WO1996021034A1 - Avian recombinant live vaccine - Google Patents

Avian recombinant live vaccine Download PDF

Info

Publication number
WO1996021034A1
WO1996021034A1 PCT/FR1995/001763 FR9501763W WO9621034A1 WO 1996021034 A1 WO1996021034 A1 WO 1996021034A1 FR 9501763 W FR9501763 W FR 9501763W WO 9621034 A1 WO9621034 A1 WO 9621034A1
Authority
WO
WIPO (PCT)
Prior art keywords
avian
plasmid
promoter
fragment
recombinant
Prior art date
Application number
PCT/FR1995/001763
Other languages
French (fr)
Inventor
Jean-Christophe Francis Audonnet
Michel Joseph Marie Bublot
Raphaël Jean DARTEIL
Carole Véronique DUINAT
Eliane Louise Françoise LAPLACE
Michel Albert Emile Riviere
Original Assignee
Rhone Merieux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Merieux filed Critical Rhone Merieux
Priority to AU44898/96A priority Critical patent/AU4489896A/en
Publication of WO1996021034A1 publication Critical patent/WO1996021034A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16311Mardivirus, e.g. Gallid herpesvirus 2, Marek-like viruses, turkey HV
    • C12N2710/16322New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16311Mardivirus, e.g. Gallid herpesvirus 2, Marek-like viruses, turkey HV
    • C12N2710/16341Use of virus, viral particle or viral elements as a vector
    • C12N2710/16343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18111Avulavirus, e.g. Newcastle disease virus
    • C12N2760/18122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • the present invention relates to vaccines for avian use based on Marek's disease virus (MDV), and more particularly HVT virus (Herpes Virus of Turkey), into which has been inserted, by genetic recombination, the at least one nucleotide sequence coding for, and expressing, an antigenic pol ⁇ peptide of an avian pathogen, under conditions ensuring immunization leading to effective protection of the animal vaccinated against said pathogen.
  • MDV Marek's disease virus
  • HVT virus Herpes Virus of Turkey
  • avian viral vectors have already been proposed with the intention of vaccinating birds against avian pathogens, in particular pathogenic viruses, among which are Marek's disease (MDV), Newcastle disease viruses (NDV), infectious laryngotracheitis (ILTV), Gumboro disease (Infectious Bursal Disease, IBDV), infectious bronchitis (IBV) and avian anemia (CAV).
  • MDV Marek's disease
  • NDV Newcastle disease viruses
  • ILTV infectious laryngotracheitis
  • IBDV infectious bronchitis
  • CAV avian anemia
  • the viral vectors used include avipox, in particular Fowlpox, (EP-A-0 517 292; H.-G. Heine ef al., Arch. Virol. 1993. 131. 277-292; DB Boyle et al., Veterinary Microbiology 1994. 41. 173-181; CD. Bayliss et al., Arch. Virol. 1991. 120. 193-205), Marek viruses, in particular serotypes 2 and 3 (HVT) (WO-A-87 04463 ; WO-A-89 01040; WO-A-93 25665; EP-A-0 513 921; J.
  • avipox in particular Fowlpox
  • Fowlpox in particular Fowlpox
  • HVT serotypes 2 and 3
  • these recombinant viruses When used for vaccination, these recombinant viruses induce protections of variable levels, generally weak or partial, even if, in rare particular cases, significant protection can be demonstrated.
  • the genome of the Gumboro disease virus is made up of double-stranded RNA.
  • the largest segment (segment A) codes for a 1 15 kDa polyprotein secondarily cleaved into three proteins VP2 (41 kDa), VP4 (28 kDa), VP3 (32 kDa).
  • VP4 is a protease involved in the maturation of the polyprotein 1 15 kDa.
  • the position of the cleavage site between VP2 and VP4 is only determined approximately (M. Jagadish, J. Virol. 1988. 62. 1084-1087).
  • the protein VP2 is an immunogen inducing neutralizing antibodies and a protection against Gumboro disease.
  • EP-A-0 517 292 insertion of sequences coding for VP2 or the polyprotein in an avipox
  • CD Bayliss 1991, H.-G. Heine 1993 and DB Boyle 1994 supra (VP2 in the Fowlpox).
  • WO-A-90 02802 and WO-A-90 02803 variant insertion sites such as gC, TK,
  • promoters including those generally available commercially, have been used in the various constructions of the prior art, including the PRV gX, HCMV IE (immediate immediate early CMV) promoters, herpes simplex alpha-4, FPV PE / L (promoter Fowlpox) (H. Heine et al., Arch. Virol. 1993. 131. 277-292), P7.5 (C. Bayliss et al., Arch. Virol. 1991. 120. 193-205) and P 11 of the vaccinia virus (D. Boyle et al. Vet. Microb. 1994. 41.
  • PRV gX immediate early CMV
  • HCMV IE immediate early CMV
  • FPV PE / L promoter Fowlpox
  • P7.5 C. Bayliss et al., Arch. Virol. 1991. 120. 193-205
  • P 11 of the vaccinia virus D. Boyle et al. Vet. Microb. 1994. 41
  • RSV virus Rous Sarcoma Virus
  • HVT human Sarcoma Virus
  • the sequences of certain promoters can inhibit the replication of the recombinant vectors HVT or MDV (D.R. Marshall et al., J. Vir. Meth. 1992. 40. 195-204 and Virology 1993. 195. 638-648).
  • a certain number such as for example SV40, LTR RSV and PRV gX, have shown a certain effectiveness, as have certain promoters specific to certain genes of the Marek viruses, in particular of serotype 3.
  • the invention has made it possible to develop a recombinant live vaccine based on an HVT vector into which is inserted at least one sequence coding for an avian immunogen, in particular the protein VP2 of IBDV.
  • a vaccine incorporating a sequence coding for VP2 ensures satisfactory protection of animals against Gumboro disease, namely protection against mortality and damage to the bursa of Fabricius.
  • the subject of the present invention is a live recombinant avian vaccine comprising, as vector, a Marek's disease virus, in particular HVT, comprising at least one nucleotide sequence encoding and expressing an antigenic polypeptide of an avian pathogenic agent. , inserted into the UL13 gene under the immediate early CMV promoter control.
  • insertion into the UL13 gene is meant both the simple insertion into this gene without deletion thereof, and the insertion after total or partial deletion. We prefer insertion after partial deletion.
  • immediate early CMV precursor is meant in particular the fragment do born in the examples as well as its s ⁇ us-f ragments retaining the m & ne fast-acting acti.
  • the CMV IE promoter can be the human promoter (HCMV IE or the murine promoter (MCMV IE), or a CMV IE promoter from another origin, for example from the rat or guinea pig.
  • the nucleotide sequence inserted into the Marek vector to be expressed may be any sequence coding for an antigenic polypeptide, of an avian pathogenic agent, capable, once expressed under the favorable conditions provided by the invention, of ensuring immunization leading to effective protection of the animal vaccinated against the pathogen. O can therefore insert, under the conditions of the invention, the nucleotide sequences coding for the antigens of interest for a given disease.
  • the vaccines according to the invention may be used for in ovo vaccination, chicks 1 day or older and adults.
  • the invention can in particular be used for the insertion of a nucleotide sequence coding suitably for the polypeptide VP2 of the IBDV virus.
  • a recombinant live vaccine is thus obtained ensuring, in addition to protection against Marek's disease, satisfactory protection against Gumboro disease.
  • the recombinant vaccine against Gumboro disease should preferably be presented at between 10 and 10 4 PFU / dose.
  • sequence insertion nucleotides encoding antigens of the Marek disease virus in particular gB, gC, gD and gH + gL genes (WO-A-90 02803), of Newcastle disease virus, in particular F and HN genes, infectious bronchitis virus (IBV), in particular S and M genes (M. Binns et al., J. Gen. Virol. 1985. 66. 719-726; M. Boursnell et al., Virus Research 1984. 1. 303-313), avian anemia virus (CAV), in particular VP1 (52 kDa) + VP2 (24 kDa) (NHM Noteborn et al., J. Virol. 1991.
  • CAV avian anemia virus
  • ILTV infectious laryngotracheitis virus
  • gB WO-A-9002802
  • gC infectious laryngotracheitis virus
  • gD infectious laryngotracheitis virus
  • gH + gL infectious laryngotracheitis virus
  • the promoter CMV IE is associated with another promoter in a head-to-tail arrangement, which makes it possible to insert, into the insertion region, two nucleotide sequences, one dependent on the CMV IE promoter, the other under that of the associated promoter.
  • This construction is remarkable by the fact that the presence of the CMV IE promoter, and in particular of its activating part (enhancer), activates the transcription induced by the associated promoter.
  • a preferred associated promoter is the Marek RNA1.8 promoter, the transcription activity of which has been shown to be approximately multiplied by 4.4 under these conditions.
  • An interesting case of the invention is a vaccine comprising a nucleotide sequence coding for IBDV VP2 under the control of CMV IE and a nucleotide sequence coding for an antigen of another avian disease, in particular those mentioned above, under the control from the other promoter.
  • RNA1.8 promoter may also be used alone in place of the CMV IE promoter, in particular for vaccines against Marek's disease, Newcastle disease, infectious laryngotracheitis, infectious bronchitis and avian anemia.
  • the present invention also relates to a vaccine formula multivalent, comprising, as a mixture or as a mixture, at least two recombinant live avian vaccines as defined above, these vaccines comprising different inserted sequences, in particular of different pathogens.
  • the present invention also relates to a method of avian vaccination comprising the administration of a live recombinant vaccine or of a multivalent vaccine formula as defined above. It relates in particular to such a method for vaccination in ovo, chicks of 1 day or more and adults.
  • Figure 1 HVT sequence U s gl region
  • Figure 2 Construction of plasmids pRD022 and pRD027
  • Figure 3 Construction of plasmids pRD023 and pRD029
  • Figure 4 plasmid pCMV ⁇
  • Figure 5 plasmid pEL022
  • Figure 6 plasmid pEL023
  • Figure 7 plasmid pEL024
  • Figure 8 plasmid pEL025
  • Figure 9 Partial sequence HVT BamHI D fragment
  • Figure 10 plasmid pMB025
  • Figure 11 plasmid pMB031
  • Figure 12 plasmid pMB032
  • Figure 13 plasmid pEL026
  • Figure 14 plasmid pMB033
  • Figure 15 plasmid pCD002
  • Figure 16 plasmid pCDOO ⁇
  • Figure 17 plasmid pEL068
  • Figure 18 plasmid pEL070
  • Figure 34 plasmid pEL069
  • Figure 35 plasmid pELO ⁇ O
  • the virus used as the parental virus is the strain FC126 of the herpesvirus of the turkey (HVT) isolated by Dr. Witter of the Regional Poultry Research Laboratory (USDA, East Lansing, Michigan), in a flock of turkeys of 23 weeks (Witter RL et al. Am. J. Vet. Res. 1970. 31. 525-538).
  • the culture conditions for this virus are those described elsewhere (French patent application 90 03105).
  • EXAMPLE 1 Extraction of DNA from Marek's Disease Virus: The whole blood of a chicken tested at 7 days with the strain MDV RB1 B is collected with a syringe on anticoagulant (heparin solution at 100 IU / ml ) 14 days after infection. This blood is then centrifuged at 30 g for 15 minutes at room temperature. The plasma and the "buffy-coat" are removed and diluted in sterile PBS to have a final volume of 10 ml. After a 5-minute centrifugation at 150 g, the cell pellet is resuspended in 2 ml of culture medium 199 (Gibco-BRL Cat # 042-01 183M) containing 2% fetal calf serum (SVF)).
  • culture medium 199 Gibco-BRL Cat # 042-01 183M
  • the total DNA of the infected lymphocytes is then extracted according to the technique described by R. Morgan et al. (Avian Diseases. 1990. 34. 345-351) and can directly serve as a template for PCR experiments.
  • the RB1 B strain was cultured on CEP and the viral DNA was prepared from purified viral particles as described by Lee Y. et al. (J. Gen. Virol. 1980. 51. 245-253).
  • EXAMPLE 2 Preparation of the DNA of the MCMV Virus (Mouse CytoMe ⁇ aloVirus)
  • the MCMV virus strain Smith was obtained from the American Type Culture Collection, Rockville, Maryland, USA (ATCC No. VR-194). This virus was cultured on Balb / C mouse embryo cells and the viral DNA of this virus was prepared as described by Ebeling A. et al. (J. Virol. 1983. 47, 421-433).
  • the viral DNA used for the transfection experiments was prepared according to the technique described by R. Morgan et al. (Avian Diseases. 1990, 34, 345-351) from a culture of secondary CEPs (CEP II) infected with the FC126 strain of the HVT virus.
  • Example 4 Construction and isolation of vHVT1
  • the construction of the donor plasmid pGH010, the isolation and the purification of the recombinant virus vHVT1 were described in French patent application 92.13109.
  • This recombinant HVT virus contains the gene coding for the capsid protein VP2 of the Gumboro disease virus ("IBDV" virus) placed under the control of the promoter of the RR2 gene of the HVT virus.
  • IBDV Gumboro disease virus
  • the VP2 gene was inserted in place of the HVT RR2 gene.
  • the 29 kbp BamHI A fragment of the HVT virus strain FC126 (Igarashi T. et al. Virology. 1989. 70. 1789-1804) was cloned into the BamHI site of the vector pBR322 to give the plasmid pRDOOl.
  • the plasmid pRDOOl was digested with Pstl and the Pstl-Pstl fragments 2.8 kbp and 5.7 kbp were cloned into the Pst1 site of the vector pBR322 to give the plasmids pRD006 and pRD007 respectively.
  • Plasmid pRD006 was digested with Pstl and Sacl to isolate the 340 bp Pstl-Sacl fragment (fragment A).
  • a PCR was carried out with the oligonucleotides: RD045 (SEQ ID N 0 1)
  • the fragments A and B were ligated together with the vector pBS-SK + (Stratagene), previously digested with Kpnl and Sac1 to give the plasmid pRD022 (FIG. 2).
  • the plasmid pRD007 a was digested with Sali and Xhol to isolate the 730 bp Sall-Xhol fragment (positions 1876 to 2608 on SEQ ID No. 1) (positions 6491 to 6980 on the HVT U s sequence (Zelnik V. et al. J. Gen. Virol. 1993. 74.
  • This oligonucleotide was cloned between the BamHI and HindIII sites of the plasmid pRD022 to give the plasmid pRD023 ( Figure 3).
  • Plasmid pRD027 was digested with HindIII and Xhol to isolate the HindIII-Xhol fragment of 730 bp (fragment D).
  • Plasmid pEL004 was digested with Kpnl and Hindlll to isolate the Kpnl-Hindlll fragment of 1387 bp containing the complete IBDV VP2 gene. This fragment was cloned into the vector pBS-SK *, previously digested with Kpnl and Hindlll, to give the plasmid pEL023 of 4292 bp (FIG. 6). The plasmid pEL022 was digested with BamHI and NotI to isolate the BamHI-NotI fragment of 1122 bp (fragment A).
  • the plasmid pEL023 was digested with BamHI and NotI to isolate the BamHI-NotI fragment of 333 bp (fragment B). Fragments A and B were ligated together with the vector pBS-SK +, previously digested with NotI and treated with alkaline phosphatase, to give the plasmid pEL024 of 4369 bp (FIG. 7). Plasmid pEL024 was then digested with NotI to isolate the 1445 bp NotI-NotI fragment.
  • This fragment was cloned into the plasmid pRD029, previously digested with NotI and treated with alkaline phosphatase, to give the plasmid pEL025 of 6904 bp (FIG. 8).
  • the plasmid pEL025 was digested with SalI for linearization, then extracted with a phenol / chloroform mixture (19: 1), precipitated with absolute ethanol, and taken up in sterile water.
  • the cells were then left in culture for 3 days at + 37 ° C., then they were pronased, mixed with fresh CEP II (mixture 3: 1), and re-spread on 1 96-well plate. This plate was left in culture for 3 days, then the cells were pronased, mixed with fresh CEP II, and re-spread on 2 96-well plates, an initial well giving 2 sister wells.
  • the 96-well plates were cultured until the appearance of a cytopathic effect. After 72 hours of culture, one of the two 96-well plates was fixed with 95% acetone for 30 minutes and an indirect immunofluorescence reaction (IFI) was carried out with an anti-VP2 monoclonal antibody to find the plaques expressing the VP2 protein.
  • IFI indirect immunofluorescence reaction
  • the “sister” wells of the wells having positive IFI plaques were pronased, mixed with fresh CEP II, and deposited in limiting dilution on 96-well plates. After 3 days of culture, the wells showing a cytopathic effect were pronased, mixed with CEP H, and re-spread on 96-well plates, an initial well giving 2 sister wells. 3 days later, the plaques expressing the VP2 protein were again searched as previously by IFI on one of the 2 sister plates.
  • vHVT2 A viral range which gave 100% of positive ranges in IFI with an anti-VP2 monoclonal antibody was designated vHVT2.
  • the genomic DNA of this recombinant virus has been characterized at the molecular level by standard PCR and Southern blot techniques using the appropriate oligonucleotides and DNA probes.
  • This recombinant contains an HCMV-IE / IBDV VP2 cassette in place of the gl gene of the HVT virus.
  • Example 6 Construction of the donor plasmid pMB033 and isolation of vHVT5 6.1. Construction of the donor plasmid pMB033
  • the 14.5 kbp BamHI D fragment of the HVT virus strain FC126 (Igarashi T. et al. Virology. 1989. 70. 1789-1804) was cloned into the vector pBR322 to give the plasmid pRD066.
  • the partial sequence of this fragment was established on 5471 bp ( Figure 9 and SEQ ID No. 6).
  • This sequence contains the ORF homologous to the HSV-1 UL13 gene. This ORF extends from position 1493 to position 3037 on SEQ ID No. 6 and codes for a designated theoretical protein HVT UL13 of 514 amino acids (aa).
  • the plasmid pRD066 was digested with BamHI and Hindlll to isolate the Hindlll-Hindlll fragments of 2.0 kbp (fragment A) and BamHI-Hindlll of 6.5 kbp (fragment B). Fragment A was cloned into the HindIII site of the vector pBS-SK + to give the plasmid pMB007. Fragment B was cloned between the BamHI and HindIII sites of the vector pBS-SK + to give the plasmid pMB013. Plasmid pMB013 was digested with SalI and Spel to isolate the 850 bp Sall-Spel fragment.
  • Plasmid pMB007 was digested with EcoRI, treated with Klenow polymerase, and digested with Hindlll to isolate the Hindlll-free end fragment of 850 bp.
  • Plasmid pMB031 was digested with Kpnl and SalI to isolate the Kpnl-SalI fragment of 3700 bp (fragment A). Plasmid pMB031 was digested with Kpnl and Hindlll to isolate the Kpnl-Hindlll fragment of 850 bp (fragment B).
  • a PCR reaction was carried out with the following 2 oligonucleotides:
  • Fragments A, B and C were ligated together to give the plasmid pMB032 of 5050 bp (Figure 12).
  • the 5 ′ flanking arm of this plasmid has a size of 1226 bp (positions 564 to 1789 on SEQ ID No. 6) and contains the 99 aa N-terminals of HVT UL13.
  • the 3 'flanking arm has a size of 854 bp (positions 2559 to 3412 on SEQ ID No. 6) and contains the 158 aa C-terminals of HVT UL13.
  • the plasmid pMB032 therefore introduces a deletion of 770 bp (257 aa) in the ORF HVT UL13 during the recombination with the genomic DNA of the HVT virus.
  • the plasmid pEL024 (see example 5) was digested with NotI to isolate the NotI-NotI fragment of 1445 bp. This fragment was ligated with the plasmid pCMV ⁇ , previously digested with NotI, to give the plasmid pEL026 of 5095 bp (FIG. 13).
  • the plasmid pEL026 was digested with Asp700, EcoRI and SalI to isolate the EcoRI-SalI fragment of 2400 bp (HCMV-IE / IBDV VP2 cassette). This fragment was ligated with the plasmid pMB032, previously digested with EcoRI and SalI to give the plasmid pMB033 of 7412 bp (FIG. 14). 6.2. Isolation and purification of the recombinant vHVT ⁇
  • a co-transfection with the plasmid pMB033 linearized with Kpnl and Pvull and the viral DNA of HVT was carried out as described in Example 5.
  • the conditions for isolation and purification of the recombinant viral plaques resulting from this co-transfection were those described in Example 5.
  • a viral range which gave 100% of positive ranges in IFI with an anti-IBDV VP2 monoclonal antibody was designated vHVT ⁇ .
  • the genomic DNA of this recombinant virus has been characterized at the molecular level by standard PCR and Southern blot techniques using the appropriate oligonucleotides and DNA probes.
  • Example 7 Construction of the donor plasmid pEL074 and isolation of vHVT11
  • the plasmid pCMV ⁇ (FIG. 4) was digested with SalI and Smal to isolate the Sall-Smal fragment of 3679 bp containing the lacZ gene as well as the pol ⁇ -aden ⁇ lation signal from the late gene of the SV40 virus. This fragment was inserted into the vector pBS-SK + (Stratagene), previously digested with Sali and EcoRV, to give the plasmid pCD002 of 6625 bp (FIG. 15). This plasmid contains the lacZ reporter gene but no promoter is located upstream of this gene.
  • the plasmid pEL068 was digested with HindIII and SalI to isolate the Hindlll-SalI fragment of 235 bp (fragment B). Fragments A and B were ligated together with the plasmid pEL068, previously digested with NotI and SalI, to give the plasmid pEL070 of 5908 bp (FIG. 18). The plasmid pEL070 was digested with EcoRI, SalI and Xmnl to isolate the EcoRI-SalI fragment of 3035 bp.
  • This fragment was ligated with the plasmid pMB032 (see example 6), previously digested with EcoRI and SalI, to give the plasmid pEL074 of 8006 bp (FIG. 19).
  • This plasmid allows the insertion of the MCMV-IE / IBDV VP2 cassette into the UL13 site of the HVT virus.
  • Example 8 Construction of the donor plasmid pEL084 and isolation of vHVT12
  • the 3.9 kbp EcoRI-SalI fragment of the genomic DNA of the MDV virus strain RB1 B containing the MDV gB gene (sequence published by Ross N. et al. J. Gen. Virol. 1989. 70, 1789-1804) was ligated with the vector pUC13, previously digested with EcoRI and SalI, to give the plasmid pCD007.
  • a PCR was carried out with the following oligonucleotides: CD001 (SEQ ID No. 11)
  • CD003 (SEQ ID N ° 1 3) 5 'TATATGGCGTTAGTCTCC 3' CD004 (SEQ ID N ° 14) 5 'TTGCGAGCTCGCGGCCGCTTATTACACAGCATCATCTTCTG 3' and the matrix pCD007 to produce a PCR fragment of 1 95 bp.
  • Plasmid pCD01 1 was digested with NotI to isolate the NotI-NotI fragment of 2608 bp (whole MDV gB gene). This fragment was ligated with the plasmid pCMV ⁇ , previously digested with NotI and treated with alkaline phosphatase, to give the plasmid pCD020 of 6299 bp (FIG. 21) (In this plasmid, the MDV gB gene replaces the lacZ gene). The plasmid pCD020 was digested with EcoRI and SalI to isolate the EcoRI-SalI fragment of 3648 bp.
  • This fragment was ligated with the plasmid pMB032 (see example 6), previously digested with EcoRI and SalI, to give the plasmid pEL084 of 861 5 bp (FIG. 22).
  • This plasmid allows the insertion of the HCMV-IE / MDV gB expression cassette into the UL13 site of the HVT virus.
  • This fragment was ligated with the vector pUC19, previously digested with Sphl and Xbal, to give the plasmid pHN02 of 5192 bp.
  • the plasmid pHN02 was digested with Clal and Pstl to isolate the Clal-Pstl fragment of 700 bp (fragment A).
  • a PCR was carried out with the following oligonucleotides: EL071 (SEQ ID No. 16) 5 'CAGACCAAGCTTCTTAAATCCC 3' EL073 (SEQ ID No. 17) 5 'GTATTCGGGACAATGC 3' and the pHN02 template to produce a PCR fragment of 270 bp.
  • fragment B This fragment was digested with Hindlll and Pstl to isolate a Hindlll-Pstl fragment of 220 bp (fragment B). Fragments A and B were ligated together with the vector pBS-SK +, previously digested with ClaI and HindIII, to give the plasmid pEL028 of 3872 bp (FIG. 24). Plasmid pHN02 was digested with Bsphl and ClaI to isolate the Bsphl-ClaI fragment of 425 bp (fragment C).
  • PCR was carried out with the following oligonucleotides: EL074 (SEQ ID N ° 18) 5 'GTGACATCACTAGCGTCATCC 3' E L 0 7 5 (S E Q I D N ° 1 9) 5 '
  • the plasmid pEL029bis was digested with ClaI and NotI to isolate the ClaI-NotI fragment of 820 bp (fragment F). Fragments E and F were ligated together with the vector pBS-SK +, previously digested with NotI and Sacll, to give the plasmid pEL030 of 4745 bp (FIG. 26). Plasmid pEL030 was digested with NotI to isolate the 1780 bp NotI-NotI fragment (whole NDV HN gene).
  • This fragment was ligated, in place of the lacZ gene, with the plasmid pCMV ⁇ , previously digested with NotI and treated with alkaline phophatase, to give the plasmid pEL032 of 5471 bp (FIG. 27).
  • the plasmid pEL032 was digested with EcoRI and ClaI to isolate the EcoRI-ClaI fragment of 1636 bp (fragment G).
  • the plasmid pEL032 was digested with ClaI and SalI to isolate the ClaI-SalI fragment of 1,182 bp (fragment H).
  • Fragments G and H were ligated together with the plasmid pMB032 (see example 6), previously digested with EcoRI and SalI, to give the plasmid pEL085 of 7787 bp (FIG. 28).
  • This plasmid allows the insertion of the HCMV-IE / NDV HN expression cassette into the UL13 site of the HVT virus.
  • pNDV81 A clone originating from the DNA library complementary to the genome of the Newcastle disease virus (see example 9) and containing the entire fusion (F) gene was called pNDV81.
  • This plasmid has been described previously and the NDV F gene sequence has been published (Taylor J. et al. J. Virol. 1990. 64. 1441 -1450).
  • the plasmid pNDV81 was digested with Narl and Pstl to isolate the Narl-Pstl fragment of 1870 bp (fragment A).
  • a PCR was carried out with the following oligonucleotides: EL076 (SEQ ID No. 20) 5 'TGACCCTGTCTGGGATGA 3' EL077 (SEQ ID No. 21)
  • Plasmid pEL034 was digested with EcoRI and Kpnl to isolate the EcoRI-Kpnl fragment of 866 bp (fragment C). Plasmid pEL032 was digested with Kpnl and SalI to isolate the Kpnl-SalI fragment of 21 14 bp (fragment D).
  • Fragments C and D were ligated together with the plasmid pMB032 (see example 6), previously digested with EcoRI and SalI, to give the plasmid pEL086 of 7940 bp (FIG. 31).
  • This plasmid allows the insertion of the HCMV-IE / NDV F expression cassette into the UL13 site of the HVT virus.
  • Example 11 Construction of the donor plasmid pEL087 and isolation of vHVT15
  • the 163 bp PCR fragment thus obtained was digested with EcoRI and Spel, then ligated with the plasmid pCD2 Example 7), previously digested with EcoRI and Spel, to give the plasmid pBS002 of 6774 bp (FIG. 33).
  • the plasmid pBS002 contains the promoter of the MDV RNA 1 .8 kb gene cloned upstream of the lacZ gene.
  • a PCR was carried out with the oligonucleotides: MB047 (SEQ ID N ° 23) and MB072 (SEQ ID N ° 25)
  • the plasmid pCD01 1 was digested with NotI and Xbal to isolate the NotI-Xbal fragment of 180 bp (fragment B).
  • Plasmid pEL069 was digested with NotI and Spel to isolate the NotI-Spel fragment of 180 bp (fragment C).
  • the fragments A, B and C were ligated together with the plasmid pEL067 (see example 7), previously digested with EcoRI and Spel, to give the plasmid pELO ⁇ O of 5939 bp (FIG. 35).
  • the plasmid pEL070 (see example 7) was digested with Kpnl and Spel to isolate the Kpnl-Spel fragment of 1345 bp (fragment D). Plasmid pEL070 was also digested with Kpnl and SalI to isolate the Kpnl-SalI fragment of 1658 bp (fragment E). Fragments D and E were ligated together with the plasmid pEL080, previously digested with Sali and Spel, to give the plasmid pEL081 of 8938 bp (FIG. 36). Plasmid pEL081 was digested with EcoRI and SalI to isolate the EcoRI-SalI fragment of 6066 bp.
  • the plasmid pELO ⁇ O (see example 11) was digested with EcoRI and SalI to isolate the EcoRI-SalI fragment of 3040 bp (RNA cassette 1.8 kbp / MDV gB). This fragment was ligated with the plasmid pMB032 (see example 6), previously digested with EcoRI and SalI, to give the plasmid pEL097 of 8037 bp (FIG. 38). This plasmid allows the insertion of the RNA 1 .8 kbp / MDV gB cassette into the UL13 site of the HVT virus.
  • MCMV-IE or double promoter MCMV-IE // RNA 1 .8 kpb) in the UL13 site it is possible to produce recombinant HVT viruses expressing at a high level the membrane (M) or spike (S) proteins of the virus avian infectious bronchitis (IBV).
  • M membrane
  • S spike
  • a construction is preferably carried out where the IBV S gene is under the dependence of the HCMV-IE promoter or of the MCMV-IE promoter, or else a construction where the IBV M and IBV S genes are inserted together with the double MCMV-IE / promoter 1.8 kbp RNA in the UL13 site, the M gene being under the control of the 0.8 kbp RNA promoter and the S gene being under the control of the MCMV-IE promoter.
  • the 1.8 kbp RNA promoter is activated by the activator region of the MCMV-IE promoter.
  • Example 14 Preparation of a vaccine according to the invention
  • the preparation of the vaccines obtained according to the invention can be done for any usual technique known to those skilled in the art, for example by culture in a roller bottle.
  • Rolling vials (175cm 2 ), seeded with 200.10 6 primary cells of chicken embryo, are inoculated after 24 hours of incubation at 37 ° C. with 1 ml of a viral solution of recombinant HVT virus having a titre of 10 5 pfu / ml. After a 4-day incubation at 37 ° C, the supernatant is removed, the cells are dissociated with a solution of trypsin versene, then harvested. The infected cells are then centrifuged.
  • the supernatant is removed and the cells are taken up in 20 ml of a solution containing a stabilizer for lyophilization (for example SPGA). This mixture is then sonicated, distributed in bottles at the rate of fractions of 1 ml, and finally lyophilized.
  • a stabilizer for lyophilization for example SPGA

Abstract

An avian recombinant live vaccine including, as the vector, a Marek's disease virus, particularly HVT, including at least one nucleotide sequence coding for and expressing an antigenic polypeptide of an avian pathogen, and being inserted into the UL13 gene under the control of the immediate early CMV promoter. A multivalent vaccine formula includes at least two such vaccines with differing inserted sequences.

Description

Vaccin vivant recombinant aviaire. Avian recombinant live vaccine.
La présente inven¬ tion a trait à des vaccins à usage aviaire à base de virus de la maladie de Marek (MDV), et plus particulièrement de virus HVT (Herpès Virus of Turkey), dans lesquels a été insérée, par recombinaison génétique, au moins une séquence nucléotidique codant pour, et exprimant, un polγpeptide antigénique d'un agent pathogène aviaire, dans des conditions assurant une immunisation conduisant à une protection efficace de l'animal vacciné contre ledit agent pathogène.The present invention relates to vaccines for avian use based on Marek's disease virus (MDV), and more particularly HVT virus (Herpes Virus of Turkey), into which has been inserted, by genetic recombination, the at least one nucleotide sequence coding for, and expressing, an antigenic polγpeptide of an avian pathogen, under conditions ensuring immunization leading to effective protection of the animal vaccinated against said pathogen.
On a déjà proposé un certain nombre de vecteurs viraux aviaires recombinants dans l'intention de vacciner les oiseaux contre des agents pathogènes aviaires, notamment des virus pathogènes, parmi lesquels figurent les virus de la maladie de Marek (MDV), de la maladie de Newcastle (NDV), de la laryngotrachéite infectieuse (ILTV), de la maladie de Gumboro (Infectious Bursal Disease, IBDV), de la bronchite infectieuse (IBV) et de l'anémie aviaire (CAV).A number of recombinant avian viral vectors have already been proposed with the intention of vaccinating birds against avian pathogens, in particular pathogenic viruses, among which are Marek's disease (MDV), Newcastle disease viruses (NDV), infectious laryngotracheitis (ILTV), Gumboro disease (Infectious Bursal Disease, IBDV), infectious bronchitis (IBV) and avian anemia (CAV).
Les vecteurs viraux utilisés comprennent des avipox, en particulier Fowlpox, (EP-A-0 517 292 ; H.-G. Heine ef al., Arch. Virol. 1993. 131. 277-292 ; D.B. Boyle et al., Veterinary Microbiology 1994. 41. 173-181 ; CD. Bayliss et al., Arch. Virol. 1991. 120. 193-205), les virus de Marek, notamment les sérotypes 2 et 3 (HVT) (WO-A-87 04463 ; WO-A-89 01040 ; WO-A-93 25665 ; EP-A-0 513 921 ; J. McMillen, Poultry Condemnation Meeting, October 1994, 359-363 ; P.J.A. Sondermeijer et al., Vaccine 1993. 11. 349-357 ; R.W. Morgan et al., Avian Diseases 1992. 36. 858-870, et 1993. 37. 1032-1040) ou encore le virus ILTV et l'adénovirus aviaire.The viral vectors used include avipox, in particular Fowlpox, (EP-A-0 517 292; H.-G. Heine ef al., Arch. Virol. 1993. 131. 277-292; DB Boyle et al., Veterinary Microbiology 1994. 41. 173-181; CD. Bayliss et al., Arch. Virol. 1991. 120. 193-205), Marek viruses, in particular serotypes 2 and 3 (HVT) (WO-A-87 04463 ; WO-A-89 01040; WO-A-93 25665; EP-A-0 513 921; J. McMillen, Poultry Condemnation Meeting, October 1994, 359-363; PJA Sondermeijer et al., Vaccine 1993. 11. 349 -357; RW Morgan et al., Avian Diseases 1992. 36. 858-870, and 1993. 37. 1032-1040) or also the ILTV virus and the avian adenovirus.
Lorsqu'ils sont utilisés pour la vaccination, ces virus recombinants induisent des protections de niveaux variables, généralement faibles ou partielles, même si, dans de rares cas particuliers, une protection importante peut être démontrée.When used for vaccination, these recombinant viruses induce protections of variable levels, generally weak or partial, even if, in rare particular cases, significant protection can be demonstrated.
Parmi les protections les plus difficiles à assurer par des vaccins aviaires vivants recombinants, se trouve celle contre le virus de la maladie de Gumboro, ou virus IBDV. En effet, bien qu'il existe des vaccins vivants atténués ou inactivés classiques efficaces contre cette maladie, aucun vaccin vivant recombinant n'a encore fait preuve d'une efficacité convenable.Among the protections most difficult to provide with live recombinant avian vaccines is that against the Gumboro disease virus, or IBDV virus. Indeed, although there are conventional live attenuated or inactivated vaccines effective against this disease, no recombinant live vaccine has yet demonstrated adequate efficacy.
Le génome du virus de la maladie de Gumboro est constitué d'un ARN double brin. Le segment le plus grand (segment A) code pour une polyprotéine de 1 15 kDa secondairement clivée en trois protéines VP2 (41 kDa), VP4 (28 kDa), VP3 (32 kDa). VP4 serait une protéase intervenant dans la maturation de la polyprotéine 1 15 kDa. La position du site de clivage entre VP2 et VP4 n'est déterminée qu'approximativement (M. Jagadish, J. Virol. 1988. 62. 1084-1087). La protéine VP2 est un immunogène induisant des anticorps neutralisants et une protection contre la maladie de Gumboro.The genome of the Gumboro disease virus is made up of double-stranded RNA. The largest segment (segment A) codes for a 1 15 kDa polyprotein secondarily cleaved into three proteins VP2 (41 kDa), VP4 (28 kDa), VP3 (32 kDa). VP4 is a protease involved in the maturation of the polyprotein 1 15 kDa. The position of the cleavage site between VP2 and VP4 is only determined approximately (M. Jagadish, J. Virol. 1988. 62. 1084-1087). The protein VP2 is an immunogen inducing neutralizing antibodies and a protection against Gumboro disease.
On a déjà proposé d'insérer des gènes codant pour des protéines immunogènes d'IBDV dans divers vecteurs vivants : EP-A-0 517 292 (insertion de séquences codant pour VP2 ou la polyprotéine dans un avipox) ; CD. Bayliss 1991 , H.-G. Heine 1993 et D.B. Boyle 1994 supra (VP2 dans le Fowlpox).It has already been proposed to insert genes coding for immunogenic IBDV proteins into various living vectors: EP-A-0 517 292 (insertion of sequences coding for VP2 or the polyprotein in an avipox); CD. Bayliss 1991, H.-G. Heine 1993 and DB Boyle 1994 supra (VP2 in the Fowlpox).
Les virus de la maladie de Marek ont également été proposés dansMarek's disease viruses have also been proposed in
WO-A-90 02802 et WO-A-90 02803 (sites d'insertion divers tels que gC, TK,WO-A-90 02802 and WO-A-90 02803 (various insertion sites such as gC, TK,
RR1 , RR2), dans les demandes de brevet français n° 90 03105 (RR2) et 90RR1, RR2), in French patent applications Nos. 90 03105 (RR2) and 90
5 1 1146 (US3), ainsi que, notamment, dans les demandes de brevet WO-A-875 1 1146 (US3), as well as, in particular, in patent applications WO-A-87
04463 et WO-A-89 01040 (BamHI #16 et #19) et WO-A-93 25655 (US2).04463 and WO-A-89 01040 (BamHI # 16 and # 19) and WO-A-93 25655 (US2).
Divers promoteurs, y compris ceux généralement disponibles dans le commerce, ont été utilisés dans les différentes constructions de l'art antérieur, parmi lesquels les promoteurs PRV gX, HCMV IE (CMV immédiate 0 early humain), herpès simplex alpha-4, FPV P.E/L (promoteur Fowlpox) (H. Heine et al., Arch. Virol. 1993. 131. 277-292), P7.5 (C. Bayliss et al., Arch. Virol. 1991. 120. 193-205) et P 11 du virus de la vaccine (D. Boyle et al. Vet. Microb. 1994. 41. 173-181), provenant de la séquence LTR du virus RSV (Rous Sarcoma Virus), SV40 précoce, ainsi que des promoteurs MDV ou HVT, 5 tels que les promoteurs des gènes gB, gC, TK, RR2, etc., sans qu'ait pu apparaître une règle, notamment dans le cas des constructions dans HVT. Les séquences de certains promoteurs peuvent inhiber la réplication des vecteurs recombinants HVT ou MDV (D.R. Marshall et al., J. Vir. Meth. 1992. 40. 195-204 et Virology 1993. 195. 638-648). Parmi les promoteurs cités, un 0 certain nombre, comme par exemple SV40, LTR RSV et PRV gX, ont montré une certaine efficacité, de même que certains promoteurs propres de certains gènes des virus Marek, notamment de sérotype 3.Various promoters, including those generally available commercially, have been used in the various constructions of the prior art, including the PRV gX, HCMV IE (immediate immediate early CMV) promoters, herpes simplex alpha-4, FPV PE / L (promoter Fowlpox) (H. Heine et al., Arch. Virol. 1993. 131. 277-292), P7.5 (C. Bayliss et al., Arch. Virol. 1991. 120. 193-205) and P 11 of the vaccinia virus (D. Boyle et al. Vet. Microb. 1994. 41. 173-181), originating from the RSV virus (Rous Sarcoma Virus) LTR sequence, early SV40, as well as MDV promoters or HVT, 5 such as the promoters of the genes gB, gC, TK, RR2, etc., without a rule having appeared, in particular in the case of constructions in HVT. The sequences of certain promoters can inhibit the replication of the recombinant vectors HVT or MDV (D.R. Marshall et al., J. Vir. Meth. 1992. 40. 195-204 and Virology 1993. 195. 638-648). Among the promoters mentioned, a certain number, such as for example SV40, LTR RSV and PRV gX, have shown a certain effectiveness, as have certain promoters specific to certain genes of the Marek viruses, in particular of serotype 3.
L'invention a permis de mettre au point un vaccin vivant recombinant à base d'un vecteur HVT dans lequel est insérée au moins une 5 séquence codant pour un immunogène aviaire, en particulier la protéine VP2 d'IBDV. Un tel vaccin incorporant une séquence codant pour VP2 assure une protection satisfaisante des animaux contre la maladie de Gumboro, à savoir protection vis-à-vis de la mortalité et des lésions de la bourse de Fabricius.The invention has made it possible to develop a recombinant live vaccine based on an HVT vector into which is inserted at least one sequence coding for an avian immunogen, in particular the protein VP2 of IBDV. Such a vaccine incorporating a sequence coding for VP2 ensures satisfactory protection of animals against Gumboro disease, namely protection against mortality and damage to the bursa of Fabricius.
La présente invention a pour objet un vaccin vivant recombinant aviaire comprenant, comme vecteur , un virus de la maladie de Marek, notamment HVT, comprenant au moins une sé¬ quence nucléotidique codant pour, et exprimant , un polypeptide antigénique d ' un agent pathogène aviaire , insérée dans le gène UL13 sous le contrôle du promoteur CMV immédiate early.The subject of the present invention is a live recombinant avian vaccine comprising, as vector, a Marek's disease virus, in particular HVT, comprising at least one nucleotide sequence encoding and expressing an antigenic polypeptide of an avian pathogenic agent. , inserted into the UL13 gene under the immediate early CMV promoter control.
Par insertion dans le gène UL13, on entend aussi bien la simple insertion dans ce gène sans délétion de celui-ci, que l'insertion après délétion totale ou partielle. On préfère l'insertion après délétion partielle.By insertion into the UL13 gene is meant both the simple insertion into this gene without deletion thereof, and the insertion after total or partial deletion. We prefer insertion after partial deletion.
Par prcπϋteur CMV immédiate early (IE) ,on entend notamnent le fragment do né dans les exemples ainsi que ses sσus-f ragments conservant la m&ne acti vite pr totrice.By immediate early CMV precursor (IE), is meant in particular the fragment do born in the examples as well as its sσus-f ragments retaining the m & ne fast-acting acti.
Le promoteur CMV IE peut être le promoteur humain (HCMV IE ou le promoteur murin (MCMV IE), ou encore un promoteur CMV IE d'une autr origine, par exemple du rat ou du cochon d'Inde.The CMV IE promoter can be the human promoter (HCMV IE or the murine promoter (MCMV IE), or a CMV IE promoter from another origin, for example from the rat or guinea pig.
La séquence nucléotidique insérée dans le vecteur Marek pour êtr exprimée peut être toute séquence codant pour un polypeptide antigénique, d'un agent pathogène aviaire, capable, une fois exprimé dans les conditions favorables procurées par l'invention, d'assurer une immunisation conduisan à une protection efficace de l'animal vacciné contre l'agent pathogène. O pourra donc insérer, dans les conditions de l'invention, les séquence nucléotidiques codant pour les antigènes d'intérêt pour une maladie donnée.The nucleotide sequence inserted into the Marek vector to be expressed may be any sequence coding for an antigenic polypeptide, of an avian pathogenic agent, capable, once expressed under the favorable conditions provided by the invention, of ensuring immunization leading to effective protection of the animal vaccinated against the pathogen. O can therefore insert, under the conditions of the invention, the nucleotide sequences coding for the antigens of interest for a given disease.
Les vaccins selon l'invention pourront être utilisés pour la vaccination in ovo, des poussins d' 1 jour ou plus âgés et des adultes.The vaccines according to the invention may be used for in ovo vaccination, chicks 1 day or older and adults.
L'invention peut notamment être utilisée pour l'insertion d'un séquence nucléotidique codant convenablement pour le polypeptide VP2 du virus IBDV. On obtient ainsi un vaccin vivant recombinant assurant, en plu d'une protection contre la maladie de Marek, une protection satisfaisante contr la maladie de Gumboro. Si on le souhaite, on peut aussi insérer une séquenc codant pour un autre antigène d'IBDV, tel que VP3 ou encore la polyprotéin VP2 + VP4 + VP3, ces autres possibilités n'étant pas préférées. Le vaccin recombinant contre la maladie de Gumboro se présenter de préférence sous de 10 à 104 PFU/dose.The invention can in particular be used for the insertion of a nucleotide sequence coding suitably for the polypeptide VP2 of the IBDV virus. A recombinant live vaccine is thus obtained ensuring, in addition to protection against Marek's disease, satisfactory protection against Gumboro disease. If desired, it is also possible to insert a sequence coding for another IBDV antigen, such as VP3 or even the polyprotein VP2 + VP4 + VP3, these other possibilities not being preferred. The recombinant vaccine against Gumboro disease should preferably be presented at between 10 and 10 4 PFU / dose.
D'autres cas préférés de l'invention sont l'insertion de séquence nucléotidiques codant pour des antigènes du virus de la maladie de Marek, en particulier gènes gB, gC, gD et gH + gL (WO-A-90 02803), du virus de la maladie de Newcastle, en particulier gènes F et HN, du virus de la bronchite infectieuse (IBV), en particulier gènes S et M (M. Binns et al., J. Gen. Virol. 1985. 66. 719-726 ; M. Boursnell et al., Virus Research 1984. 1. 303-313), du virus de l'anémie aviaire (CAV), en particulier VP1 (52 kDa) + VP2 (24 kDa) (N.H.M. Noteborn et al., J. Virol. 1991. 65. 3131 -3139) et du virus de la laryngotrachéite infectieuse (ILTV), en particulier gB (WO-A-9002802), gC, gD et gH + gL. Les doses seront de préférence les mêmes que celles indiquées pour le vaccin Gumboro.Other preferred cases of the invention are sequence insertion nucleotides encoding antigens of the Marek disease virus, in particular gB, gC, gD and gH + gL genes (WO-A-90 02803), of Newcastle disease virus, in particular F and HN genes, infectious bronchitis virus (IBV), in particular S and M genes (M. Binns et al., J. Gen. Virol. 1985. 66. 719-726; M. Boursnell et al., Virus Research 1984. 1. 303-313), avian anemia virus (CAV), in particular VP1 (52 kDa) + VP2 (24 kDa) (NHM Noteborn et al., J. Virol. 1991. 65. 3131 -3139) and infectious laryngotracheitis virus (ILTV), in particular gB (WO-A-9002802), gC, gD and gH + gL. The doses will preferably be the same as those indicated for the Gumboro vaccine.
Selon un développement avantageux de l'invention, on associe au promoteur CMV IE un autre promoteur selon une disposition tête-bêche, ce qui permet d'insérer, dans la région d'insertion, deux séquences nucléotidiques, l'une sous la dépendance du promoteur CMV IE, l'autre sous celle du promoteur associé. Cette construction est remarquable par le fait que la présence du promoteur CMV IE, et notamment de sa partie activatrice (enhancer), active la transcription induite par le promoteur associé. Un promoteur associé préféré est le promoteur Marek RNA1.8, dont l'activité de transcription s'est révélée multipliée par 4,4 environ dans ces conditions.According to an advantageous development of the invention, the promoter CMV IE is associated with another promoter in a head-to-tail arrangement, which makes it possible to insert, into the insertion region, two nucleotide sequences, one dependent on the CMV IE promoter, the other under that of the associated promoter. This construction is remarkable by the fact that the presence of the CMV IE promoter, and in particular of its activating part (enhancer), activates the transcription induced by the associated promoter. A preferred associated promoter is the Marek RNA1.8 promoter, the transcription activity of which has been shown to be approximately multiplied by 4.4 under these conditions.
Un cas intéressant de l'invention est un vaccin comprenant une séquence nucléotidique codant pour VP2 d'IBDV sous le contrôle de CMV IE et une séquence nucléotidique codant pour un antigène d'une autre maladie aviaire, notamment celles citées plus haut, sous le contrôle de l'autre promoteur.An interesting case of the invention is a vaccine comprising a nucleotide sequence coding for IBDV VP2 under the control of CMV IE and a nucleotide sequence coding for an antigen of another avian disease, in particular those mentioned above, under the control from the other promoter.
On peut aussi monter tête-bêche deux promoteurs CMV IE d'origines différentes.We can also head up two CMV IE promoters from different origins.
Le promoteur RNA1.8 pourra aussi être utilisé seul à la place du promoteur CMV IE, notamment pour des vaccins contre la maladie de Marek, la maladie de Newcastle, la laryngotrachéite infectieuse, la bronchite infectieuse et l'anémie aviaire.The RNA1.8 promoter may also be used alone in place of the CMV IE promoter, in particular for vaccines against Marek's disease, Newcastle disease, infectious laryngotracheitis, infectious bronchitis and avian anemia.
La présente invention a aussi pour objet une formule de vaccin multivalent, comprenant, en mélange ou à mélanger, au moins deux vaccins vivants recombinants aviaires tels que définis plus haut, ces vaccins comprenant des séquences insérées différentes, notamment de pathogènes différents. La présente invention a aussi pour objet une méthode de vaccination aviaire comprenant l'administration d'un vaccin vivant recombinant ou d'une formule de vaccin multivalent tel que défini plus haut. Elle a notamment pour objet une telle méthode pour la vaccination in ovo, des poussins d'1 jour ou plus et des adultes. L'invention va être maintenant décrite plus en détail à l'aide d'exemples de réalisation non limitatifs, pris en référence au dessin, dans lequel : The present invention also relates to a vaccine formula multivalent, comprising, as a mixture or as a mixture, at least two recombinant live avian vaccines as defined above, these vaccines comprising different inserted sequences, in particular of different pathogens. The present invention also relates to a method of avian vaccination comprising the administration of a live recombinant vaccine or of a multivalent vaccine formula as defined above. It relates in particular to such a method for vaccination in ovo, chicks of 1 day or more and adults. The invention will now be described in more detail with the aid of nonlimiting exemplary embodiments, taken with reference to the drawing, in which:
Liste des figures et des séquences pour les constructions dans le site UL13List of figures and sequences for constructions in the UL13 site
Figure 1 : Séquence HVT Us région gl Figure 2 : Construction des plasmides pRD022 et pRD027 Figure 3 : Construction des plasmides pRD023 et pRD029 Figure 4 : plasmide pCMVβ Figure 5 : plasmide pEL022 Figure 6 : plasmide pEL023 Figure 7 : plasmide pEL024 Figure 8 : plasmide pEL025 Figure 9 : Séquence partielle fragment HVT BamHI D Figure 10 plasmide pMB025 Figure 11 plasmide pMB031 Figure 12 plasmide pMB032 Figure 13 plasmide pEL026 Figure 14 plasmide pMB033 Figure 15 plasmide pCD002 Figure 16 plasmide pCDOOΘ Figure 17 plasmide pEL068 Figure 18 plasmide pEL070 Figure 19 plasmide pEL074 Figure 20 plasmide pCD01 1 Figure 21 plasmide pCD020 Figure 22 plasmide pEL084 Figure 23 Séquence du gène NDV HN Figure 24 plasmide pEL028 Figure 25 plasmide pEL029bis Figure 26 plasmide pEL030 Figure 27 plasmide pEL032 Figure 28 plasmide pEL085 Figure 29 plasmide pEL033 Figure 30 plasmide pEL034 Figure 31 : plasmide pEL086Figure 1: HVT sequence U s gl region Figure 2: Construction of plasmids pRD022 and pRD027 Figure 3: Construction of plasmids pRD023 and pRD029 Figure 4: plasmid pCMVβ Figure 5: plasmid pEL022 Figure 6: plasmid pEL023 Figure 7: plasmid pEL024 Figure 8: plasmid pEL025 Figure 9: Partial sequence HVT BamHI D fragment Figure 10 plasmid pMB025 Figure 11 plasmid pMB031 Figure 12 plasmid pMB032 Figure 13 plasmid pEL026 Figure 14 plasmid pMB033 Figure 15 plasmid pCD002 Figure 16 plasmid pCDOOΘ Figure 17 plasmid pEL068 Figure 18 plasmid pEL070 Figure 19 pEL074 Figure 20 plasmid pCD01 1 Figure 21 plasmid pCD020 Figure 22 plasmid pEL084 Figure 23 Sequence of the NDV HN gene Figure 24 plasmid pEL028 Figure 25 plasmid pEL029bis Figure 26 plasmid pEL030 Figure 27 plasmid pEL032 Figure 28 plasmid pEL085 Figure 29 plasmid pEL034 Figure 30 plasmid pEL034 Figure 31: plasmid pEL086
Figure 32 : Séquence du promoteur MDV RNA 1.8 kpbFigure 32: Sequence of the MDV RNA promoter 1.8 kbp
Figure 33 : plasmide pBS002Figure 33: plasmid pBS002
Figure 34 : plasmide pEL069 Figure 35 : plasmide pELOδOFigure 34: plasmid pEL069 Figure 35: plasmid pELOδO
Figure 36 : plasmide pEL081Figure 36: plasmid pEL081
Figure 37 : plasmide pEL087Figure 37: plasmid pEL087
Figure 38 : plasmide pEL097 Figure 38: plasmid pEL097
Liste des séquences SEQ ID pour les constructions dans le site UL13List of SEQ ID sequences for constructions in the UL13 site
SEQ ID N° 1 Oligonuclétide RD045SEQ ID N ° 1 Oligonucletide RD045
SEQ ID N° 2 Oligonucléotide pBRPst-SEQ ID N ° 2 Oligonucleotide pBRPst-
SEQ ID N° 3 Séquence HVU Us région gl SEQ ID N° 4 Oligonucléotide RD048SEQ ID N ° 3 HVU sequence U s gl region SEQ ID N ° 4 Oligonucleotide RD048
SEQ ID N° 5 Oligonucléotide RD049SEQ ID N ° 5 Oligonucleotide RD049
SEQ ID N° 6 Séquence partielle du fragment HVT BamHI DSEQ ID N ° 6 Partial sequence of the HVT BamHI D fragment
SEQ ID N° 7 Oligonucléotide PB047SEQ ID N ° 7 Oligonucleotide PB047
SEQ ID N° 8 Oligonucléotide MB057 SEQ ID N° 9 Oligonucléotide MB070SEQ ID N ° 8 Oligonucleotide MB057 SEQ ID N ° 9 Oligonucleotide MB070
SEQ ID N° 10 Oligonucléotide MB071SEQ ID N ° 10 Oligonucleotide MB071
SEQ ID N° 11 Oligonucléotide CD001SEQ ID N ° 11 Oligonucleotide CD001
SEQ ID N° 12 Oligonucléotide CD002SEQ ID No. 12 Oligonucleotide CD002
SEQ ID N° 13 Oligonucléotide CD003 SEQ ID N° 14 Oligonucléotide CD004SEQ ID N ° 13 Oligonucleotide CD003 SEQ ID N ° 14 Oligonucleotide CD004
SEQ ID N° 15 Séquence du gène NDV HNSEQ ID N ° 15 NDV HN gene sequence
SEQ ID N° 16 Oligonucléotide EL071SEQ ID N ° 16 Oligonucleotide EL071
SEQ ID N° 17 Oligonucléotide EL073SEQ ID N ° 17 Oligonucleotide EL073
SEQ ID ° 18 Oligonucléotide EL074 SEQ ID N° 19 Oligonucléotide EL075SEQ ID No. 18 Oligonucleotide EL074 SEQ ID No. 19 Oligonucleotide EL075
SEQ ID N° 20 Oligonucléotide EL076SEQ ID N ° 20 Oligonucleotide EL076
SEQ ID N° 21 Oligonucléotide EL077SEQ ID N ° 21 Oligonucleotide EL077
SEQ ID N° 22 Séquence du promoteur MDV RNA 1.8 kpbSEQ ID N ° 22 Sequence of promoter MDV RNA 1.8 kpb
SEQ ID N° 23 Oligonucléotide MB047 SEQ ID N° 24 Oligonucléotide MB048SEQ ID N ° 23 Oligonucleotide MB047 SEQ ID N ° 24 Oligonucleotide MB048
SEQ ID N° 25 Oligonucléotide MB072 2. EXEMPLESSEQ ID N ° 25 Oligonucleotide MB072 2. EXAMPLES
Toutes les constructions de plasmides ont été réalisées en utilisant les techniques standards de biologie moléculaire décrites par Sambrook J. et al. (Molecular Cloning: A Laboratory Manual. 2° Edition. Cold Spring Harbor Laboratory. Cold Spring Harbor. New York. 1989). Tous les fragments de restriction utilisés pour la présente invention ont été isolés en utilisant le kit "Geneclean" (BIO101 Inc. La Jolla, CA).All the plasmid constructions were carried out using the standard molecular biology techniques described by Sambrook J. et al. (Molecular Cloning: A Laboratory Manual. 2nd Edition. Cold Spring Harbor Laboratory. Cold Spring Harbor. New York. 1989). All the restriction fragments used for the present invention were isolated using the "Geneclean" kit (BIO101 Inc. La Jolla, CA).
Le virus utilisé comme virus parental est la souche FC126 de l'herpèsvirus de la dinde (HVT) isolé par le Dr. Witter du Régional Poultry Research Laboratory (USDA, East Lansing, Michigan), dans un troupeau de dindes de 23 semaines (Witter R.L. et al. Am. J. Vet. Res. 1970. 31. 525-538). Les conditions de culture de ce virus sont celles décrites par ailleurs (demande de brevet français 90 03105).The virus used as the parental virus is the strain FC126 of the herpesvirus of the turkey (HVT) isolated by Dr. Witter of the Regional Poultry Research Laboratory (USDA, East Lansing, Michigan), in a flock of turkeys of 23 weeks (Witter RL et al. Am. J. Vet. Res. 1970. 31. 525-538). The culture conditions for this virus are those described elsewhere (French patent application 90 03105).
Exemple 1 : Extraction de l'ADN du virus de la maladie de Marek: Le sang total d'un poulet éprouvé à 7 jours avec la souche MDV RB1 B est récolté avec une seringue sur anticoagulant (solution d'héparine à 100 Ul/ml) 14 jours après infection. Ce sang est ensuite centrifugé à 30 g pendant 15 minutes à température ambiante. Le plasma ainsi que le "buffy-coat" sont prélevés et dilués dans du PBS stérile pour avoir un volume final de 10 ml. Après une centrifugation de 5 minutes à 150 g, le culot cellulaire est resuspendu dans 2 ml de milieu de culture 199 (Gibco-BRL Cat# 042-01 183M) contenant 2 % de sérum de veau foetal (SVF)).EXAMPLE 1 Extraction of DNA from Marek's Disease Virus: The whole blood of a chicken tested at 7 days with the strain MDV RB1 B is collected with a syringe on anticoagulant (heparin solution at 100 IU / ml ) 14 days after infection. This blood is then centrifuged at 30 g for 15 minutes at room temperature. The plasma and the "buffy-coat" are removed and diluted in sterile PBS to have a final volume of 10 ml. After a 5-minute centrifugation at 150 g, the cell pellet is resuspended in 2 ml of culture medium 199 (Gibco-BRL Cat # 042-01 183M) containing 2% fetal calf serum (SVF)).
L'ADN total des lymphocytes infectés est ensuite extrait selon la technique décrite par R. Morgan et al. (Avian Diseases. 1990. 34. 345-351) et peut directement servir de matrice pour les expériences de PCR. Pour le clonage de fragments génomiques du virus MDV, la souche RB1 B a été cultivée sur CEP et l'ADN viral a été préparé à partir de particules virales purifiées comme décrit par Lee Y. et al. (J. Gen. Virol. 1980. 51. 245-253). Exemple 2: Préparation de l'ADN αénomioue du virus MCMV (Mouse CytoMeαaloVirus)The total DNA of the infected lymphocytes is then extracted according to the technique described by R. Morgan et al. (Avian Diseases. 1990. 34. 345-351) and can directly serve as a template for PCR experiments. For the cloning of genomic fragments of the MDV virus, the RB1 B strain was cultured on CEP and the viral DNA was prepared from purified viral particles as described by Lee Y. et al. (J. Gen. Virol. 1980. 51. 245-253). EXAMPLE 2 Preparation of the DNA of the MCMV Virus (Mouse CytoMeαaloVirus)
Le virus MCMV souche Smith a été obtenu de l'American Type Culture Collection, Rockville, Maryland, USA (ATCC N° VR-194). Ce virus a été cultivé sur cellules d'embryon de souris Balb/C et l'ADN viral de ce virus a été préparé comme décrit par Ebeling A. ét al. (J. Virol. 1983. 47. 421-433).The MCMV virus strain Smith was obtained from the American Type Culture Collection, Rockville, Maryland, USA (ATCC No. VR-194). This virus was cultured on Balb / C mouse embryo cells and the viral DNA of this virus was prepared as described by Ebeling A. et al. (J. Virol. 1983. 47, 421-433).
Exemple 3: Préparation de l'ADN αénomiαue du virus HVT pour les expériences de transfection:Example 3 Preparation of the DNA of the HVT Virus for Transfection Experiments:
L'ADN viral utilisé pour les expériences de transfection a été préparé selon la technique décrite par R. Morgan et al. (Avian Diseases.1990. 34. 345-351 ) à partir d'une culture de CEP secondaires (CEP II) infectées avec la souche FC126 du virus HVT.The viral DNA used for the transfection experiments was prepared according to the technique described by R. Morgan et al. (Avian Diseases. 1990, 34, 345-351) from a culture of secondary CEPs (CEP II) infected with the FC126 strain of the HVT virus.
Construction des virus recombinantsConstruction of recombinant viruses
Exemple 4: Construction et isolement de vHVT1 La construction du plasmide donneur pGH010, l'isolement et la purification du virus recombinant vHVT1 ont été décrits dans la demande de brevet français 92.13109. Ce virus HVT recombinant contient le gène codant pour la protéine de capside VP2 du virus de la maladie de Gumboro (virus "IBDV") placé sous le contrôle du promoteur du gène RR2 du virus HVT. Dans ce virus recombinant, le gène VP2 a été inséré à la place du gène HVT RR2.Example 4: Construction and isolation of vHVT1 The construction of the donor plasmid pGH010, the isolation and the purification of the recombinant virus vHVT1 were described in French patent application 92.13109. This recombinant HVT virus contains the gene coding for the capsid protein VP2 of the Gumboro disease virus ("IBDV" virus) placed under the control of the promoter of the RR2 gene of the HVT virus. In this recombinant virus, the VP2 gene was inserted in place of the HVT RR2 gene.
Exemple 5: Construction du plasmide donneur pEL025 et isolement de vHVT2Example 5: Construction of the donor plasmid pEL025 and isolation of vHVT2
5.1 . Construction du plasmide donneur pEL0255.1. Construction of the donor plasmid pEL025
Le fragment BamHI A de 29 kpb du virus HVT souche FC126 (Igarashi T. et al. Virology. 1989. 70. 1789-1804) a été clone dans le site BamHI du vecteur pBR322 pour donner le plasmide pRDOOl . Le plasmide pRDOOl a été digéré par Pstl et les fragments Pstl-Pstl 2,8 kpb et 5,7 kpb ont été clones dans le site Pstl du vecteur pBR322 pour donner respectivement les plasmides pRD006 et pRD007. Le plasmide pRD006 a été digéré par Pstl et Sacl pour isoler le fragment Pstl-Sacl de 340 pb (fragment A). Une PCR a été réalisée avec les oligonucléotides: RD045 (SEQ ID N0 1 )The 29 kbp BamHI A fragment of the HVT virus strain FC126 (Igarashi T. et al. Virology. 1989. 70. 1789-1804) was cloned into the BamHI site of the vector pBR322 to give the plasmid pRDOOl. The plasmid pRDOOl was digested with Pstl and the Pstl-Pstl fragments 2.8 kbp and 5.7 kbp were cloned into the Pst1 site of the vector pBR322 to give the plasmids pRD006 and pRD007 respectively. Plasmid pRD006 was digested with Pstl and Sacl to isolate the 340 bp Pstl-Sacl fragment (fragment A). A PCR was carried out with the oligonucleotides: RD045 (SEQ ID N 0 1)
5' TGCTGGTACCGTCGACAAGCTTGGATCCGTGCAGATAACACGTACTGGC 3' pBRPst- (SEQ ID N° 2) 5' CATGTAACTCGCCTTGATC 3' et la matrice pRD007 pour obtenir un fragment de 550 pb (positions (339) à 831 sur la figure 1 (SEQ ID N° 3) (positions 6491 à 6980 sur la séquence HVT Us (Zelnik V. et al. J. Gen. Virol.1993. 74. 2151-2162). Le fragment PCR de 520 pb a été ensuite digéré par Kpnl et Pstl pour isoler un fragment Pstl-Kpnl de 520 pb (fragment B). Les fragments A et B ont été ligaturés ensemble avec le vecteur pBS-SK + (Stratagene), préalablement digéré par Kpnl et Sacl pour donner le plasmide pRD022 (figure 2). Le plasmide pRD007 a été digéré par Sali et Xhol pour isoler le fragment Sall-Xhol de 730 pb (positions 1876 à 2608 sur SEQ ID N° 1 ) (positions 6491 à 6980 sur la séquence HVT Us (Zelnik V. ét al. J. Gen. Virol.1993. 74. 2151 -2162). Ce fragment a été clone dans le site Sali du vecteur pBS-SK -i- pour donner le plasmide pRD027 (figure 2). Un oligonucléotide synthétique double brin a été obtenu par hybridation des deux oligonucléotides suivants: RD048 (SEQ ID N° 4) 5' GATCCAGCTGAATTCAGCTA 3' RD049 (SEQ ID N° 5) 5' AGCTTAAGCTGAATTCAGCTG 3'5 'TGCTGGTACCGTCGACAAGCTTGGATCCGTGCAGATAACACGTACTGGC 3' pBRPst- (SEQ ID N ° 2) 5 'CATGTAACTCGCCTTGATC 3' and the matrix pRD007 to obtain a fragment of 550 bp (positions (339) to 831 in figure 1 (SEQ ID N ° 3) 6491 to 6980 on the HVT U s sequence (Zelnik V. et al. J. Gen. Virol. 1993. 74. 2151-2162) The 520 bp PCR fragment was then digested with Kpnl and Pstl to isolate a Pstl fragment -Kpnl of 520 bp (fragment B). The fragments A and B were ligated together with the vector pBS-SK + (Stratagene), previously digested with Kpnl and Sac1 to give the plasmid pRD022 (FIG. 2). The plasmid pRD007 a was digested with Sali and Xhol to isolate the 730 bp Sall-Xhol fragment (positions 1876 to 2608 on SEQ ID No. 1) (positions 6491 to 6980 on the HVT U s sequence (Zelnik V. et al. J. Gen. Virol. 1993. 74. 2151 -2162) This fragment was cloned into the SalI site of the vector pBS-SK -i to give the plasmid pRD027 (FIG. 2). A synthesized oligonucleotide double stranded tick was obtained by hybridization of the following two oligonucleotides: RD048 (SEQ ID N ° 4) 5 'GATCCAGCTGAATTCAGCTA 3' RD049 (SEQ ID N ° 5) 5 'AGCTTAAGCTGAATTCAGCTG 3'
Cet oligonucléotide a été clone entre les sites BamHI et Hindlll du plasmide pRD022 pour donner le plasmide pRD023 (figure 3). Le plasmide pCMVβ (Clontech Cat# 6177-1 ) (figure 4) a été digéré par EcoRI et Sali pour isoler le fragment EcoRI-Sall de 4500 pb contenant la cassette d'expression HCMV- IE =lacZ (fragment C). Le plasmide pRD027 a été digéré par Hindlll et Xhol pour isoler le fragment Hindlll-Xhol de 730 pb (fragment D). Les fragments C et D ont été ligaturés ensemble avec le plasmide pRD023, préalablement digéré par EcoRI et Hindlll, pour donner le plasmide pRD029 de 8973 pb (figure 3). Ce plasmide contient la cassette d'expression HCMV-IE =lacZ dans le site gl (délétion complète) du virus HVT.This oligonucleotide was cloned between the BamHI and HindIII sites of the plasmid pRD022 to give the plasmid pRD023 (Figure 3). The plasmid pCMVβ (Clontech Cat # 6177-1) (FIG. 4) was digested with EcoRI and SalI to isolate the EcoRI-SalI fragment of 4500 bp containing the expression cassette HCMV-IE = lacZ (fragment C). Plasmid pRD027 was digested with HindIII and Xhol to isolate the HindIII-Xhol fragment of 730 bp (fragment D). Fragments C and D were ligated together with the plasmid pRD023, previously digested with EcoRI and HindIII, to give the plasmid pRD029 of 8973 bp (FIG. 3). This plasmid contains the expression cassette HCMV-IE = lacZ in the gl site (complete deletion) of the HVT virus.
Le plasmide pEL004 ( = plasmide pGH004 décrit dans la demande de brevet français 92.13109) contenant le gène IBDV VP2 sous forme d'une cassette BamHI-Hindlll a été digéré par BamHI et Xbal pour isoler le fragment BamHI- Xbal (gène VP2 tronqué) de 1 104 pb. Ce fragment a été clone dans le vecteur pBS-SK + , préalablement digéré avec Xbal et BamHI pour donner le plasmide pEL022 de 4052 pb (figure 5). Le vecteur pBS-SK + a été digéré par EcoRV et Xbal, puis ligaturé sur lui-même pour donner pBS-SK* (modifié). Le plasmide pEL004 a été digéré par Kpnl et Hindlll pour isoler le fragment Kpnl-Hindlll de 1387 pb contenant le gène IBDV VP2 complet. Ce fragment a été clone dans le vecteur pBS-SK*, préalablement digéré par Kpnl et Hindlll, pour donner le plasmide pEL023 de 4292 pb (figure 6). Le plasmide pEL022 a été digéré par BamHI et Notl pour isoler le fragment BamHI-Notl de 1122 pb (fragment A). Le plasmide pEL023 a été digéré par BamHI et Notl pour isoler le fragment BamHI- Notl de 333 pb (fragment B). Les fragments A et B ont été ligaturés ensemble avec le vecteur pBS-SK + , préalablement digéré par Notl et traité avec la phosphatase alcaline, pour donner le plasmide pEL024 de 4369 pb (figure 7). Le plasmide pEL024 a été ensuite digéré par Notl pour isoler le fragment Notl- Notl de 1445 pb. Ce fragment a été clone dans le plasmide pRD029, préalablement digéré par Notl et traité avec la phosphatase alcaline, pour donner le plasmide pEL025 de 6904 pb (figure 8). 5.2. Isolement et purification du recombinant vHVT2 Le plasmide pEL025 a été digéré par Sali pour linéarisation, puis extrait avec un mélange phénol/chloroforme ( 19: 1 ), précipité avec de l'éthanol absolu, et repris dans de l'eau stérile.Plasmid pEL004 (= plasmid pGH004 described in French patent application 92.13109) containing the IBDV VP2 gene in the form of a cassette BamHI-Hindlll was digested with BamHI and Xbal to isolate the BamHI-Xbal fragment (truncated VP2 gene) of 1,104 bp. This fragment was cloned into the vector pBS-SK +, previously digested with Xbal and BamHI to give the plasmid pEL022 of 4052 bp (FIG. 5). The vector pBS-SK + was digested with EcoRV and Xbal, then ligated on itself to give pBS-SK * (modified). Plasmid pEL004 was digested with Kpnl and Hindlll to isolate the Kpnl-Hindlll fragment of 1387 bp containing the complete IBDV VP2 gene. This fragment was cloned into the vector pBS-SK *, previously digested with Kpnl and Hindlll, to give the plasmid pEL023 of 4292 bp (FIG. 6). The plasmid pEL022 was digested with BamHI and NotI to isolate the BamHI-NotI fragment of 1122 bp (fragment A). The plasmid pEL023 was digested with BamHI and NotI to isolate the BamHI-NotI fragment of 333 bp (fragment B). Fragments A and B were ligated together with the vector pBS-SK +, previously digested with NotI and treated with alkaline phosphatase, to give the plasmid pEL024 of 4369 bp (FIG. 7). Plasmid pEL024 was then digested with NotI to isolate the 1445 bp NotI-NotI fragment. This fragment was cloned into the plasmid pRD029, previously digested with NotI and treated with alkaline phosphatase, to give the plasmid pEL025 of 6904 bp (FIG. 8). 5.2. Isolation and purification of the recombinant vHVT2 The plasmid pEL025 was digested with SalI for linearization, then extracted with a phenol / chloroform mixture (19: 1), precipitated with absolute ethanol, and taken up in sterile water.
Des cellules CEP primaires de 24 heures ont ensuite été transfectées avec le mélange suivant: 1 μg de plasmide pEL025 linéarisé + 5 μg d'ADN viral d'HVT dans 300 μ\ de milieu OptiMEM (Gibco BRL Cat# 041-01985H) et 100 μg de LipofectAMINE dilués dans 300 μ\ de milieu (volume final du mélange = 600 μ\). Ces 600μl ont ensuite été dilués dans 3 ml (volume final) de milieu et étalés sur 3.106 CEP I. Le mélange a été laissé en contact avec les cellules pendant 5 heures, puis éliminé et remplacé par 5 ml de milieu de culture. Les cellules ont alors été laissées en culture pendant 3 jours à + 37°C, puis elles ont été pronasées, mélangées à des CEP II fraîches (mélange 3:1 ), et réétalées sur 1 plaque 96 puits. Cette plaque a été laissée en culture pendant 3 jours, puis les cellules ont été pronasées, mélangées à des CEP II fraîches, et réétalées sur 2 plaques de 96 puits, une cupule initiale donnant 2 cupules soeurs. Les plaques 96 puits ont été mises en culture jusqu'à apparition d'un effet cytopathique. Après 72 heures de culture, une des deux plaques 96 puits a été fixée à l'acétone 95% pendant 30 minutes et une réaction d'immunofluorescence indirecte (IFI) a été réalisée avec un anticorps monoclonal anti-VP2 pour rechercher les plages exprimant la protéine VP2. Les cupules "soeurs" des cupules présentant des plages positives en IFI ont été pronasées, mélangées à des CEP II fraîches, et déposées en dilution limite sur des plaques 96 puits. Après 3 jours de culture, les cupules présentant un effet cytopathique ont été pronasées, mélangées à des CEP H, et réétalées sur des plaques 96 puits, une cupule initiale donnant 2 cupules soeurs. 3 jours après, les plages exprimant la protéine VP2 ont été à nouveau recherchées comme précédemment par IFI sur l'une des 2 plaques soeurs. En général, 4 cycles d'isolement successifs (récolte d'une cupule, réétalement, contrôle par IFI, repiquage d'un cupule soeur...) suffisent pour obtenir des virus recombinants dont la totalité de la progénie présente une fluorescence spécifique. Une plage virale ayant donné 100 % de plages positives en IFI avec un anticorps monoclonal anti-VP2 a été désignée vHVT2. L'ADN génomique de ce virus recombinant a été caractérisé au niveau moléculaire par des techniques classiques de PCR et de Southern blot en utilisant les oligonucléotides et les sondes d'ADN appropriés. Ce recombinant contient une cassette HCMV-IE/IBDV VP2 à la place du gène gl du virus HVT.Primary 24-hour CEP cells were then transfected with the following mixture: 1 μg of linearized pEL025 plasmid + 5 μg of viral HVT DNA in 300 μ \ of OptiMEM medium (Gibco BRL Cat # 041-01985H) and 100 μg of LipofectAMINE diluted in 300 μ \ of medium (final volume of the mixture = 600 μ \). These 600 μl were then diluted in 3 ml (final volume) of medium and spread on 3.10 6 CEP I. The mixture was left in contact with the cells for 5 hours, then eliminated and replaced with 5 ml of culture medium. The cells were then left in culture for 3 days at + 37 ° C., then they were pronased, mixed with fresh CEP II (mixture 3: 1), and re-spread on 1 96-well plate. This plate was left in culture for 3 days, then the cells were pronased, mixed with fresh CEP II, and re-spread on 2 96-well plates, an initial well giving 2 sister wells. The 96-well plates were cultured until the appearance of a cytopathic effect. After 72 hours of culture, one of the two 96-well plates was fixed with 95% acetone for 30 minutes and an indirect immunofluorescence reaction (IFI) was carried out with an anti-VP2 monoclonal antibody to find the plaques expressing the VP2 protein. The “sister” wells of the wells having positive IFI plaques were pronased, mixed with fresh CEP II, and deposited in limiting dilution on 96-well plates. After 3 days of culture, the wells showing a cytopathic effect were pronased, mixed with CEP H, and re-spread on 96-well plates, an initial well giving 2 sister wells. 3 days later, the plaques expressing the VP2 protein were again searched as previously by IFI on one of the 2 sister plates. In general, 4 successive isolation cycles (harvesting of a cup, re-spreading, control by IFI, subculturing of a sister cup, etc.) are sufficient to obtain recombinant viruses whose entire progeny exhibit specific fluorescence. A viral range which gave 100% of positive ranges in IFI with an anti-VP2 monoclonal antibody was designated vHVT2. The genomic DNA of this recombinant virus has been characterized at the molecular level by standard PCR and Southern blot techniques using the appropriate oligonucleotides and DNA probes. This recombinant contains an HCMV-IE / IBDV VP2 cassette in place of the gl gene of the HVT virus.
Exemple 6: Construction du plasmide donneur pMB033 et isolement de vHVT5 6.1. Construction du plasmide donneur pMB033Example 6: Construction of the donor plasmid pMB033 and isolation of vHVT5 6.1. Construction of the donor plasmid pMB033
Le fragment BamHI D de 14,5 kpb du virus HVT souche FC126 (Igarashi T. et al. Virology. 1989. 70. 1789-1804) a été clone dans le vecteur pBR322 pour donner le plasmide pRD066. La séquence partielle de ce fragment a été établie sur 5471 pb (figure 9 et SEQ ID N° 6). Cette séquence contient l'ORF homologue du gène HSV-1 UL13. Cette ORF s'étend de la position 1493 à la position 3037 sur SEQ ID N° 6 et code pour une protéine théorique désignée HVT UL13 de 514 acides aminés (aa). Le plasmide pRD066 a été digéré par BamHI et Hindlll pour isoler les fragments Hindlll-Hindlll de 2,0 kpb (fragment A) et BamHI-Hindlll de 6,5 kpb (fragment B). Le fragment A a été clone dans le site Hindlll du vecteur pBS-SK + pour donner le plasmide pMB007. Le fragment B a été clone entre les sites BamHI et Hindlll du vecteur pBS-SK + pour donner le plasmide pMB013. Le plasmide pMB013 a été digéré par Sali et Spel pour isoler le fragment Sall-Spel de 850 pb. Ce fragment a été ligaturé avec le vecteur pBS-SK + , préalablement digéré par Sali et Xbal, pour donner le plasmide pMB025 (figure 10). Le plasmide pMB013 a été digéré par Ncol et Hindlll pour isoler le fragment Hindlll-Ncol de 3,8 kpb. Ce fragment a été ligaturé avec le vecteur pBS-SK + , préalablement digéré par Hindlll et Ncol, pour donner le plasmide pMB017. Le plasmide pMB007 a été digéré par EcoRI, traité avec la polymérase Klenow, et digéré par Hindlll pour isoler le fragment Hindlll- bout franc de 850 pb. Ce fragment a été ligaturé avec le vecteur pBS-SK + , préalablement digéré par Apal, traité avec la polymérase Klenow, puis digéré par Hindlll, pour donner le plasmide pMB031 (figure 1 1 ). Le plasmide pMB025 a été digéré par Kpnl et Sali pour isoler le fragment Kpnl-Sall de 3700 pb (fragment A). Le plasmide pMB031 a été digéré par Kpnl et Hindlll pour isoler le fragment Kpnl-Hindlll de 850 pb (fragment B). Une réaction PCR a été réalisée avec les 2 oligonucléotides suivants:The 14.5 kbp BamHI D fragment of the HVT virus strain FC126 (Igarashi T. et al. Virology. 1989. 70. 1789-1804) was cloned into the vector pBR322 to give the plasmid pRD066. The partial sequence of this fragment was established on 5471 bp (Figure 9 and SEQ ID No. 6). This sequence contains the ORF homologous to the HSV-1 UL13 gene. This ORF extends from position 1493 to position 3037 on SEQ ID No. 6 and codes for a designated theoretical protein HVT UL13 of 514 amino acids (aa). The plasmid pRD066 was digested with BamHI and Hindlll to isolate the Hindlll-Hindlll fragments of 2.0 kbp (fragment A) and BamHI-Hindlll of 6.5 kbp (fragment B). Fragment A was cloned into the HindIII site of the vector pBS-SK + to give the plasmid pMB007. Fragment B was cloned between the BamHI and HindIII sites of the vector pBS-SK + to give the plasmid pMB013. Plasmid pMB013 was digested with SalI and Spel to isolate the 850 bp Sall-Spel fragment. This fragment was ligated with the vector pBS-SK +, previously digested with Sali and Xbal, to give the plasmid pMB025 (FIG. 10). The plasmid pMB013 was digested with Ncol and Hindlll to isolate the Hindlll-Ncol fragment of 3.8 kbp. This fragment was ligated with the vector pBS-SK +, previously digested with HindIII and Ncol, to give the plasmid pMB017. Plasmid pMB007 was digested with EcoRI, treated with Klenow polymerase, and digested with Hindlll to isolate the Hindlll-free end fragment of 850 bp. This fragment was ligated with the vector pBS-SK +, previously digested with Apal, treated with Klenow polymerase, then digested with Hindlll, to give the plasmid pMB031 (Figure 11). Plasmid pMB025 was digested with Kpnl and SalI to isolate the Kpnl-SalI fragment of 3700 bp (fragment A). Plasmid pMB031 was digested with Kpnl and Hindlll to isolate the Kpnl-Hindlll fragment of 850 bp (fragment B). A PCR reaction was carried out with the following 2 oligonucleotides:
PB047 (SEQ ID N° 7) 5' GTAAAACGACGGCCAGT 3'PB047 (SEQ ID N ° 7) 5 'GTAAAACGACGGCCAGT 3'
MB057 (SEQ ID N° 8)MB057 (SEQ ID N ° 8)
5'GTGTGGTCGACGGATCCCGGGCATGCGAATTCTTTATTGGGACTGTTCGCGCGTTCCAC 3' et la matrice pMB017 pour produire un fragment PCR de 540 pb. Ce fragment a été digéré par Hindlll et Sali pour isoler un fragment Hindlll-Sall de 500 pb (fragment C).5'GTGTGGTCGACGGATCCCGGGCATGCGAATTCTTTATTGGGACTGTTCGCGCGTTCCAC 3 'and the matrix pMB017 to produce a 540 bp PCR fragment. This fragment was digested with Hindlll and SalI to isolate a Hindlll-SalI fragment of 500 bp (fragment C).
Les fragments A, B et C ont été ligaturés ensemble pour donner le plasmide pMB032 de 5050 pb (figure 12). Le bras flanquant 5' de ce plasmide a une taille de 1226 pb (positions 564 à 1789 sur SEQ ID N° 6) et contient les 99 aa N-terminaux de HVT UL13. Le bras flanquant 3' a une taille de 854 pb (positions 2559 à 3412 sur SEQ ID N° 6) et contient les 158 aa C-terminaux de HVT UL13. Le plasmide pMB032 introduit donc une délétion de 770 pb (257 aa) dans l'ORF HVT UL13 lors de la recombinaison avec l'ADN génomique du virus HVT. Le plasmide pEL024 (voir exemple 5) a été digéré par Notl pour isoler le fragment Notl-Notl de 1445 pb. Ce fragment a été ligaturé avec le plasmide pCMVβ, préalablement digéré par Notl, pour donner le plasmide pEL026 de 5095 pb (figure 13). Le plasmide pEL026 a été digéré par Asp700, EcoRI et Sali pour isoler le fragment EcoRI-Sall de 2400 pb (cassette HCMV- IE/IBDV VP2). Ce fragment a été ligaturé avec le plasmide pMB032, préalablement digéré par EcoRI et Sali pour donner le plasmide pMB033 de 7412 pb (figure 14). 6.2. Isolement et purification du recombinant vHVTδFragments A, B and C were ligated together to give the plasmid pMB032 of 5050 bp (Figure 12). The 5 ′ flanking arm of this plasmid has a size of 1226 bp (positions 564 to 1789 on SEQ ID No. 6) and contains the 99 aa N-terminals of HVT UL13. The 3 'flanking arm has a size of 854 bp (positions 2559 to 3412 on SEQ ID No. 6) and contains the 158 aa C-terminals of HVT UL13. The plasmid pMB032 therefore introduces a deletion of 770 bp (257 aa) in the ORF HVT UL13 during the recombination with the genomic DNA of the HVT virus. The plasmid pEL024 (see example 5) was digested with NotI to isolate the NotI-NotI fragment of 1445 bp. This fragment was ligated with the plasmid pCMVβ, previously digested with NotI, to give the plasmid pEL026 of 5095 bp (FIG. 13). The plasmid pEL026 was digested with Asp700, EcoRI and SalI to isolate the EcoRI-SalI fragment of 2400 bp (HCMV-IE / IBDV VP2 cassette). This fragment was ligated with the plasmid pMB032, previously digested with EcoRI and SalI to give the plasmid pMB033 of 7412 bp (FIG. 14). 6.2. Isolation and purification of the recombinant vHVTδ
Une co-transfection avec le plasmide pMB033 linéarisé par Kpnl et Pvull et l'ADN viral d'HVT a été réalisée comme décrit dans l'exemple 5. Les conditions d'isolement et de purification des plages virales recombinantes issues de cette co-transfection ont été celles décrites dans l'exemple 5. Une plage virale ayant donné 100 % de plages positives en IFI avec un anticorps monoclonal anti-IBDV VP2 a été désignée vHVTδ. L'ADN génomique de ce virus recombinant a été caractérisé au niveau moléculaire par des techniques classiques de PCR et de Southern blot en utilisant les oligonucléotides et les sondes d'ADN appropriés.A co-transfection with the plasmid pMB033 linearized with Kpnl and Pvull and the viral DNA of HVT was carried out as described in Example 5. The conditions for isolation and purification of the recombinant viral plaques resulting from this co-transfection were those described in Example 5. A viral range which gave 100% of positive ranges in IFI with an anti-IBDV VP2 monoclonal antibody was designated vHVTδ. The genomic DNA of this recombinant virus has been characterized at the molecular level by standard PCR and Southern blot techniques using the appropriate oligonucleotides and DNA probes.
Exemple 7: Construction du plasmide donneur pEL074 et isolement de vHVT11Example 7: Construction of the donor plasmid pEL074 and isolation of vHVT11
Le plasmide pCMVβ (figure 4) a été digéré par Sali et Smal pour isoler le fragment Sall-Smal de 3679 pb contenant le gène lacZ ainsi que le signal de polγ-adénγlation du gène tardif du virus SV40. Ce fragment a été inséré dans le vecteur pBS-SK + (Stratagene), préalablement digéré par Sali et EcoRV, pour donner le plasmide pCD002 de 6625 pb (figure 15). Ce plasmide contient le gène reporter lacZ mais aucun promoteur n'est situé en amont de ce gène. L'ADN génomique viral du virus MCMV a été préparé comme décrit dans l'exemple 2 et digéré par Pstl pour isoler le fragment Pstl-Pstl de 2285 pb. Ce fragment a été clone dans le vecteur pBS-SK + , préalablement digéré par Pstl et traité avec la phosphatase alcaline, pour donner le plasmide pCD004. Le plasmide pCD004 a été digéré par Hpal et Pstl pour isoler le fragment Hpal-Pstl de 1389 pb qui contient la région promotrice/activatrice du gène Immediate- Early du cytomόgalovirus murin (Murine CytoMegaloVirus = MCMV) (Dorsch- Hâsler K. et al. Proc. Natl. Acad. Sci. 1985. 82. 8325-8329, et demande de brevet WO-A-87/03905). Ce fragment a été clone dans le plasmide pCD002 préalablement digéré par Pstl et Smal, pour donner le plasmide pCD009 de 8007 pb (figure 16). Un oligonucléotide double brin a été obtenu par hybridation des deux oligonucléotides suivants : MB070 (SEQ ID N° 9) 5' CGAATTCACTAGTGTGTGTCTGCAGGCGGCCGCGTGTGTGTCGACGGTAC 3' MB071 (SEQ ID N° 10)The plasmid pCMVβ (FIG. 4) was digested with SalI and Smal to isolate the Sall-Smal fragment of 3679 bp containing the lacZ gene as well as the polγ-adenγlation signal from the late gene of the SV40 virus. This fragment was inserted into the vector pBS-SK + (Stratagene), previously digested with Sali and EcoRV, to give the plasmid pCD002 of 6625 bp (FIG. 15). This plasmid contains the lacZ reporter gene but no promoter is located upstream of this gene. The viral genomic DNA of the MCMV virus was prepared as described in Example 2 and digested with Pstl to isolate the Pstl-Pstl fragment of 2285 bp. This fragment was cloned into the vector pBS-SK +, previously digested with Pst1 and treated with alkaline phosphatase, to give the plasmid pCD004. Plasmid pCD004 was digested with Hpal and Pstl to isolate the Hpal-Pstl fragment of 1389 bp which contains the promoter / activator region of the Immediate-Early gene of the murine cytomόgalovirus (Murine CytoMegaloVirus = MCMV) (Dorsch-Hâsler K. et al. Proc. Natl. Acad. Sci. 1985. 82. 8325-8329, and patent application WO-A-87/03905). This fragment was cloned into the plasmid pCD002 previously digested with Pstl and SmaI, to give the plasmid pCD009 of 8007 bp (FIG. 16). A double-stranded oligonucleotide was obtained by hybridization of the following two oligonucleotides: MB070 (SEQ ID No. 9) 5 'CGAATTCACTAGTGTGTGTCTGCAGGCGGCCGCGTGTGTGTCGACGGTAC 3' MB071 (SEQ ID No. 10)
5' CGTCGACACACACGCGGCCGCCTGCAGACACACACTAGTGAATTCGAGCT 3' Cet oligonucléotide double brin a été ligaturé dans le vecteur pBS-SK + , préalablement digéré par Kpnl et Sacl, pour donner le plasmide pEL067. Le plasmide pCD009 a été digéré par Pstl et Spel pour isoler le fragment Pstl-Spel de 1396 pb. Ce fragment a été ligaturé avec le plasmide pEL067, préalablement5 'CGTCGACACACACGCGGCCGCCTGCAGACACACACTAGTGAATTCGAGCT 3' This double-stranded oligonucleotide was ligated into the vector pBS-SK +, previously digested with Kpnl and Sac1, to give the plasmid pEL067. Plasmid pCD009 was digested with Pstl and Spel to isolate the Pstl-Spel fragment of 1396 bp. This fragment was ligated with the plasmid pEL067, previously
I digéré par Pstl et Spel, pour donner le plasmide pEL068 de 4297 pb (figure 17). Le plasmide pEL026 (voir exemple 6) a été digéré par Hindlll et Sali pour isoler le fragment Hindlll-Sall de 235 pb (fragment B). Les fragments A et B ont été ligaturés ensemble avec le plasmide pEL068, préalablement digéré par Notl et Sali, pour donner le plasmide pEL070 de 5908 pb (figure 18). Le plasmide pEL070 a été digéré par EcoRI, Sali et Xmnl pour isoler le fragment EcoRI-Sall de 3035 pb. Ce fragment a été ligaturé avec le plasmide pMB032 (voir exemple 6), préalablement digéré par EcoRI et Sali, pour donner le plasmide pEL074 de 8006 pb (figure 19). Ce plasmide permet l'insertion de la cassette MCMV- IE/IBDV VP2 dans le site UL13 du virus HVT.I digested with Pstl and Spel, to give the plasmid pEL068 of 4297 bp (FIG. 17). The plasmid pEL026 (see example 6) was digested with HindIII and SalI to isolate the Hindlll-SalI fragment of 235 bp (fragment B). Fragments A and B were ligated together with the plasmid pEL068, previously digested with NotI and SalI, to give the plasmid pEL070 of 5908 bp (FIG. 18). The plasmid pEL070 was digested with EcoRI, SalI and Xmnl to isolate the EcoRI-SalI fragment of 3035 bp. This fragment was ligated with the plasmid pMB032 (see example 6), previously digested with EcoRI and SalI, to give the plasmid pEL074 of 8006 bp (FIG. 19). This plasmid allows the insertion of the MCMV-IE / IBDV VP2 cassette into the UL13 site of the HVT virus.
Une co-transfection réalisée, comme décrit dans l'exemple 5, avec le plasmide pEL074 et l'ADN génomique du virus HVT a conduit à l'isolement et à la purification du recombinant vHVT1 1.A co-transfection carried out, as described in Example 5, with the plasmid pEL074 and the genomic DNA of the HVT virus led to the isolation and purification of the recombinant vHVT1 1.
Exemple 8: Construction du plasmide donneur pEL084 et isolement de vHVT12 Le fragment EcoRI-Sall de 3,9 kpb de l'ADN génomique du virus MDV souche RB1 B contenant le gène MDV gB (séquence publiée par Ross N. et al. J. Gen. Virol. 1989. 70. 1789-1804) a été ligaturé avec le vecteur pUC13, préalablement digéré par EcoRI et Sali, pour donner le plasmide pCD007. Ce plasmide a été digéré par Sacl et Xhol pour isoler le fragment Sacl-Xhol de 2260 pb (partie centrale du gène gB = fragment A). Une PCR a été réalisée avec les oligonucléotides suivants: CD001 (SEQ ID N° 1 1 )Example 8 Construction of the donor plasmid pEL084 and isolation of vHVT12 The 3.9 kbp EcoRI-SalI fragment of the genomic DNA of the MDV virus strain RB1 B containing the MDV gB gene (sequence published by Ross N. et al. J. Gen. Virol. 1989. 70, 1789-1804) was ligated with the vector pUC13, previously digested with EcoRI and SalI, to give the plasmid pCD007. This plasmid was digested with Sac1 and Xhol to isolate the Sac1-Xhol fragment of 2260 bp (central part of the gB gene = fragment A). A PCR was carried out with the following oligonucleotides: CD001 (SEQ ID No. 11)
5' GACTGGTACCGCGGCCGCATGCACTTTTTAGGCGGAATTG 3' CD002 (SEQ ID N° 1 2) 5' TTCGGGACATTTTCGCGG 3' et la matrice pCD007 pour produire un fragment PCR de 222 pb. Ce fragment a été digéré par Kpnl et Xbal pour isoler un fragment Kpnl-Xbal de 190 pb (extrémité 5' du gène gB = fragment B). Une autre PCR a été réalisée avec les oligonucléotides suivants:5 'GACTGGTACCGCGGCCGCATGCACTTTTTAGGCGGAATTG 3' CD002 (SEQ ID N ° 1 2) 5 'TTCGGGACATTTTCGCGG 3' and the matrix pCD007 to produce a PCR fragment of 222 bp. This fragment was digested with Kpnl and Xbal to isolate a Kpnl-Xbal fragment of 190 bp (5 'end of the gB gene = fragment B). Another PCR was carried out with the following oligonucleotides:
CD003 (SEQ ID N° 1 3) 5' TATATGGCGTTAGTCTCC 3' CD004 (SEQ ID N° 14) 5' TTGCGAGCTCGCGGCCGCTTATTACACAGCATCATCTTCTG 3' et la matrice pCD007 pour produire un fragment PCR de 1 95 pb. Ce fragment a été digéré par Sacl et Sacll pour isoler le fragment Sacl-Sacll de 1 62 pb (extrémité 3' du gène gB = fragment C). Les fragments A, B et C ont été ligaturés ensemble avec le vecteur pBS-SK + , préalablement digéré par Kpnl et Sacl, pour donner le plasmide pCD01 1 de 5485 pb (figure 20). Le plasmide pCD01 1 a été digéré par Notl pour isoler le fragment Notl-Notl de 2608 pb (gène MDV gB entier). Ce fragment a été ligaturé avec le plasmide pCMVβ, préalablement digéré par Notl et traité avec la phosphatase alcaline, pour donner le plasmide pCD020 de 6299 pb (figure 21 ) (Dans ce plasmide, le gène MDV gB remplace le gène lacZ) . Le plasmide pCD020 a été digéré par EcoRI et Sali pour isoler le fragment EcoRI-Sall de 3648 pb. Ce fragment a été ligaturé avec le plasmide pMB032 (voir exemple 6), préalablement digéré par EcoRI et Sali, pour donner le plasmide pEL084 de 861 5 pb (figure 22). Ce plasmide permet l'insertion de la cassette d'expression HCMV-IE/MDV gB dans le site UL1 3 du virus HVT.CD003 (SEQ ID N ° 1 3) 5 'TATATGGCGTTAGTCTCC 3' CD004 (SEQ ID N ° 14) 5 'TTGCGAGCTCGCGGCCGCTTATTACACAGCATCATCTTCTG 3' and the matrix pCD007 to produce a PCR fragment of 1 95 bp. This fragment was digested with Sac1 and Sacll to isolate the Sacl-Sacll fragment of 1662 bp (3 'end of the gB gene = fragment C). Fragments A, B and C were ligated together with the vector pBS-SK +, previously digested with Kpnl and Sacl, to give the plasmid pCD01 1 of 5485 bp (FIG. 20). Plasmid pCD01 1 was digested with NotI to isolate the NotI-NotI fragment of 2608 bp (whole MDV gB gene). This fragment was ligated with the plasmid pCMVβ, previously digested with NotI and treated with alkaline phosphatase, to give the plasmid pCD020 of 6299 bp (FIG. 21) (In this plasmid, the MDV gB gene replaces the lacZ gene). The plasmid pCD020 was digested with EcoRI and SalI to isolate the EcoRI-SalI fragment of 3648 bp. This fragment was ligated with the plasmid pMB032 (see example 6), previously digested with EcoRI and SalI, to give the plasmid pEL084 of 861 5 bp (FIG. 22). This plasmid allows the insertion of the HCMV-IE / MDV gB expression cassette into the UL13 site of the HVT virus.
Une co-transfection réalisée, comme décrit dans l'exemple 5, avec le plasmide pEL084 et l'ADN génomique du virus HVT a conduit à l'isolement et à la purification du recombinant vHVT12.A co-transfection carried out, as described in Example 5, with the plasmid pEL084 and the genomic DNA of the HVT virus led to the isolation and the purification of the recombinant vHVT12.
Exemple 9: Construction du plasmide donneur pEL085 et isolement de vHVT13Example 9: Construction of the donor plasmid pEL085 and isolation of vHVT13
La constitution d'une banque d'ADN complémentaire du génome du virus de la maladie de Newcastle (NDV), souche Texas, a été réalisée comme décrit par Taylor J. ét al. (J. Virol. 1990. 64. 1441 -1450). Un clone pBR322 contenant la fin du gène fusion (F), la totalité du gène hémagglutinine-neuraminidase (HN) et le début du gène de la polymérase a été identifié pHN01. La séquence du gène NDV HN contenue sur ce clone est présentée sur la figure 23 (SEQ ID N° 15). Le plasmide pHN01 a été digéré par Sphl et Xbal pour isoler le fragment Sphl-Xbal de 2520 pb. Ce fragment a été ligaturé avec le vecteur pUC19, préalablement digéré par Sphl et Xbal, pour donner le plasmide pHN02 de 5192 pb. Le plasmide pHN02 a été digéré par Clal et Pstl pour isoler le fragment Clal- Pstl de 700 pb (fragment A). Une PCR a été réalisée avec les oligonucléotides suivants: EL071 (SEQ ID N° 16) 5' CAGACCAAGCTTCTTAAATCCC 3' EL073 (SEQ ID N° 17) 5' GTATTCGGGACAATGC 3' et la matrice pHN02 pour produire un fragment PCR de 270 pb. Ce fragment a été digéré par Hindlll et Pstl pour isoler un fragment Hindlll-Pstl de 220 pb (fragment B). Les fragments A et B ont été ligaturés ensemble avec le vecteur pBS-SK + , préalablement digéré par Clal et Hindlll, pour donner le plasmide pEL028 de 3872 pb (figure 24). Le plasmide pHN02 a été digéré par Bsphl et Clal pour isoler le fragment Bsphl-Clal de 425 pb (fragment C). Une PCR a été réalisée avec les oligonucléotides suivants: EL074 (SEQ ID N° 18) 5' GTGACATCACTAGCGTCATCC 3' E L 0 7 5 ( S E Q I D N ° 1 9 ) 5 'The constitution of a DNA bank complementary to the genome of the Newcastle disease virus (NDV), Texas strain, was carried out as described by Taylor J. et al. (J. Virol. 1990. 64. 1441 -1450). A clone pBR322 containing the end of the fusion gene (F), the entire hemagglutinin-neuraminidase (HN) gene and the start of the polymerase gene was identified pHN01. The sequence of the NDV HN gene contained in this clone is presented in FIG. 23 (SEQ ID No. 15). Plasmid pHN01 was digested with Sphl and Xbal to isolate the Sphl-Xbal fragment of 2520 bp. This fragment was ligated with the vector pUC19, previously digested with Sphl and Xbal, to give the plasmid pHN02 of 5192 bp. The plasmid pHN02 was digested with Clal and Pstl to isolate the Clal-Pstl fragment of 700 bp (fragment A). A PCR was carried out with the following oligonucleotides: EL071 (SEQ ID No. 16) 5 'CAGACCAAGCTTCTTAAATCCC 3' EL073 (SEQ ID No. 17) 5 'GTATTCGGGACAATGC 3' and the pHN02 template to produce a PCR fragment of 270 bp. This fragment was digested with Hindlll and Pstl to isolate a Hindlll-Pstl fragment of 220 bp (fragment B). Fragments A and B were ligated together with the vector pBS-SK +, previously digested with ClaI and HindIII, to give the plasmid pEL028 of 3872 bp (FIG. 24). Plasmid pHN02 was digested with Bsphl and ClaI to isolate the Bsphl-ClaI fragment of 425 bp (fragment C). A PCR was carried out with the following oligonucleotides: EL074 (SEQ ID N ° 18) 5 'GTGACATCACTAGCGTCATCC 3' E L 0 7 5 (S E Q I D N ° 1 9) 5 '
CCGCATCATCAGCGGCCGCGATCGGTCATGGACAGT 3' et la matrice pHN02 pour produire un fragment PCR de 425 pb. Ce fragment a été digéré par Bsphl et Notl pour isoler le fragment Bsphl-Notl de 390 pb (fragment D). Les fragments C et D ont été ligaturés ensemble avec le vecteur pBS-SK -ι- , préalablement digéré par Clal et Notl, pour donner le plasmide pEL029bis de 3727 pb (figure 25). Le plasmide pEL028 a été digéré par Clal et Sacll pour isoler le fragment Clal-Sacll de 960 pb (fragment E). Le plasmide pEL029bis a été digéré par Clal et Notl pour isoler le fragment Clal-Notl de 820 pb (fragment F). Les fragments E et F ont été ligaturés ensemble avec le vecteur pBS-SK + , préalablement digéré par Notl et Sacll, pour donner le plasmide pEL030 de 4745 pb (figure 26). Le plasmide pEL030 a été digéré par Notl pour isoler le fragment Notl-Notl de 1780 pb (gène NDV HN entier). Ce fragment a été ligaturé, à la place du gène lacZ, avec le plasmide pCMVβ, préalablement digéré par Notl et traité avec la phophatase alcaline, pour donner le plasmide pEL032 de 5471 pb (figure 27). Le plasmide pEL032 a été digéré par EcoRI et Clal pour isoler le fragment EcoRI-Clal de 1636 pb (fragment G). Le plasmide pEL032 a été digéré par Clal et Sali pour isoler le fragment Clal-Sall de 1 182 pb (fragment H). Les fragments G et H ont été ligaturés ensemble avec le plasmide pMB032 (voir exemple 6), préalablement digéré par EcoRI et Sali, pour donner le plasmide pEL085 de 7787 pb (figure 28). Ce plasmide permet l'insertion de la cassette d'expression HCMV-IE/NDV HN dans le site UL13 du virus HVT.CCGCATCATCAGCGGCCGCGATCGGTCATGGACAGT 3 'and the pHN02 template to produce a 425 bp PCR fragment. This fragment was digested with Bsphl and Notl to isolate the Bsphl-Notl fragment of 390 bp (fragment D). Fragments C and D were ligated together with the vector pBS-SK -ι-, previously digested with ClaI and NotI, to give the plasmid pEL029bis of 3727 bp (FIG. 25). Plasmid pEL028 was digested with ClaI and Sacll to isolate the Clal-Sacll fragment of 960 bp (fragment E). The plasmid pEL029bis was digested with ClaI and NotI to isolate the ClaI-NotI fragment of 820 bp (fragment F). Fragments E and F were ligated together with the vector pBS-SK +, previously digested with NotI and Sacll, to give the plasmid pEL030 of 4745 bp (FIG. 26). Plasmid pEL030 was digested with NotI to isolate the 1780 bp NotI-NotI fragment (whole NDV HN gene). This fragment was ligated, in place of the lacZ gene, with the plasmid pCMVβ, previously digested with NotI and treated with alkaline phophatase, to give the plasmid pEL032 of 5471 bp (FIG. 27). The plasmid pEL032 was digested with EcoRI and ClaI to isolate the EcoRI-ClaI fragment of 1636 bp (fragment G). The plasmid pEL032 was digested with ClaI and SalI to isolate the ClaI-SalI fragment of 1,182 bp (fragment H). Fragments G and H were ligated together with the plasmid pMB032 (see example 6), previously digested with EcoRI and SalI, to give the plasmid pEL085 of 7787 bp (FIG. 28). This plasmid allows the insertion of the HCMV-IE / NDV HN expression cassette into the UL13 site of the HVT virus.
Une co-transfection réalisée, comme décrit dans l'exemple 5, avec le plasmide pEL084 et l'ADN génomique du virus HVT a conduit à l'isolement et à la purification du recombinant vHVT13.A co-transfection carried out, as described in Example 5, with the plasmid pEL084 and the genomic DNA of the HVT virus led to the isolation and purification of the recombinant vHVT13.
Exemple 10: Construction du plasmide donneur pEL086 et isolement de vHVT14Example 10: Construction of the donor plasmid pEL086 and isolation of vHVT14
Un clone provenant de la banque d'ADN complémentaire du génome du virus de la maladie de Newcastle (voir exemple 9) et contenant le gène fusion (F) en entier a été appelé pNDV81. Ce plasmide a été décrit précédemment et la séquence du gène NDV F a été publiée (Taylor J. et al. J. Virol. 1990. 64. 1441 -1450). Le plasmide pNDV81 a été digéré par Narl et Pstl pour isoler le fragment Narl-Pstl de 1870 pb (fragment A). Une PCR a été réalisée avec les oligonucléotides suivants: EL076 (SEQ ID N° 20) 5' TGACCCTGTCTGGGATGA 3' EL077 (SEQ ID N° 21 )A clone originating from the DNA library complementary to the genome of the Newcastle disease virus (see example 9) and containing the entire fusion (F) gene was called pNDV81. This plasmid has been described previously and the NDV F gene sequence has been published (Taylor J. et al. J. Virol. 1990. 64. 1441 -1450). The plasmid pNDV81 was digested with Narl and Pstl to isolate the Narl-Pstl fragment of 1870 bp (fragment A). A PCR was carried out with the following oligonucleotides: EL076 (SEQ ID No. 20) 5 'TGACCCTGTCTGGGATGA 3' EL077 (SEQ ID No. 21)
5' GGATCCCGGTCGACACATTGCGGCCGCAAGATGGGC 3' et la matrice pNDV81 pour produire un fragment de 160 pb. Ce fragment a été digéré par Pstl et Sali pour isoler le fragment Pstl-Sall de 130 pb (fragment B). Les fragments A et B ont été ligaturés ensemble avec le vecteur pBS-SK + , préalablement digéré par Clal et Sali, pour donner le plasmide pEL033 de 4846 pb (figure 29). Le plasmide pEL033 a été digéré par Notl pour isoler le fragment Notl-Notl de 1935 pb (gène F entier). Ce fragment a été ligaturé avec le plasmide pCMVβ, préalablement digéré par Notl et traité avec la phosphatase alcaline, pour donner le plasmide pEL034 de 5624 pb (le gène NDV F a remplacé le gène lacZ) (figure 30). Le plasmide pEL034 a été digéré par EcoRI et Kpnl pour isoler le fragment EcoRI-Kpnl de 866 pb (fragment C). Le plasmide pEL032 a été digéré par Kpnl et Sali pour isoler le fragment Kpnl-Sall de 21 14 pb (fragment D). Les fragments C et D ont été ligaturés ensemble avec le plasmide pMB032 (voir exemple 6), préalablement digéré par EcoRI et Sali, pour donner le plasmide pEL086 de 7940 pb (figure 31 ). Ce plasmide permet l'insertion de la cassette d'expression HCMV-IE/NDV F dans le site UL13 du virus HVT.5 'GGATCCCGGTCGACACATTGCGGCCGCAAGATGGGC 3' and the pNDV81 matrix to produce a 160 bp fragment. This fragment was digested with Pstl and SalI to isolate the Pstl-SalI fragment of 130 bp (fragment B). Fragments A and B were ligated together with the vector pBS-SK +, previously digested with ClaI and SalI, to give the plasmid pEL033 of 4846 bp (FIG. 29). Plasmid pEL033 was digested with NotI to isolate the 1935 bp NotI-NotI fragment (whole F gene). This fragment was ligated with the plasmid pCMVβ, previously digested with NotI and treated with alkaline phosphatase, to give the plasmid pEL034 of 5624 bp (the NDV F gene replaced the lacZ gene) (FIG. 30). Plasmid pEL034 was digested with EcoRI and Kpnl to isolate the EcoRI-Kpnl fragment of 866 bp (fragment C). Plasmid pEL032 was digested with Kpnl and SalI to isolate the Kpnl-SalI fragment of 21 14 bp (fragment D). Fragments C and D were ligated together with the plasmid pMB032 (see example 6), previously digested with EcoRI and SalI, to give the plasmid pEL086 of 7940 bp (FIG. 31). This plasmid allows the insertion of the HCMV-IE / NDV F expression cassette into the UL13 site of the HVT virus.
Une co-transfection réalisée, comme décrit dans l'exemple 5, avec le plasmide pEL086 et l'ADN génomique du virus HVT a conduit à l'isolement et à la purification du recombinant vHVT14.A co-transfection carried out, as described in Example 5, with the plasmid pEL086 and the genomic DNA of the HVT virus led to the isolation and the purification of the recombinant vHVT14.
Exemple 11 : Construction du plasmide donneur pEL087 et isolement de vHVT15Example 11: Construction of the donor plasmid pEL087 and isolation of vHVT15
Les séquences situées en amont du gène MDV RNA 1.8 kpb sont décrites dans Bradley G. et al. (J. Virol. 1989. 63. 2534-2542) (figure 32 et SEQ ID N° 22). Une amplification PCR a été réalisée à partir d'ADN extrait de lymphocytes récoltés sur des poulets infectés par la souche MDV RB1 B (voir exemple 1 ) avec les oligonucléotides suivants:The sequences located upstream of the 1.8 kbp MDV RNA gene are described in Bradley G. et al. (J. Virol. 1989. 63. 2534-2542) (Figure 32 and SEQ ID No. 22). PCR amplification was carried out using DNA extracted from lymphocytes harvested from chickens infected with the MDV RB1 B strain (see example 1) with the following oligonucleotides:
MB047 (SEQ ID N° 23) 5' GGTCTACTAGTATTGGACTCTGGTGCGAACGC 3' MB048 (SEQ ID N° 24) 5' GTCCAGAATTCGCGAAGAGAGAAGGAACCTC 3' Le fragment PCR de 163 pb ainsi obtenu a été digéré par EcoRI et Spel, puis ligaturé avec le plasmide pCD002 (voir exemple 7), préalablement digéré par EcoRI et Spel, pour donner le plasmide pBS002 de 6774 pb (figure 33). Le plasmide pBS002 contient le promoteur du gène MDV RNA 1 .8 kb clone en amont du gène lacZ.MB047 (SEQ ID N ° 23) 5 'GGTCTACTAGTATTGGACTCTGGTGCGAACGC 3' MB048 (SEQ ID N ° 24) 5 'GTCCAGAATTCGCGAAGAGAGAAGGAACCTC 3' The 163 bp PCR fragment thus obtained was digested with EcoRI and Spel, then ligated with the plasmid pCD2 Example 7), previously digested with EcoRI and Spel, to give the plasmid pBS002 of 6774 bp (FIG. 33). The plasmid pBS002 contains the promoter of the MDV RNA 1 .8 kb gene cloned upstream of the lacZ gene.
Une PCR a été réalisée avec les oligonucléotides: MB047 (SEQ ID N° 23) et MB072 (SEQ ID N° 25)A PCR was carried out with the oligonucleotides: MB047 (SEQ ID N ° 23) and MB072 (SEQ ID N ° 25)
5' GTGTCCTGCAGTCGCGAAGAGAGAAGGAACCTC 3' et la matrice pBS002. Le fragment PCR ainsi obtenu a été digéré par Pstl et Spel pour isoler un fragment Pstl-Spel de 200 pb. Ce fragment a été ligaturé avec le plasmide pEL067 (voir exemple 7), préalablement digéré par Pstl et Spel, pour donner le plasmide pEL069 (figure 34). Le plasmide pCD007 (voir exemple 8) a été digéré par EcoRI et Xbal pour isoler le fragment EcoRI-Xbal de 2670 pb (fragment A). Le plasmide pCD01 1 (voir exemple 8) a été digéré par Notl et Xbal pour isoler le fragment Notl-Xbal de 180 pb (fragment B). Le plasmide pEL069 a été digéré par Notl et Spel pour isoler le fragment Notl-Spel de 1 80 pb (fragment C). Les fragments A, B et C ont été ligaturés ensemble avec le plasmide pEL067 (voir exemple 7), préalablement digéré par EcoRI et Spel, pour donner le plasmide pELOδO de 5939 pb (figure 35). Le plasmide pEL070 (voir exemple 7) a été digéré par Kpnl et Spel pour isoler le fragment Kpnl-Spel de 1 345 pb (fragment D). Le plasmide pEL070 a aussi été digéré par Kpnl et Sali pour isoler le fragment Kpnl-Sall de 1 658 pb (fragment E). Les fragments D et E ont été ligaturés ensemble avec le plasmide pEL080, préalablement digéré par Sali et Spel, pour donner le plasmide pEL081 de 8938 pb (figure 36). Le plasmide pEL081 a été digéré par EcoRI et Sali pour isoler le fragment EcoRI-Sall de 6066 pb. Ce fragment a été ligaturé avec le plasmide pMB032 (voir exemple 6), préalablement digéré par EcoRI et Sali, pour donner finalement le plasmide pEL087 de 1 1036 pb (figure 37). Ce plasmide permet d'insérer la double cassette d'expression VP2/MCMV-IE//RNA 1 .8 kpb/MDV gB dans le site UL1 3 du virus HVT. Une co-transfection réalisée, comme décrit dans l'exemple 5, avec le plasmide pEL087 et l'ADN génomique du virus HVT a conduit à l'isolement et à la purification du recombinant vHVT1 5. Exemple 12: Construction du plasmide donneur pEL097 et isolement de VHVT235 'GTGTCCTGCAGTCGCGAAGAGAGAAGGAACCTC 3' and the matrix pBS002. The PCR fragment thus obtained was digested with Pstl and Spel to isolate a Pstl-Spel fragment of 200 bp. This fragment was ligated with the plasmid pEL067 (see example 7), previously digested with Pstl and Spel, to give the plasmid pEL069 (FIG. 34). Plasmid pCD007 (see Example 8) was digested with EcoRI and Xbal to isolate the EcoRI-Xbal fragment of 2670 bp (fragment A). The plasmid pCD01 1 (see example 8) was digested with NotI and Xbal to isolate the NotI-Xbal fragment of 180 bp (fragment B). Plasmid pEL069 was digested with NotI and Spel to isolate the NotI-Spel fragment of 180 bp (fragment C). The fragments A, B and C were ligated together with the plasmid pEL067 (see example 7), previously digested with EcoRI and Spel, to give the plasmid pELOδO of 5939 bp (FIG. 35). The plasmid pEL070 (see example 7) was digested with Kpnl and Spel to isolate the Kpnl-Spel fragment of 1345 bp (fragment D). Plasmid pEL070 was also digested with Kpnl and SalI to isolate the Kpnl-SalI fragment of 1658 bp (fragment E). Fragments D and E were ligated together with the plasmid pEL080, previously digested with Sali and Spel, to give the plasmid pEL081 of 8938 bp (FIG. 36). Plasmid pEL081 was digested with EcoRI and SalI to isolate the EcoRI-SalI fragment of 6066 bp. This fragment was ligated with the plasmid pMB032 (see example 6), previously digested with EcoRI and SalI, to finally give the plasmid pEL087 of 1106 bp (FIG. 37). This plasmid makes it possible to insert the double expression cassette VP2 / MCMV-IE // RNA 1.8 kbp / MDV gB into the UL1 3 site of the HVT virus. A co-transfection carried out, as described in Example 5, with the plasmid pEL087 and the genomic DNA of the HVT virus led to the isolation and purification of the recombinant vHVT1 5. Example 12: Construction of the donor plasmid pEL097 and isolation of VHVT23
Le plasmide pELOδO (voir exemple 1 1 ) a été digéré par EcoRI et Sali pour isoler le fragment EcoRI-Sall de 3040 pb (cassette RNA 1 .8 kpb / MDV gB). Ce fragment a été ligaturé avec le plasmide pMB032 (voir exemple 6), préalablement digéré par EcoRI et Sali, pour donner le plasmide pEL097 de 8037 pb (figure 38). Ce plasmide permet l'insertion de la cassette RNA 1 .8 kpb / MDV gB dans le site UL13 du virus HVT.The plasmid pELOδO (see example 11) was digested with EcoRI and SalI to isolate the EcoRI-SalI fragment of 3040 bp (RNA cassette 1.8 kbp / MDV gB). This fragment was ligated with the plasmid pMB032 (see example 6), previously digested with EcoRI and SalI, to give the plasmid pEL097 of 8037 bp (FIG. 38). This plasmid allows the insertion of the RNA 1 .8 kbp / MDV gB cassette into the UL13 site of the HVT virus.
Une co-transfection réalisée, comme décrit dans l'exemple 5, avec le plasmide pEL097 et l'ADN génomique du virus HVT a conduit à l'isolement du recombinant vHVT23.A co-transfection carried out, as described in Example 5, with the plasmid pEL097 and the genomic DNA of the HVT virus led to the isolation of the recombinant vHVT23.
Exemple 13: Construction de plasmides donneurs pour l'insertion de cassettes d'expression IBV M et S dans le site UL13 du virus HVTExample 13 Construction of Donor Plasmids for the Insertion of IBV M and S Expression Cassettes into the UL13 Site of the HVT Virus
Selon la même stratégie que celle décrite plus haut pour l'insertion de cassettes d'expression (gènes placés sous le contrôle des promoteurs HCMV-IE ouAccording to the same strategy as that described above for the insertion of expression cassettes (genes placed under the control of the HCMV-IE promoters or
MCMV-IE ou double promoteur MCMV-IE//RNA 1 .8 kpb) dans le site UL13, il est possible de réaliser des virus HVT recombinants exprimant à un niveau élevé les protéines membrane (M) ou spike (S) du virus de la bronchite infectieuse aviaire (IBV). On réalise de préférence une construction où le gène IBV S est sous la dépendance du promoteur HCMV-IE ou du promoteur MCMV-IE, ou bien une construction où les gènes IBV M et IBV S sont insérés ensemble avec le double promoteur MCMV-IE/RNA 1 .8 kpb dans le site UL13, le gène M étant sous le contrôle du promoteur RNA 1 .8 kpb et le gène S étant sous le contrôle du promoteur MCMV-IE. Dans cette configuration, le promoteur RNA 1 .8 kpb est activé par la région activatrice du promoteur MCMV-IE.MCMV-IE or double promoter MCMV-IE // RNA 1 .8 kpb) in the UL13 site, it is possible to produce recombinant HVT viruses expressing at a high level the membrane (M) or spike (S) proteins of the virus avian infectious bronchitis (IBV). A construction is preferably carried out where the IBV S gene is under the dependence of the HCMV-IE promoter or of the MCMV-IE promoter, or else a construction where the IBV M and IBV S genes are inserted together with the double MCMV-IE / promoter 1.8 kbp RNA in the UL13 site, the M gene being under the control of the 0.8 kbp RNA promoter and the S gene being under the control of the MCMV-IE promoter. In this configuration, the 1.8 kbp RNA promoter is activated by the activator region of the MCMV-IE promoter.
Exemple 14 : Préparation d'un vaccin selon l'inventionExample 14: Preparation of a vaccine according to the invention
La préparation des vaccins obtenus selon l'invention peut se faire pour toute techinique usuelle connue de l'homme de l'art, par exemple par culture en flacon roulant. Des flacons roulants (175cm2), ensemencés avec 200.106 cellules primaires d'embryon de poulet, sont inoculés après 24 heures d'incubation à 37°C avec 1 ml d'une solution virale de virus HVT recombinant ayant un titre de 105 pfu/ml. Après une incubation de 4 jours à 37°C, le surnageant est éliminé, les cellules sont dissociées avec une solution de trypsine versène, puis récoltées. Les cellules infectées sont alors centrifugées. Le surnageant est éliminé et les cellules sont reprises par 20 ml d'une solution contenant un stabilisateur pour lyophilisation (par exemple SPGA). Ce mélange est ensuite soniqué, réparti dans des flacons à raison de fractions de 1 ml, et enfin lyophilisé. The preparation of the vaccines obtained according to the invention can be done for any usual technique known to those skilled in the art, for example by culture in a roller bottle. Rolling vials (175cm 2 ), seeded with 200.10 6 primary cells of chicken embryo, are inoculated after 24 hours of incubation at 37 ° C. with 1 ml of a viral solution of recombinant HVT virus having a titre of 10 5 pfu / ml. After a 4-day incubation at 37 ° C, the supernatant is removed, the cells are dissociated with a solution of trypsin versene, then harvested. The infected cells are then centrifuged. The supernatant is removed and the cells are taken up in 20 ml of a solution containing a stabilizer for lyophilization (for example SPGA). This mixture is then sonicated, distributed in bottles at the rate of fractions of 1 ml, and finally lyophilized.

Claims

REVENDICATIONS
1 - Vaccin vivant recombinant aviaire comprenant, comme vecteur, un virus de la maladie de Marek, comprenant au moins une séquence nucléotidique codant pour, et exprimant, un polypeptide antigénique d'un agent pathogène aviaire, insérée dans le gène UL13 sous le contrôle du promoteur CMV immédiate early.1 - Live recombinant avian vaccine comprising, as a vector, a Marek's disease virus, comprising at least one nucleotide sequence coding for, and expressing, an antigenic polypeptide of an avian pathogenic agent, inserted into the UL13 gene under the control of promoter CMV immediate early.
2 - Vaccin vivant recombinant aviaire selon la revendication 1 , caractérisé en ce que le vecteur est le virus HVT.2 - Live recombinant avian vaccine according to claim 1, characterized in that the vector is the HVT virus.
3 - Vaccin vivant recombinant aviaire selon la revendication 1 ou3 - Live recombinant avian vaccine according to claim 1 or
2, caractérisé en ce que la séquence nucléotidique est insérée dans le gène UL13 après délétion partielle de ce gène.2, characterized in that the nucleotide sequence is inserted into the UL13 gene after partial deletion of this gene.
4 - Vaccin vivant recombinant aviaire selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le promoteur CMV immédiate early est le promoteur humain HCMV IE ou le promoteur murin MCMV IE.4 - Avian recombinant live vaccine according to any one of claims 1 to 3, characterized in that the immediate early CMV promoter is the human promoter HCMV IE or the murine promoter MCMV IE.
5 - Vaccin vivant recombinant aviaire, selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la séquence nucléotidique insérée dans le gène UL13 sous le contrôle du promoteur CMV immédiate early est une séquence nucléotidique codant pour un antigène choisi parmi le groupe des antigènes de la maladie de Gumboro, de la maladie de Marek, de la maladie de Newcastle, de la bronchite infectieuse, de la laryngotrachéite infectieuse et de l'anémie aviaire.5 - Avian recombinant live vaccine according to any one of claims 1 to 4, characterized in that the nucleotide sequence inserted into the UL13 gene under the control of the immediate early CMV promoter is a nucleotide sequence coding for an antigen chosen from the group antigens from Gumboro disease, Marek's disease, Newcastle disease, infectious bronchitis, infectious laryngotracheitis and avian anemia.
6 - Vaccin vivant recombinant aviaire selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la séquence nucléotidique insérée dans le gène UL13 sous le contrôle du promoteur CMV immédiate early est une séquence nucléotidique codant pour le polypeptide VP2 du virus IBDV.6 - Avian recombinant live vaccine according to any one of claims 1 to 5, characterized in that the nucleotide sequence inserted into the UL13 gene under the control of the immediate early CMV promoter is a nucleotide sequence encoding the VP2 polypeptide of the IBDV virus.
7 - Vaccin vivant recombinant aviaire selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend, associé au promoteur CMV immédiate early en disposition tête-bêche avec ce dernier, un autre promoteur, deux séquences nucléotidiques étant insérées dans le gène UL13, l'une sous la dépendance du promoteur CMV immédiate early, l'autre sous celle du promoteur associé.7 - Avian recombinant live vaccine according to any one of claims 1 to 6, characterized in that it comprises, associated with the immediate early CMV promoter in head-to-tail arrangement with the latter, another promoter, two nucleotide sequences being inserted into the UL13 gene, one dependent on the immediate early CMV promoter, the other dependent on the associated promoter.
δ - Vaccin vivant recombinant aviaire selon la revendication 7, caractérisé en ce que le promoteur associé et le promoteur Marek RNA1 .8.δ - Live avian recombinant vaccine according to claim 7, characterized in that the associated promoter and the promoter Marek RNA1 .8.
9 - Vaccin vivant recombinant aviaire selon la revendication 7 ou9 - Live avian recombinant vaccine according to claim 7 or
8, caractérisé en ce que la séquence nucléotidique insérée sous le contrôle du promoteur CMV immédiate early est une séquence nucléotidique codant pour le polypeptide VP2 du virus IBDV et en ce que la séquence nucléotidique insérée sous le contrôle du promoteur associé est une séquence nucléotidique codant pour un antigène d'une autre maladie aviaire.8, characterized in that the nucleotide sequence inserted under the control of the immediate early CMV promoter is a nucleotide sequence coding for the polypeptide VP2 of the IBDV virus and in that the nucleotide sequence inserted under the control of the associated promoter is a nucleotide sequence coding for an antigen from another avian disease.
10 - Vaccin vivant recombinant aviaire selon la revendication 9, caractérisé en ce que la séquence nucléotidique codant pour un antigène d'une autre maladie aviaire est choisie parmi le groupe des antigènes de la maladie de Marek, de la maladie de Newcastle, de la bronchite infectieuse, de la laryngotrachéite infectieuse et de l'anémie aviaire.10 - Avian recombinant live vaccine according to claim 9, characterized in that the nucleotide sequence coding for an antigen of another avian disease is chosen from the group of antigens of Marek's disease, Newcastle disease, bronchitis infectious disease, infectious laryngotracheitis and avian anemia.
1 1 - Vaccin vivant recombinant aviaire selon la revendication 7, caractérisé en ce que le promoteur associé est un promoteur CMV immédiate early d'origine différente.1 1 - Live avian recombinant vaccine according to claim 7, characterized in that the associated promoter is an immediate early CMV promoter of different origin.
1 2 - Vaccin vivant recombinant aviaire selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce que la ou les séquences nucléotidiques insérées dans le gène UL1 3 sont choisies parmi le groupe des séquences codant pour les gènes :1 2 - Avian recombinant live vaccine according to any one of claims 1 to 1 1, characterized in that the nucleotide sequence (s) inserted into the UL1 3 gene are chosen from the group of sequences encoding for genes:
- VP2, VP3 et VP2 + VP4 + VP3 du virus de la maladie de Gumboro,- VP2, VP3 and VP2 + VP4 + VP3 of the Gumboro disease virus,
- gB, gC, gD et gH + gL des virus de la maladie de Marek,- gB, gC, gD and gH + gL of Marek's disease viruses,
- VP1 (52 kDa) + VP2 (24 kDa) du virus de l'anémie aviaire, - S et M du virus de la bronchite infectieuse, et- VP1 (52 kDa) + VP2 (24 kDa) of the avian anemia virus, - S and M of the infectious bronchitis virus, and
- gB, gC, gD et gH + gL du virus de la laryngotrachéite infectieuse.- gB, gC, gD and gH + gL of the infectious laryngotracheitis virus.
13 - Vaccin vivant recombinant aviaire selon l'une des revendications 1 à 5, caractérisé en ce que, au lieu du promoteur CMV immédiate early, on utilise le promoteur RNA1.8.13 - Avian recombinant live vaccine according to one of claims 1 to 5, characterized in that, instead of the immediate early CMV promoter, the RNA1.8 promoter is used.
14 - Formule de vaccin multivalent comprenant, en mélange ou à mélanger, au moins deux vaccins vivants recombinants aviaires tels que définis dans l'une quelconque des revendications 1 à 13, ces vaccins comprenant des séquences insérées différentes.14 - Multivalent vaccine formula comprising, as a mixture or as a mixture, at least two live recombinant avian vaccines as defined in any one of claims 1 to 13, these vaccines comprising different inserted sequences.
15 - Formule de vaccin multivalent selon la revendication 14, caractérisée en ce que les séquences nucléotidiques insérées différentes proviennent de pathogènes différents. 15 - Multivalent vaccine formula according to claim 14, characterized in that the different inserted nucleotide sequences come from different pathogens.
PCT/FR1995/001763 1994-12-30 1995-12-29 Avian recombinant live vaccine WO1996021034A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU44898/96A AU4489896A (en) 1994-12-30 1995-12-29 Avian recombinant live vaccine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR94/16016 1994-12-30
FR9416016 1994-12-30

Publications (1)

Publication Number Publication Date
WO1996021034A1 true WO1996021034A1 (en) 1996-07-11

Family

ID=9470529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1995/001763 WO1996021034A1 (en) 1994-12-30 1995-12-29 Avian recombinant live vaccine

Country Status (2)

Country Link
AU (1) AU4489896A (en)
WO (1) WO1996021034A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0719864A2 (en) * 1994-12-30 1996-07-03 Rhone Merieux Recombinant live avian vaccin, using an avian herpes virus as vector
FR2751225A1 (en) * 1996-07-19 1998-01-23 Rhone Merieux AVIAN POLYNUCLEOTIDE VACCINE FORMULA
FR2757061A1 (en) * 1996-12-16 1998-06-19 Rhone Merieux AVIAN RECOMBINANT LIVING VACCINE USING AVIAN INFECTIOUS LARYNGOTRACHEITIS VIRUS
WO1999018215A1 (en) * 1997-10-03 1999-04-15 Nippon Zeon Co., Ltd. Avian infectious herpesvirus recombinants and recombinant vaccines prepared with the use of the same
US6395490B1 (en) 1997-05-20 2002-05-28 Cornell Research Foundation, Inc. Detection of Rupestris stem pitting associated virus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003554A1 (en) * 1990-08-24 1992-03-05 Arthur Webster Pty. Ltd. Infectious laryngotracheitis virus vaccine
EP0477056A1 (en) * 1990-09-07 1992-03-25 Rhone Merieux S.A. Recombinant herpes viruses, vaccines comprising them, process for preparation and US 3 genes
FR2697534A1 (en) * 1992-11-02 1994-05-06 Rhone Merieux Recombinant turkey herpes virus for the production of Gumboro disease vaccine, its preparation process and vaccine obtained.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003554A1 (en) * 1990-08-24 1992-03-05 Arthur Webster Pty. Ltd. Infectious laryngotracheitis virus vaccine
EP0477056A1 (en) * 1990-09-07 1992-03-25 Rhone Merieux S.A. Recombinant herpes viruses, vaccines comprising them, process for preparation and US 3 genes
FR2697534A1 (en) * 1992-11-02 1994-05-06 Rhone Merieux Recombinant turkey herpes virus for the production of Gumboro disease vaccine, its preparation process and vaccine obtained.

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D. MARSHALL ET A.: "Selection of Marek's disease recombinants expressing E. coli gpt gene", VIROLOGY, vol. 195, 1993, pages 638 - 648, XP002003062 *
L. COULTER ET AL.: "A mutant of herpes simplex virus type 1 in which the UL13 protein kinase gene is disrupted", J. GEN. VIROL., vol. 74, 1993, pages 387 - 395, XP002003064 *
N. DE WIND ET AL.: "Herpesviruses encode an unusual protein-serine/threonine kinase which is nonessential for cell growth", J. VIROL., vol. 66, no. 9, 1992, pages 5200 - 5209, XP002003063 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0719864A2 (en) * 1994-12-30 1996-07-03 Rhone Merieux Recombinant live avian vaccin, using an avian herpes virus as vector
EP0719864A3 (en) * 1994-12-30 1996-12-04 Rhone Merieux Recombinant live avian vaccin, using an avian herpes virus as vector
US6464984B2 (en) 1996-07-19 2002-10-15 Merial Avian polynucleotide vaccine formula
FR2751225A1 (en) * 1996-07-19 1998-01-23 Rhone Merieux AVIAN POLYNUCLEOTIDE VACCINE FORMULA
EP1523992A1 (en) * 1996-07-19 2005-04-20 Merial Vaccine formulation against Gumboro disease
WO1998003659A1 (en) * 1996-07-19 1998-01-29 Merial Avian polynucleotide vaccine formula
AU735184B2 (en) * 1996-07-19 2001-07-05 Merial Avian polynucleotide vaccine formula
US6221362B1 (en) 1996-07-19 2001-04-24 Merial Avian polynucleotide formula
US6033670A (en) * 1996-12-16 2000-03-07 Merial Recombinant live avian vaccine, using as vector the avian infectious laryngotracheitis virus
WO1998027215A1 (en) * 1996-12-16 1998-06-25 Merial Live recombinant avian vaccine, using the infectious laryngotracheitis avian virus as vector
FR2757061A1 (en) * 1996-12-16 1998-06-19 Rhone Merieux AVIAN RECOMBINANT LIVING VACCINE USING AVIAN INFECTIOUS LARYNGOTRACHEITIS VIRUS
US6395490B1 (en) 1997-05-20 2002-05-28 Cornell Research Foundation, Inc. Detection of Rupestris stem pitting associated virus
US6399308B1 (en) 1997-05-20 2002-06-04 Profigen Inc. Rupestris stem pitting associated virus nucleic acids, proteins, and their uses
US6716967B1 (en) 1997-05-20 2004-04-06 Cornell Research Foundation, Inc. Rupestris stem pitting associated virus nucleic acids, proteins, and their uses
WO1999018215A1 (en) * 1997-10-03 1999-04-15 Nippon Zeon Co., Ltd. Avian infectious herpesvirus recombinants and recombinant vaccines prepared with the use of the same
US6632664B1 (en) 1997-10-03 2003-10-14 Nippon Zeon Co., Ltd. Avian infectious herpesvirus recombinants and recombinant vaccines prepared with the use of the same

Also Published As

Publication number Publication date
AU4489896A (en) 1996-07-24

Similar Documents

Publication Publication Date Title
EP0719864B1 (en) Recombinant live avian vaccin, using herpes virus of turkeys as vector
EP0728842B1 (en) Live recombinant avian vaccine based on an avianherpes virus, against Gumboro disease
EP0968297B1 (en) Live recombinant avian vaccine using the avian infectious laryngotracheitis virus as vector
AU633663B2 (en) Recombinant herpesvirus of turkeys and live vector vaccines derived thereof
WO1998027215A1 (en) Live recombinant avian vaccine, using the infectious laryngotracheitis avian virus as vector
EP0914458A1 (en) Living recombinant avian vaccine, using as a vector the infectious avian laryngotracheitis virus
JP2010187679A (en) Novel recombinant herpesvirus and variant herpesvirus
AU670538B2 (en) Infectious bursal disease virus recombinant poxvirus vaccine
US6913751B2 (en) Recombinant avian herpesvirus useful in vaccine production
US20100008948A1 (en) Recombinant herpesvirus useful in vaccine production
US5369025A (en) Recombinant fowlpox vaccine for protection against Marek's disease
WO1994024268A1 (en) Recombinant avian adenovirus vector
US5641490A (en) Infectious bursal disease virus recombinant poxvirus vaccine
WO1996021034A1 (en) Avian recombinant live vaccine
JP3675569B2 (en) Recombinant virus and vaccine comprising the same
JPH07255488A (en) Recombinant marek's disease virus and its creation
JPH08242869A (en) Recombinant poxvirus and vaccine comprising the same
AU6499494A (en) Recombinant avian adenovirus vector

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU AZ BB BG BR BY CA CN CZ EE FI GE HU IS JP KG KP KR KZ LK LR LS LT LV MD MG MK MN MX NO NZ PL RO RU SG SI SK TJ TM TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase