および第 3 6図はこの出願に係る装置の第 1 0の実施の形態を示すフ 口— ,チヤ—トおよびブロック図である。  FIGS. 35 and 36 are a door, a chart and a block diagram showing a tenth embodiment of the apparatus according to the present application.
第 3 6図を先に参照して説明すると、 第 1 0の実施の形態の場合、 第 1の実施 の形態の構成に P I D制御則からなる排気系集合部当量比のフィードバックル一 プ (補正係数 KLAF) を除くと共に、 同様の P I D制御則からなる気筒別のフィー ドバックループ (補正係数 # nKLAF ) を挿入した。  Referring to FIG. 36 first, in the case of the tenth embodiment, the feedback loop (correction) of the exhaust system assembly equivalent ratio based on the PID control law is added to the configuration of the first embodiment. In addition to removing the coefficient KLAF, a cylinder-specific feedback loop (correction coefficient #nKLAF) consisting of the same PID control law was inserted.
即ち、 排気系集合部に配置した単一の空燃比センサ出力から、 上述の本出願人 が先に特開平 5— 1 8 0 0 4 0号公報で提案したオブザーバを用いて各気筒の空 '燃比 # n AZ F ( n :気筒) を推定し、 その推定値と所定の気筒別空燃比 F Z B の目標値との偏差に応じて P I D制御則を用いて気筒毎のフィ一ドバック補正係 数 # nKLAF を求め、 出力燃料噴射量 Tout を乗算補正するようにした。  That is, from the output of a single air-fuel ratio sensor disposed in the exhaust system collecting section, the above-mentioned applicant uses the observer previously proposed in Japanese Patent Application Laid-Open No. 5-180400 to empty the air of each cylinder. The fuel ratio #n AZF (n: cylinder) is estimated, and the feedback correction coefficient for each cylinder is determined by using the PID control law according to the deviation between the estimated value and the target value of the predetermined cylinder-specific air-fuel ratio FZB # nKLAF was calculated and multiplied and corrected by the output fuel injection amount Tout.
より具体的には、 気筒毎のフィードバック補正係数 # nKLAF は、 集合部空燃比 を気筒毎のフィードバック補正係数 # nKLAF の平均値の前回演算値で除算して求 めた値 (これを上記の如く 「気筒別空燃比 F Z Bの目標値 j と言う。 従って、 こ れは目摞空燃比 KCMDとは異なる値である) とォブザー く推定空燃比 # n A / Fと の偏差を解消するように、 P I D制御則を利用して求める。 尚、 その詳細は、 本 出願人が別途提案した特願平 5— 2 5 1 , 1 3 8号に示されているので、 説明を 省略する。 また、 付着補正補償器の図示は省略した。 More specifically, the feedback correction coefficient #nKLAF for each cylinder is a value obtained by dividing the collection air-fuel ratio by the previous calculated value of the average value of the feedback correction coefficient #nKLAF for each cylinder (this is calculated as described above. This is called the target value j of the cylinder-specific air-fuel ratio FZB. Therefore, this is different from the target air-fuel ratio KCMD) and the deviation from the estimated air-fuel ratio # nA / F Determined using the PID control law. Since this is shown in Japanese Patent Application No. 5-251,138, which was separately proposed by the applicant, the description is omitted. The illustration of the adhesion correction compensator is omitted.
更に、 第 1 0の実施の形態においては、 L A Fセンサ出力を適宜なタイミング でサンプリングするサンプリングブロック (図中に S el-VOBSVと示す) を設ける と共に、 S T Rコントローラについても同種のサンプリングブロック (図中に S el-VSTR と示す) を設けた。  Further, in the tenth embodiment, a sampling block (shown as Sel-VOBSV in the figure) for sampling the LAF sensor output at an appropriate timing is provided, and the same type of sampling block is used for the STR controller (see FIG. Is shown as Sel-VSTR).
ここで、 それらのサンプリングブ口ックおよびオブザーバについて説明する。 尚、 そのサンプリング動作ブロックを第 3 6図で 「S e卜 V0BSV」 と示す。  Here, the sampling block and the observer will be described. The sampling operation block is shown as “Set V0BSV” in FIG.
内燃機関において排気ガスは排気行程で排出されることから、 多気筒内燃機関 の排気系集合部において空燃比の挙動をみると、 明らかに丁 D Cに同期している 。 従って、 内燃機関の排気系に前記した広域空燃比センサを設けて空燃比をサン プリングするときも T D Cに同期して行う必要があるが、 検出出力を処理する制 御ユニッ ト (E C U ) のサンプルタイミングによっては空燃比の挙動を正確に捉 えられない場合が生じる。 即ち、 例えば、 T D Cに対して排気系集合部の空燃比 が第 3 7図のようであるとき、 制御ュニットで認識する空燃比は第 3 8図に示す 如く、 サンプルタイミングによっては全く違った値となる。 この場合、 実際の空 燃比センサの出力変化を可能な限り正確に把握できる位置でサンプリングするの が望ましい。  Since the exhaust gas is discharged in the exhaust stroke in the internal combustion engine, the behavior of the air-fuel ratio in the exhaust system assembly of the multi-cylinder internal combustion engine is clearly synchronized with the DC. Therefore, when the wide-range air-fuel ratio sensor described above is provided in the exhaust system of the internal combustion engine and the air-fuel ratio is sampled, it must be performed in synchronization with TDC. However, a sample of the control unit (ECU) that processes the detected output Depending on the timing, the behavior of the air-fuel ratio may not be accurately grasped. That is, for example, when the air-fuel ratio of the exhaust system collecting part with respect to TDC is as shown in Fig. 37, the air-fuel ratio recognized by the control unit is a completely different value depending on the sample timing as shown in Fig. 38. Becomes In this case, it is desirable to sample at a position where the actual change in the output of the air-fuel ratio sensor can be grasped as accurately as possible.
更に、 空燃比の変化は排気ガスのセンサまでの到達時間やセンサの反応時間に よっても相違する。 その中、 センサまでの到達時間は排気ガス圧力、 排気ガスボ リュームなどに依存して変化する。 更に、 T D Cに同期してサンプリングするこ とはクランク角度に基づいてサンプリングすることになるので、 必然的に機関回 転数の影響を受けざるを得ない。 このように、 空燃比の検出は機関の運転状態に 依存するところが大きい。 そのために例えば特開平 1 一 3 1 3 , 6 4 4号公報記 載の技術においては所定クランク角度毎に検出の適否を判定しているが、 構成が 複雑であって演算時間が長くなるため高回転域では対応しきれなくなる恐れがあ ると共に、 検出を決定した時点で空燃比センサの出力の変局点を徒過してしまう 不都合も生じる。  Further, the change in the air-fuel ratio also depends on the exhaust gas arrival time to the sensor and the sensor reaction time. Among them, the time to reach the sensor varies depending on the exhaust gas pressure, exhaust gas volume, and the like. Furthermore, since sampling in synchronization with TDC means sampling based on the crank angle, it is inevitably affected by the engine speed. Thus, detection of the air-fuel ratio largely depends on the operating state of the engine. For this purpose, for example, in the technology described in Japanese Patent Application Laid-Open No. H11-313,644, the suitability of detection is determined at each predetermined crank angle. In the rotational speed range, it may not be possible to cope with the problem, and at the time when the detection is determined, the inflection point of the output of the air-fuel ratio sensor may be exceeded.
第 3 9図は、 その L A Fセンサのサンプリング動作を示すフロー 'チャートで あるが、 空燃比の検出精度は特に前記したオブザーバの推定精度と密接な関連を 有するので、 同図の説明に入る前に、 ここでオブザーバによる空燃比推定につい て簡単に説明する。 Fig. 39 is a flow chart showing the sampling operation of the LAF sensor. However, since the detection accuracy of the air-fuel ratio is closely related to the above-described estimation accuracy of the observer, the air-fuel ratio estimation by the observer will be briefly described before the description of FIG.
先ず、 1個の LAFセンサの出力から各気筒の空燃比を精度良く分離抽出する ためには、 LAFセンサの検出応答遅れを正確に解明する必要がある。 そこで、 とりあえずこの遅れを 1次遅れ系と擬似的にモデル化し、 第 4 0図に示す如きモ デルを作成した。 ここで LAF : LAFセンサ出力、 AZF :入力 AZF、 とす ると、 その状態方程式は下記の数 30で示すことができる。  First, in order to accurately separate and extract the air-fuel ratio of each cylinder from the output of one LAF sensor, it is necessary to accurately clarify the detection response delay of the LAF sensor. Therefore, this delay was simulated as a first-order delay system, and a model as shown in Fig. 40 was created. Here, if LAF: LAF sensor output, AZF: input AZF, the state equation can be expressed by the following Equation 30.
LAF ( t) = LAF ( t) -aA/F (t) · · ·数 3 0 これを周期厶 Tで離散化すると、 数 3 1で示すようになる。 第 4 1図は数 3 1 をプロック線図で表したものである。 LAF (t) = LAF (t)-aA / F (t) ····················································································································· Fig. 41 shows Equation 31 in a block diagram.
L AF (k+ 1 ) =ひ LAF (k) + ( 1一 ) A/F (k) L AF (k + 1) = H LAF (k) + (11) A / F (k)
• . '数 3 1 ここで、 ひ = 1 +αΔΤ+ ( 1 /2 ! ) α2 ΔΤ2 + ( 1 /3 ! ) 3 厶 T: . (! 1/2) • ' number 3 1 here, shed = 1 + αΔΤ + α 2 ΔΤ 2 + (! 1/3) 3厶T:
+ ( 1 /4 ! ) a 4 ΔΤ4 従って、 数 3 1を用いることによってセンサ出力より真の空燃比を求めること ができる。 即ち、 数 3 1を変形すれば数 32に示すようになるので、 時刻 kのと きの値から時刻 k一 1のときの値を数 33のように逆算することができる。 へ + (1/4!) A 4 ΔΤ 4 Therefore, by using Equation 31, the true air-fuel ratio can be obtained from the sensor output. In other words, when Equation 31 is transformed, Equation 32 is obtained, and the value at Time k-1 1 can be inversely calculated from the value at Time k as in Equation 33. What
A/F (k) = {LAF (k+ 1 ) 一 LAF (k) } / C l - a)  A / F (k) = {LAF (k + 1) one LAF (k)} / C l-a)
• . ·数 3 2  • Number 3 2
A/F (k- 1 ) = {LAF (k) - aLAF (k- 1 ) } / ( 1 - a A / F (k-1) = {LAF (k)-aLAF (k-1)} / (1-a
数 3 3 具体的には数 3 1を Z変換を用いて伝達関数で示せば数 34の如くになるので 、 その逆伝達関数を今回の LAFセンサ出力 L A Fに乗じることによって前回の 入力空燃比をリアルタイムに推定することができる。 第 4 2図にそのリアルタイ ムの AZF推定器のプロック線図を示す。  Equation 3 3 More specifically, if Equation 3 1 is represented by a transfer function using Z-transformation, Equation 34 is obtained.Therefore, the previous input air-fuel ratio is obtained by multiplying the inverse transfer function by the current LAF sensor output LAF. It can be estimated in real time. Figure 42 shows a block diagram of the real-time AZF estimator.
(z) = ( 1 -ひ) Z (Z- ) 数 34 続いて、 上記の如く求めた真の空燃比に基づいて各気筒の空燃比を分離抽出す る手法について説明すると、 先願でも述べたように、 排気系の集合部の空燃比を 各気筒の空燃比の時間的な寄与度を考慮した加重平均であると考え、 時刻 kのと きの値を、 数 3 5のように表した。 尚、 F (燃料量) を制御量としたため、 ここ では 『燃空比 FZA』 を用いているが、 後の説明においては理解の便宜のため、 支障ない限り 「空燃比」 を用いる。 尚、 空燃比 (ないしは燃空比) は、 先に数 3 4で求めた応答遅れを補正した真の値を意味する。 [F/A] (k) Ci [FZA ] +C2 [FZA ] (z) = (1-hi) Z (Z-) number 34 Next, the method of separating and extracting the air-fuel ratio of each cylinder based on the true air-fuel ratio obtained as described above will be described. Assuming that the air-fuel ratio in the exhaust system is a weighted average considering the time-dependent contribution of the air-fuel ratio of each cylinder, the value at time k is expressed as shown in Equation 35. did. Note that “F / A ratio” is used here because F (fuel amount) is the control amount, but “Air / fuel ratio” will be used in the following description for ease of understanding unless there is a problem. Note that the air-fuel ratio (or fuel-air ratio) means a true value obtained by correcting the response delay previously obtained in Equation 34. [F / A] (k) Ci [FZA] + C 2 [FZA]
+ C3 [FZA ] +C* [FZA ] + C 3 [FZA] + C * [FZA]
[F/A] (k+1) Ci [FZA ] +C2 [FZA ] [F / A] (k + 1) Ci [FZA] + C 2 [FZA]
+ C3 [FZA ] +C4 iF A ti i ] + C 3 [FZA] + C 4 iF A ti i]
[FZA] (k + 2) d [FZA «4 ] +C2 [FZA ] [FZA] (k + 2) d [FZA « 4 ] + C 2 [FZA]
+ C3 [F/A « , ] +C4 [F/A «3 ] + C 3 [F / A «,] + C 4 [F / A« 3 ]
数 3 5 即ち、 集合部の空燃比は、 気筒ごとの過去の燃焼履歴に重み Cn (例えば直近 に燃焼した気筒は 4 0%、 その前が 30 %. . . など) を乗じたものの合算で表 した。 このモデルをブロック線図であらわすと、 第 4 3図のようになる。 Equation 3 5 That is, the air-fuel ratio of the collecting section is the sum of the past combustion history of each cylinder multiplied by the weight Cn (for example, 40% for the most recently burned cylinder, 30% before that, etc.). expressed. This model is represented by a block diagram as shown in Fig. 43.
また、 その状態方程式は数 3 6のようになる。  The equation of state is as shown in Equation 36.
Figure imgf000050_0001
数 3 6 また集合部の空燃比を y (k) とおくと、 出力方程式は数 37のように表す とができる。 x(k-3)
Figure imgf000050_0001
Equation 3 6 If the air-fuel ratio of the collecting part is y (k), the output equation can be expressed as shown in Equation 37. x (k-3)
y (k) = [ c i c 2 c 3 ] x(k - 2) + C 4 u(k)  y (k) = [c i c 2 c 3] x (k-2) + C 4 u (k)
x(k-l) 数 3 ここで、  x (k-l) number 3 where
c i : 0. 05, c 2 0. 1 5, c 30, c 4 : 0. 50とする, 上記において、 u (k) は観測不可能のため、 この状態方程式からオブザーバ を設計しても X (k ) は観測することができない。 そこで 4TDC前 (即ち、 同 —気筒) の空燃比は急激に変化しない定常運転状態にあると仮定して X ( k+ 1 ) = x ( k - 3) とすると、 数 38のようになる。  ci: 0.05, c2 0.15, c30, c4: 0.50. In the above, since u (k) is not observable, even if an observer is designed from this equation of state, X (k) cannot be observed. Therefore, assuming that the air-fuel ratio before 4TDC (that is, the same cylinder) is in a steady operation state in which the air-fuel ratio does not change rapidly, and X (k + 1) = x (k-3), Equation 38 is obtained.
x(k-2) 0 1 00 x(k - 3) x (k-2) 0 1 00 x (k-3)
x(k-l) 00 1 0 x(k— 2)  x (k-l) 00 1 0 x (k— 2)
x(k) 000 1 x(k-l)  x (k) 000 1 x (k-l)
x(k+l) 1 000 x(k)  x (k + l) 1 000 x (k)
x(k— 3) x (k—3)
y (k) = [ c i c 2 c 3 c 4 I x(k-2)  y (k) = (c i c 2 c 3 c 4 I x (k-2)
x(k-l)  x (k-l)
x(k) 数 38 ここで、 上記の如く求めたモデルについてシミュレーション結果を示す。 第 4 4図は 4気筒内燃機関について 3気筒の空燃比を 1 4. 7 : 1にし、 1気筒だけ 1 2. 0 : 1にして燃料を供給した場合を示す。 第 45図はそのときの集合部の 空燃比を上記モデルで求めたものを示す。 同図においてはステップ状の出力が得 られているが、 ここで更に LAFセンサの応答遅れを考慮すると、 センサ出力は 第 4 6図に 「モデル出力値」 と示すようになまされた波形となる。 図中 「実測値 J は同じ場合の LAFセンサ出力の実測値であるが、 これと比較し、 上記モデル が多気筒内燃機関の排気系を良くモデル化していることを検証している。 x (k) number 38 Here, simulation results are shown for the model obtained as described above. the 4th Fig. 4 shows the case where the air-fuel ratio of the three cylinders is set to 14.7: 1 and the fuel is supplied to only one cylinder at 12.0: 1 for the four-cylinder internal combustion engine. Fig. 45 shows the air-fuel ratio of the collecting part at that time obtained by the above model. In the figure, a step-like output is obtained, but if the response delay of the LAF sensor is further taken into consideration, the sensor output will have a waveform that is smoothed as shown in Fig. 46 as "model output value". Become. In the figure, “The measured value J is the measured value of the LAF sensor output in the same case, but in comparison with this, it has been verified that the above model models the exhaust system of the multi-cylinder internal combustion engine well.
よって、 数 39で示される状態方程式と出力方程式にて X (k) を観察する通 常のカルマンフィル夕の問題に帰着する。 その荷重行列 Q, Rを数 4 0のように おいてリカツチの方程式を解くと、 ゲイン行列 Kは数 4 1のようになる。  Therefore, it comes to the usual Kalman-Fil-Yu problem of observing X (k) with the state equation and the output equation shown in Equation 39. Solving the Ricatsch equation with the weight matrices Q and R as shown in Equation 40 gives the gain matrix K as shown in Equation 41.
X(k + l) = AX(k) + B u (k) y (k) =CX(k) +Du(k) X (k + l) = AX (k) + B u (k) y (k) = CX (k) + Du (k)
数 39 ここで、  Number 39 where
0 1 00 0 1 00
00 1 0  00 1 0
A = 000 1 C= [ C i C 2 C 3 C 4 ] B = D= [0] A = 000 1 C = [C i C 2 C 3 C 4] B = D = [0]
1 000  1 000
X (k) =
Figure imgf000052_0001
1 0 0 0
X (k) =
Figure imgf000052_0001
1 0 0 0
Q = 0 1 0 0 R = [ 1 ] 数 4 0  Q = 0 1 0 0 R = [1] number 4 0
0 0 1 0  0 0 1 0
0 0 0 1  0 0 0 1
数 4 1
Figure imgf000053_0001
れより A— KCを求めると、 数 4 2のようになる,
Number 4 1
Figure imgf000053_0001
When we find A—KC, we get Equation 4 2
0.0022 0.9935 0.0131 一 0.02180.0022 0.9935 0.0131 one 0.0218
A - K C = 0.0141 0.0423 0.9153 一 0.1411 A-K C = 0.0141 0.0423 0.9153 one 0.1411
0.0914 0.2742 0.5485 0.0858 1.0141 0.0423 0.0847 0.1411 数 4 2 一般的なオブザーバの構成は第 4 7図に示されるようになるが、 今回のモデル では入力 u (k) がないので、 第 4 8図に示すように y (k) のみを入力とする 構成となり、 これを数式で表すと数 4 3のようになる。 y (k) 0.0914 0.2742 0.5485 0.0858 1.0141 0.0423 0.0847 0.1411 Number 4 2 The general observer configuration is as shown in Fig. 47, but since there is no input u (k) in this model, as shown in Fig. 48 And only y (k) is input, and this is expressed by the following equation. y (k)
Figure imgf000054_0001
Figure imgf000054_0001
数 43 ここで y (k) を入力とするオブザーバ、 即ちカルマンフィルタのシステム行 列は数 44のように表される。  Equation 43 Here, the observer that receives y (k) as input, that is, the system matrix of the Kalman filter is expressed as Equation 44.
S = 数 44S = number 44
Figure imgf000054_0002
今回のモデルで、 リカツチ方程式の荷重配分 Rの要素: Qの要素 = 1 : 1のと き、 カルマンフィル夕のシステム行列 Sは、 数 45で与えられる。 0.0022 0.9935 0.0131 0.0218 0.0436
Figure imgf000054_0002
In this model, the weight distribution of the Ricatsch equation When the element of R: the element of Q = 1: 1, the system matrix S of Kalman-Fill is given by Equation 45. 0.0022 0.9935 0.0131 0.0218 0.0436
0.0141 0.0423 0.9153 0.1411 0.2822  0.0141 0.0423 0.9153 0.1411 0.2822
s = 0.0914 0.2742 0.5485 0.0858 1.8283  s = 0.0914 0.2742 0.5485 0.0858 1.8283
1.0141 0.0423 0.0847 0.1411 -0.2822  1.0141 0.0423 0.0847 0.1411 -0.2822
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
Figure imgf000055_0001
数 4 5 第 4 9図に上記したモデルとオブザーバを組み合わせたものを示す。 シミュレ ーショ ン結果は先の出願に示されているので省略するが、 これにより集合部空燃 比より各気筒の空燃比を的確に抽出することができる。
Figure imgf000055_0001
Equation 4 5 Figure 49 shows the combination of the above model and observer. The simulation results are omitted since they are shown in the earlier application, but by this, the air-fuel ratio of each cylinder can be accurately extracted from the air-fuel ratio of the collecting section.
オブザーバによって集合部空燃比より各気筒空燃比を推定することができたこ とから、 P I Dなどの制御則を用いて空燃比を気筒別に制御することが可能とな る。 具体的には第 3 6図のオブザーバによるフィードバック部分のみ抽出した第 5 0図に示すように、 センサ出力 (集合部空燃比) と目標空燃比とから P I D制 御則を用いて集合部フィードバック補正係数 KLAFを求めると共に、 オブザーバ推 定値 #nA/Fから気筒毎のフィードバック補正係数 #nKLAF (n :気筒) を求める 気筒毎のフィードバック補正係数 #nKLAF はより具体的には、 集合部空燃比を 気筒毎のフィードバック補正係数 #nKLAF の全気筒についての平均値の前回演算 値で除算して求めた目標値とオブザーバ推定値 #nA/Fとの偏差を解消するように P I D則を用いて求める。  Since the observer was able to estimate the air-fuel ratio of each cylinder from the air-fuel ratio of the collecting section, it was possible to control the air-fuel ratio for each cylinder using a control law such as PID. Specifically, as shown in Fig. 50 in which only the feedback part of the observer in Fig. 36 is extracted, the feedback of the collecting part using the PID control rule from the sensor output (collecting part air-fuel ratio) and the target air-fuel ratio. In addition to calculating the coefficient KLAF, obtain the feedback correction coefficient #nKLAF (n: cylinder) for each cylinder from the observer estimated value # nA / F. The feedback correction coefficient #nKLAF for each cylinder is more specifically the cylinder air-fuel ratio. The feedback correction coefficient for each cylinder #nKLAF is calculated using the PID law so as to eliminate the deviation between the target value obtained by dividing the average value for all cylinders by the previous calculation value and the estimated observer value # nA / F.
これにより、 各気筒の空燃比は集合部空燃比に収束し、 集合部空燃比は目標空 燃比に収束することとなって、 結果的に全ての気筒の空燃比が目標空燃比に収束 する。 ここで、 各気筒の燃料噴射量 #n Tout (インジェクタの開弁時間で規定 される) は、  As a result, the air-fuel ratio of each cylinder converges to the air-fuel ratio of the collecting portion, and the air-fuel ratio of the collecting portion converges to the target air-fuel ratio. As a result, the air-fuel ratio of all cylinders converges to the target air-fuel ratio. Here, the fuel injection amount #n Tout of each cylinder (specified by the injector opening time) is
#n Tout =Tcyl x#nKLAF xKLAF  #n Tout = Tcyl x # nKLAF xKLAF
で求められる。 ここで、 第 39図フロー ·チヤ一トに戻って L A Fセンサ出力のサンプリング を説明する。 尚、 このプログラムは TDC位匱で起動される。 Is required. Here, returning to the flow chart of FIG. 39, the sampling of the LAF sensor output will be described. This program is started at TDC.
第 39図フロー ·チヤ一トを参照して以下説明する。 先ず S 1 200において 機関回転数 Ne、 吸気圧力 Pb、 バルブタイミング V/T を読み出し、 S 1 204 , S 1 206に進んで H i V/Tないし L oV/T用のタイミングマップ (後述) を 検索し、 S 1 208に進んで H iないし L 0バルブタイミング用のオブザーバ演 算に用いるセンサ出力のサンプリングを行う。 具体的には、 機閧回転数 Neおよ び吸気圧力 Pbからタイミングマップを検索して前記した 1 2個のバッファのい ずれかをその No. で選択し、 そこに記億されているサンプリング値を選択する 第 5 1図はそのタイミングマップの特性を示す説明図であり、 図示の如く特性 は、 機関回転数 Neが低くないしは吸気圧力 (負荷) Pbが高いほど早いクラン ク角度でサンプリングされた値を選択するように設定される。 ここで、 「早い」 とは前の TDC位置により近い位置でサンプリングされた値 (換言すれば古い値 ) を意味する。 逆に、 機関回転数 Neが高くないしは吸気圧力 Pbが低いほど遅 いクランク角度、 即ち、 後の TDC位置に近いクランク角度でサンプリングされ た値 (換言すれば新しい値) を選択するように設定する。  This will be described below with reference to the flowchart in FIG. First, in S1200, the engine speed Ne, the intake pressure Pb, and the valve timing V / T are read out, and the program proceeds to S1204, S1206, where a timing map for Hi V / T or LoV / T (described later) is prepared. Retrieval is performed, and the process advances to S1208 to sample a sensor output used for an observer operation for Hi or L0 valve timing. Specifically, a timing map is searched from the planned rotation speed Ne and the intake pressure Pb, and one of the above-mentioned 12 buffers is selected by its No., and the sampling number recorded there is recorded. Fig. 51 is an explanatory diagram showing the characteristics of the timing map. As shown, the characteristics are sampled at a faster crank angle as the engine speed Ne is lower or the intake pressure (load) Pb is higher. Is set to select the value. Here, “early” means a value sampled at a position closer to the previous TDC position (in other words, an old value). Conversely, a setting is made to select a crank angle that is slower as the engine speed Ne is higher or the intake pressure Pb is lower, that is, a value sampled at a crank angle closer to the later TDC position (in other words, a new value). .
即ち、 LAFセンサ出力は第 38図に示したように、 実際の空燃比の変局点に 可能な限り近い位置でサンプリングするのが最良であるが、 その変局点、 例えば 最初のピーク値は、 センサの反応時間を一定と仮定すれば、 第 52図に示すよう に、 機関回転数が低くなるほど早いクランク角度で生じる。 また、 負荷が高いほ ど排気ガス E力や排気ガスボリユームが増加し、 従って排気ガスの流速が増して センサへの到達時間が早まるものと予想される。 その意味から、 サンプルタイミ ングを第 5 1図に示すように設定した。  In other words, as shown in Fig. 38, it is best to sample the LAF sensor output at a position as close as possible to the actual air-fuel ratio inflection point, but the inflection point, for example, the first peak value is Assuming that the reaction time of the sensor is constant, as shown in FIG. 52, the lower the engine speed, the faster the crank angle. Also, it is expected that the higher the load, the higher the exhaust gas E power and exhaust gas volume, and hence the faster the exhaust gas flow rate, and the faster the arrival time at the sensor. For this reason, the sample timing was set as shown in Fig. 51.
更に、 バルブタイミングに関しては、 機関回転数の任意の値 Nelを L 0側につ いて Nel-Lo、 H i側について Ne-Hiとし、 吸気圧力についてもその任意の値を L 0側について Pb卜し 0、 H i側について Pbl-Hi とすると、 マップ特性は、 Pbl-Lo > Pbl-Hi  Further, regarding the valve timing, an arbitrary value of the engine speed Nel is set to Nel-Lo for the L0 side and Ne-Hi for the Hi side, and the arbitrary value of the intake pressure is set to Pb for the L0 side. 0, and Pbl-Hi for the Hi side, the map characteristics are: Pbl-Lo> Pbl-Hi
Nel-Lo >Nel-Hi とする。 即ち、 H i V/T にあっては排気弁の開き時点が L o V/T のそれより早い ため、 機関回転数ないし吸気圧力の値が同一であれば、 早期のサンプリング値を 選択するように、 マップ特性が設定される。 Nel-Lo> Nel-Hi And That is, since the opening time of the exhaust valve is earlier than that of Lo V / T in Hi V / T, if the value of the engine speed or the intake pressure is the same, an earlier sampling value should be selected. Is set to the map characteristics.
次いで S 1 2 1 0に進んでオブザーバ行列の演算を H i V/T について行い、 続 いて S 1 2 1 2に進んで同様の演算を L o V/T について行う。 続いて S 1 2 1 4 に進んで再びバルブタイミングを判断し、 判断結果に応じて S 1 2 1 6 , S 1 2 1 8に進んで演算結果を選択して終わる。  Then, the process proceeds to S1210 to perform the operation of the observer matrix on HiV / T, and then proceeds to S1212 to perform the same operation on LoV / T. Then, the process proceeds to S1224 to judge the valve timing again, and according to the judgment result, the process proceeds to S12216 and S12218 to select the calculation result and finish.
即ち、 バルブタイミングの切り換えに伴って空燃比の集合部の挙動も変わるた め、 オブザーバ行列を変更する必要が生じる。 しかし、 各気筒の空燃比の推定は 瞬時に行えるものではなく、 各気筒の空燃比推定演算が収束し終わるまでに演算 数回を要するため、 バルブタイミングの変更前のオブザーバ行列を用いた演算と 変更後のオブザーバ行列を用いた演算とをオーバ一ラップして行っておき、 もし バルブタイミングの変更が行われたとしても、 S 1 2 1 4で変更後のバルブタイ ミ ングに応じて選択できるようにした。 尚、 各気筒が推定された後は、 先に述べ たように、 目標値との偏差を解消するようにフィードバック補正係数が求められ て噴射量が決定される。  That is, since the behavior of the air-fuel ratio collecting part changes with the switching of the valve timing, it is necessary to change the observer matrix. However, the estimation of the air-fuel ratio of each cylinder cannot be performed instantaneously, and it takes several operations to complete the calculation of the air-fuel ratio estimation of each cylinder. The calculation using the changed observer matrix is overlapped, and if the valve timing is changed, it can be selected according to the changed valve timing in S1214. I made it. After each cylinder is estimated, as described above, a feedback correction coefficient is determined so as to eliminate the deviation from the target value, and the injection amount is determined.
この構成により、 空燃比の検出精度を向上させることができる。 即ち、 第 5 3 図に示す如く、 比較的短い間隔でサンプリングすることから、 サンプリング値は センサ出力をほぼ忠実に反映すると共に、 その比較的短い間隔でサンプリングさ れた値をバッファ群に順次記億しておき、 機関回転数と吸気圧力 (負荷) に応じ てセンサ出力の変局点を予測してバッファ群の中からそれに対応する値を所定ク ランク角度において選択するようにした。 この後、 オブザーバ演算が行われて各 気筒空燃比が推定され、 第 5 0図で説明したように、 空燃比の気筒別のフィード バック制御も可能となる。  With this configuration, the detection accuracy of the air-fuel ratio can be improved. That is, as shown in Fig. 53, since sampling is performed at relatively short intervals, the sampled value reflects the sensor output almost exactly, and the values sampled at the relatively short interval are sequentially recorded in the buffer group. In advance, the inflection point of the sensor output is predicted according to the engine speed and the intake pressure (load), and the corresponding value is selected from a group of buffers at a predetermined crank angle. Thereafter, an observer calculation is performed to estimate the air-fuel ratio of each cylinder, and as described in FIG. 50, feedback control of the air-fuel ratio for each cylinder is also possible.
従って、 第 5 3図下部に示すように、 C P Uコア 7 0はセンサ出力の最大値と 最小値を正確に認識することができる。 従って、 この構成により前記したォブザ ーバを用いて各気筒の空燃比を推定するときも、 実際の空燃比の挙動に近似する 値を使用することができてオブザーバの推定精度が向上し、 結果として第 5 0図 に関して述べた気筒別の空燃比フィードバック制御を行うときの精度も向上する 。 尚、 その詳細は本出願人が先に提案した特願平 6 - 2 4 3, 2 7 7号に詳細に 記載されているので、 これ以上の説明は省略する。 Therefore, as shown in the lower part of FIG. 53, the CPU core 70 can accurately recognize the maximum value and the minimum value of the sensor output. Therefore, with this configuration, when estimating the air-fuel ratio of each cylinder using the above-described observer, a value approximating the behavior of the actual air-fuel ratio can be used, and the estimation accuracy of the observer is improved. The accuracy when performing the cylinder-by-cylinder air-fuel ratio feedback control described with reference to FIG. 50 is also improved. . The details are described in detail in Japanese Patent Application No. 6-243, 277 previously proposed by the present applicant, and further description will be omitted.
上記は、 L A Fセンサ出力についてオブザーバが行うサンプリング動作 (第 3 6図に Se卜 0BSVと示す) であるが、 STRコントローラも同様のサンプリング動 作 (第 3 6図に Se卜 VSTRと示す) も行う。  The above is the sampling operation performed by the observer on the LAF sensor output (shown as Set 0BSV in Fig. 36), but the STR controller also performs the same sampling operation (shown as Set VSTR in Fig. 36). .
即ち、 この Se卜 VSTRも Sel-VOBSVで行ったと同様の手順、 つまり第 3 9図と同 様なフロー ·チャートに示す手順に従って求められる。 Se卜 V0BSV はオブザーバ による気筒別の空燃比推定に対して最も好都合のタイミング (例えば前述のォブ サーバの重み係数 Cがモデルに対して最適となるタイミング) で空燃比を検出す るのに対し、 Sel-VSTRは STRを作動させるのに最も好都合のタイミング (例え ば直近の排気行程の気筒の影響を最も受ける空燃比の検出タイミング) になるよ うに、 Se卜 V0BSV で示した第 5 1図と同様のマップを用いて空燃比を検出する。 上記を前提として第 3 5図フロー 'チャートを参照して第 1 0の実施の形態を 説明すると、 第 1の実施の形態と同様のステップ S 1 1 0 0ないし S 1 1 1 0を 経て S 1 1 1 2に進み、 そこで Sel-VSTR による L A Fセンサ出力のサンブリン グ、 即ち、 空燃比 KACT(k) を検出する。 次いで S 1 1 1 4に進んで第 1の実施の 形態と同様にフィ一ドバック補正係数 KSTRを演算する。 より具体的には第 1の実 施の形態で使用した第 1 1図フロー 'チヤ一トを用いて行う。  That is, this Set VSTR is also obtained according to the same procedure as that performed with Sel-VOBSV, that is, the procedure shown in the flow chart similar to FIG. Set V0BSV detects the air-fuel ratio at the most convenient timing for the cylinder-by-cylinder air-fuel ratio estimation by the observer (for example, the timing at which the weight coefficient C of the above-mentioned server becomes optimal for the model). The Sel-VSTR is shown in Fig. 51 shown in Set V0BSV so that it is the most convenient timing to operate the STR (for example, the detection timing of the air-fuel ratio most affected by the cylinder in the latest exhaust stroke). The air-fuel ratio is detected using the same map as in the above. Assuming the above, the tenth embodiment will be described with reference to the flow chart of FIG. 35, and the same steps as those of the first embodiment will be performed through steps S110 to S110. Proceed to 1 1 1 2 to detect the sampling of the LAF sensor output by Sel-VSTR, that is, the air-fuel ratio KACT (k). Then, the process proceeds to S111, where a feedback correction coefficient KSTR is calculated in the same manner as in the first embodiment. More specifically, this is performed using the flowchart of FIG. 11 used in the first embodiment.
続いて S 1 1 1 6, S 1 1 1 8に進んで要求燃料噴射量 Tcyl(k)と出力燃料噴 射量 Tout(k)とを求め、 S 1 1 2 0に進んで Se卜 V0BSVによる L AFセンサ出力 のサンプリング、 即ち、 当量比 KACT(k) を検出する。 次いで S 1 1 2 2に進んで 前記したオブザーバを介して各気筒の空燃比 #nA/Fを推定し、 S I 1 2 4に進ん で気筒毎のフィードバック補正係数 #nKLAF を演算し、 S 1 1 2 6に進んで前回 値との加重平均値などからその学習値 #nKLAFstyを求め、 S 1 1 2 8に進んで出 力燃料噴射量 Tout を気筒毎のフィ—ドバック補正係数 #nKLAF で乗算補正して 当該気筒の出力噴射量 #n Tout とし、 S 1 1 3 0に進んで吸気管壁面付着補正 を行い、 S 1 1 3 2に進んで出力する。  Then, the process proceeds to S111, S118 to calculate the required fuel injection amount Tcyl (k) and the output fuel injection amount Tout (k), and then proceeds to S112 to set V0BSV. L Sampling of the AF sensor output, that is, the equivalent ratio KACT (k) is detected. Next, proceeding to S 1 1 2 2, the air-fuel ratio # nA / F of each cylinder is estimated via the above-mentioned observer, and proceeding to SI 124, a feedback correction coefficient #nKLAF for each cylinder is calculated, and S 1 1 Proceed to 26 to find the learning value #nKLAFsty from the weighted average value with the previous value, etc., and proceed to S11128 to multiply and correct the output fuel injection amount Tout by the feedback correction coefficient #nKLAF for each cylinder. Then, the output injection amount of the cylinder is set to #n Tout, and the flow proceeds to S110 to correct the intake pipe wall adhesion, and then proceeds to S113 to output.
尚、 S 1 1 0 8ないし S 1 1 1 0で否定されたときは S 1 1 3 4に進んで図示 の如く要求燃料噴射量 Tcyl (k)を求め、 S 1 1 3 6に進んで気筒毎のフィードバ ック補正係数 # nKLAFstyの学習値を読み出し、 S 1 1 3 8に進んで学習値を補正 係数 # nKLAF とする。 また、 S 1 1 0 4でフューエルカツ トと判断されるときは S 1 1 4 4を経て S 1 1 6に進んで行列演算を停止すると共に、 S 1 1 4 8に 進んで気筒毎のフィードバック補正係数は前回値とする。 残余のステップは第 1 の実施の形態と異ならない。 If the result is negative in S111 or S111, go to S113 and show Calculate the required fuel injection amount Tcyl (k) as shown in (1), proceed to S1136, read the feedback value of the feedback correction coefficient #nKLAFsty for each cylinder, and proceed to S1138 to correct the learning value. # Set to nKLAF. If the fuel cut is determined in S114, the flow proceeds to S116 via S114 to stop the matrix calculation, and the flow proceeds to S114 to provide feedback for each cylinder. The correction coefficient is the previous value. The remaining steps are not different from the first embodiment.
第 1 0の実施の形態においては上記の如く構成したことから、 第 1の実施の形 憨と同様に、 適応パラメータを演算しながら、 パラメータ調整機搆への入力は燃 焼サイクル同期となるため、 パラメータ調整機構の演算負荷が大幅に低減され、 制御性を確保しつつ実機への適応制御器の使用が可能となると同時に、 気筒間バ ラツキを減少させることも可能となる。  In the tenth embodiment, since the configuration is as described above, the input to the parameter adjuster is synchronized with the combustion cycle while calculating the adaptive parameters as in the first embodiment. The computational load on the parameter adjustment mechanism is greatly reduced, enabling the use of an adaptive controller for the actual machine while ensuring controllability, and at the same time, reducing inter-cylinder variability.
また、 第 1の実施の形態と同様に、 全気筒について 1燃焼サイクル間の空燃比 KACTの平均値ないしは適応パラメ一夕の平均値を求めてパラメ一夕調整機構に入 力すると共に、 S T Rコントローラの出力の平均値も求めているので、 特定気筒 の燃焼状態の影響を大きく受けることがない。  Also, as in the first embodiment, the average value of the air-fuel ratio KACT or the average value of the adaptive parameter over one combustion cycle for all cylinders is obtained and input to the parameter adjusting mechanism, and the STR controller Since the average value of the output of the cylinder is also obtained, it is not greatly affected by the combustion state of the specific cylinder.
尚、 第 1 0の実施の形態において、 第 2の実施の形態と同様に適応パラメ一夕 Θハツ トあるいは KSTRの平均値を求めても良く、 あるいは空燃比 KACTと適応パラ メータ 0ハッ トの平均値を共に求めても良いことは言うまでもない。 また、 目標 空燃比 KCMD(k) は、 全気筒で同一の値でも良い。  Incidentally, in the tenth embodiment, the adaptive parameter overnight or the average value of the KSTR may be obtained similarly to the second embodiment, or the air-fuel ratio KACT and the adaptive parameter zero hat may be obtained. It goes without saying that the average value may be obtained together. Also, the target air-fuel ratio KCMD (k) may be the same value for all cylinders.
また、 第 1 0の実施の形態において、 第 2の実施の形態、 第 3の実施の形態、 第 4の実施の形態、 第 5の実施の形態、 第 6の実施の形態、 第 7の実施の形態、 第 8の実施の形態および第 9の実施の形態について述べた記載は、 全て妥当する ο  Also, in the tenth embodiment, the second, third, fourth, fifth, sixth, and seventh embodiments are described. The descriptions of the embodiments, the eighth embodiment and the ninth embodiment are all appropriate.
第 5 4図および第 5 5図はこの出願に係る装置の第 1 1の実施の形態を示すフ ロー ·チヤートおよびブロック図である。  FIG. 54 and FIG. 55 are a flow chart and a block diagram showing a first embodiment of the device according to the present application.
第 1 1の実施の形態の場合、 第 5 5図に示すように、 S T Rコントローラとパ ラメ一夕調整機構とを燃料噴射量演算系に直列に挿入した。 即ち、 基本燃料噴射 量 T imに第 1の実施の形態と同様に、 目標空燃比補正係数 KCMDM0 と各種補正係 数 KT0TALを乗算して要求燃料噴射量 T cyKk)を求めた後、 補正した要求燃料噴射 量 Tcyl (k)を S T Rコントローラに入力する。 In the case of the eleventh embodiment, as shown in FIG. 55, the STR controller and the parameter adjustment mechanism were inserted in series in the fuel injection amount calculation system. That is, similarly to the first embodiment, the basic fuel injection amount T im is multiplied by the target air-fuel ratio correction coefficient KCMDM0 and the various correction coefficients KT0TAL to obtain the required fuel injection amount T cyKk), and then the corrected request Fuel injection Enter the quantity Tcyl (k) into the STR controller.
他方、 検出した排気系集合部空燃比から第 1の実施の形態と同様に平均値 KACT AVE ないしは 0ハツ ト AVE を求め、 要求燃料噴射量 T cyl (k)に対して S T Rコン トローラで動的補正を行い、 補正燃料噴射量 G fuel-str(k) を算出する。  On the other hand, the average value KACT AVE or 0 hat AVE is obtained from the detected exhaust system air-fuel ratio in the same manner as in the first embodiment, and the STR controller dynamically determines the required fuel injection amount T cyl (k). Correction is performed and the corrected fuel injection amount G fuel-str (k) is calculated.
同時に、 検出した排気系集合部空燃比から P I D制御則を用いて集合部のフィ 一ドバック補正係数 KLAFを求めて、 要求燃料噴射量 TcyKk)に乗算して補正燃料 噴射量 G f ue 1 -KLAF(k)を算出する。  At the same time, the feedback correction coefficient KLAF of the collecting section is obtained from the detected air-fuel ratio of the exhaust system using the PID control law and multiplied by the required fuel injection amount TcyKk) to correct the corrected fuel injection amount G f ue 1 -KLAF. Calculate (k).
第 5 5図において S T Rコントロ一ラは、 実吸入燃料量 (より正確には推定吸 入燃料量) G fuel (k) が目標燃料量 Tcyl (k)に一致するように適応的に出力燃料 燃料量 G fuel-str(k) を算出し、 出力燃料噴射量 Tout (k) として内燃機関に供 給する。 尚、 仮想ブラントでの壁面付着補正は本出願人が先に提案した特願平 4 一 2 0 0 3 3 1号 (特開平 6— 1 7 6 8 1号) に詳細に述べられており、 この発 明の要旨もそこにはないので、 説明は省略する。  In FIG. 55, the STR controller adjusts the output fuel fuel adaptively so that the actual intake fuel amount (more precisely, the estimated intake fuel amount) G fuel (k) matches the target fuel amount Tcyl (k). Calculate the quantity G fuel-str (k) and supply it to the internal combustion engine as the output fuel injection quantity Tout (k). Incidentally, the correction of the wall adhesion in the virtual blunt is described in detail in Japanese Patent Application No. Hei 4-200331 (Japanese Patent Application Laid-Open No. Hei 6-176681) previously proposed by the present applicant. Since the gist of this invention is not there, the explanation is omitted.
ここで実吸入燃料量 G fuel (k) は、 検出された空気量を検出空燃比で除算して 求めることも可能であるが、 実施の形態の場合には空気量検出器 (エアフローメ —夕) を備えていないため、 目標吸入燃料量 (要求噴射量) T cyl O に検出空燃 比を乗算するようにした。 これによって空気量を検出して求めるのと等価に実吸 入燃料量を求めることができる。 尚、 先に述べたように、 この制御においては目 標空燃比と検出空燃比を実際は当量比として表している。  Here, the actual intake fuel amount G fuel (k) can be obtained by dividing the detected air amount by the detected air-fuel ratio, but in the case of the embodiment, the air amount detector (air flow meter ), The target intake fuel amount (required injection amount) T cyl O is multiplied by the detected air-fuel ratio. As a result, the actual intake fuel amount can be obtained in a manner equivalent to detecting and obtaining the air amount. As described above, in this control, the target air-fuel ratio and the detected air-fuel ratio are actually expressed as equivalent ratios.
また、 目標空燃比が理論空燃比ではない場合には算出値を更に目標空燃比で除 算して実吸入燃料量を求める。 即ち、 実吸入燃料量は、 目標空燃比が理論空燃比 のときは、  If the target air-fuel ratio is not the stoichiometric air-fuel ratio, the calculated value is further divided by the target air-fuel ratio to obtain the actual intake fuel amount. That is, when the target air-fuel ratio is the stoichiometric air-fuel ratio, the actual intake fuel amount is
実吸入燃料量 =要求噴射量 (目標吸入燃料量) X検出空燃比 (当量比) で求め、 目標空燃比が理論空燃比以外のときは、  Actual intake fuel amount = demanded injection amount (target intake fuel amount) X detected air-fuel ratio (equivalent ratio). When the target air-fuel ratio is other than the stoichiometric air-fuel ratio,
実吸入燃料量 = (要求噴射量 (目標吸入燃料量) X検出空燃比 (当量比) ) 目標空燃比 (当量比)  Actual intake fuel amount = (required injection amount (target intake fuel amount) X detected air-fuel ratio (equivalent ratio)) Target air-fuel ratio (equivalent ratio)
で求める。  Ask for.
上記を第 5 4図フロー ·チヤ一トを参照して説明すると、 これまでの実施の形 態と同様のステップ S 1 3 0 0ないし S 1 3 1 6を経て S 1 3 1 8に進み、 空燃 比の平均値 KACTAVE および適応パラメータ 6>ハツトの平均値 0ハツト -AVEを算出 する。 The above will be described with reference to the flow chart of FIG. 54.The same steps as those in the previous embodiment are performed, and the process proceeds to S 13 18 through S 13 00 to S 13 18 to proceed to S 13 18. Air fuel Average value of ratio KACTAVE and adaptive parameter 6> average value of hat 0 hat -Calculate -AVE.
続いて S 1 3 20ないし S 1 322を経て S 1 32 に進んで第 1の実施の形 憨と同様に適応制御系 (STRコントローラ) の不安定判別を行う。  Subsequently, the flow proceeds to S132 via S13320 to S1322, and determines the instability of the adaptive control system (STR controller) as in the first embodiment.
第 5 6図はその作業を示すサブルーチン 'フロー 'チャートである。  FIG. 56 is a subroutine 'flow' chart showing the operation.
同図に従って説明すると、 先ず S 1 4 00で適応パラメータ 0ハツ トの各要素 を用いて S TR制御系の安定性を判別する。  Referring to the figure, first, in S 1400, the stability of the STR control system is determined using each element of the adaptive parameter 0 hat.
具体的には、 STRコントローラが算出する燃料噴射量 Gfuel-STR(k) は、 数 4 6のように算出される。  Specifically, the fuel injection amount Gfuel-STR (k) calculated by the STR controller is calculated as in Equation 46.
Tout-str(z 】)=
Figure imgf000061_0001
+ raZ-' + rsZ-3)
Tout-str (z)) =
Figure imgf000061_0001
+ raZ- '+ rsZ- 3 )
xGfuel-strCz"1)} / b。 · · ·数 4 6 ここで、 付着補正が正しいと仮定すると、 仮想ブラントの伝達関数は、 数 4 7 のようになる。 xGfuel-strCz " 1 )} / b. · · · Equation 4 6 Here, assuming that the adhesion correction is correct, the transfer function of the virtual blunt is as shown in Equation 4 7.
Gfuel(z-1) = z-3Gfuel-str(z-') * . .数4 7 数 4 6と数 4 7とから Tcyl(k)から噴射量 Gfuel- STR(k) への伝達閼数は、 数 4 8のようになる。 Gfuel (z- 1 ) = z- 3 Gfuel-str (z- ') * ... Transfer from Tcyl (k) to injection quantity Gfuel-STR (k) from Equation 4 7 and Equation 4 6 The number looks like the number 4 8.
Gfuel-strCz-1) 1 Gfuel-strCz -1 ) 1
z3 z 3
TcyKz"1) boz3 + riz2 + r2z + r3 + So TcyKz " 1 ) boz 3 + riz 2 + r 2 z + r 3 + So
. · '数 4 8 · 'Number 4 8
'.'(b。 + s。z— 3 + ηζ-'+ r2z-2 + r3Z-3)Gfuel-str(z-1) = Tcyl(z-1) ここで、 b 0はゲインを決定するスカラ量であるため、 0あるいは負となり得 ないので、 数 4 8の伝達関数の分母関数 f (z) =b O Z3 + r l Z2 + r 2 Z + R 3 + S 0は、 第 1 4図に示した閧数のいずれかになる。 そこで、 実根が単位 円内にあるか否かを判別する、 即ち、 第 1 5図に示したように、 f (― 1 ) < 0 ないし f ( 1 ) > 0であるか否かを判別すれば、 肯定されるときは実根が単位円 内にあることになるので、 それから系が安定しているか否かを容易に判定するこ とができる。 '.' (b + s.z- 3 + ηζ -. '+ r 2 z- 2 + r3Z- 3) Gfuel-str (z- 1) = Tcyl (z- 1) Here, b 0 is the gain Since it is a scalar quantity to be determined, it cannot be 0 or negative, so the denominator function f (z) = b OZ 3 + rl Z 2 + r 2 Z of the transfer function of Equation 4 8 + R3 + S0 is one of the numbers shown in FIG. Therefore, it is necessary to determine whether or not the real root is within the unit circle, that is, to determine whether or not f (−1) <0 or f (1)> 0 as shown in FIG. For example, if the result is affirmative, the real root is within the unit circle, so it can be easily determined whether the system is stable or not.
そして S 1 4 0 2において上記から S T Rコントロ一ラ系が不安定か否か判断 し、 肯定されるときは S 1 4 0 4に進んで適応パラメ一夕 0ハツ トを初期値に戻 す。 これにより、 系の安定を回復することができる。 続いて S 1 4 0 6に進んで ゲイン行列 Γを補正する。 ゲイン行列 Γは収束速度を決定するものであることか ら、 この補正は収束速度を遅くするように行うものであり、 それによつても同様 に系の安定を回復することができる。 続いて S 1 4 0 8に進み、 図示の如く、 フ イードバック補正係数として P I D制御則による補正係数 KLAF(k) を用い、 補正 燃料噴射量 G fuel-KLAF を用い、 それに加算項 TT0TALを加算して出力燃料噴射量 T out (k)を決定する。  Then, in S144, it is determined from the above whether or not the STR controller system is unstable. If the determination is affirmative, the process proceeds to S144, and the adaptive parameter overnight hat is returned to the initial value. As a result, the stability of the system can be restored. Then, the process proceeds to S 14 06 to correct the gain matrix Γ. Since the gain matrix Γ determines the convergence speed, this correction is performed so as to slow down the convergence speed, and the system stability can be restored similarly. Then, proceed to S 148, as shown in the figure, using the correction coefficient KLAF (k) based on the PID control law as the feedback correction coefficient, using the corrected fuel injection amount G fuel-KLAF, and adding the addition term TT0TAL to it. To determine the output fuel injection amount T out (k).
尚、 S 1 4 0 2で S T Rコントローラ系が不安定ではないと判断されるときは S 1 4 1 σに進んで、 図示の如く、 フィードバック補正係数として適応制御則に よる補正係数 KSTR(k) を用いた補正燃料噴射量 G fuel-str(k) を用い、 それに加 算項 TT0TALを加算して出力燃料噴射量 Tout(k)を決定する。  If it is determined in S1402 that the STR controller system is not unstable, the process proceeds to S141σ, and as shown in the figure, a correction coefficient KSTR (k) according to the adaptive control law is used as a feedback correction coefficient. Use the corrected fuel injection amount G fuel-str (k) using, and add the addition term TT0TAL to determine the output fuel injection amount Tout (k).
第 5 4図フロー ·チヤ一トに戻ると、 次いで進んで 1 3 2 6に進んで出力燃料 噴射量を出力して終わる。 第 1 1の実施の形態の場合、 空燃比などの平均値の算 出は、 従前の実施の形態と異なり、 特定気筒の所定クランク角度に限らず、 各気 筒の所定クランク角度で行うようにしても良い。 尚、 残余の構成は、 従前の実施 の形態と相違しない。  Returning to the flow chart of FIG. 54, the program then proceeds to 1326 to output the output fuel injection amount and finish. In the case of the first embodiment, the calculation of the average value such as the air-fuel ratio is different from the previous embodiment, and is not limited to the predetermined crank angle of the specific cylinder, but is performed at the predetermined crank angle of each cylinder. May be. Note that the remaining configuration is not different from the previous embodiment.
第 1 1の実施の形態においては上記の如く構成し、 第 1の実施の形態と同様に 、 適応パラメータを演算しながら、 パラメ一夕調整機構への入力は燃焼サイクル 同期としても良く、 その場合はパラメ一夕調整機構の演算負荷が大幅に低減され 、 制御性を確保しつつ実機への適応制御器の使用が可能となる。 また、 無駄時間 の短縮により、 制御性の向上が可能となる。  In the eleventh embodiment, the configuration is as described above, and as in the first embodiment, the input to the parameter adjustment mechanism may be synchronized with the combustion cycle while calculating the adaptive parameter. The computational load of the parameter adjustment mechanism is greatly reduced, and it is possible to use an adaptive controller for the actual machine while ensuring controllability. In addition, the controllability can be improved by reducing the dead time.
また第 1 1の実施の形態においても全気筒の制御量の平均値を求めてパラメ一 夕調整機構に入力しているので、 特定気筒の燃焼状態の影響を大きく受けること がない。 Also in the eleventh embodiment, the average value of the control amounts of all the cylinders is determined to obtain the parameter. Since it is input to the evening adjustment mechanism, it is not significantly affected by the combustion state of the specific cylinder.
尚、 上記第 1ないし第 1 1の実施の形態において、 平均値として単純平均値を 示したが、 それに限られるものではなく、 加重平均値、 移動平均値、 加重移動平 均値などでも良い。 また、 パラメ一夕調整機構への入力が同期して行われる 1燃 焼サイクルの間の平均値を求めたが、 2燃焼サイクル以前の平均値を求めて良く 、 或いは 1燃焼サイクル未満、 例えば 2ないし 3 T D C間の平均値を求めても良 い。  In the first to eleventh embodiments, the simple average value is shown as the average value. However, the present invention is not limited to this, and may be a weighted average value, a moving average value, a weighted moving average value, or the like. In addition, although the average value during one combustion cycle in which the input to the parameter adjustment mechanism is performed in synchronization is obtained, the average value before two combustion cycles may be obtained, or less than one combustion cycle, for example, two Alternatively, an average value between 3 TDCs may be obtained.
Se l -VOBSV と Se卜 VSTRとを別々に備え、 それぞれに最適な空燃比を検出すれば 良いことは上述の通り当然であるが、 機関の特性や排気系のレイァゥトによって は Se l -VOBSV と Se l -VSTRとはほとんどの運転領域でほぼ同一の検出空燃比を示す ことから、 このような場合にはこれらのサンプリング機能を統一して空燃比を検 出し、 その出力をオブザーバと S T Rの双方の入力に用いても良い。 例えば、 第 3 6図の Se卜 V0BSV のみとし、 その出力をオブザーバと S T Rに利用しても良い 。 また、 第 1の実施の形態などで空燃比として実際には当量比を用いているが 、 空燃比と当量比とを別々に定めても良いことは言うまでもない。 更に、 フィー ドバック補正係数 KSTR. # nKLAF. KLAF を乗算項として求めたが、 加算値として 求めても良い。  As described above, it is natural that it is only necessary to separately provide the Se-VOBSV and the Set VSTR and detect the optimal air-fuel ratio for each, but depending on the characteristics of the engine and the layout of the exhaust system, the Se-VOBSV and Since the Se-VSTR shows almost the same detected air-fuel ratio in almost all operating regions, in such a case, these sampling functions are unified to detect the air-fuel ratio, and the output is used for both the observer and the STR. May be used as input. For example, only the Set V0BSV shown in FIG. 36 may be used, and the output may be used for the observer and the STR. Although the equivalent ratio is actually used as the air-fuel ratio in the first embodiment and the like, it goes without saying that the air-fuel ratio and the equivalent ratio may be separately determined. Further, the feedback correction coefficient KSTR. # NKLAF.KLAF is obtained as a multiplication term, but may be obtained as an addition value.
また、 上記において適応制御器として S T Rを例にとって説明したが、 M R A C S (モデル規範型適応制御) を用いても良い。  In the above description, the STR is taken as an example of the adaptive controller, but MRACS (model reference adaptive control) may be used.
尚、 上記において排気系集合部に設けた単一の空燃比センサの出力を用いてい るが、 それに限られるものではなく、 気筒毎に空燃比センサを設けて検出した空 燃比から気筒ごとに空燃比フィードバック制御を行っても良い。 産業上の利用可能性  In the above description, the output of a single air-fuel ratio sensor provided in the exhaust system converging section is used, but the present invention is not limited to this, and the air-fuel ratio detected by providing the air-fuel ratio sensor for each cylinder is used for each cylinder. Fuel ratio feedback control may be performed. Industrial applicability
この発明によれば、 多気筒内燃機関の燃料噴射量を制御する燃料噴射量制御手 段と、 前記燃料噴射量を操作量として目標値に適応的に一致させる適応制御器と 、 および前記適応制御器で用いる適応パラメータを算出する適応パラメータ調整 機構と、 を備えた多気筒内燃機関の燃料噴射制御装置において、 前記適応パラメ —夕調整機構への入力を前記内燃機関の特定の燃焼サイクルに同期させて行うと 共に、 前記適応パラメータ調整機構は前記内燃機関の燃料制御サイクルにおいて 空燃比および筒内燃料量の少なくともいずれかに基づいて適応バラメータの演算 を行う如く構成したので、 行列演算量を低滅して車載コンビュー夕の負荷を低減 することができ、 通例の車載コンビユー夕でも 1 T D C内に演算を完了すること ができる。 と同時に、 ランダウなどの調整則を用いたバラメータ調整機構を有す る適応制御アルゴリズムを用いてフィ一ドバック補正係数を適応的に算出する場 合、 T D Cごとの燃料制御サイクルごとにパラメータ調整機構を動作させるとき においても、 適応パラメ一夕調整機構で使用する入力を燃焼サイクルごとの値と することにより、 制御性能の向上を図ることができると共に、 無駄時間を減少さ せ、 内部変数の演算回数を低減させることができる。 According to the present invention, a fuel injection amount control means for controlling a fuel injection amount of a multi-cylinder internal combustion engine, an adaptive controller for adaptively matching the fuel injection amount to a target value as an operation amount, and the adaptive control An adaptive parameter adjustment mechanism for calculating an adaptive parameter used in the fuel injector, the fuel injection control device for a multi-cylinder internal combustion engine comprising: -The input to the evening adjustment mechanism is performed in synchronization with the specific combustion cycle of the internal combustion engine, and the adaptive parameter adjustment mechanism determines whether at least one of the air-fuel ratio and the in-cylinder fuel amount in the fuel control cycle of the internal combustion engine. Since the calculation of the adaptive parameter is performed on the basis of this, the amount of matrix operation can be reduced and the load on the in-vehicle view can be reduced, and the calculation can be completed within one TDC even in the usual in-vehicle view. At the same time, when adaptively calculating the feedback correction coefficient using an adaptive control algorithm having a parameter adjustment mechanism using Landau's adjustment law, a parameter adjustment mechanism must be used for each fuel control cycle for each TDC. Even when operating, the input used by the adaptive parameter adjustment mechanism is set to the value for each combustion cycle, thereby improving control performance, reducing dead time, and calculating the number of internal variables. Can be reduced.
更には、 前記適応パラメータ調整機構への入力は、 前記内燃機関の特定の気筒 の燃料制御サイクルに同期させて行う如く構成したので、 上記で述べた作用ない し効果に加えて、 前記適応パラメ一夕調整機構を特定気筒の燃料制御サイクルに 同期させて演算させることができ、 演算時間を更に短縮させることができ、 高回 転時にも適応制御を継続して行うことができる。  Further, since the input to the adaptive parameter adjusting mechanism is configured to be performed in synchronization with a fuel control cycle of a specific cylinder of the internal combustion engine, in addition to the above-described operation or effect, the adaptive parameter The evening adjustment mechanism can be operated in synchronization with the fuel control cycle of the specific cylinder, the operation time can be further reduced, and the adaptive control can be continued even at high rotation speed.
更には、 前記適応制御器は、 前記内燃機関の燃料制御サイクルに同期させて作 動させる如く構成したので、 適応パラメータの演算周期にかかわらず、 適応パラ メータを受け取ってフィ一ドバック補正係数を算出する適応制御器は、 T D C毎 などの燃料制御サイクル毎に動作させるように構成したことになり、 パラメ一夕 調整機構の演算回数を燃焼サイクルに 1回と言うように減少させた場合でも、 燃 料制御サイクル毎にフィードバック補正係数を演算することから、 常に最適に空 燃比をフィ一ドバック制御することができる。  Further, since the adaptive controller is configured to operate in synchronization with the fuel control cycle of the internal combustion engine, the adaptive controller receives the adaptive parameter and calculates the feedback correction coefficient regardless of the calculation cycle of the adaptive parameter. The adaptive controller is configured to operate every fuel control cycle such as TDC, and even if the number of calculations of the parameter adjustment mechanism is reduced to one in the combustion cycle, the fuel Since the feedback correction coefficient is calculated for each fuel control cycle, feedback control of the air-fuel ratio can always be optimally performed.
更には、 内燃機関の排気空燃比を検出する空燃比検出手段と、 内燃機関の燃料 噴射量を燃料制御サイクルごとに制御する燃料噴射量制御手段と、 および少なく とも検出された排気空燃比に基づいて渐化式形式の制御器を用いて前記燃料噴射 量を操作量として目標値に一致させる漸化式形式の制御器と、 を備えた内燃機関 の燃料噴射制御装置において、 前記渐化式形式の制御器を所定の運転状態におい ては前記燃料制御サイクルより長い周期に同期させて動作させる如く構成したの で、 漸化式形式の制御器により增加する演算量を低減して車載コンピュータの負 荷を低減することができ、 通例の車載コンピュータでも 1 T D C内に演算を完了 することができる。 Furthermore, air-fuel ratio detection means for detecting the exhaust air-fuel ratio of the internal combustion engine, fuel injection quantity control means for controlling the fuel injection amount of the internal combustion engine for each fuel control cycle, and at least the detected exhaust air-fuel ratio based on the detected exhaust air-fuel ratio A fuel injection control device for an internal combustion engine, comprising: a controller of a recurrence type in which the fuel injection amount is made to coincide with a target value as an operation amount by using a controller of a gasification type. The controller is configured to operate in a predetermined operating state in synchronization with a cycle longer than the fuel control cycle. Thus, the load on the on-board computer can be reduced by reducing the amount of calculation added by the recurrence-type controller, and the calculation can be completed within one TDC even with a conventional on-board computer.
ここで、 「所定の運転状態」 は具体的には前記内燃機関の高回転時を意味する 。 即ち、 高回転時には 1回の演算に使用できる時間が短縮するが、 上記のように 構成することによって高回転時にも適応制御を継铳することができる。 他方、 高 回転時には適応パラメ一夕および検出空燃比のばらつきが比較的少ないので、 上 記のように構成しても制御性を悪化させることがない。 従って、 高回転時などの 演算時間が少ない運転伏態においても、 適応制御を継続することができ、 良好な 空燃比制御性を確保することができる。  Here, the “predetermined operating state” specifically means a time when the internal combustion engine is rotating at a high speed. That is, the time that can be used for one operation is reduced at the time of high rotation, but adaptive control can be continued even at the time of high rotation by configuring as described above. On the other hand, at the time of high speed, since the variation of the adaptive parameter and the detected air-fuel ratio are relatively small, the controllability does not deteriorate even with the above configuration. Therefore, the adaptive control can be continued even in the running down state where the calculation time is short, such as at the time of high rotation, and good air-fuel ratio controllability can be secured.
更には、 前記漸化式形式の制御器は、 適応制御器である如く構成したので、 ラ ンダウなどの調整則を用いたパラメータ調整機構を有する適応制御アルゴリズム を用いてフィードバック補正係数を適応的に算出する場合、 漸化式形式の制御器 の中でも特に演算時間の長い適応制御器により増加する演算量を低減して車載コ ンピュー夕の負荷を低減することができ、 通例の車載コンピュータでも 1 T D C 内に演算を完了することができる。  Further, since the controller of the recurrence type is configured as an adaptive controller, the feedback correction coefficient is adaptively adjusted by using an adaptive control algorithm having a parameter adjustment mechanism using an adjustment rule such as Landau. When calculating, the load on the onboard computer can be reduced by reducing the amount of computation by the adaptive controller, which has a long operation time, especially among the recursive type controllers, and even an ordinary onboard computer can use 1 TDC. The operation can be completed within.
更には、 前記適応制御器はそこで用いる適応バラメータを算出する適応パラメ 一夕調整機構を備え、 前記適応バラメータ調整機構に少なくとも検出された排気 空燃比を入力すると共に、 前記適応パラメータ調整機構を所定の運転伏態におい ては前記燃料制御サイクルより長い周期に同期させて動作させる如く構成したの で、 上で述べた作用ないし効果に加えて、 前記適応パラメータ調整機構を特定気 '筒の燃料制御サイクルに同期させて演算させることができ、 演算時間を更に短縮 させることができ、 高回転時にも適応制御を継梡して行うことができる。 ここで 、 前記燃料制御サイクルより長い周期は、 より具体的には、 上記の如く、 燃焼サ ィクルの整数倍に相当する値である如く構成した。  Further, the adaptive controller includes an adaptive parameter adjusting mechanism for calculating an adaptive parameter used therein, and at least the detected exhaust air-fuel ratio is input to the adaptive parameter adjusting mechanism, and the adaptive parameter adjusting mechanism is controlled by a predetermined parameter. Since the operation is performed in synchronization with the cycle longer than the fuel control cycle in the operating state, in addition to the above-described effects and effects, the adaptive parameter adjustment mechanism is used to control the fuel control cycle of the specific cylinder. The calculation can be performed in synchronization with the rotation speed, the calculation time can be further reduced, and the adaptive control can be continued even at a high rotation speed. Here, the cycle longer than the fuel control cycle was configured, more specifically, as described above, to be a value corresponding to an integral multiple of the combustion cycle.
更には、 前記漸化式形式の制御器に入力する検出空燃比は、 前記漸化式形式の 制御器の作動周期よりも短い周期で検出された複数の値に基づく値である如く構 成したので、 上で述べた作用ないし効果に加え、 例えばその複数の値を複数の検 出値の平均値とすることにより、 特定の気筒の所定のクランク角度で常に動作す るときも、 その特定気筒の燃焼状態のみを強く反映する不都合がない。 Further, the detected air-fuel ratio input to the controller of the recurrence type is configured to be a value based on a plurality of values detected in a cycle shorter than the operation cycle of the controller of the recurrence type. Therefore, in addition to the above-described effects and effects, for example, by operating the plurality of values as an average value of a plurality of detected values, it is possible to always operate at a predetermined crank angle of a specific cylinder. Also, there is no inconvenience that strongly reflects only the combustion state of the specific cylinder.
更には、 前記適応パラメータ調整機構が入力する検出空燃比は、 前記適応パラ メータ調整機構の作動周期よりも短い周期で検出された複数の値に基づく値であ る如く構成したので、 同様に例えばその複数の値を複数の検出値の平均値とする ことにより、 特定の気筒の所定のクランク角度で常に動作するときも、 その特定 気筒の燃焼状態のみを強く反映する不都合がない。  Further, the detected air-fuel ratio input by the adaptive parameter adjustment mechanism is configured to be a value based on a plurality of values detected in a cycle shorter than the operation cycle of the adaptive parameter adjustment mechanism. By using the plurality of values as the average value of the plurality of detected values, even when the cylinder always operates at a predetermined crank angle of a specific cylinder, there is no inconvenience that only reflects the combustion state of the specific cylinder.
更には、 内燃機関の燃料喷射量を制御する燃料噴射量制御手段と、 前記燃料噴 射量を操作量として目標値に一致するように作動する適応制御器と、 および前記 適応制御器で用いる適応パラメータを算出する適応パラメ一夕調整機構と、 から なる内燃機関の燃料噴射制御装置において、 前記内燃機関の運転状態を検出する 運転状態検出手段と、 を備え、 前記検出された運転状態に応じて前記適応制御器 および適応パラメータ調整機構の少なくとも 方の制御周期を変える如く構成し たので、 演算負荷を低滅して高回転時などの演算時間が減少する運転状態におい ても適応制御を継铳することができ、 良好な制御性を得ることができる。  Further, a fuel injection amount control means for controlling a fuel injection amount of the internal combustion engine, an adaptive controller which operates so that the fuel injection amount becomes an operation amount so as to match a target value, and an adaptation used in the adaptive controller A fuel injection control device for an internal combustion engine, comprising: an adaptive parameter overnight adjusting mechanism for calculating a parameter; and operating state detecting means for detecting an operating state of the internal combustion engine, comprising: Since the control cycle of at least one of the adaptive controller and the adaptive parameter adjusting mechanism is configured to be changed, the adaptive control is continued even in an operation state in which the calculation load is reduced and the calculation time is reduced, such as at high rotation. And good controllability can be obtained.
更には、 前記適応パラメータ調整機構の制御周期を、 前記適応制御器の制御周 期と同一かそれより大きくする如く構成したので、 演算負荷を一層低減して高回 転時などの演算時間が減少する運転状態においても適応制御を一層容易に継挠す ることができ、 良好な制御性を得ることができる。  Furthermore, since the control cycle of the adaptive parameter adjustment mechanism is set to be equal to or longer than the control cycle of the adaptive controller, the calculation load is further reduced, and the calculation time during high rotation and the like is reduced. Adaptive control can be more easily inherited even in an operating state where the vehicle is running, and good controllability can be obtained.
更には、 前記適応パラメ一夕調整機構の制御周期を、 前記適応制御器の制御周 期の整数倍とする如く構成したので、 特に時間を要する適応バラメータ調整機構 の演算を S T Rコントローラの制御周期の複数回に 1回の割合で実行することと なり、 制御性を確保しながら演算量を効果的に削減できると共に、 実際に燃料制 御を行う S T Rコントローラの演算回数を相対的に増加させる結果となり、 高回 転時などの演算時間が減少する運転状態においても良好な制御性を確保しながら 適応制御を継続することができ、 良好な制御性を得ることができる。  Furthermore, since the control cycle of the adaptive parameter adjustment mechanism is configured to be an integral multiple of the control cycle of the adaptive controller, the operation of the adaptive parameter adjustment mechanism, which requires a particularly long time, is calculated by the control cycle of the STR controller. This is executed once every two or more times, which effectively reduces the amount of computation while ensuring controllability, and results in a relative increase in the number of computations by the STR controller that actually performs the fuel control. In addition, adaptive control can be continued while maintaining good controllability even in an operation state in which the calculation time is reduced, such as at high rotations, and good controllability can be obtained.
更には、 前記適応制御器および適応パラメータ調整機構の少なくとも一方の制 御周期を、 燃料制御周期の整数倍の周期で変える如く構成したので、 適応制御器 で求めた操作量を燃料制御周期の整数倍の期間にわたって継镜して用いることで 、 演算負荷を一層低減して高回転時などの演算時間が減少する運転伏態において も適応制御を一層容易に継統することができ、 良好な制御性を得ることができる o Further, since the control cycle of at least one of the adaptive controller and the adaptive parameter adjustment mechanism is changed at a cycle that is an integral multiple of the fuel control cycle, the operation amount obtained by the adaptive controller is changed to an integer of the fuel control cycle. By using over twice as long, the operation load can be further reduced and the operation time can be reduced, such as during high-speed operation. Can easily succeed to adaptive control and obtain good controllability o
更には、 前記運転状態は、 少なくとも機関回転数である如く構成したので、 高 回転時など演算時間が減少する運転伏態を確実に検知することができ、 それによ つて演算負荷を低減することができるので、 そのような運転状態においても適応 制御を継続して良好な制御性を得ることができる。  Furthermore, since the operation state is configured to be at least the engine speed, it is possible to reliably detect an operation downtime in which the operation time is reduced, such as at high engine speed, thereby reducing the operation load. Therefore, even in such an operating state, it is possible to continue adaptive control and obtain good controllability.
更には、 内燃機関の排気系に設けられ、 排気空燃比を検出する空燃比検出手段 と、 少なくとも機関回転数および機関負荷を含む、 前記内燃機関の運転状態を検 出する運転状態検出手段と、 少なくとも前記検出された内燃機関の運転状態に基 づいて個々の気筒の燃料噴射量を前記個々の気筒の所定のクランク角度で決定す る燃料噴射量決定手段と、 前記決定された燃料噴射量に基づいて個々の気筒に燃 料を噴射する燃料噴射手段と、 適応制御器と適応パラメータを推定する適応パラ メータ調整機構とを備えると共に、 前記適応制御器が、 前記空燃比検出手段の出 力に少なくとも基づいて得られる制御量を目標値に一致させるように、 前記燃料 噴射量を補正するようにしたフィードバック手段と、 を備えた内燃機関の燃料噴 射制御装置において、 前記適応パラメータ調整機構と適応制御器とが独立の動作 サイクルで動作するように構成したので、 上記と同様の利点を得ることができる o  Further, an air-fuel ratio detecting means provided in an exhaust system of the internal combustion engine and detecting an exhaust air-fuel ratio; an operating state detecting means for detecting an operating state of the internal combustion engine including at least an engine speed and an engine load; A fuel injection amount determining means for determining a fuel injection amount of each cylinder at a predetermined crank angle of each cylinder based on at least the detected operating state of the internal combustion engine; and A fuel injection means for injecting fuel into individual cylinders based on the information, an adaptive controller and an adaptive parameter adjusting mechanism for estimating an adaptive parameter, and the adaptive controller outputs an output of the air-fuel ratio detecting means. Fuel injection control for an internal combustion engine, comprising: feedback means for correcting the fuel injection amount so as to match a control amount obtained based on at least the target value. In location, since the adaptive parameter adjusting mechanism and the adaptive controller is configured to operate independently of the operating cycle, o that it is possible to obtain the same advantages as the
尚、 上記第 1の実施形態ないし第 1 1の実施形態はそれぞれの実施形態の構成 において上述したような作用、 効果が得られるが、 これらの実施形態の多くを組 み合わせた構成においては、 内燃機関の燃料制御装置において良好な制御性、 言 い換えればより正確な排気ガス空撚比の制御が可能となる。 またすベての実施形 態を機関の運転状態等を加味して構成すれば最も有効な作用、 効果が表れること は言うまでもない。  The first embodiment to the eleventh embodiment can obtain the above-described functions and effects in the configuration of each embodiment. However, in the configuration in which many of these embodiments are combined, Good controllability in the fuel control device of the internal combustion engine, in other words, more accurate control of the exhaust gas air-twist ratio becomes possible. It is needless to say that the most effective operation and effect can be obtained by configuring all the embodiments in consideration of the operating state of the engine.
また、 上記第 1の実施形態ないし第 1 1の実施形態はその作用、 効果によって いくつかの種類に区別できる。  Further, the first embodiment to the eleventh embodiment can be classified into several types according to their operations and effects.
第 1の実施形態は内燃機関の燃料制御装置に適応制御器を適用するにあたって The first embodiment relates to the application of an adaptive controller to a fuel control device of an internal combustion engine.
、 適応制御器の制御性 (演算精度) の向上と演算処理能力の拡大という作用、 効 果を得られる。 また機関の特定運転状態に起因する気筒別の空撚比の偏りも解消 できる作用、 効果を得られる。 さらには機関の運転状態に応じて適応制御器と PIn addition, the function and effect of improving the controllability (computation accuracy) of the adaptive controller and increasing the computation processing capacity can be obtained. In addition, the bias of the air twist ratio for each cylinder due to the specific operating state of the engine has been eliminated. Actions and effects that can be obtained. In addition, an adaptive controller and P
I D制御器を切り換える際の制御性の悪化を防止するという作用、 効果を得られ る。 第 7の実施形態は第 1の実施形態の実際の適用例に相当する。 第 7の実施形 態においてはあらゆる運転状態においても適応制御器の優れた制御性を確保でき る作用、 効果を得られる。 The operation and effect of preventing deterioration of controllability when switching the ID controller can be obtained. The seventh embodiment is equivalent to an actual application example of the first embodiment. In the seventh embodiment, the operation and effect of ensuring the excellent controllability of the adaptive controller can be obtained in all operating states.
第 2の実施形態と第 3の実施形態は適応制御器の演算方法に係わるものである 。 第 2の実施形態は適応制御器のゲイン行列 Γを機関の運転状態に応じて適切に 設定するという構成により、 適応制御器の制御性 (演算精度) の向上と演算処理 能力の拡大および制御特性のセッティングが容易となるという作用、 効果を得ら れる。 第 3の実施形態はブラント出力の挙動から適応制御器のゲイン行列 Γを設 定するもので、 適応制御器の制御性 (演算精度) の向上と演算処理能力の拡大と いう作用、 効果を得られる。  The second embodiment and the third embodiment relate to the operation method of the adaptive controller. The second embodiment improves the controllability (computation accuracy) of the adaptive controller, expands the computation processing capability, and increases the control characteristics by appropriately setting the gain matrix の of the adaptive controller according to the operating state of the engine. The function and effect that the setting of the camera becomes easy can be obtained. In the third embodiment, the gain matrix の of the adaptive controller is set from the behavior of the blunt output, and the operation and effect of improving the controllability (calculation accuracy) of the adaptive controller and expanding the calculation processing capability are obtained. Can be
第 4の実施形態は適応制御器への入力信号の処理に係わるものである。 第 4の 実施形態は適応制御器への入力たる検出空撚比に不感帯を設けるという構成によ り、 検出空撚比の微小な変動による適応制御器の制御性 (演算精度) の悪化を防 止するという作用、 効果を得られる。  The fourth embodiment relates to processing of an input signal to an adaptive controller. The fourth embodiment has a configuration in which a dead band is provided in the detected air-twist ratio, which is the input to the adaptive controller, to prevent the controllability (calculation accuracy) of the adaptive controller from deteriorating due to a small change in the detected air-twist ratio. The effect of stopping is obtained.
第 5の実施形態と第 6の実施形態は適応制御器の演算方法、 特に適応パラメ一 夕の変化速度に係わるものである。 第 5の実施形態は適応制御器で用いる適応パ ラメ一夕の変化速度にリ ミッ トを設けるという構成により、 適応制御器の制御安 定性を向上させるという作用、 効果を得られる。 第 5の実施形態は適応制御器で 用いる適応パラメ一夕の変化速度を算出安定させるという構成で適応制御器の制 御性 (演算精度) の向上という作用、 効果を得られる。  The fifth embodiment and the sixth embodiment relate to the calculation method of the adaptive controller, particularly to the changing speed of the adaptive parameter. In the fifth embodiment, an operation and an effect of improving the control stability of the adaptive controller can be obtained by providing a configuration in which a change speed of the adaptive parameter used in the adaptive controller is limited. In the fifth embodiment, the operation and effect of improving the controllability (calculation accuracy) of the adaptive controller can be obtained by a configuration in which the change speed of the adaptive parameter used in the adaptive controller is calculated and stabilized.
第 8の実施形態と第 9の実施形態は適応制御器の演算方法、 特に特定運転状態 における適応制御器の演算方法に係わるものである。 第 8の実施形態および第 9 の実施形態は適応制御器の演算方法を特定の運転状態に応じて変化させるという 構成により、 適応制御器の特定運転状態に起因する気筒別の空撚比の偏りも解消 できるという作用、 効果を得られる。  The eighth and ninth embodiments relate to a calculation method of the adaptive controller, particularly to a calculation method of the adaptive controller in a specific operation state. In the eighth and ninth embodiments, the calculation method of the adaptive controller is changed in accordance with the specific operating state, whereby the bias of the air-twist ratio for each cylinder due to the specific operating state of the adaptive controller is adjusted. Can be eliminated.
第 1 0の実施形態は適応制御器と気筒別空撚比制御手段による燃料噴射量演算 方法に係わるものである。 第 1 0の実施形態は気筒別の空撚比の偏差を解消する 手段に適応制御器による空撚比制御手段を加えたという構成により、 気筒別の空 撚比の偏りも解消でき適応制御器の制御性 (演算精度) の向上という作用、 効果 を得られる。 また空撚比の検出タイミングを機関の運転状態により最適にすると いう構成により、 気筒別の空撚比の検出 (演算) 精度と適応制御器の制御性 (演 算精度) の向上という作用、 効果を得られる。 The tenth embodiment relates to a method for calculating the fuel injection amount by the adaptive controller and the cylinder-by-cylinder air twist ratio control means. The tenth embodiment eliminates the deviation of the air twist ratio for each cylinder With the configuration in which the air-twist ratio control means by the adaptive controller is added to the means, the bias of the air-twist ratio for each cylinder can be eliminated, and the action and effect of improving the controllability (calculation accuracy) of the adaptive controller can be obtained. In addition, the configuration that optimizes the detection timing of the air-twist ratio according to the operating state of the engine improves the accuracy (detection) of the detection and calculation of the air-twist ratio for each cylinder and the controllability (operation accuracy) of the adaptive controller. Can be obtained.
第 1 1の実施形態は適応制御器をプラン卜に接铳する手法に係わるものであり The eleventh embodiment relates to a method of connecting an adaptive controller to a plant.
、 第 1の実施形態および第 3の実施形態の変形例に相当するものである。 第 1 1 の実施形態は燃料噴射量を直接演算するという構成により、 適応制御器の制御性 (演算精度) の向上という作用、 効果を得られる。 また適応制御器で用いる適応 パラメータから適応制御器の安定性を判別するという構成により、 適応制御器の 制御安定性の向上と演算処理能力の拡大という作用、 効果を得られる。 This corresponds to a modification of the first embodiment and the third embodiment. In the eleventh embodiment, the operation and effect of improving the controllability (calculation accuracy) of the adaptive controller can be obtained by the configuration of directly calculating the fuel injection amount. In addition, by adopting a configuration in which the stability of the adaptive controller is determined from the adaptive parameters used in the adaptive controller, the operation and effect of improving the control stability of the adaptive controller and expanding the arithmetic processing capability can be obtained.
以上に示した実施形態の種類はそれぞれ同じ種類に属する実施形態同士を組み 合わせた構成により、 それぞれの実施形態で述べた作用、 効果が向上する。 また いくつかの実施形態の種類をそれぞれ組み合わせてもそれぞれの実施形態で述べ た作用、 効果が相乗的に向上して内燃機関の燃料制御装置において良好な制御性 、 言い換えればより正確な排気ガス空撚比の制御が可能となることは先に述べた 通りである。  The functions and effects described in the respective embodiments are improved by the configuration in which the types of the embodiments described above are combined with the embodiments belonging to the same type. In addition, even when the types of some embodiments are combined, the operation and effect described in each embodiment are synergistically improved, and good controllability in the fuel control device of the internal combustion engine, in other words, more accurate exhaust gas space is obtained. As described above, the twist ratio can be controlled.
第 1の実施形態および第 7の実施形態と第 2の実施形態および第 3の実施形態 を組み合わせて利用すれば適応制御器の制御性 (演算精度) の向上と演算処理能 力の拡大という作用、 効果を得られる。  If the first and seventh embodiments are used in combination with the second and third embodiments, the controllability (operation accuracy) of the adaptive controller is improved and the operation processing capability is expanded. , Get the effect.
第 1の実施形態および第 7の実施形態と第 4の実施形態を組み合わせて利用す れば適応制御器の制御性 (演算精度) の向上と演算処理能力の拡大という作用、 効果を得られる。  When the first embodiment, the seventh embodiment, and the fourth embodiment are used in combination, it is possible to obtain an action and an effect of improving the controllability (operation accuracy) of the adaptive controller and expanding the operation processing capability.
第 1の実施形態および第 7の実施形態と第 5の実施形態および第 6の実施形態 を組み合わせて利用すれば適応制御器の制御性 (演算精度) の向上と演算処理能 力の拡大という作用、 効果を得られる。  If the first and seventh embodiments are used in combination with the fifth and sixth embodiments, the effect of improving the controllability (calculation accuracy) of the adaptive controller and expanding the calculation processing capability is obtained. , Get the effect.
第 1の実施形態および第 7の実施形態と第 8の実施形態および第 9の実施形態を 組み合わせて利用すれば適応制御器の特定運転状態に起因する気筒別の空撚比の 偏りも解消でき適応制御器の制御性 (演算精度) の向上と演算処理能力の拡大と いう作用、 効果を得られる。 If the first embodiment, the seventh embodiment, the eighth embodiment, and the ninth embodiment are used in combination, the bias of the air-twist ratio for each cylinder due to the specific operation state of the adaptive controller can be eliminated. Improvement of controllability (computation accuracy) of the adaptive controller and expansion of computational processing capacity Action and effect.
第 1の実施形態および第 7の実施形態と第 1 0の実施形態を組み合わせて利用 すれば気筒別の空撚比の偏りも解消でき適応制御器の制御性 (演算精度) の向上 と演算処理能力の拡大という作用、 効果を得られる。  If the first embodiment, the seventh embodiment, and the tenth embodiment are used in combination, the bias of the air-twist ratio for each cylinder can be eliminated, and the controllability (calculation accuracy) of the adaptive controller and the calculation processing can be improved. The effect of expanding capacity is obtained.
第 1の実施形態および第 7の実施形態と第 1 1の実施形態を組み合わせて利用 すれば適応制御器の制御安定性の向上と適応制御器の制御性 (演算精度) の向上 と演算処理能力の拡大という作用、 効果を得られる。 特に第 1 1の実施形態の適 応制御器で用いる適応パラメ一夕の安定性の判別が各実施形態に用いることが有 効な点は先に述べた通りである。  If the first embodiment, the seventh embodiment, and the first embodiment are used in combination, the control stability of the adaptive controller is improved, the controllability (calculation accuracy) of the adaptive controller is improved, and the processing capacity is improved. The effect of expanding is obtained. In particular, as described above, it is effective to determine the stability of the adaptive parameters used in the adaptive controller according to the first embodiment in each embodiment.
第 2の実施形態および第 3の実施形態と第 4の実施形態を組み合わせて利用す れば適応制御器の制御性 (演算精度) の向上と演算処理能力の拡大という作用、 効果を得られる。  If the second embodiment, the third embodiment, and the fourth embodiment are used in combination, it is possible to obtain the action and effect of improving the controllability (operation accuracy) of the adaptive controller and expanding the operation processing capability.
第 2の実施形態および第 3の実施形態と第 5の実施形態および第 6の実施形態 を組み合わせて利用すれば適応制御器の制御性 (演算精度) の向上と演算処理能 力の拡大という作用、 効果を得られる。  If the second and third embodiments are used in combination with the fifth and sixth embodiments, the controllability (operation accuracy) of the adaptive controller is improved and the operation processing capability is expanded. , Get the effect.
第 2の実施形態および第 3の実施形態と第 8の実施形態および第 9の実施形態 を組み合わせて利用すれば適応制御器の特定運転状態に起因する気筒別の空撚比 の偏りも解消でき適応制御器の制御性 (演算精度) の向上と演算処理能力の拡大 という作用、 効果を得られる。  If the second and third embodiments are used in combination with the eighth and ninth embodiments, the bias of the air-twist ratio for each cylinder due to the specific operation state of the adaptive controller can be eliminated. The effect of improving the controllability (calculation accuracy) of the adaptive controller and expanding the calculation processing capacity can be obtained.
第 2の実施形態および第 3の実施形態と第 1 0の実施形態を組み合わせて利用 すれば気筒別の空撚比の偏りも解消でき適応制御器の制御性 (演算精度) の向上 と演算処理能力の拡大という作用、 効果を得られる。  If the second and third embodiments are used in combination with the tenth embodiment, the bias of the air-twist ratio for each cylinder can be eliminated, so that the controllability (calculation accuracy) of the adaptive controller and the calculation processing can be improved. The effect of expanding capacity is obtained.
第 2の実施形態および第 3の実施形態と第 1 1の実施形態を組み合わせて利用 すれば適応制御器の制御性 (演算精度) の向上と演算処理能力の拡大という作用 、 効果を得られる。 また第 1 1の実施形態における適応制御器で用いる適応パラ メータから適応制御器の安定性を判別するという構成により、 適応制御器の制御 安定性の向上と演算処理能力の拡大という作用、 効果を得られる。  When the second embodiment, the third embodiment, and the first embodiment are used in combination, the operation and effect of improving the controllability (operation accuracy) of the adaptive controller and expanding the operation processing capability can be obtained. In addition, by adopting a configuration in which the stability of the adaptive controller is determined from the adaptive parameters used in the adaptive controller in the first embodiment, the operation and effect of improving the control stability of the adaptive controller and expanding the arithmetic processing capability can be achieved. can get.
第 4の実施形態と第 5の実施形態および第 6の実施形態を組み合わせて利用す れば適応制御器の制御性 (演算精度) の向上と演算処理能力の拡大という作用、 効果を得られる。 If the fourth embodiment, the fifth embodiment, and the sixth embodiment are used in combination, the effect of improving the controllability (computation accuracy) of the adaptive controller and increasing the computation processing capability, The effect can be obtained.
第 4の実施形態と第 8の実施形態および第 9の実施形態を組み合わせて利用す れば適応制御器の特定運転状態に起因する気筒別の空撚比の偏りも解消でき適応 制御器の制御性 (演算精度) の向上と演算処理能力の拡大という作用、 効果を得 られる。  If the fourth embodiment, the eighth embodiment, and the ninth embodiment are used in combination, the bias of the air-twist ratio for each cylinder caused by the specific operation state of the adaptive controller can be eliminated, and the adaptive controller can be controlled. The operation and effect of improving the performance (operation accuracy) and expanding the operation processing capacity can be obtained.
第 4の実施形態と第 1 0の実施形態を組み合わせて利用すれば気筒別の空撚比 の偏りも解消でき適応制御器の制御性 (演算精度) の向上と演算処理能力の拡大 という作用、 効果を得られる。  If the fourth embodiment and the tenth embodiment are used in combination, the bias of the air-twist ratio for each cylinder can be eliminated, and the controllability (computation accuracy) of the adaptive controller can be improved and the computation processing capacity can be increased. The effect can be obtained.
第 4の実施形態と第 1 1の実施形態を組み合わせて利用すれば気筒別の空撚比 の偏りも解消でき適応制御器の制御性 (演算精度) の向上と演算処理能力の拡大 という作用、 効果を得られる。 また第 1 1の実施形憨における適応制御器で用い る適応パラメ一夕から適応制御器の安定性を判別するという構成により、 適応制 御器の制御安定性の向上と演算処理能力の拡大という作用、 効果を得られる。 第 5の実施形態および第 6の実施形態と第 8の実施形態および第 9の実施形態 を組み合わせて利用すれば適応制御器の特定運転伏態に起因する気筒別の空撚比 の偏りも解消でき適応制御器の制御性 (演算精度) の向上と演算処理能力の拡大 という作用、 効果を得られる。  If the fourth embodiment and the first embodiment are used in combination, the bias of the air-twist ratio for each cylinder can be eliminated, and the controllability (computation accuracy) of the adaptive controller can be improved and the computation processing capacity can be increased. The effect can be obtained. In addition, by adopting a configuration in which the stability of the adaptive controller is determined from the adaptive parameters used in the adaptive controller in the eleventh embodiment, it is possible to improve the control stability of the adaptive controller and expand the arithmetic processing capability. Action and effect can be obtained. By using the fifth and sixth embodiments in combination with the eighth and ninth embodiments, the bias of the air-twist ratio for each cylinder due to the specific operating state of the adaptive controller is also eliminated. As a result, it is possible to obtain the function and effect of improving the controllability (calculation accuracy) of the adaptive controller and expanding the processing capacity.
第 5の実施形態および第 6の実施形態と第 1 0の実施形態を組み合わせて利用 すれば気筒別の空撚比の偏りも解消でき適応制御器の制御性 (演算精度) の向上 と演算処理能力の拡大という作用、 効果を得られる。  If the fifth and sixth embodiments are used in combination with the tenth embodiment, the bias of the air-twist ratio for each cylinder can be eliminated, and the controllability (computation accuracy) of the adaptive controller and the computation processing can be improved. The effect of expanding capacity is obtained.
第 5の実施形態および第 6の実施形態と第 1 1の実施形態を組み合わせて利用 すれば適応制御器の制御性 (演算精度) の向上と演算処理能力の拡大という作用 、 効果を得られる。 また第 1 1の実施形態における適応制御器で用いる適応パラ メータから適応制御器の安定性を判別するという構成により、 適応制御器の制御 安定性の向上と演算処理能力の拡大という作用、 効果を得られる。  If the fifth embodiment, the sixth embodiment, and the first embodiment are used in combination, it is possible to obtain the effect of improving the controllability (operation accuracy) of the adaptive controller and expanding the operation processing capability. In addition, by adopting a configuration in which the stability of the adaptive controller is determined from the adaptive parameters used in the adaptive controller in the first embodiment, the operation and effect of improving the control stability of the adaptive controller and expanding the arithmetic processing capability can be achieved. can get.
第 8の実施形態および第 9の実施形態と第 1 0の実施形態を組み合わせて利用 すれば気筒別の空撚比の偏りも解消でき適応制御器の制御性 (演算精度) の向上 と演算処理能力の拡大という作用、 効果を得られる。  If the eighth and ninth embodiments are used in combination with the tenth embodiment, the bias of the air-twist ratio for each cylinder can be eliminated, and the controllability (calculation accuracy) of the adaptive controller and the calculation processing can be improved. The effect of expanding capacity is obtained.
第 8の実施形態および第 9の実施形態と第 1 1の実施形態を組み合わせて利用 すれば適応制御器の特定運転状態に起因する気筒別の空撚比の偏りも解消でき適 応制御器の制御性 (演算精度) の向上と演算処理能力の拡大という作用、 効果を 得られる。 また第 1 1の実施形態における適応制御器で用いる適応パラメ一夕か ら適応制御器の安定性を判別するという構成により、 適応制御器の制御安定性の 向上と演算処理能力の拡大という作用、 効果を得られる。 Use by combining the eighth and ninth embodiments with the eleventh embodiment This eliminates the bias of the air-twist ratio for each cylinder due to the specific operation state of the adaptive controller, and improves the controllability (calculation accuracy) of the adaptive controller and expands the processing capacity. In addition, the configuration of determining the stability of the adaptive controller from the adaptive parameters used in the adaptive controller according to the eleventh embodiment improves the control stability of the adaptive controller and increases the operation processing capability. The effect can be obtained.
第 1 0の実施形態と第 1 1の実施形態を組み合わせて利用すれば気筒別の空撚 比の偏りも解消でき適応制御器の制御性 (演算精度) の向上と演算処理能力の拡 大という作用、 効果を得られる。 また第 1 1の実施形態における適応制御器で用 いる適応パラメータから適応制御器の安定性を判別するという構成により、 適応 制御器の制御安定性の向上と演算処理能力の拡大という作用、 効果を得られる。  If the tenth embodiment and the eleventh embodiment are used in combination, the bias of the air-twist ratio for each cylinder can be eliminated, and the controllability (computation accuracy) of the adaptive controller and the computation processing capacity can be increased. Action and effect can be obtained. In addition, by adopting a configuration in which the stability of the adaptive controller is determined from the adaptive parameters used in the adaptive controller in the eleventh embodiment, the operation and effect of improving the control stability of the adaptive controller and expanding the arithmetic processing capability are improved. can get.

Claims

請求の範囲 The scope of the claims
1 .  1.
a . 多気筒内燃機関の燃料噴射量を制御する燃料噴射量制御手段と、 a. fuel injection amount control means for controlling the fuel injection amount of the multi-cylinder internal combustion engine;
b . 前記燃料噴射量を操作量として目標値に適応的に一致させる適応制御器と、 . および an adaptive controller that adaptively matches the fuel injection amount to a target value as an operation amount; and
c 前記適応制御器で用いる適応パラメータを算出する適応パラメータ調整機構 と、  c adaptive parameter adjustment mechanism for calculating an adaptive parameter used in the adaptive controller,
を備えた多気筒内燃機関の燃料噴射制御装置において、 前記適応パラメ一夕調整 機構への入力を前記内燃機関の特定の燃焼サイクルに同期させて行うと共に、 前 記適応パラメ一夕調整機構は前記内燃機関の燃料制御サイクルにおいて空燃比お よび茼內燃料量の少なくともいずれかに基づいて適応パラメ一夕の演算を行うこ とを特徴とする内燃機関の燃料噴射制御装置。 In the fuel injection control device for a multi-cylinder internal combustion engine provided with, the input to the adaptive parameter adjustment mechanism is performed in synchronization with a specific combustion cycle of the internal combustion engine, and the adaptive parameter adjustment mechanism is A fuel injection control device for an internal combustion engine, which performs a calculation of an adaptive parameter based on at least one of an air-fuel ratio and a fuel amount in a fuel control cycle of the internal combustion engine.
2 . 前記適応パラメ一夕調整機構への入力は、 前記内燃機関の特定の気筒の燃料 制御サイクルに同期させて行うことを特徴とする特許請求の範囲 1項記載の内燃 機関の燃料噴射制御装置。 2. The fuel injection control device for an internal combustion engine according to claim 1, wherein the input to the adaptive parameter overnight adjustment mechanism is performed in synchronization with a fuel control cycle of a specific cylinder of the internal combustion engine. .
3 . 前記適応制御器は、 前記内燃機関の燃料制御サイクルに同期させて作動させ ることを特徴とする特許請求の範囲 1項または 2項記載の内燃機関の燃料噴射制 御装置。 3. The fuel injection control device for an internal combustion engine according to claim 1, wherein the adaptive controller is operated in synchronization with a fuel control cycle of the internal combustion engine.
4 . Four .
a . 内燃機関の排気空燃比を検出する空燃比検出手段と、 a. air-fuel ratio detecting means for detecting an exhaust air-fuel ratio of the internal combustion engine;
b . 内燃機関の燃料噴射量を燃料制御サイクルごとに制御する燃料噴射量制御手 段と、 b. a fuel injection amount control means for controlling the fuel injection amount of the internal combustion engine for each fuel control cycle;
および  and
c . 少なくとも検出された排気空燃比に基づいて漸化式形式の制御器を用いて前 記燃料噴射量を操作量として目摞値に一致させる漸化式形式の制御器と、 を備えた内燃機関の燃料噴射制御装置において、 前記漸化式形式の制御器を所定 の運転状態においては前記燃料制御サイクルより長い周期に同期させて動作させ , ることを特徴とする内燃機関の燃料噴射制御装置。 c. a recurring-type controller that uses the recurring-type controller based on at least the detected exhaust air-fuel ratio to match the fuel injection amount to the target value as the manipulated variable. In the fuel injection control device for an engine, the controller of the recurrence type is specified. The fuel injection control device for an internal combustion engine, wherein the fuel injection control device is operated in synchronization with a cycle longer than the fuel control cycle.
5 . 前記漸化式形式の制御器は、 適応制御器であることを特徴とする特許請求の 範囲 4項記載の内燃機関の燃料噴射制御装置。 5. The fuel injection control device for an internal combustion engine according to claim 4, wherein the controller of the recurrence type is an adaptive controller.
6 . 前記適応制御器はそこで用いる適応パラメ一夕を算出する適応パラメ一夕調 整機構を備え、 前記適応バラメータ調整機構に少なくとも検出された排気空燃比 を入力すると共に、 前記適応パラメータ調整機構を所定の運転状態においては前 記燃料制御サイクルより長い周期に同期させて動作させることを特徴とする特許 請求の範囲 5項記載の内燃機関の燃料噴射制御装置。 6. The adaptive controller includes an adaptive parameter adjustment mechanism that calculates an adaptive parameter used therein, and inputs at least the detected exhaust air-fuel ratio to the adaptive parameter adjustment mechanism, and controls the adaptive parameter adjustment mechanism. 6. The fuel injection control device for an internal combustion engine according to claim 5, wherein the fuel injection control device is operated in synchronization with a cycle longer than the fuel control cycle in a predetermined operation state.
7 . 前記燃料制御サイクルより長い周期は、 燃焼サイクルの整数倍に相当する値 であることを特徴とする特許請求の範囲 4項ないし 6項のいずれかに記載の内燃 機関の燃料噴射制御装置。 7. The fuel injection control device for an internal combustion engine according to claim 4, wherein the period longer than the fuel control cycle is a value corresponding to an integral multiple of a combustion cycle.
8 . 前記適応パラメータ調整機構が入力する検出空燃比は、 前記適応パラメ一夕 調整機構の作動周期よりも短い周期で検出された複数の値に基づく値であること を特徴とする特許請求の範囲 6項記載の内燃機関の燃料噴射制御装置。 8. The detected air-fuel ratio input by the adaptive parameter adjustment mechanism is a value based on a plurality of values detected in a cycle shorter than an operation cycle of the adaptive parameter overnight adjustment mechanism. 7. The fuel injection control device for an internal combustion engine according to claim 6.
9 . 前記漸化式形式の制御器に入力する検出空燃比は、 前記漸化式形式の制御器 'の作動周期よりも短レ、周期で検出された複数の値に基づく値であることを特徴と する特許請求の範囲 4項ないし 8項のいずれかに記載の内燃機関の燃料噴射制御 9. The detected air-fuel ratio input to the recurrence type controller is shorter than the operation cycle of the recurrence type controller 'and is a value based on a plurality of values detected in the cycle. Fuel injection control for an internal combustion engine according to any one of claims 4 to 8, characterized in that
1 0 . Ten .
a . 内燃機関の燃料噴射量を制御する燃料噴射量制御手段と、  a. fuel injection amount control means for controlling the fuel injection amount of the internal combustion engine;
b . 前記燃料噴射量を操作量として目標値に一致するように作動する適応制御器 と、 および b. an adaptive controller that operates so that the fuel injection amount is equal to a target value as an operation amount; and
C . 前記適応制御器で用いる適応パラメータを算出する適応パラメータ調整機構 と、  C. an adaptive parameter adjusting mechanism for calculating an adaptive parameter used in the adaptive controller;
からなる内燃機関の燃料噴射制御装置において、 In the fuel injection control device for an internal combustion engine comprising
d . 前記内燃機関の運転状態を検出する運転伏態検出手段と、 d. operating state detecting means for detecting an operating state of the internal combustion engine;
を備え、 前記検出された運転状態に応じて前記適応制御器および適応パラメ一夕 調整機構の少なくとも一方の制御周期を変えることを特徴とする内燃機関の燃料 噴射制御装置。 And a control cycle of at least one of the adaptive controller and the adaptive parameter adjustment mechanism is changed in accordance with the detected operating state.
1 1 . 前記適応パラメ一夕調整機構の制御周期を、 前記適応制御器の制御周期と 同一かそれより大きくすることを特徴とする特許請求の範囲 1 0項記載の內燃機 関の燃料噴射制御装置。 11. The fuel injection control device according to claim 10, wherein a control cycle of the adaptive parameter adjustment mechanism is equal to or longer than a control cycle of the adaptive controller. .
1 2 . 前記適応バラメータ調整機構の制御周期を、 前記適応制御器の制御周期の 整数倍とすることを特徴とする特許請求の範囲 1 0項記載の内燃機関の燃料噴射 制御装置。 12. The fuel injection control device for an internal combustion engine according to claim 10, wherein a control cycle of said adaptive parameter adjustment mechanism is set to an integral multiple of a control cycle of said adaptive controller.
1 3 . 前記適応制御器および適応パラメ一夕調整機構の少なくとも一方の制御周 期を、 燃料制御周期の整数倍の周期で変えることを特徴とする特許請求の範囲 1 0項ないし 1 2項のいずれかに記載の機関の燃料噴射制御装置。 13. The method according to claim 10, wherein the control cycle of at least one of the adaptive controller and the adaptive parameter adjusting mechanism is changed at a cycle that is an integral multiple of a fuel control cycle. The fuel injection control device for an engine according to any one of the above.
1 4 . 前記運転状態は、 少なくとも機関回転数であることを特徴とする特許請求 の範囲 1 0項ないし 1 3項のいずれかに記載の内燃機関の燃料噴射制御装置。 14. The fuel injection control device for an internal combustion engine according to any one of claims 10 to 13, wherein the operation state is at least an engine speed.
1 5 . 1 5.
a . 内燃機関の排気系に設けられ、 排気空燃比を検出する空燃比検出手段と、 b . 少なくとも機関回転数および機関負荷を含む、 前記内燃機関の運転状態を検 出する運転状態検出手段と、 an air-fuel ratio detecting means provided in an exhaust system of the internal combustion engine and detecting an exhaust air-fuel ratio; b. operating state detecting means for detecting an operating state of the internal combustion engine including at least an engine speed and an engine load. ,
c . 少なくとも前記検出された内燃機関の運転状態に基づいて個々の気筒の燃料 噴射量を前記個々の気筒の所定のクランク角度で決定する燃料噴射量決定手 段と、 c. Individual cylinder fuel based at least on the detected operating condition of the internal combustion engine Fuel injection amount determining means for determining an injection amount at a predetermined crank angle of each of the cylinders;
d . 前記決定された燃料噴射量に基づいて個々の気筒に燃料を噴射する燃料噴射 手段と、 d. fuel injection means for injecting fuel into each cylinder based on the determined fuel injection amount;
e . 適応制御器と適応パラメータを推定する適応パラメータ調整機構とを備える と共に、 前記適応制御器が、 前記空燃比検出手段の出力に少なくとも基づい て得られる制御量を目標値に一致させるように、 前記燃料噴射量を補正する ようにしたフィードバック手段と、 e. an adaptive controller and an adaptive parameter adjusting mechanism for estimating an adaptive parameter, and the adaptive controller matches a control amount obtained at least based on an output of the air-fuel ratio detection unit with a target value, Feedback means for correcting the fuel injection amount;
を備えた内燃機関の燃料噴射制御装置において、 前記適応パラメータ調整機構と 適応制御器とが独立の動作サイクルで動作するようにしたことを特徴とする内燃 機関の燃料噴射制御装置。 A fuel injection control device for an internal combustion engine, comprising: the adaptive parameter adjustment mechanism and the adaptive controller operating in independent operation cycles.
PCT/JP1995/002765 1994-12-30 1995-12-28 Fuel injection control device for an internal combustion engine WO1996021098A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP34002194 1994-12-30
JP6/340021 1994-12-30

Publications (1)

Publication Number Publication Date
WO1996021098A1 true WO1996021098A1 (en) 1996-07-11

Family

ID=18332991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002765 WO1996021098A1 (en) 1994-12-30 1995-12-28 Fuel injection control device for an internal combustion engine

Country Status (4)

Country Link
KR (1) KR100407298B1 (en)
CN (1) CN1065586C (en)
TW (1) TW312732B (en)
WO (1) WO1996021098A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847155A (en) * 2021-10-15 2021-12-28 东风汽车集团股份有限公司 Engine short-term fuel correction control method and control system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4089244B2 (en) * 2002-03-01 2008-05-28 株式会社デンソー Injection amount control device for internal combustion engine
JP4345629B2 (en) * 2004-09-29 2009-10-14 日産自動車株式会社 Engine air-fuel ratio control device
JP4315088B2 (en) * 2004-09-29 2009-08-19 日産自動車株式会社 Engine air-fuel ratio control device
JP4371027B2 (en) * 2004-09-29 2009-11-25 日産自動車株式会社 Engine air-fuel ratio control device
US7184877B1 (en) * 2005-09-29 2007-02-27 International Engine Intellectual Property Company, Llc Model-based controller for auto-ignition optimization in a diesel engine
DE102006032278B3 (en) * 2006-07-12 2007-12-20 Siemens Ag Four-cylinder internal-combustion engine adaption method for combustion of fuel quantity injected in cylinder, involves determining cylinder/specific air/gas filling based on temporal rotation speed change in compression phase
CN111857192B (en) * 2019-04-29 2024-03-05 新奥数能科技有限公司 Method and device for regulating and controlling ejector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150047A (en) * 1985-11-07 1987-07-04 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method and device for controlling mixture of internal combustion engine
JPS6375334A (en) * 1986-09-18 1988-04-05 Toyota Motor Corp Feedback control method for internal combustion engine
JPH01134040A (en) * 1987-11-18 1989-05-26 Toyota Motor Corp Fuel injection quantity controller for internal combustion engine
JPH0617680A (en) * 1992-07-03 1994-01-25 Honda Motor Co Ltd Device for controlling fuel injection quantity in internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413404A (en) * 1987-07-07 1989-01-18 Sumitomo Electric Industries Opening and closing state detection sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150047A (en) * 1985-11-07 1987-07-04 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method and device for controlling mixture of internal combustion engine
JPS6375334A (en) * 1986-09-18 1988-04-05 Toyota Motor Corp Feedback control method for internal combustion engine
JPH01134040A (en) * 1987-11-18 1989-05-26 Toyota Motor Corp Fuel injection quantity controller for internal combustion engine
JPH0617680A (en) * 1992-07-03 1994-01-25 Honda Motor Co Ltd Device for controlling fuel injection quantity in internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847155A (en) * 2021-10-15 2021-12-28 东风汽车集团股份有限公司 Engine short-term fuel correction control method and control system
CN113847155B (en) * 2021-10-15 2023-12-29 东风汽车集团股份有限公司 Short-term fuel correction control method and system for engine

Also Published As

Publication number Publication date
KR100407298B1 (en) 2004-05-20
CN1065586C (en) 2001-05-09
KR970701302A (en) 1997-03-17
TW312732B (en) 1997-08-11
CN1143402A (en) 1997-02-19

Similar Documents

Publication Publication Date Title
EP0719921B1 (en) Fuel metering control system for internal combustion engine
US5632261A (en) Fuel metering control system for internal combustion engine
US5606959A (en) Fuel metering control system for internal combustion engine
WO1996021098A1 (en) Fuel injection control device for an internal combustion engine
US6041279A (en) Fuel metering control system for internal combustion engine
US5787868A (en) Fuel metering control system for internal combustion engine
US5666934A (en) Fuel metering control system for internal combustion engine
US5758630A (en) Fuel metering control system for internal combustion engine
JP3822668B2 (en) Fuel injection control device for internal combustion engine
JP3704324B2 (en) Fuel injection control device for internal combustion engine
JP3725927B2 (en) Fuel injection control device for internal combustion engine
JP3296472B2 (en) Fuel injection control device for internal combustion engine
JP3132382B2 (en) Fuel injection control device for internal combustion engine
JP3233565B2 (en) Fuel injection control device for internal combustion engine
JP3233564B2 (en) Fuel injection control device for internal combustion engine
JP3233568B2 (en) Fuel injection control device for internal combustion engine
JP3261297B2 (en) Fuel injection control device for internal combustion engine
JP3255840B2 (en) Fuel injection control device for internal combustion engine
JP3268186B2 (en) Fuel injection control device for internal combustion engine
JP3299432B2 (en) Fuel injection control device for internal combustion engine
JP3377908B2 (en) Fuel injection control device for internal combustion engine
JP3704325B2 (en) Fuel injection control device for internal combustion engine
EP0719924B1 (en) Fuel metering control system for internal combustion engine
EP0719928B1 (en) Fuel metering control system for internal combustion engine
JPH08291745A (en) Fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95191909.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

WWE Wipo information: entry into national phase

Ref document number: 1019960704782

Country of ref document: KR