JPH01134040A - Fuel injection quantity controller for internal combustion engine - Google Patents

Fuel injection quantity controller for internal combustion engine

Info

Publication number
JPH01134040A
JPH01134040A JP29150087A JP29150087A JPH01134040A JP H01134040 A JPH01134040 A JP H01134040A JP 29150087 A JP29150087 A JP 29150087A JP 29150087 A JP29150087 A JP 29150087A JP H01134040 A JPH01134040 A JP H01134040A
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
amount
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29150087A
Other languages
Japanese (ja)
Other versions
JP2564858B2 (en
Inventor
Masashi Mizukoshi
雅司 水越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP62291500A priority Critical patent/JP2564858B2/en
Publication of JPH01134040A publication Critical patent/JPH01134040A/en
Application granted granted Critical
Publication of JP2564858B2 publication Critical patent/JP2564858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To make high control accuracy demonstrable irrespective of a sudden change in a driving state by performing only the calculation of a stable variable of sticking fuel quantity and evaporation fuel quantity in an intake pipe at each fuel injection, and making other fuel injection quantity calculating processes so as to be repeatedly executed all the time. CONSTITUTION:In this controller, there is provided with a driving state detecting means M5 which detects engine speed omega of an internal combustion engine M2, evaporated quantity Vf of fuel stuck to an intake pipe wall surface and intake air quantity (m), and each value of Vf/omega is calculated by a dividing means M6. In addition, on the basis of the calculated result and a fuel injection quantity (q), state variables fw, fv of sticking fuel and evaporating fuel in an intake pipe M2 are estimated at each fuel injection by an estimating means M7. On the basis of these data Vf/omega, fw, fv and the product lambdarm of intake air quantity (m) and desired fuel-air ratio lambdar, the fuel injection quantity (q) is calculated by a calculating means M8. Then, at each specified fuel injection timing synchronized with engine speed, a fuel injection valve M4 is made so as to be driven according to the fuel injection quantity (q) calculated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、内燃機関のシリンダ内に流入する走料の挙動
を表す物理モデルに則って燃料噴射弁からの燃料噴射量
を制御する内燃機関の燃料噴射量制御装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an internal combustion engine that controls the amount of fuel injected from a fuel injection valve in accordance with a physical model representing the behavior of propellant flowing into a cylinder of an internal combustion engine. The present invention relates to a fuel injection amount control device.

[従来の技術] 従来より、内燃機関に供給される燃料混合気の空燃比が
目標空燃比になるよう燃料噴射弁からの燃料噴射量を制
御する燃料噴Iij量制御装置の一つとして、例えば特
開昭59−196930i公報に記載の如く、内燃機関
の回転゛速度と吸入空気量とから求められる基本燃料噴
射量を補正する補正値を制御人力、空燃比センサを用い
て検出される空燃比の実測値を制御出力とし、該制御人
力と制御出力との間に線形な近似が成り立つものとして
同定を行い、内燃機関の動的な振舞いを記述する物理モ
デルを求め、これに基づき設計された制御則により燃料
噴射量を制御するよう構成された、所謂線形制御理論に
基づく制御装置が知られている。
[Prior Art] Conventionally, as one type of fuel injection amount control device that controls the amount of fuel injection from a fuel injection valve so that the air-fuel ratio of the fuel mixture supplied to the internal combustion engine becomes a target air-fuel ratio, for example, As described in Japanese Unexamined Patent Publication No. 59-196930i, a correction value for correcting the basic fuel injection amount determined from the rotational speed of the internal combustion engine and the intake air amount is manually controlled, and the air-fuel ratio is detected using an air-fuel ratio sensor. The actual measured value of the internal combustion engine is taken as the control output, and the identification is performed assuming that a linear approximation holds between the control human power and the control output, and a physical model that describes the dynamic behavior of the internal combustion engine is obtained, and the engine is designed based on this. 2. Description of the Related Art A control device based on a so-called linear control theory, which is configured to control a fuel injection amount using a control law, is known.

[発明が解決しようとする問題点コ しかし上記制御人力量と制御出力量との関係は本来非線
形であり、単に線形近似により物理モデルを求めたので
は内燃機関の動的な据舞いを極めて狭い運転条件下でし
か正確に記述することができないため、従来この種の制
御装置では、線形近似が成り立つとみなし得る複数の運
転領域毎に数式モデルを求め、該数式モデルに基づき各
運転領域毎に制御則を設計しなけれはならなかった。
[Problems to be solved by the invention] However, the relationship between the amount of control human power and the amount of control output is inherently nonlinear, and simply obtaining a physical model by linear approximation would result in an extremely narrow dynamic stability of the internal combustion engine. Since accurate description can only be made under operating conditions, conventional control devices of this type derive mathematical models for each of multiple operating regions that can be considered to hold linear approximation, and then calculate each operating region based on the mathematical model. A control law had to be designed.

従ってこの種の制御装置では、制御に用いる制御則を上
記物理モデルに対応して内燃機関の各運転領域毎に切り
替えなければならず、制御が煩雑になるといった問題が
あった。また各運転領域の境界点では5制御則の切り替
えのために制御が不安定になるといった問題もある。
Therefore, in this type of control device, the control law used for control has to be changed for each operating range of the internal combustion engine in accordance with the above-mentioned physical model, resulting in a problem that the control becomes complicated. There is also the problem that control becomes unstable due to switching between the five control laws at the boundary points of each operating region.

そこで本願出願人は、上記のように制御則を切り替える
ことなく(即ち一つの制御即刻で)内燃機関の広範囲な
運転条件下で燃料噴射量を精度よく制御することができ
る燃料噴射量制御装置として、特願昭62−18988
9号、特願昭62−189891号等により、制御則が
内燃機関のシリンダ内に流入する燃料の挙動を表す物理
モデルに則って設計された燃料噴射量制御装置を提案し
た。
Therefore, the applicant of the present application has developed a fuel injection amount control device that can accurately control the fuel injection amount under a wide range of operating conditions of an internal combustion engine without changing the control law (i.e., with one instantaneous control) as described above. , patent application 18988-1988
No. 9, Japanese Patent Application No. 62-189891, etc., proposed a fuel injection amount control device whose control law is designed in accordance with a physical model representing the behavior of fuel flowing into the cylinder of an internal combustion engine.

ところが上記提案の燃料噴射量制御装置では、内燃機関
の燃料噴射毎に一連の燃料噴射量算出処理を実行するよ
うに構成したので、現在実際に車両用内燃機関の制御装
置として使用されている燃料噴射量制御装置のように、
内燃機関の運転状態を検出する各種センサからの最新の
検出信号により燃料噴射量を制御することができなかっ
た。
However, the fuel injection amount control device proposed above is configured to execute a series of fuel injection amount calculation processes every time fuel is injected into the internal combustion engine. Like the injection quantity control device,
It was not possible to control the fuel injection amount based on the latest detection signals from various sensors that detect the operating state of the internal combustion engine.

つまり従来の燃料噴射量制御装置では、内燃機関の運転
状態を検出する各種センサからの検出信号に基づき燃料
噴ITI量を繰り返し算出し、燃料噴射タイミング毎に
そのを駆動制御するよう構成されているので、常時最新
の運転状態に応じて燃料噴射量を制御することができる
が、上記提案の装置では、内燃機関の燃料噴射毎に燃料
噴射量を算出するように構成したので、燃料噴射量算出
後内燃機関の運転状態が急変すると、実際に燃料噴射を
行なう時点での内燃機関の運転状態と燃料噴射量とが一
時的に対応しなくなってしまうといった問題があったの
である。
In other words, the conventional fuel injection amount control device is configured to repeatedly calculate the fuel injection ITI amount based on detection signals from various sensors that detect the operating state of the internal combustion engine, and drive and control the amount at each fuel injection timing. Therefore, the fuel injection amount can be controlled at all times according to the latest operating conditions.However, in the device proposed above, the fuel injection amount is calculated for each fuel injection of the internal combustion engine, so the fuel injection amount calculation is not possible. If the operating condition of the rear internal combustion engine suddenly changes, there is a problem in that the operating condition of the internal combustion engine at the time of actual fuel injection and the fuel injection amount temporarily no longer correspond.

尚上記提案の装置において、燃料噴射量の算出を琺料噴
躬毎に実行するよう構成したのは、制御則が吸気管壁面
への付着燃料量及び該吸気管内での蒸発燃料量を状態変
数とする物理モデルに則って設計され、これ、ら各状態
変数量を求めるには、オブザーバ等を用いて内燃機関の
吸気サイクルを一周期として推定する必要があるためで
ある。
In addition, in the device proposed above, the fuel injection amount is calculated for each injection of sulfur because the control law uses the amount of fuel adhering to the wall of the intake pipe and the amount of evaporated fuel in the intake pipe as state variables. This is because the intake cycle of the internal combustion engine must be estimated as one cycle using an observer or the like in order to obtain the state variables.

そこで本発明は、状態変数の算出のみを燃料噴射毎に実
行し、その他の燃料噴射量算出処理は従来と同様に常時
繰り返し実行するようにすることによって、燃料噴射量
を常に内燃機関の最新の運転状態に応じて設定できるよ
うにすることを目的としてなされた。
Therefore, in the present invention, only the calculation of the state variable is executed for each fuel injection, and the other fuel injection amount calculation processes are constantly repeated as in the past, so that the fuel injection amount is always updated to the latest level of the internal combustion engine. This was done with the purpose of allowing settings to be made depending on the driving condition.

[問題点を解決するための手段] 即ち上記目的を達するためになされた本発明の構成は、
第1図に例示する如く、 吸気管M1壁面への付着燃料量fw及び該吸気管M1内
での蒸発燃料量fvを状態変数として内燃機関M2のシ
リンダM3内に流入する燃料の挙動を記述した物理モデ
ルに則って、燃料噴射弁M4からの燃料噴射量qを制御
する内燃機関の燃料噴射量制御装置であって、 少なくとも、上記内燃機関M2の回転速度の、上記吸気
管M1の壁面に付着した燃料の蒸発量■f、及び上記シ
リンダM3内に流入する空気量m、を検出する運転状態
検出手段M5と、 該運転状態検出手段M5で検出された吸気管壁面付着燃
料の蒸発量Vfを回転速度ので除算する除算手段M6と
、 上記物理モデル又は該物理モデルに基づき設定された演
算式を使用して、少なくとも上記除算手段M6の算出結
果と上記燃料噴射弁M6からの燃料噴射量とに基づき上
記状助変数fw及びfvを推定する推定手段M7と、 上記物理モデルに基づき設定された演算式を使用して、
少なくとも、上記除算手段M6の算出結果Vf/ω、上
記推定手段M7の推定結果?W。
[Means for solving the problems] That is, the configuration of the present invention made to achieve the above object is as follows:
As illustrated in FIG. 1, the behavior of the fuel flowing into the cylinder M3 of the internal combustion engine M2 is described using the amount fw of fuel adhering to the wall surface of the intake pipe M1 and the amount fv of evaporated fuel within the intake pipe M1 as state variables. A fuel injection amount control device for an internal combustion engine that controls a fuel injection amount q from a fuel injection valve M4 in accordance with a physical model, the fuel injection amount control device being at least attached to a wall surface of the intake pipe M1 at a rotational speed of the internal combustion engine M2. an operating state detecting means M5 for detecting the evaporated amount f of the fuel that has been evaporated and the amount m of air flowing into the cylinder M3; A division means M6 that divides by the rotational speed, and the physical model or an arithmetic expression set based on the physical model are used to calculate at least the calculation result of the division means M6 and the fuel injection amount from the fuel injection valve M6. Using an estimation means M7 that estimates the condition parameters fw and fv based on the above, and an arithmetic expression set based on the physical model,
At least the calculation result Vf/ω of the dividing means M6 and the estimation result of the estimating means M7? W.

?V、及び上記運転状態検出手段M5で検出された空気
量mと目標燃空比λrとの積大「mに基づき、ト記燃料
噴射弁M4からの燃料噴射量qを算出する燃料噴射量算
出手段M8と、 内燃機関M2の回転に面間した所定の燃料噴射タイミン
グ毎に、上記燃料噴射量算出手段M8で算出された燃料
噴射ff1qに応じて燃料噴射弁M4を駆動し、燃料噴
射を実行する燃料噴射実行手段M9と、 を備え、上記推定手段M7が上記燃料噴射実行手段M9
による燃料噴旧実行毎に上記状態変数fW及びfvを算
出し、上記燃料噴射量算出手段M8が上記各部で検出又
は算出された変数Vf/u。
? Fuel injection amount calculation that calculates the fuel injection amount q from the fuel injection valve M4 based on the product of the air amount m detected by the operating state detection means M5 and the target fuel-air ratio λr. means M8; and at every predetermined fuel injection timing in relation to the rotation of the internal combustion engine M2, the fuel injection valve M4 is driven according to the fuel injection ff1q calculated by the fuel injection amount calculation means M8 to execute fuel injection. and a fuel injection execution means M9, wherein the estimation means M7 executes the fuel injection execution means M9.
The state variables fW and fv are calculated each time the fuel injection is executed, and the fuel injection amount calculating means M8 calculates the variable Vf/u detected or calculated by each of the parts.

?w、?V、  λ「mの最新値を用いて燃料噴射量q
を繰り返し算出するよう構成してなることを特徴とする
内燃機関の燃料噴射量制御装置を要旨としている。。
? L-? Using the latest values of V, λ'm, the fuel injection amount q
The gist of this invention is a fuel injection amount control device for an internal combustion engine, characterized in that it is configured to repeatedly calculate . .

ここで運転状態検出手段M5とは、少なくとも、内燃機
関M2の回転速度の、吸気管壁面に付着した燃料の蒸発
量V「、及び上記シリンダM3因に流入する空気量mを
検出するものである。そして内燃機関M2の回転速度の
を検出するものとしては周知の回転速度センサを用いる
ことができる。
Here, the operating state detection means M5 is for detecting at least the rotational speed of the internal combustion engine M2, the amount of evaporation of fuel adhering to the wall surface of the intake pipe V', and the amount of air flowing into the cylinder M3. A well-known rotation speed sensor can be used to detect the rotation speed of the internal combustion engine M2.

次に吸気管M1の壁面からの燃料の蒸発量Vfは、吸気
管Ml内での燃料の飽和蒸気圧Psと吸気管M1内部の
圧力(吸気管圧力)Pとの関数として求めることができ
る。
Next, the amount of evaporation Vf of fuel from the wall surface of the intake pipe M1 can be determined as a function of the saturated vapor pressure Ps of the fuel within the intake pipe M1 and the pressure (intake pipe pressure) P inside the intake pipe M1.

また飽和状気圧Psはセンサにより直接検出することは
難しいが、飽和蒸気圧Psは吸気管壁面への付着燃料温
度Tの関数であり、付着燃料温度Tは内燃機関M2のつ
オータジャケット水温或は吸気ボート付近のシリンダヘ
ッド温度によって代表させることができるので、温度セ
ンサによりつオータジャケット水温或はシリンダヘッド
温度を検出し、その検出結果T(ゴ()をパラメータと
する例えば次式(1)に示す如き演算式を用いて、飽和
蒸気圧Psを求めることができる。
Although it is difficult to directly detect the saturated pressure Ps with a sensor, the saturated vapor pressure Ps is a function of the temperature T of the fuel adhering to the intake pipe wall surface, and the temperature T of the adhering fuel is a function of the temperature T of the fuel adhering to the inner combustion engine M2's outer jacket water temperature or Since it can be represented by the cylinder head temperature near the intake boat, the overjacket water temperature or cylinder head temperature is detected by a temperature sensor, and the detection result is expressed as the following equation (1) using T(g()) as a parameter. The saturated vapor pressure Ps can be determined using the following arithmetic expression.

Ps =β1◆T2−β2−T+β3    ・(1)
(但し、f31.β2.β3:定数) このため吸気管壁面からの燃料の蒸発ff1Vfの検出
は、ウォータジャケット水温或はシリンダヘッド温度を
検出する温度センサからの検出信号に基づき飽和蒸気圧
Psを求めると共に、周知の吸気圧センサを用いて吸気
管圧力Pを検出し、これら各部Ps及びPをパラメータ
とするデータマ・ンブ或は演算式を用いて蒸発量Vfを
検出するようすれはよい。
Ps = β1◆T2-β2-T+β3 ・(1)
(However, f31.β2.β3: Constant) Therefore, the detection of fuel vaporization ff1Vf from the intake pipe wall is based on the detection signal from the temperature sensor that detects the water jacket water temperature or cylinder head temperature. At the same time, the intake pipe pressure P may be detected using a well-known intake pressure sensor, and the evaporation amount Vf may be detected using a data meter or an arithmetic expression using these parts Ps and P as parameters.

また燃料蒸発量Vfは、飽和熱気圧Psによって大きく
変化するので、飽和蒸気圧Psをパラメータとする次式
(1)′ Vf =β4 ◆Ps   、−(1)’(但し、β4
:定数) を用いて近似的に求めるようにしてもよい。
Furthermore, since the fuel evaporation amount Vf changes greatly depending on the saturated thermal pressure Ps, the following equation (1)' with the saturated vapor pressure Ps as a parameter: Vf = β4 ◆Ps , -(1)' (However, β4
: constant) may be used to approximate it.

次にシリンダM3内に流入する空気量mは、例えば吸気
管圧力Pと吸気温度Tiと内燃機関M2の回転速度のと
をパラメータとする次式(2)%式%(2) により容易に算出することができる。このため空気量m
は、吸気管圧力P及び吸気温度Tiを周知の吸気圧セン
サ及び吸気温センサにより検出し、その検出結果と上記
回転速度センサによる検出結果とに基づき上式(2)を
用いて求めることで検出することができる。また吸気管
圧力Pと回転速度ωとをパラメータとするマツプにより
基本空気量mを求めその算出結果を吸気温度によって補
正することで空気量mを検出することもできる。またス
ロットルバルブ上流に周知のエアフロメータを設けて吸
気管M1内に流入する空気量を検出し、その検出結果に
基づき吸気行程時にシリンダM3内に流入する空気量m
を推定するようにしてもよい。
Next, the amount of air m flowing into the cylinder M3 can be easily calculated using, for example, the following formula (2), which uses the intake pipe pressure P, the intake air temperature Ti, and the rotational speed of the internal combustion engine M2 as parameters. can do. Therefore, the amount of air m
is detected by detecting the intake pipe pressure P and intake air temperature Ti using a well-known intake pressure sensor and intake air temperature sensor, and calculating them using the above equation (2) based on the detection results and the detection results from the rotational speed sensor. can do. The air amount m can also be detected by calculating the basic air amount m using a map using the intake pipe pressure P and the rotational speed ω as parameters, and correcting the calculation result based on the intake air temperature. In addition, a well-known air flow meter is installed upstream of the throttle valve to detect the amount of air flowing into the intake pipe M1, and based on the detection result, the amount m of air flowing into the cylinder M3 during the intake stroke.
may be estimated.

次に上記構成の基本となる物理モデルの一例について説
明する。
Next, an example of a physical model that is the basis of the above configuration will be explained.

〜  まず内燃機関M2のシリンダM3内に流入する燃
料量fcは、燃料噴射弁M4からの燃料噴射量qと、吸
気管M1壁面への付着燃料@f讐と、吸気管M1内部で
の蒸発燃料量fvとを用いて次式(3)のように記述す
ることができる。
~ First, the fuel amount fc flowing into the cylinder M3 of the internal combustion engine M2 is determined by the fuel injection amount q from the fuel injection valve M4, the fuel adhering to the wall of the intake pipe M1, and the evaporated fuel inside the intake pipe M1. It can be written as in the following equation (3) using the quantity fv.

fc  =αiq+α2・fw+α3+fv  −(3
)即ち上記燃料量fcは、燃料噴射弁M3からの噴射燃
料の直接流入量α1・qと、その噴射燃料が付着した吸
気管M1からの間接流入量α2・fwと、噴射燃料或は
壁面付着燃料の蒸発により吸気管M1内部に存在する蒸
発燃料の流入量α3・fvとの総和であると考えられる
ことから、上式(3)のようにシリンダM3内に流入す
る燃料量fcを記述することができるのである。
fc = αiq + α2・fw + α3 + fv −(3
) That is, the above fuel amount fc is determined by the direct inflow amount α1・q of the injected fuel from the fuel injection valve M3, the indirect inflow amount α2・fw from the intake pipe M1 to which the injected fuel adheres, and the amount of injected fuel attached to the wall surface. Since it is considered to be the sum of the inflow amount α3·fv of evaporated fuel existing inside the intake pipe M1 due to fuel evaporation, the fuel amount fc flowing into the cylinder M3 is described as in the above equation (3). It is possible.

上式(3)において、燃料噴射量qは燃料噴射弁M4の
制御量によって定まるので、吸気管M1壁面への付着燃
料量fw及び吸気管Ml内での蒸発燃料量fvを知るこ
とができれば、燃料量fcを予測することができる。
In the above equation (3), the fuel injection amount q is determined by the control amount of the fuel injection valve M4, so if the amount of fuel adhering to the wall surface of the intake pipe M1 fw and the amount of evaporated fuel fv within the intake pipe Ml can be known, The fuel amount fc can be predicted.

そこで次に上記付着燃料量fw及び蒸発燃料量fvにつ
いて考える。
Therefore, next, consider the amount of adhered fuel fw and the amount of evaporated fuel fv.

まず吸気管M1壁面への付着燃料量fwは、吸気行程時
のシリンダM3内への流入によって、吸気サイクル毎に
その一部α2が減少する他、吸気管M1内部への蒸発に
よって減少し、吸気サイクルと同期して燃料噴射弁M4
から噴射される燃料噴射量qの一部α4が付着すること
によって増加する。また吸気行程毎の燃料蒸発量はα5
・Vf/ωとして表すことができる。このため吸気管M
1壁面への付着燃料mfwは次式(4)に示す如く記述
できる。
First, the amount of fuel fw adhering to the wall surface of the intake pipe M1 is partially reduced by α2 in each intake cycle due to the inflow into the cylinder M3 during the intake stroke, and also decreases due to evaporation inside the intake pipe M1. Fuel injector M4 in synchronization with the cycle
The amount α4 of the fuel injection amount q injected from q is increased by adhesion. Also, the amount of fuel evaporation per intake stroke is α5
- Can be expressed as Vf/ω. Therefore, the intake pipe M
The adhering fuel mfw to one wall surface can be described as shown in the following equation (4).

fv(k+1) = (1−02)・fw(k)+α4
・q(k)−α5・V f(k)/ω(k)  ・・・
(4)(但し、k:吸気サイクル) 一方吸気管M1内部での蒸発燃料量fvは、吸気行程時
のシリンダM3内への流入によって、吸気サイクル毎に
その一部α3が減少する他、燃料噴射量qの一部α6が
蒸発することによって増加し、更に上記付着燃料の燃料
蒸発によって増加する。このため吸気管M1内の蒸発燃
料量fvは次式(5)に示す如く記述できる。
fv(k+1) = (1-02)・fw(k)+α4
・q(k)−α5・V f(k)/ω(k)...
(4) (where k: intake cycle) On the other hand, the amount of evaporated fuel fv inside the intake pipe M1 decreases by a part α3 in each intake cycle due to the inflow into the cylinder M3 during the intake stroke. The injection amount q increases as a part α6 evaporates, and further increases as the adhering fuel evaporates. Therefore, the amount of evaporated fuel fv in the intake pipe M1 can be expressed as shown in the following equation (5).

f v(k+1.) = (1−α3)・fv(k)+
α6・q (k)+α5・V f(k)/ω(k)  
・・・(5)次に内燃機関M2のシリンダM3内に吸入
された燃料量f c(k)は、内燃機関M2に供給され
た燃料混合気の燃空比入(k)とシリンダM3内に流入
した空気量m (k)とから、次式(6)のように記述
できる。
f v(k+1.) = (1-α3)・fv(k)+
α6・q (k)+α5・V f(k)/ω(k)
...(5) Next, the amount of fuel f c (k) sucked into the cylinder M3 of the internal combustion engine M2 is determined by the fuel-air ratio input (k) of the fuel mixture supplied to the internal combustion engine M2 and the inside of the cylinder M3. From the amount of air flowing into m (k), it can be written as shown in the following equation (6).

fc(k)=入(k)m(k)   −(6)したがっ
て上記各式の係数α1〜α6をシステム同定の手法によ
り決定すれは、次式(7)及び(8)に示す如く、内燃
機関M2の吸気サイクルをサンプリング周期として離散
系で表現された、吸気管壁面への付着燃料量と蒸発燃料
量とを状態変数とする状態方程式(7)及び出力方程式
(8)を得ることができ、これによって内燃機関での燃
料挙動を表す物理モデルが定まる。
fc (k) = input (k) m (k) - (6) Therefore, when the coefficients α1 to α6 of each of the above equations are determined by the system identification method, the internal combustion It is possible to obtain the state equation (7) and output equation (8) whose state variables are the amount of fuel adhering to the intake pipe wall and the amount of evaporated fuel, which are expressed in a discrete system with the intake cycle of engine M2 as the sampling period. , this establishes a physical model that represents the behavior of fuel in an internal combustion engine.

+(1−α4−α6)q(k)  ・・−(8)推定手
段M7は、上記物理モデル(具体的には(7)式の状態
方程式)又は該物理モデルに基づき設定された演算式を
用いて、状態変数fw及びfVを推定するするものであ
る。即ち付着燃料量fW及び蒸発燃料量fvは、回転速
度ωのようにセンサを用いて直接検出できず、また燃料
の蒸発量Vfや空気量mのようにセンサによる検出結果
をパラメータとする演算式等を用いて間接的に検出する
こともできないので、この推定手段M7を用いて推定す
るようされているのである。
+(1-α4-α6)q(k)...-(8) The estimation means M7 uses the above physical model (specifically, the state equation of equation (7)) or an arithmetic expression set based on the physical model. is used to estimate the state variables fw and fV. That is, the amount of adhering fuel fW and the amount of evaporated fuel fv cannot be directly detected using a sensor like the rotational speed ω, and the amount of adhering fuel fW and the amount of evaporated fuel fv cannot be directly detected using a sensor, and like the amount of evaporated fuel Vf and the amount of air m, they are calculated using calculation formulas that use the detection results by the sensor as parameters. Since it is not possible to detect it indirectly using, etc., the estimation means M7 is used for estimation.

尚この推定手段M7としては、例えは、晶小次元オブザ
ーバ(Minimal 0rder 0bserver
)、同一次元オブザーバ(Identity 0bse
rver)、有限整定オブザーバ(Dead Beat
 0bserver)、線形関数オブザーバ([,1n
ear Function 0bserver)或は適
応オブザーバ(Aclaptive 0bserver
)として、古田勝久他著「基礎システム理論」 (昭和
53年)コロナ社、或は古田勝久他著「メカニカルシス
テム制御」 (昭和59年)オーム社等、に詳解されて
いる周知の設計法によりオブザーバとして構成してもよ
く、上記(7)式をそのまま用いて状態変数を算出する
よう構成してもよい。
Note that this estimating means M7 may be, for example, a minimal dimension observer (Minimal 0rder 0bserver).
), same dimension observer (Identity 0bse
rver), finitely settled observer (Dead Beat
0bserver), linear function observer ([,1n
ear Function 0bserver) or adaptive observer (Adaptive 0bserver)
), by Katsuhisa Furuta et al., ``Fundamental System Theory'' (1978), Corona Publishing, or Katsuhisa Furuta et al., ``Mechanical System Control'' (1987), Ohm Publishing, etc., using well-known design methods. It may be configured as an observer, or it may be configured to calculate the state variable using the above equation (7) as it is.

次に燃料噴射量算出手段M8は、上記物理モデルに基づ
き予め設定された演算式を用いて、少なくとも、除算手
段M6の算出結果Vf /ω、推定手段M7の推定結果
?w、?V、及び運転状態検出手段M5で検出された空
気量mと目標燃空比入「との積(即ちシリンダM3内に
流入させる目標燃料量)入rm、に基づき燃料噴射弁M
4からの燃料噴射量qを算出する。
Next, the fuel injection amount calculation means M8 uses an arithmetic expression preset based on the physical model to calculate at least the calculation result Vf/ω of the division means M6 and the estimation result of the estimation means M7? L-? V, and the product of the air amount m detected by the operating state detection means M5 and the target fuel/air ratio input (i.e., the target fuel amount to flow into the cylinder M3) input rm.
Calculate the fuel injection amount q from 4.

即ち燃料噴射量算出手段M8は、内燃機関M2に供給さ
れる燃料混合気の燃空比を目標燃空比λrに制御すべく
、上記推定手段M7で推定された状態変数量(付着燃料
量?W及び蒸発燃料量?v)及びシリンダM3内に流入
させる目標燃料型入「mに、夫々、上記物理モデルに基
づき予め設定された係数を掛けるとともに、当該制tH
系を非線形補償するために、除算手段M6での算出結果
Vf/ω(k)に上記物理モデルに基づき予め設定され
た係数を掛け、それら各乗算値を加えた1直を制御量と
して算出する、非線形補償された制御量算出手段として
構成されている。
That is, the fuel injection amount calculation means M8 calculates the state variable amount (adhered fuel amount? W and the amount of evaporated fuel (v) and the target fuel type (m) to be flowed into the cylinder M3 are each multiplied by a preset coefficient based on the above physical model, and the control tH
In order to nonlinearly compensate the system, the calculation result Vf/ω(k) by the dividing means M6 is multiplied by a coefficient set in advance based on the above physical model, and the sum of these multiplication values is calculated as a controlled variable. , is configured as a non-linearly compensated control amount calculation means.

尚、この制御量算出手段M8としては、外乱によって燃
空比が目標燃空比から大きくずれることのないよう、内
燃機関M2のシリンダ内に流入する燃料量を検出し、そ
の検出結果と上記目標燃料型入rmとの圃差を逐次加算
し、該検出結果に係数を掛けた値を上記燃料噴射量qの
算出結果に加算して制御に用いる燃料噴射量qとする、
所謂サーボ系(Servo System)に拡大され
た制御量算出手段として構成してもよい。この場合、内
燃機関M2のシリンダ内に流入した燃料量を検出する必
要があるが、これには周知の空燃比センサを用いて内燃
機関M2に供給された燃料混合気の燃空比λを検出し、
この検出結果に上記運転状態検出手段M5で検出された
空気量mを乗算することで燃料λmを求めるようにすれ
はよい。
The control amount calculation means M8 detects the amount of fuel flowing into the cylinders of the internal combustion engine M2 so that the fuel-air ratio does not deviate greatly from the target fuel-air ratio due to disturbance, and compares the detection result with the above-mentioned target. Sequentially adding the field difference with the fuel type input rm, and adding the value obtained by multiplying the detection result by a coefficient to the calculation result of the fuel injection amount q to obtain the fuel injection amount q used for control,
It may be configured as a control amount calculation means expanded to a so-called servo system. In this case, it is necessary to detect the amount of fuel that has flowed into the cylinder of the internal combustion engine M2, and for this purpose, a well-known air-fuel ratio sensor is used to detect the fuel-air ratio λ of the fuel mixture supplied to the internal combustion engine M2. death,
The fuel λm may be determined by multiplying this detection result by the air amount m detected by the operating state detection means M5.

[作用コ このように構成された本発明の燃料噴射量制御装置にお
いては、推定手段M7が、燃料噴射実行手段M9による
燃料噴躬実行毎に、除算手段M6の算出結果Vf/ω及
び燃料噴射弁M4からの燃料噴射量qに基づき状態変数
7W及び?Vを推定し、燃料噴射量算出手段M8が、除
算手段M6の算出結果Vf/ω、推定手段M7の推定結
果?讐。
[Function] In the fuel injection amount control device of the present invention configured as described above, the estimating means M7 calculates the calculation result Vf/ω of the dividing means M6 and the fuel injection amount every time the fuel injection execution means M9 executes the fuel injection. Based on the fuel injection amount q from valve M4, state variables 7W and ? V is estimated, and the fuel injection amount calculation means M8 calculates the calculation result Vf/ω of the division means M6 and the estimation result of the estimation means M7? Enemy.

?V、及び運転状態検出手段M5で検出された空気量m
と目標燃空比λrとの積大「mの最新値に基づき燃料噴
射弁M4からの燃料噴射量qを繰り返し算出する。
? V, and the air amount m detected by the operating state detection means M5
The fuel injection amount q from the fuel injection valve M4 is repeatedly calculated based on the latest value of the product "m" of the target fuel-air ratio λr and the target fuel-air ratio λr.

このため燃料噴射実行手段M9の動作によって燃料噴射
弁M4から噴射される燃料噴射量qは、内燃機関M2の
最新の運転状態に応じた値となり、内燃機関M2の運転
状態が急変してもそれに応じて燃料噴射量を制御するこ
とができるようになる。
Therefore, the fuel injection amount q injected from the fuel injection valve M4 by the operation of the fuel injection execution means M9 has a value that corresponds to the latest operating state of the internal combustion engine M2, and even if the operating state of the internal combustion engine M2 suddenly changes, it will not change. It becomes possible to control the fuel injection amount accordingly.

[実施例コ 以下本発明の実施例を図面と共に説明する。[Example code] Embodiments of the present invention will be described below with reference to the drawings.

まず第2図は本発明が適用された4気筒の車両用内燃機
関2及びその周辺装置の構成を表す概略構成図である。
First, FIG. 2 is a schematic configuration diagram showing the configuration of a four-cylinder vehicle internal combustion engine 2 and its peripheral devices to which the present invention is applied.

図において4はエアクリーナ6を介して空気を吸入する
吸気管を表し、この吸気管4には、吸気量を制御するた
めのスロットルバルブ8、吸気の脈動を抑えるためのサ
ージタンク10、その内部の圧力(吸気管圧力)Pを検
出する吸気圧センサ12、及び吸気温度Tiを検出する
吸気温センサ14が備えられている。一方16は排気管
で、排気を浄化するための三元触媒コンバータ1Bが備
えられている。
In the figure, 4 represents an intake pipe that sucks air through an air cleaner 6, and this intake pipe 4 includes a throttle valve 8 for controlling the amount of intake air, a surge tank 10 for suppressing the pulsation of intake air, and a An intake pressure sensor 12 that detects pressure (intake pipe pressure) P, and an intake temperature sensor 14 that detects intake air temperature Ti are provided. On the other hand, 16 is an exhaust pipe, which is equipped with a three-way catalytic converter 1B for purifying exhaust gas.

また当該内燃機関2には、その運転状態を検出するため
のセンサとして、上記吸気圧センサ12及び吸気温セン
サ14の他、ディストリビュータ20の回転から内燃機
関2の回転速度のを検出するための回転速度センサ22
、同じくディストリビュータ20の回転から内燃機関2
の各気筒への燃料噴射タイミングtを検出するためのク
ランク角センサ24、及び内燃機関2のウォータジャケ
ットに取り付けられ、冷却水温Tを検出する水温センサ
26が備えられている。
In addition to the intake pressure sensor 12 and intake temperature sensor 14, the internal combustion engine 2 has sensors for detecting its operating state, as well as a rotation sensor for detecting the rotational speed of the internal combustion engine 2 from the rotation of the distributor 20. Speed sensor 22
, Similarly, from the rotation of the distributor 20, the internal combustion engine 2
A crank angle sensor 24 for detecting fuel injection timing t into each cylinder, and a water temperature sensor 26 attached to the water jacket of the internal combustion engine 2 for detecting a cooling water temperature T are provided.

尚ディストリビュータ20はイグナイタ2日により発生
された高電圧を各気筒の点火プラグ29に分配するため
のものである。
The distributor 20 is for distributing the high voltage generated by the igniter 2 to the spark plugs 29 of each cylinder.

そして上記各センサからの検出信号は、論理演算回路と
して構成された電子、制御回路30に出力され、内燃機
関2の各気筒に設けられた燃料噴射弁32を駆動して燃
料噴射量を制御する燃料噴射制御、及びイグナイタ2日
からの高電圧の発生タイミング(即ち点火時期)を制御
する点火時間制御を実行するのに用いられる。
The detection signals from each of the sensors are output to an electronic control circuit 30 configured as a logical operation circuit, which drives the fuel injection valves 32 provided in each cylinder of the internal combustion engine 2 to control the fuel injection amount. It is used to execute fuel injection control and ignition time control that controls the timing at which high voltage is generated from the igniter (i.e., ignition timing).

即ち電子制御回路30は、予め設定された制御プログラ
ムに従って燃料噴射制御部や点火時間制御のための演算
処理を実行するCPU40、CPU40で演算処理を実
行するのに必要な制御プログラムや初期データが予め記
録されたROM42、同じ<CPU40で演算処理を実
行するのに用いられるデータが一時的に読み書きされる
RAM44、上記各センサからの検出信号を人力するた
めの人力ポート46、及びCPU40での演算結果に応
じて各気筒の燃料噴射弁32に駆動信号を出力するため
の出力ボート4日、等から構成され、ROM42内に予
め記憶された制御プログラムに従って、内燃機関2の運
転状態に応じて燃料噴射量及び点火時期を最適に制御す
るのである。
That is, the electronic control circuit 30 includes a CPU 40 that executes arithmetic processing for the fuel injection control unit and ignition time control according to a preset control program, and a control program and initial data necessary for the CPU 40 to perform arithmetic processing. A recorded ROM 42, a RAM 44 where data used to execute arithmetic processing by the same CPU 40 is temporarily read and written, a human power port 46 for manually inputting detection signals from each of the above sensors, and arithmetic results by the CPU 40. The control program includes an output boat for outputting a drive signal to the fuel injection valve 32 of each cylinder according to the operation state of the internal combustion engine 2, and injects fuel according to the operating state of the internal combustion engine 2 according to a control program stored in advance in the ROM 42. The amount and ignition timing are optimally controlled.

上記のように構成された本実施例の電子制御回路30で
は、内燃機関2の各気筒のシリンダ内に流入する燃料混
合気の燃空比が内燃機関2の運転状態に応じて設定され
る目標燃空比λrになるように、各気筒の燃料噴射弁3
2からの燃料噴射量が各々独立して制御される。
In the electronic control circuit 30 of this embodiment configured as described above, the fuel-air ratio of the fuel mixture flowing into each cylinder of the internal combustion engine 2 is set according to the operating state of the internal combustion engine 2. The fuel injection valve 3 of each cylinder is adjusted so that the fuel-air ratio is λr.
The fuel injection amounts from 2 are independently controlled.

以下、この燃料噴射制御のための制御系を第3図に示す
ブロックダイヤグラムに基づき説明する。
The control system for this fuel injection control will be explained below based on the block diagram shown in FIG.

尚、第3図は一気筒に対する燃料噴射制御系を示す図で
あって、ハード的な構成を示すものではなく、実際には
第4図及び第5図のフローチャートに示したプログラム
の実行により各気薗毎に実現される。また本実施例の制
御系は、前述の(7)及び(8)式に示した物理モデル
に基づき設計されている。
Note that FIG. 3 is a diagram showing the fuel injection control system for one cylinder, and does not show the hardware configuration.In fact, each cylinder is It is realized every time. Further, the control system of this embodiment is designed based on the physical model shown in the above-mentioned equations (7) and (8).

第3図に示すように、まず吸気圧センサ12で検出され
た吸気管圧力P及び水温センサ26で検出された冷却水
温Tが第1演算部P1に人力される。すると第1演算部
P1では、その人力された冷却水温Tが前述の(1)式
の如き演算式を用いて吸気管4内での燃料の飽和蒸気圧
Psに変換され、更にその変換された飽和蒸気圧Psと
吸気管圧力Pとから吸気管4の壁面に付着した燃料の蒸
発量Vfが算出される。またその変換された蒸発量Vf
は除算部P2に人力され、上記回転速度センサ22を用
いて検出される内燃機関2の回転速度ωによって除算さ
れる。そしてその除算結果Vf /ωは係数f4乗算部
P3に人力され、予め設定された係数f4が乗算される
As shown in FIG. 3, first, the intake pipe pressure P detected by the intake pressure sensor 12 and the cooling water temperature T detected by the water temperature sensor 26 are manually input to the first calculation section P1. Then, in the first calculation section P1, the manually calculated cooling water temperature T is converted into the saturated vapor pressure Ps of the fuel in the intake pipe 4 using a calculation formula such as the above-mentioned formula (1), and further the converted temperature is The evaporation amount Vf of the fuel adhering to the wall surface of the intake pipe 4 is calculated from the saturated vapor pressure Ps and the intake pipe pressure P. Also, the converted evaporation amount Vf
is manually input to the dividing section P2 and divided by the rotational speed ω of the internal combustion engine 2 detected using the rotational speed sensor 22. The division result Vf/ω is then manually input to the coefficient f4 multiplier P3, and multiplied by a preset coefficient f4.

一方吸気圧センサ12により検出される吸気管圧力P及
び回転速度センサ22により検出される回転速度ωは、
吸気温センサ14により検出される吸気温Tiと共に第
2演算部P4にも人力される。第2演算部P4は、上述
の(2)式の如き演算式を用いて内燃機関2の回転速度
ωと吸気管圧力Pと吸気温度Tiとからシリンダ内に流
入する空気量mを算出するためのもので、その算出結果
は乗算部P5に出力される。すると乗算部P5では、上
記第2演算giPJP4で算出された空気量mと予め設
定された目標燃空比入「とが乗算され、これによってシ
リンダ内に流入すべき燃料量(目標燃料量)入「mが算
出される。そしてこの乗算部P5で算出された目標燃料
量λ「mは係数f3乗算部P6に人力され、予め設定さ
れた係数f3が乗算される。
On the other hand, the intake pipe pressure P detected by the intake pressure sensor 12 and the rotation speed ω detected by the rotation speed sensor 22 are:
The intake temperature Ti detected by the intake temperature sensor 14 is also manually input to the second calculation unit P4. The second calculation unit P4 calculates the amount of air flowing into the cylinder m from the rotational speed ω of the internal combustion engine 2, the intake pipe pressure P, and the intake air temperature Ti using a calculation formula such as the above-mentioned formula (2). The calculation result is output to the multiplier P5. Then, in the multiplier P5, the air amount m calculated in the second calculation giPJP4 is multiplied by the preset target fuel air ratio input, thereby determining the fuel amount (target fuel amount) input that should flow into the cylinder. "m" is calculated.The target fuel amount λ"m calculated by the multiplication section P5 is manually inputted to the coefficient f3 multiplication section P6, and multiplied by a preset coefficient f3.

一方上記除算部P2の除算結果Vf/ωは状態変数推定
部P7にも出力される。状態変数推定部P7は、予め設
定された演算式(本実施例では前述の(7)式)を用い
て、除算部P2の除算結果Vf / (a)と、燃料噴
射弁32からの燃料噴射量qと、前回推定した吸気管4
壁面への付着燃料量?W及び吸気管4内での蒸発燃料量
?Vとから、前述の(7)及び(8)式で示した物理モ
デルの状態変数量、即ち付着燃料量fwと蒸発燃料量f
v、を推定するためのもので、その推定結果?冒及び?
Vには、係数f1乗算部P8及び係数f2乗算部P9で
、夫々、係数f1及びf2が乗算される。
On the other hand, the division result Vf/ω of the division section P2 is also output to the state variable estimation section P7. The state variable estimating unit P7 calculates the division result Vf/(a) of the dividing unit P2 and the fuel injection from the fuel injection valve 32 using a preset arithmetic expression (in this embodiment, the above-mentioned equation (7)). Quantity q and intake pipe 4 estimated last time
Amount of fuel attached to the wall? Amount of evaporated fuel in W and intake pipe 4? From V, the state variables of the physical model shown in equations (7) and (8) above, that is, the amount of adhering fuel fw and the amount of evaporated fuel f
It is for estimating v, and the estimation result? Blasphemy?
V is multiplied by coefficients f1 and f2 in a coefficient f1 multiplier P8 and a coefficient f2 multiplier P9, respectively.

そしてこれら乗算部P8及びP9からの乗算結果は、他
の乗算部P3、P6での乗算結果と共に加算gJ3P1
0〜P12で加算され、これによって燃料噴射弁32か
らの燃料噴躬潰qが決定される。
The multiplication results from these multiplication units P8 and P9 are added together with the multiplication results from other multiplication units P3 and P6.
0 to P12 are added, and thereby the fuel injection failure q from the fuel injection valve 32 is determined.

次に上記第3図の制御系の設計方法について説明する。Next, a method of designing the control system shown in FIG. 3 will be explained.

尚、この種の制御系の設計方法としては、例え:i、古
田勝久著「実システムのデジタル制御」システムと制i
卸、Vo1.2B、  ωo、12(1984年)計測
自動制御学会等に詳しいので、ここでは簡単に説明する
As a design method for this type of control system, for example: i, “Digital Control of Actual Systems” by Katsuhisa Furuta
Wholesale, Vo1.2B, ωo, 12 (1984) Society of Instrument and Control Engineers, etc. is very detailed, so I will briefly explain it here.

上述のように本実施例の制御系は、前述の(7)及び(
8)式に示した物理モデルに基づき設計されている。こ
の物理モデルは非線形であるので、まず上記物理モデル
を線形近似する。
As mentioned above, the control system of this embodiment has the above-mentioned (7) and (
8) It is designed based on the physical model shown in Eq. Since this physical model is nonlinear, first, the physical model is linearly approximated.

上記(7) 、 (R)式において、 x(k)=  [f sジ(k)   f v(k)]
  ■       ・・・(10)vV(k)= [
V f(k)/ (1) (k)]      −(1
4)y(k)= [入(k) ・m (k)]    
    −・−(15)u、(k)= [q(k)] 
          ・・・(16)△=[1−α4−
α6]        ・・・(17)e= [α2 
α3]          ・・・(18)とおくと、
(7)、(8)式は x(k+l)= 1丁)・x(k)+f ・u(k)+
 E −tw(k)・・・(19) y(k)=e−x(k)+△・u (k)     =
−(20)で表すことができる。
In the above equation (7), (R), x(k) = [f s di(k) f v(k)]
■ ... (10) vV(k) = [
V f(k)/ (1) (k)] −(1
4) y(k) = [in(k) ・m(k)]
−・−(15) u, (k) = [q(k)]
...(16)△=[1-α4-
α6] ... (17) e= [α2
α3] ... (18), then
Equations (7) and (8) are x(k+l)=1d)・x(k)+f・u(k)+
E −tw(k)...(19) y(k)=e−x(k)+△・u(k)=
−(20).

ここで、y(k) =y r (目標(1M)で定常と
なるとき、u(k)=u r、  x(k)=x rと
すると、上式(19)及び(20)は次式(19)’、
(20) ’に示す如くなる。
Here, y(k) = y r (When stationary at the target (1M), if u(k) = u r, x(k) = x r, the above equations (19) and (20) become as follows. Formula (19)',
(20) It becomes as shown in '.

xr=◇・xr+F・ur+E−W(k)  −(19
)’y r =e會x r +A◆u r      
 −(20)’上式(19)、(19)’及び(20)
 、 (20) ’より、x(k+1) −x r =
@ (x(k) −x r )+f  (u(k)−u
r)   =(21)y(k)−y r =(9(x(
k)−x r )+A(u(k)−ur)  =(22
)次に、上式(21)、(22)において、X (k)
= x(k) −x r           −(2
3)U、(k)−u(k) −u r        
   −−−(24)Y(k)=y(k)−y  r−
A  (u(k) −u  r )   −(25)と
おくと、(21)、(22)式は次式(26X27)の
如くなる。
xr=◇・xr+F・ur+EW(k) −(19
)'y r = e meeting x r + A◆u r
-(20)' Above formulas (19), (19)' and (20)
, (20) ', x(k+1) −x r =
@ (x(k) −x r )+f (u(k) − u
r) = (21)y(k)-y r =(9(x(
k)-x r )+A(u(k)-ur) = (22
) Next, in the above equations (21) and (22), X (k)
= x(k) −x r −(2
3) U, (k) - u (k) - u r
---(24) Y(k)=y(k)-y r-
By setting A (u(k) −ur ) −(25), equations (21) and (22) become as shown in the following equation (26X27).

X (k+1)= oX (k)+ F U (k) 
      −(26)Y(k)=θX (k)   
         ・・・(27)この(26)及び(
27)において、X(k)→0とすれは、Y(k)=O
となり、u(k)→urであれは、y(k)→y「とな
る。従って上式(26)の最適レギュレータを設計すれ
はよい。即ち、離数型リカツチ方稈式を説くことで、最
適制御は次式(28)の如く求まる、U(k)=FX(
k)            ・・・(:28 ’)ま
たこの(28)式は、上記(23)及び(24)式より
次式(29)の如くなる。
X (k+1)= oX (k)+ F U (k)
−(26)Y(k)=θX(k)
...(27) This (26) and (
27), if X(k)→0, then Y(k)=O
If u(k) → ur, then y(k) → y''. Therefore, it is good to design the optimal regulator of the above formula (26). In other words, by explaining the distance-type Rikkatsu-cho formula, , the optimal control can be found as shown in the following equation (28), U(k)=FX(
k)...(:28') Also, this equation (28) becomes the following equation (29) from the above equations (23) and (24).

u(k)=F−x(k)−F−x r +u r   
 =(29)従って、上記(19)’及び(20) ’
式において、がxr、urについて解ければ上式(29
)が確定し、TLI (k)を求めることができるよう
になる。
u(k)=F-x(k)-F-x r +u r
= (29) Therefore, (19)' and (20)' above
In the equation, if is solved for xr and ur, the above equation (29
) is determined, and TLI (k) can now be found.

本実施例の場合、上式(30)は前述の(10)〜(1
8)式より、次式(31)の如くなり、 xr、 ur (即ちfwr、fvr、qr)が夫々次
式(32)〜(34)の如く求まる。
In the case of this example, the above equation (30) is replaced by the above-mentioned (10) to (1
From equation 8), the following equation (31) is obtained, and xr and ur (ie, fwr, fvr, qr) are determined as shown in the following equations (32) to (34), respectively.

fwr= β11争V f(k)/ ω(k)+β12
◆ (λ r  φm(k)−(1−α4−α6)u(
k))  −(32)fvr=β21・V j(k)/
 ω(k)十β22・(λr−m(k)−(1−α4−
α6)u(k))  −(33)qr= β21 ◆V
 f(k)/ (J (k) +β23・ (λ r 
−m(k)−(1−α4−α6)u(k))  −(3
4)(但し、β11〜β23は定数) 従って上記(29)式より、f1〜f4を定数として、
u(k)= f i f w(k)+ f 2◆f v
(k)+ f 3・m(k)入「+f4・V f(k)
/ω(k)  ・・・(35)となり、上記第3図に示
す制御系が設計できる。
fwr= β11 conflict V f(k)/ω(k)+β12
◆ (λ r φm(k)−(1−α4−α6)u(
k)) −(32) fvr=β21・V j(k)/
ω(k) 1β22・(λr−m(k)−(1−α4−
α6)u(k)) −(33)qr= β21 ◆V
f(k)/(J(k)+β23・(λ r
−m(k)−(1−α4−α6)u(k))−(3
4) (However, β11 to β23 are constants) Therefore, from the above formula (29), with f1 to f4 as constants,
u(k)= f i f w(k)+ f 2◆f v
(k) + f 3・m(k) included “+f4・V f(k)
/ω(k) (35), and the control system shown in FIG. 3 above can be designed.

尚上式(35)は燃料噴射量を求めるための上述の燃料
噴射量算出手段M8での演算式となる。
The above equation (35) is an arithmetic expression used by the above-mentioned fuel injection amount calculation means M8 for determining the fuel injection amount.

次に状態変数推定部P7は、上式(35)における吸気
管4壁面への付着燃料量fw及び吸気管4内での蒸発燃
料量fvを直接測定できないため、その値を推定するた
めのものである。この種の推定装置は、通常、ゴピナス
の設計法等によって設計されるオブザーバとして構成さ
れるが、本実施例では内燃機関2に実際に供給された燃
料混合気の空燃比λを測定できないため、通常のオブザ
ーバを使用することができない。しかし内燃機関2での
燃料挙動は上記(7)式によって記述できるので、(7
)式をそのまま用いることで吸気管4壁面への付着燃料
量fw及び吸気v4内での蒸発燃料量fVを求めること
ができる。
Next, the state variable estimating unit P7 is used to estimate the amount of fuel adhering to the wall surface of the intake pipe 4 and the amount of evaporated fuel fv within the intake pipe 4 in the above equation (35) because it cannot be directly measured. It is. This type of estimation device is normally configured as an observer designed by Gopinath's design method, etc., but in this embodiment, since the air-fuel ratio λ of the fuel mixture actually supplied to the internal combustion engine 2 cannot be measured, It is not possible to use normal observers. However, since the fuel behavior in internal combustion engine 2 can be described by the above equation (7), (7
) can be used as is to determine the fuel amount fw adhering to the wall surface of the intake pipe 4 and the amount of evaporated fuel fV in the intake air v4.

即ち、まず(7)式において、q (k)は制御量とし
て電子制御回路30側で知ることができ、またVf (
k)は水温センサ26により検出される冷却水温Tから
飽和蒸気圧Psを求め、この値と吸気圧センサ12によ
り検出された吸気管圧力Pとから検出することができ、
更にω(k)は回転速度センサ22により検出すること
ができるので、右辺第2項、第3項は計算可能である。
That is, first, in equation (7), q (k) can be known as a controlled variable on the electronic control circuit 30 side, and Vf (
k) is obtained by determining the saturated vapor pressure Ps from the cooling water temperature T detected by the water temperature sensor 26, and can be detected from this value and the intake pipe pressure P detected by the intake pressure sensor 12,
Further, since ω(k) can be detected by the rotational speed sensor 22, the second and third terms on the right side can be calculated.

そこで、8w(k)= f w(k) −? w(k)
        −(36)δv(k)=  f v(
k) −? v(k)             −(
37)とおくと、 となる。上式(38)において1−α2〈1.1−α3
〈1であるから(38)は安定で、δ−(k)、δv(
k)→0、即ち? w(k)−f w(k)、? v(
k)→? v(k)となる。
Therefore, 8w(k)=f w(k) −? w(k)
−(36) δv(k)=f v(
k) -? v(k) −(
37), we get . In the above formula (38), 1-α2<1.1-α3
〈1, so (38) is stable, and δ−(k), δv(
k) → 0, i.e.? w(k)−f w(k),? v(
k)→? v(k).

従って上記f w(k)、fv(k)として適当な初期
値を与えれば、f w(k)及びf v(k)は上式(
7)によって推定できるようになるのである。
Therefore, if appropriate initial values are given for f w (k) and f v (k) above, f w (k) and f v (k) can be calculated using the above formula (
7) allows estimation.

このため本実施例では、この状態変数推定部P7が、上
記(7)式を用いて吸気管4壁面への付着燃料量fw及
び吸気管4内での蒸発燃料量fvを推定するよう構成さ
れている。尚外乱によって、f w(k)≠?冒゛、f
 v(k)≠?Vとなっても、7w(k)、? v(k
)は、f w(k)、f v(k)に追従するので、上
記(35)式によりu(k)([口ち燃料噴射m q 
(k))を問題なく算出できる。
Therefore, in this embodiment, the state variable estimation unit P7 is configured to estimate the amount of fuel adhering to the wall surface of the intake pipe 4 fw and the amount of evaporated fuel fv within the intake pipe 4 using the above equation (7). ing. Furthermore, due to disturbance, f w(k)≠? blasphemy, f
v(k)≠? Even if it becomes V, 7w(k),? v(k
) follows f w(k) and f v(k), so by equation (35) above, u(k)([mouth fuel injection m q
(k)) can be calculated without any problem.

次に電子制御回路30で実行される燃料噴射制御を第4
図及び第5図に示すフローチャートに基づいて説明する
。尚以下の説明では、各気筒毎に設定される量には、気
筒番号1 (=1〜4)を表わす添字(i)を付して説
明する。
Next, the fuel injection control executed by the electronic control circuit 30 is
This will be explained based on the flowchart shown in the figure and FIG. In the following explanation, the amount set for each cylinder will be explained with a subscript (i) representing cylinder number 1 (=1 to 4).

まず第4図は内燃機関2の運転開始と共に起動され、内
燃機関2の運転中繰り返し実行されるメインルーチンの
一つとして実行される燃料噴射量算出処理を表わすフロ
ーチャートである。
First, FIG. 4 is a flowchart showing a fuel injection amount calculation process that is started when the internal combustion engine 2 starts operating and is executed as one of the main routines that are repeatedly executed while the internal combustion engine 2 is running.

図に示す如く処理が開始されると、まずステップ100
を実行して、各気筒毎に設定される付着燃料量?w(i
)、蒸発燃料量?v(i)、燃料噴射量q(1)を全て
初期設定する。そして続くステップ110では、上記各
センサからの出力信号に基づき、吸気管圧力P、吸気温
度Ti、内燃機関2の回転速度ω、冷却水温Tを求め、
ステップ120に移行する。
As shown in the figure, when the process starts, first step 100
Execute and set the amount of attached fuel for each cylinder? w(i
), amount of evaporated fuel? v(i) and fuel injection amount q(1) are all initialized. In the subsequent step 110, the intake pipe pressure P, intake air temperature Ti, rotational speed ω of the internal combustion engine 2, and cooling water temperature T are determined based on the output signals from each of the above-mentioned sensors.
The process moves to step 120.

ステップ120では、上記ステップ110で求めた吸気
管圧力Pと、内燃機関2の回転速度ωとに基づき、内燃
機関2の負荷に応じた目標燃空比入「を算出する。尚こ
のステップ120では、通常、燃料混合気の空気過剰率
が1(即ち理論空燃比)となるよう目標燃空比入「が設
定され、内燃機関2の高負荷運転時等には燃料を通常よ
り増量して内燃機関の出力を上げるため、目標燃空比入
「がリッチ側に設定され、内燃機関2の軽負荷運転時等
には、燃料を通常より減量して燃費を向上するため、目
標燃空比λ「がリーン側に設定される。
In step 120, based on the intake pipe pressure P obtained in step 110 and the rotational speed ω of the internal combustion engine 2, a target fuel-air ratio input according to the load of the internal combustion engine 2 is calculated. Normally, the target fuel-air ratio input is set so that the excess air ratio of the fuel mixture is 1 (that is, the stoichiometric air-fuel ratio), and when the internal combustion engine 2 is operating under high load, the amount of fuel is increased compared to normal to reduce the internal combustion. In order to increase the engine output, the target fuel-air ratio input is set to the rich side, and when the internal combustion engine 2 is operating under a light load, the target fuel-air ratio ``is set to the lean side.

ステップ120で目標燃空比λ「が設定されると、今度
はステップ130に移行し、上記ステップ120で求め
た吸気管圧力Pと吸気温度T1と内燃機関2の回転速度
ωとに基づき、前述の(2)式に示した如き演算式また
はデータマツプを用いてシリンダ2a内に流入する空気
mmを算出する、前記演算部P4としての処理を実行す
る。
Once the target fuel-air ratio λ' is set in step 120, the process moves to step 130, where the above-mentioned The calculation section P4 calculates the air mm flowing into the cylinder 2a using the calculation formula or data map shown in equation (2).

また続くステップ140では、上記ステップ110で求
めた冷却水温Tと吸気管圧力Pとに基づき吸気管2a壁
面への付着燃料の蒸発量Vfを求め、その値を内燃機関
2の回転速度ωで除算し、1吸気サイクルでの吸気管4
壁面からの燃料の蒸発量Vfw(即ち、Vf /ω)を
算出する、演算部P1及び除算部P2としての処理を実
行する。
In the subsequent step 140, the amount of evaporation Vf of fuel adhering to the wall surface of the intake pipe 2a is determined based on the cooling water temperature T and the intake pipe pressure P determined in step 110, and the value is divided by the rotational speed ω of the internal combustion engine 2. Intake pipe 4 in one intake cycle
Processing is executed as a calculation unit P1 and a division unit P2 to calculate the amount of evaporation of fuel from the wall surface Vfw (ie, Vf /ω).

そして続くステップ150では、上記ステップ120で
設定した目標燃空比入「と上記ステップ130で求めた
空気量mとを乗算して、シリンダ2a内に流入する目標
燃料量大「mを算出する、乗算部P5としての処理を実
行した後、ステップ160に移行する。
Then, in the subsequent step 150, the target fuel air ratio input set in the step 120 is multiplied by the air amount m obtained in the step 130 to calculate the target fuel amount m flowing into the cylinder 2a. After executing the processing as the multiplication unit P5, the process moves to step 160.

ステップ160では、後述の割込処理で燃料噴射後気筒
毎に算出される付着燃料量?w(i)及び蒸発燃料量?
v(i)と、ステップ150で求めた目標燃料量λ「m
と、ステップ140で求めた燃料蒸発量Vfhとから、
前述の(35)式を用いて、次に燃料噴射を行なう気筒
の燃料噴射量q(1)を算出し、再度ステップ110に
移行する。
In step 160, the amount of adhering fuel calculated for each cylinder after fuel injection is determined by an interrupt process to be described later. w(i) and amount of evaporated fuel?
v(i) and the target fuel amount λ ``m
From the fuel evaporation amount Vfh obtained in step 140,
The fuel injection amount q(1) of the next cylinder to be injected is calculated using the above-mentioned equation (35), and the process returns to step 110.

次に第5図は、クランク角センサ24からのパルス信号
に基づき内燃機関2の各気筒の燃料噴射タイミング毎(
本実施例では各気筒毎に独立して燃料噴射を行なう独立
噴射方式が採用されているため180℃A毎となる。)
に実行され、吸気行程に入る直前の気筒に対して燃料噴
射弁32を開弁して燃料噴射を行なう燃料噴射実行処理
を表わすフローチャートである。
Next, FIG. 5 shows the fuel injection timing for each cylinder of the internal combustion engine 2 (
In this embodiment, since an independent injection method is adopted in which fuel is injected independently for each cylinder, the injection rate is at every 180°C. )
12 is a flowchart representing a fuel injection execution process that is executed to open the fuel injection valve 32 and inject fuel into the cylinder immediately before entering the intake stroke.

図に示す如くこの処理が開始されると、まずステップ2
00を実行して、上記燃料噴射量算出処理で算出された
燃料噴射量q(i)を読み込み、ステップ210に移行
する。ステップ210では、現在燃料噴射制御の対象と
なっている気筒(1)の燃料噴射弁32に開弁信号を出
力すると共に、上記読み込んだ燃料噴射量q(1)に応
じて閉弁時間を図示しないタイマにセットし、ステップ
220に移行する。尚このステップ210の処理によっ
て閉弁時間がセットされたタイマは、閉弁時間が経過す
ると燃料噴射弁32への開弁信号の出力を停止し、燃料
噴射弁32を閉弁して燃料噴射を終了させる。
As shown in the figure, when this process starts, first step 2
00 is executed to read the fuel injection amount q(i) calculated in the above fuel injection amount calculation process, and the process proceeds to step 210. In step 210, a valve opening signal is output to the fuel injection valve 32 of the cylinder (1) that is currently subject to fuel injection control, and the valve closing time is illustrated according to the fuel injection amount q(1) read above. The timer is set to "no", and the process moves to step 220. Note that the timer whose valve closing time has been set by the processing in step 210 stops outputting the valve opening signal to the fuel injection valve 32 when the valve closing time has elapsed, closes the fuel injection valve 32, and starts fuel injection. Terminate it.

次にステップ220では、燃料噴射R算出処理で算出さ
れた吸気管壁面からの燃料蒸発量Vfwと、ステップ2
00で読み込んだ燃料噴射量q(i)と、付着燃料量?
 w(i )及び蒸発燃料量?v(i)とにより、前記
(7)式に基づき設定された次式(39)を用いて、今
回燃料噴射を行った気筒(i)の次回の燃料噴射量q(
i)を算出するのに用いる付着燃料量?w(i)及び蒸
発燃料量?、v(i)を推定する、状態変数推定部P7
としての処理を実行する。
Next, in step 220, the fuel evaporation amount Vfw from the intake pipe wall surface calculated in the fuel injection R calculation process and the step 2
The fuel injection amount q(i) read in 00 and the amount of attached fuel?
w(i) and amount of evaporated fuel? v(i), the next fuel injection amount q(
The amount of attached fuel used to calculate i)? w(i) and amount of evaporated fuel? , v(i), state variable estimation unit P7
Execute processing as .

そして続くステップ230に移行し、燃料噴射制御の対
象となる気筒番号として、今回燃料噴射を行った気筒の
次に吸気行程に入る気筒番号を設定して一旦処理を終了
する。
The process then proceeds to step 230, where the cylinder number that enters the intake stroke next to the cylinder in which fuel injection is currently performed is set as the cylinder number subject to fuel injection control, and the process is temporarily terminated.

以上のように燃料噴射制御が実行される本実施例の燃料
噴射量制御装置では、第6図に示す如く、各気筒の燃料
噴射が実行される度にその気筒の吸気管壁面への付着燃
料量?w(i)及び蒸発燃料量?v(1)が推定され、
各気筒の燃料噴射@q(i)は、燃料噴射順序が一つ前
の気筒の燃料噴射が実行された後、その気筒に対する燃
料噴射が実行される迄の間、前回この気筒に対して燃料
噴射を行った際に算出された付着燃料量?w(i)及び
蒸発燃料量?v(i)を用いて、繰り返し算出される。
In the fuel injection amount control device of this embodiment in which the fuel injection control is executed as described above, as shown in FIG. amount? w(i) and amount of evaporated fuel? v(1) is estimated,
The fuel injection @q(i) of each cylinder is performed after the fuel injection of the cylinder immediately before in the fuel injection order is performed until the fuel injection for that cylinder is performed. The amount of adhering fuel calculated when injecting? w(i) and amount of evaporated fuel? It is repeatedly calculated using v(i).

このため本実施例の燃料噴!iJ蛍制御装置によれば、
制御則を内燃機関2における燃料の挙動を記述した物理
モデルに基づき設定して、内燃機関2の吸気管温度、即
ち内燃機関2の暖気状態によって変化する燃料の挙動を
Vfw(即ちVf/ω)によって非線形補償することが
でき、単一の制御則によって燃料噴射量を制御すること
ができるだけでなく、燃料噴射量q(1)を算出するの
に必要な各種パラメータ、即ち吸気管圧力P、吸気温度
Ti、内燃機関2の回転速度の、及び冷却水温Tに、各
センサで検出される最新の値を使用することができるよ
うになり、燃料噴射量q(i)を内燃機関2の最新の運
転状態に応じて設定して制御精度をより向上することが
できるようになる。
For this reason, the fuel injection of this example! According to the iJ firefly control device,
A control law is set based on a physical model that describes the behavior of fuel in the internal combustion engine 2, and the behavior of the fuel that changes depending on the intake pipe temperature of the internal combustion engine 2, that is, the warm-up state of the internal combustion engine 2, is determined by Vfw (i.e., Vf/ω). Not only can the fuel injection amount be controlled by a single control law, but also the various parameters necessary to calculate the fuel injection amount q(1), i.e., the intake pipe pressure P, the intake air It is now possible to use the latest values detected by each sensor for the temperature Ti, the rotational speed of the internal combustion engine 2, and the cooling water temperature T, and the fuel injection amount q(i) can be adjusted using the latest value of the internal combustion engine 2. It becomes possible to further improve control accuracy by setting according to the operating state.

ここで上記実施例では、各気筒独立噴射方式による燃料
噴射制御を行なう装置を例にとり説明したが、例えばグ
ループ噴射方式によって燃料噴射制御を行なう装置では
、第7図に示す如く、燃料噴射毎に各グループの気筒(
g)に対する吸気−壁面への付着燃料量? w(g)及
び蒸発燃料量? v(g)を推定し、グループ噴射から
グループ噴射量の間は、次に燃料噴射を行なうグループ
の気筒(g)に対する燃料噴射量q (g)を繰り返し
算出するようにすればよい。この場合、燃料噴射量q(
g)、付着燃料量?w(g)、及び蒸発燃料量?!(g
)は、各グループ毎に算出すればよいので、内燃機関の
回転に対する付着燃料量? w(g)及び蒸発燃料量?
 v(g)の演算回数を少なくすることができ、その演
算に必要な時間を短縮することができる。
Here, in the above embodiment, explanation was given by taking as an example a device that performs fuel injection control using an independent injection method for each cylinder. However, for example, in a device that performs fuel injection control using a group injection method, as shown in FIG. The cylinders in each group (
Intake air for g) - Amount of fuel adhering to the wall? w (g) and amount of evaporated fuel? What is necessary is to estimate v(g) and repeatedly calculate the fuel injection amount q(g) for the cylinder (g) of the next group to be injected between group injections and group injection amounts. In this case, the fuel injection amount q(
g) Amount of attached fuel? w(g) and amount of evaporated fuel? ! (g
) can be calculated for each group, so the amount of fuel attached to the rotation of the internal combustion engine? w (g) and amount of evaporated fuel?
The number of times v(g) is calculated can be reduced, and the time required for the calculation can be shortened.

また金気両回時噴射方式により燃料噴射制御を行なう場
合には、通常、各気筒に供給すべき燃料量qを内燃機関
の1回転毎に2回に分けて燃料噴射弁から供給するので
、第8図に示す如く、燃料噴射毎に金気筒での吸気管壁
面への付着燃料量?W及び蒸発燃料量?Vを推定し、燃
料噴射実行後次の燃料噴射量の間は各気筒への吸気行程
時に供給すべき燃料量qを繰り返し算出し、燃料噴射実
行時にはその半分の燃料量q / 2を燃料噴射弁から
噴射するように構成すればよい。
In addition, when fuel injection is controlled using the double injection method, the amount of fuel q to be supplied to each cylinder is normally divided into two parts per revolution of the internal combustion engine and supplied from the fuel injection valve. As shown in Figure 8, the amount of fuel deposited on the wall of the intake pipe in the gold cylinder each time fuel is injected? W and amount of evaporated fuel? V is estimated, and during the next fuel injection amount after fuel injection is executed, the fuel amount q to be supplied to each cylinder during the intake stroke is repeatedly calculated, and when fuel injection is executed, half of the fuel amount q / 2 is injected. What is necessary is just to configure so that it may be injected from a valve.

また更に上記実施例では、吸気管壁面から蒸発した燃料
が全て蒸発燃料となるものとして求められた(7)及び
(8)式の物理モデルに基づき制御系を設計したが、内
燃機関の吸気行程時に吸気管壁面。
Furthermore, in the above embodiment, the control system was designed based on the physical model of equations (7) and (8), which were obtained assuming that all the fuel evaporated from the wall surface of the intake pipe becomes evaporated fuel. Sometimes the intake pipe wall.

から蒸発する燃料(4サイクル内燃機関の場合、吸気行
程から吸気行程迄の燃料蒸発量α5・Vf/ωの1/4
となる)は、蒸発燃料として吸気管内部に留まらず、直
接内燃機関のシリンダ内に流入するといったことも考え
られるので、上記(5)式及び(6)式を夫々次式(4
0)及び(7!1)式の如く変更し、f v(k+1)
=(1−a3) f v(k)+ α6・q (k)+
3・α5・V f(k)/ 4・ω(k) ・・・(4
0)fc(k)=λ(k)m(k) 十α5・V f(k)/ 4・ω(k)  ・・・(4
1)物理モデルを、次式(42)及び(43)の如く求
め、+(1−α4−α6)◆q(k) +α8・V f(k)◆ω(k)     ・・・(4
3)(但し、 α7:α5・3/4、 α8: α5/
4)これに基づき制御系を設計するようにしてもよい。
(In the case of a 4-cycle internal combustion engine, 1/4 of the amount of fuel evaporation from the intake stroke to the intake stroke α5・Vf/ω
It is also possible that the evaporated fuel does not stay inside the intake pipe but flows directly into the cylinder of the internal combustion engine, so the above equations (5) and (6) can be transformed into the following equations (4
0) and (7!1), as f v (k+1)
= (1-a3) f v (k) + α6・q (k) +
3・α5・V f(k)/ 4・ω(k) ...(4
0) fc(k)=λ(k)m(k) 10 α5・V f(k)/ 4・ω(k) ・・・(4
1) Obtain the physical model as shown in the following equations (42) and (43), +(1-α4-α6)◆q(k) +α8・V f(k)◆ω(k) ...(4
3) (However, α7: α5・3/4, α8: α5/
4) The control system may be designed based on this.

また次に上記実施例では状態変数推定部P7を(7)式
をそのまま用いることで実際の燃空比入を測定せずに燃
料噴射制御を実行できるように構成したが、周知のオブ
ザーバとして構成し、燃空比入が目標燃空比λrに制御
されているものと[Jで状態変数を推定するようにして
もよい。
Next, in the above embodiment, the state variable estimator P7 is configured to be able to execute fuel injection control without measuring the actual fuel-air ratio input by using equation (7) as is, but it is configured as a well-known observer. However, the state variable may be estimated by J when the fuel-air ratio input is controlled to the target fuel-air ratio λr.

即ち上記(7)式より最小次元オブザーバを設計した場
合、 となり、燃空比入を検出しない装置では、このオブザー
バを直接使用できないが、燃料噴射制御卸によって燃空
比λが目標燃空比入「に制御されているものと仮定し、
第2項をnλrm(k)として、付着燃料量fw及び蒸
発燃料量fvを推定するようにしてもよい。
In other words, when the minimum dimension observer is designed from the above equation (7), it becomes as follows.This observer cannot be used directly in a device that does not detect the fuel-air ratio input, but when the fuel-air ratio λ is changed to the target fuel-air ratio input by the fuel injection control system. ``Assuming that it is controlled by
The second term may be set as nλrm(k) to estimate the adhering fuel amount fw and the evaporated fuel amount fv.

また従来より周知の空燃比センサを使用して排気中の@
素)調度から内燃機関に供給された燃料混合気の燃空比
入を測定し、上記(44)式を用いて付着燃料量fw及
び蒸発燃料量fvを推定するように構成してもよい。
In addition, a well-known air-fuel ratio sensor is used to
The fuel-air ratio input of the fuel mixture supplied to the internal combustion engine from the preparation may be measured, and the adhering fuel amount fw and the evaporated fuel amount fv may be estimated using the above equation (44).

[発明の効果] 以上説明したように本発明の内燃機関の燃料噴射量制御
装置によれば、燃料噴射実行毎に状態変数fw及びfv
が推定され、燃料噴射量が、この推定された状態変数f
w及びfvと、内燃機関の運転状態に基づき算出される
1吸気サイクル当りの燃料蒸発量Vf /ω及び内燃機
関への目標燃料供給電入「mとに基づき繰り返し算出さ
れる。このため単一の制i即刻に基づき内燃機関の広範
囲な運転条件下で燃料噴射量を緻密に制御して制御精度
を向上することができるだけでなく、燃料噴射量を燃料
噴射直前の内燃機関の最新の運転状態に応じて制御する
ことができ、内燃機関の運転状態が急変してもそれに応
じて燃料噴射量を制御することができるようになる。
[Effects of the Invention] As explained above, according to the fuel injection amount control device for an internal combustion engine of the present invention, the state variables fw and fv are adjusted every time fuel injection is performed.
is estimated, and the fuel injection amount is determined by this estimated state variable f
It is repeatedly calculated based on w and fv, the amount of fuel evaporation per intake cycle Vf /ω calculated based on the operating state of the internal combustion engine, and the target fuel supply power to the internal combustion engine m. Not only is it possible to precisely control the fuel injection amount under a wide range of internal combustion engine operating conditions based on the immediate control, improving control accuracy, but also the fuel injection amount can be adjusted based on the latest operating conditions of the internal combustion engine immediately before fuel injection. Therefore, even if the operating condition of the internal combustion engine suddenly changes, the fuel injection amount can be controlled accordingly.

【図面の簡単な説明】 第1図は本発明の構成を表すブロック図、第2図は実施
例の内燃機関及びその周辺装置を表1(既略構成図、第
3図は内燃機関の気前毎に設定された制御系を示すブロ
ックダイヤグラム、第4図は電子制御回路で繰り返し実
行される燃料噴射量算出処理を表わすフローチャート、
第5図は同じく電子制御回路で燃料噴射タイミング毎に
実行される燃料噴射実行処理を表わすフローチャート、
第6図はその動作を説明する動作説明図、第7図はグル
ープ噴射により燃料噴射制御を実行する場合の動作を説
明する動作説明図、第8図は金気両回時噴射により燃料
噴射制御を実行する場合の動作を説明する動作説明図、
である。
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a block diagram showing the configuration of the present invention, Fig. 2 shows the internal combustion engine of the embodiment and its peripheral equipment (Table 1 (simplified configuration diagram), Fig. 3 shows the internal combustion engine FIG. 4 is a block diagram showing the control system set for each time, and FIG. 4 is a flowchart showing the fuel injection amount calculation process repeatedly executed by the electronic control circuit.
FIG. 5 is a flowchart showing a fuel injection execution process executed at each fuel injection timing by the electronic control circuit,
Fig. 6 is an operation explanatory diagram explaining the operation, Fig. 7 is an operation explanatory diagram explaining the operation when executing fuel injection control by group injection, and Fig. 8 is an operation explanatory diagram explaining the operation when fuel injection control is executed by group injection. An operation explanatory diagram explaining the operation when executing
It is.

Claims (1)

【特許請求の範囲】 吸気管壁面への付着燃料量及び該吸気管内での蒸発燃料
量を状態変数として内燃機関のシリンダ内に流入する燃
料の挙動を記述した物理モデルに則って、燃料噴射弁か
らの燃料噴射量を制御する内燃機関の燃料噴射量制御装
置であって、 少なくとも、上記内燃機関の回転速度、上記吸気管壁面
に付着した燃料の蒸発量、及び上記シリンダ内に流入す
る空気量、を検出する運転状態検出手段と、 該運転状態検出手段で検出された吸気管壁面付着燃料の
蒸発量を回転速度で除算する除算手段と、上記物理モデ
ル又は該物理モデルに基づき設定された演算式を使用し
て、少なくとも上記除算手段の算出結果と上記燃料噴射
弁からの燃料噴射量とに基づき上記状態変数を推定する
推定手段と、上記物理モデルに基づき設定された演算式
を使用して、少なくとも、上記除算手段の算出結果、上
記推定手段の推定結果、及び上記運転状態検出手段で検
出された空気量と目標燃空比との積に基づき、上記燃料
噴射弁からの燃料噴射量を算出する燃料噴射量算出手段
と、 内燃機関の回転に同期した所定の燃料噴射タイミング毎
に、上記燃料噴射量算出手段で算出された燃料噴射量に
応じて燃料噴射弁を駆動し、燃料噴射を実行する燃料噴
射実行手段と、 を備え、上記推定手段が上記燃料噴射実行手段による燃
料噴射実行毎に上記状態変数を算出し、上記燃料噴射量
算出手段が上記各部で検出又は算出された変数の最新値
を用いて燃料噴射量を繰り返し算出するよう構成してな
ることを特徴とする内燃機関の燃料噴射量制御装置。
[Scope of Claims] A fuel injection valve is constructed based on a physical model that describes the behavior of fuel flowing into the cylinder of an internal combustion engine using the amount of fuel adhering to the intake pipe wall surface and the amount of evaporated fuel within the intake pipe as state variables. A fuel injection amount control device for an internal combustion engine that controls the amount of fuel injected from the internal combustion engine, at least the rotational speed of the internal combustion engine, the amount of evaporation of fuel adhering to the wall surface of the intake pipe, and the amount of air flowing into the cylinder. , an operating state detecting means for detecting the operating state detecting means, a dividing means for dividing the evaporation amount of the fuel adhering to the intake pipe wall surface detected by the operating state detecting means by the rotational speed, and the above physical model or an operation set based on the physical model. estimating means for estimating the state variable based on at least the calculation result of the dividing means and the amount of fuel injected from the fuel injection valve using a formula; and an arithmetic formula set based on the physical model. , the amount of fuel injected from the fuel injector is determined based on at least the calculation result of the dividing means, the estimation result of the estimating means, and the product of the air amount detected by the operating state detecting means and the target fuel-air ratio. a fuel injection amount calculation means to calculate the fuel injection amount, and a fuel injection valve is driven according to the fuel injection amount calculated by the fuel injection amount calculation means at each predetermined fuel injection timing synchronized with the rotation of the internal combustion engine to perform fuel injection. and a fuel injection execution means for executing the fuel injection, wherein the estimation means calculates the state variable each time the fuel injection execution means executes the fuel injection, and the fuel injection amount calculation means calculates the state variable of the variable detected or calculated by each of the parts. A fuel injection amount control device for an internal combustion engine, characterized in that the fuel injection amount is configured to repeatedly calculate the fuel injection amount using the latest value.
JP62291500A 1987-11-18 1987-11-18 Fuel injection amount control device for internal combustion engine Expired - Fee Related JP2564858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62291500A JP2564858B2 (en) 1987-11-18 1987-11-18 Fuel injection amount control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62291500A JP2564858B2 (en) 1987-11-18 1987-11-18 Fuel injection amount control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH01134040A true JPH01134040A (en) 1989-05-26
JP2564858B2 JP2564858B2 (en) 1996-12-18

Family

ID=17769684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62291500A Expired - Fee Related JP2564858B2 (en) 1987-11-18 1987-11-18 Fuel injection amount control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2564858B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996021098A1 (en) * 1994-12-30 1996-07-11 Honda Giken Kogyo Kabushiki Kaisha Fuel injection control device for an internal combustion engine
US5590638A (en) * 1994-10-20 1997-01-07 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5606959A (en) * 1994-12-30 1997-03-04 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5632261A (en) * 1994-12-30 1997-05-27 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5636621A (en) * 1994-12-30 1997-06-10 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5666934A (en) * 1994-12-30 1997-09-16 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5758630A (en) * 1995-02-25 1998-06-02 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5787868A (en) * 1994-12-30 1998-08-04 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
KR19980070930A (en) * 1997-01-31 1998-10-26 가나이쯔도무 Inside injection engine control device
US6041279A (en) * 1995-02-25 2000-03-21 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
JP2010222988A (en) * 2009-03-19 2010-10-07 Nippon Soken Inc Intake air quantity estimation device for internal combustion engine
JP2018509324A (en) * 2014-12-08 2018-04-05 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト Discrete time modeling method for automobiles
CN108626011A (en) * 2017-03-21 2018-10-09 本田技研工业株式会社 Fuel injection control system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590638A (en) * 1994-10-20 1997-01-07 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
KR100407298B1 (en) * 1994-12-30 2004-05-20 혼다 기켄 고교 가부시키가이샤 Fuel metering control system for internal combustion engine
US5606959A (en) * 1994-12-30 1997-03-04 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5632261A (en) * 1994-12-30 1997-05-27 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5636621A (en) * 1994-12-30 1997-06-10 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5666934A (en) * 1994-12-30 1997-09-16 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
WO1996021098A1 (en) * 1994-12-30 1996-07-11 Honda Giken Kogyo Kabushiki Kaisha Fuel injection control device for an internal combustion engine
US5787868A (en) * 1994-12-30 1998-08-04 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5758630A (en) * 1995-02-25 1998-06-02 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US6041279A (en) * 1995-02-25 2000-03-21 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
KR19980070930A (en) * 1997-01-31 1998-10-26 가나이쯔도무 Inside injection engine control device
JP2010222988A (en) * 2009-03-19 2010-10-07 Nippon Soken Inc Intake air quantity estimation device for internal combustion engine
JP2018509324A (en) * 2014-12-08 2018-04-05 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト Discrete time modeling method for automobiles
CN108626011A (en) * 2017-03-21 2018-10-09 本田技研工业株式会社 Fuel injection control system

Also Published As

Publication number Publication date
JP2564858B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
JP2551038B2 (en) Air-fuel ratio control device for internal combustion engine
EP0301548B1 (en) Fuel injection system of an internal combustion engine
JPH01134040A (en) Fuel injection quantity controller for internal combustion engine
JPH01211633A (en) Fuel injection amount control device for internal combustion engine
JPH02153245A (en) Control device for internal combustion engine
JPH0312217B2 (en)
JP2754744B2 (en) Fuel injection amount control device for internal combustion engine
JP2754676B2 (en) Fuel injection amount control device for internal combustion engine
JP2615773B2 (en) Fuel injection amount control device for internal combustion engine
JP2701296B2 (en) Fuel injection amount control device for internal combustion engine
JP2705165B2 (en) Fuel injection amount control device for multi-cylinder internal combustion engine
JP2658246B2 (en) Fuel injection amount control device for internal combustion engine
JP2600698B2 (en) Fuel injection amount control device for internal combustion engine
JP2600697B2 (en) Fuel injection amount control device for internal combustion engine
JP2606226B2 (en) Fuel injection amount control device for internal combustion engine
JP2705113B2 (en) Fuel injection amount control device for internal combustion engine
JPH01267332A (en) Fuel injection quantity controller for internal combustion engine
JP2759991B2 (en) Fuel injection amount control device for internal combustion engine
JPH01271623A (en) Device for controlling fuel injection quantity of internal combustion engine
JP3119465B2 (en) Fuel injection control device for internal combustion engine
JP2611255B2 (en) Fuel injection amount control device for internal combustion engine
JPH01313639A (en) Fuel injection quantity controller for internal combustion engine
JPH01267333A (en) Fuel injection quantity controller for internal combustion engine
JP2718190B2 (en) Fuel injection amount control device for internal combustion engine
JPH01285636A (en) Fuel injection amount control device for internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees