WO1996016591A1 - A personal device for monitoring vital functions - Google Patents
A personal device for monitoring vital functions Download PDFInfo
- Publication number
- WO1996016591A1 WO1996016591A1 PCT/FI1995/000652 FI9500652W WO9616591A1 WO 1996016591 A1 WO1996016591 A1 WO 1996016591A1 FI 9500652 W FI9500652 W FI 9500652W WO 9616591 A1 WO9616591 A1 WO 9616591A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oximeter
- vital functions
- measurement
- suspension strap
- monitoring
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/683—Means for maintaining contact with the body
- A61B5/6831—Straps, bands or harnesses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
- A61B5/02055—Simultaneously evaluating both cardiovascular condition and temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02438—Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/14551—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
- A61B5/7207—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
- A61B5/721—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured
Definitions
- the invention relates to a portable or ambulatory apparatus for personal use which non-invasively monitors and measures the vital functions of the person carrying it.
- the publication WO 93/16636 depicts an apparatus connected to a wrist strap comprising probes for measuring among other things temperature and conductivity of the skin as well as motion.
- the apparatus further comprises a radio transmitter whereby, if need be, an alarm can be transmitted to a separate receiver.
- the wrist apparatus depicted in the publication WO 90/00366 measures only pulse detected by ultrasonic measurement of blood flow rate. Furthermore, it is stated that other measurements may also be incorporated with the apparatus.
- Patent publication US 5,275,159 describes a portable apparatus for the diagnosis of sleep apnea for monitoring the patient's heart rate and oxygen saturation of blood.
- the oximeter employed herein is of a conventional type which is based on the measurement of light passing through the finger.
- this apparatus in its entirety considerably restricts the normal life of the person being monitored. For this reason it cannot be considered as an actual easy-to-use ambulatory apparatus.
- probes In conventional oximeters based on the measurement of light passing through tissue, probes must be placed at such positions where transillumination is possible e.g. at the auricle or the finger tip. These places are not practical in prolonged monitoring of an ambulant patient although the above positions give high signal amplitude due to strong circulation.
- the reflection-type oximeter has an advantage in that the probe can in principle be placed freely although there remains the problem that the density of the capillary system of the skin varies considerably in different parts of the body. Furthermore, the portion of incident light that reflects from the tissue is five times less than the portion of the incident light that passes through the finger or the auricle and it has also been a problem to attach the probe sufficiently well to the patient.
- finger oximeter is used only for monitoring the vital functions of an immobile or slightly ambulant patient like patients being operated or under intensive care.
- Use of re lection-type oximeters have not become common and only a few commercial models are available which measure within the region of dense capillary system limiting the possible measuring region to the face.
- Modern oximeters designed for continuous monitoring have invariably a separate probe which is connected with a wire to a separate and often mains-operated data processing and storage unit.
- the objective of this invention is to enable such a continuous monitoring of oxygen content of blood that does not prevent the normal life of the subject. And furthermore to obtain a new and versatile apparatus for ambulatory monitoring of vital functions which can be easily furnished with new properties and which does not have the limitations of prior art apparatuses.
- the apparatus predominantly measures oxygen saturation and pulse and optionally other vital functions of the person carrying it.
- the apparatus is provided with a storage, data processing unit and a separate power supply.
- the apparatus may further be provided with a display, alarm and/or a data communications gate.
- the apparatus can be secured to its carrier with a strap and it can be held, for example, on the wrist or on the chest. It is possible to attach one or more accessory units in succession to the suspension strap in connection with the main apparatus. In specific applications, the functions of the main apparatus may be distributed all over the suspension strap.
- the data in storage may be retrieved to the microcomputer for closer analysis. This enables a prolonged registering of vital functions of the person.
- the apparatus may be connected to a wireless long-distance alarm system.
- Fig. 1 shows schematically the basic functions of the apparatus according to the invention.
- Fig. 2 shows the measuring principle of the oximeter employed in the apparatus according to the invention.
- Fig. 3 shows the apparatus according to the invention secured to a suspension strap with an attached accessory unit
- Fig. 4 shows that side of the apparatus according to the invention which is placed against the skin and its oxygen saturation probe according to one embodiment.
- Fig. 1 which shows schematically components of the apparatus according to one embodiment of the invention, is shown on the left an oximeter probe 1, temperature probes 2 as well as other optional probes 3. Measuring signals are converted to digital form with an A/D converter 4.
- a data processing unit 5 receives, compares, and analyzes measured data from the probes, and monitors for possible exceeding of given alarm limits and actuates, if necessary, an alarm 6.
- the apparatus stores the measuring data in storage 7 in chronological order.
- the stored data are coded and compressed for saving storing capacity.
- Measuring and data processing operations are performed at specific intervals for minimizing power consumption.
- a timer 8 of the apparatus controls the operational cycle of the apparatus. Connections to possible accessory units as well as data transfer between the measuring instrument and the PC are taken care via the data communications bus 9. Measuring results and causes of alarms can be read from a display 10.
- Fig. 2 shows the measuring principle of the oximeter employed in the apparatus of the invention.
- This type of probe is based on the measurement of changes of light reflected from blood vessels 12 of the hypodermic tissue 11.
- a light source 13 contains components necessary for emitting two or more separate wavelengths.
- the light source 13 and the receiver 14 may be situated on the surface 15 of the skin on the same side of the tissue which is measured.
- the entire apparatus with its probes e.g. on the wrist or the chest and it may be secured to the patient by a strap.
- Fig. 3 shows an apparatus according to the invention provided with a display 10 and secured to a suspension strap 16 with an accessory unit 17 attached thereto.
- a data communications gate 19 is disposed to the fastening mechanism 18 of the strap.
- the fastening mechanism may also function as the actuating switch of the apparatus.
- Fig. 4 shows that side of the apparatus of the invention which is placed against the skin and the structure of the oximeter probe according to one embodiment of the invention.
- the light source 13 and the receiver 14 are located in a bulge 21 at the bottom 20 of the casing of the apparatus.
- the probe is made to press with a slight pressing force (causing no inconvenience to the patient) tightly against the skin. Pressing increases the signal amplitude because it diminishes the portion of the venous blood, which has a lower pressure than artery blood, in the measuring area, which would otherwise hinder the measurement.
- a corresponding probe could be accomplished by employing an optical fibre and then the transmitter and the receiver can be placed inside the apparatus and only the ends of the optical fibres are in the bulge.
- Oxygen saturation of blood is measured optically on the pulse oximeter principle in which light of two wavelengths (red and infrared) is sent in succession into the tissue. A plethysmographic pulse curve is observed using both wavelengths and a sufficiently sensitive probe from the intensity change of either the light that passed through the tissue or the light that was reflected therefrom. Oxygen saturation of blood can be calculated from the ratio of the amplitudes of the pulse curve and the so- called DC levels of the curves. Saturation can also be estimated when the pulse is not observed but then the measuring result does not tell the absolute value of the oxygen saturation of the blood but only changes in the saturation.
- One or more of the following measurements may be added to the apparatus according to the invention, either fixedly to the instrument casing or to the suspension strap or to the accessory unit connected thereto.
- Measurement is accomplished with two thermistors, one of which measures the ambient temperature and the other the surface temperature of the skin. Further, from the knowledge of the amount of heat the apparatus itself generates and the thermal conductivity one can estimate the true body temperature. In assessing the temperature one must take into account the position of the apparatus on the body. Temperature information may also be utilized in reliability assessment of the oximeter results.
- Motor activity and posture of the body can be measured with mercury switches placed crosswise or with accelerometers.
- Motion sensitive probes may be connected to a sum counter in order to use the information they provide in the determination of motor activity so that the data processing unit need not continuously follow the state of the switches. Reliability of the oximeter results can also be assessed on the basis of the measured motor activity.
- An electret membrane which reacts to changes in pressure and position, may also be placed to the suspension strap. If the apparatus is attached, for example, on the chest, it is possible to measure from the voltage changes induced by forces exerting on the membrane, among other things, mechanical functioning of the heart, breathing motions, and motor activity.
- a signal obtained from the oximeter probe may also be used for the determination of motor activity in which signal the motions manifest as disturbances. From the strength of said signal it can be also assessed whether the apparatus has been placed so as the measurement situation requires.
- E G It is possible to incorporate also other measurements like E G with the apparatus which can be accomplished without any probes distinct from the entirety of the apparatus. Furthermore, it is possible measure ambient factors like gas concentrations, sound and illumination.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Physiology (AREA)
- Pulmonology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8517151A JPH10509083A (en) | 1994-11-29 | 1995-11-27 | Personal device for monitoring living functions |
EP95938477A EP0796056A1 (en) | 1994-11-29 | 1995-11-27 | A personal device for monitoring vital functions |
AU39850/95A AU690764B2 (en) | 1994-11-29 | 1995-11-27 | A personal device for monitoring vital functions |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI945613 | 1994-11-29 | ||
FI945613A FI98266C (en) | 1994-11-29 | 1994-11-29 | Personal vital signs monitor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996016591A1 true WO1996016591A1 (en) | 1996-06-06 |
Family
ID=8541890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FI1995/000652 WO1996016591A1 (en) | 1994-11-29 | 1995-11-27 | A personal device for monitoring vital functions |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0796056A1 (en) |
JP (1) | JPH10509083A (en) |
AU (1) | AU690764B2 (en) |
FI (1) | FI98266C (en) |
WO (1) | WO1996016591A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5865174A (en) * | 1996-10-29 | 1999-02-02 | The Scott Fetzer Company | Supplemental oxygen delivery apparatus and method |
WO2000022980A1 (en) * | 1998-10-22 | 2000-04-27 | Palco Labs, Inc. | Cordless pulse oximeter |
EP1848336A2 (en) * | 2005-02-07 | 2007-10-31 | Widemed Ltd. | Detection and monitoring of stress events during sleep |
WO2009056859A1 (en) * | 2007-11-02 | 2009-05-07 | Sensor Technology & Devices Ltd | Measurement of oxygen saturation of blood haemoglobin |
EP2083678A1 (en) * | 2006-06-16 | 2009-08-05 | Chang-An Chou | Pulse oximeter with changeable structure |
EP1889569A3 (en) * | 1999-01-25 | 2009-12-09 | Masimo Corporation | Universal/upgrading pulse oximeter |
NL1036012C (en) * | 2008-10-03 | 2010-04-06 | Stephan Arend Hulsbergen | MONITORING SYSTEM, RING FITTED WITH SUCH A SYSTEM, AND A SENSOR AND A PROCESSING UNIT AS PART OF THIS SYSTEM. |
US7809420B2 (en) | 2003-06-25 | 2010-10-05 | Nellcor Puritan Bennett Llc | Hat-based oximeter sensor |
CN101884538A (en) * | 2009-05-11 | 2010-11-17 | 北京超思电子技术有限责任公司 | Hand-held oximeter provided with fixing band |
US8965473B2 (en) | 2005-09-29 | 2015-02-24 | Covidien Lp | Medical sensor for reducing motion artifacts and technique for using the same |
US9375185B2 (en) | 1999-01-25 | 2016-06-28 | Masimo Corporation | Systems and methods for acquiring calibration data usable in a pulse oximeter |
US9788735B2 (en) | 2002-03-25 | 2017-10-17 | Masimo Corporation | Body worn mobile medical patient monitor |
US10231676B2 (en) | 1999-01-25 | 2019-03-19 | Masimo Corporation | Dual-mode patient monitor |
US10718751B2 (en) | 2013-03-14 | 2020-07-21 | Trividia Health, Inc. | Meter with changeable modules |
WO2022170886A1 (en) * | 2021-02-11 | 2022-08-18 | 先阳科技有限公司 | Method and apparatus for measuring tissue composition, and wearable device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4202350A (en) * | 1978-05-15 | 1980-05-13 | Walton Charles A | Device for measuring pulse, breathing and running rate for joggers |
US4295472A (en) * | 1976-08-16 | 1981-10-20 | Medtronic, Inc. | Heart rate monitor |
EP0444934A1 (en) * | 1990-03-01 | 1991-09-04 | Hewlett-Packard Company | Method and apparatus for monitoring vital signs |
US5253646A (en) * | 1991-12-30 | 1993-10-19 | Hamamatsu Photonics K.K. | Diagnostic apparatus for measuring changes of arterial and venous blood volumes in brain with respiration signal modulation |
EP0573137A2 (en) * | 1992-06-03 | 1993-12-08 | Alza Corporation | Methods and devices for facilitated non-invasive oxygen monitoring |
US5309908A (en) * | 1991-12-13 | 1994-05-10 | Critikon, Inc. | Blood pressure and pulse oximeter monitor |
-
1994
- 1994-11-29 FI FI945613A patent/FI98266C/en not_active IP Right Cessation
-
1995
- 1995-11-27 EP EP95938477A patent/EP0796056A1/en not_active Withdrawn
- 1995-11-27 JP JP8517151A patent/JPH10509083A/en active Pending
- 1995-11-27 WO PCT/FI1995/000652 patent/WO1996016591A1/en not_active Application Discontinuation
- 1995-11-27 AU AU39850/95A patent/AU690764B2/en not_active Ceased
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4295472A (en) * | 1976-08-16 | 1981-10-20 | Medtronic, Inc. | Heart rate monitor |
US4202350A (en) * | 1978-05-15 | 1980-05-13 | Walton Charles A | Device for measuring pulse, breathing and running rate for joggers |
EP0444934A1 (en) * | 1990-03-01 | 1991-09-04 | Hewlett-Packard Company | Method and apparatus for monitoring vital signs |
US5309908A (en) * | 1991-12-13 | 1994-05-10 | Critikon, Inc. | Blood pressure and pulse oximeter monitor |
US5253646A (en) * | 1991-12-30 | 1993-10-19 | Hamamatsu Photonics K.K. | Diagnostic apparatus for measuring changes of arterial and venous blood volumes in brain with respiration signal modulation |
EP0573137A2 (en) * | 1992-06-03 | 1993-12-08 | Alza Corporation | Methods and devices for facilitated non-invasive oxygen monitoring |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5865174A (en) * | 1996-10-29 | 1999-02-02 | The Scott Fetzer Company | Supplemental oxygen delivery apparatus and method |
WO2000022980A1 (en) * | 1998-10-22 | 2000-04-27 | Palco Labs, Inc. | Cordless pulse oximeter |
EP1889569A3 (en) * | 1999-01-25 | 2009-12-09 | Masimo Corporation | Universal/upgrading pulse oximeter |
US9375185B2 (en) | 1999-01-25 | 2016-06-28 | Masimo Corporation | Systems and methods for acquiring calibration data usable in a pulse oximeter |
US10231676B2 (en) | 1999-01-25 | 2019-03-19 | Masimo Corporation | Dual-mode patient monitor |
US11484205B2 (en) | 2002-03-25 | 2022-11-01 | Masimo Corporation | Physiological measurement device |
US10219706B2 (en) | 2002-03-25 | 2019-03-05 | Masimo Corporation | Physiological measurement device |
US10335033B2 (en) | 2002-03-25 | 2019-07-02 | Masimo Corporation | Physiological measurement device |
US9795300B2 (en) | 2002-03-25 | 2017-10-24 | Masimo Corporation | Wearable portable patient monitor |
US9788735B2 (en) | 2002-03-25 | 2017-10-17 | Masimo Corporation | Body worn mobile medical patient monitor |
US10869602B2 (en) | 2002-03-25 | 2020-12-22 | Masimo Corporation | Physiological measurement communications adapter |
US10213108B2 (en) | 2002-03-25 | 2019-02-26 | Masimo Corporation | Arm mountable portable patient monitor |
US9872623B2 (en) | 2002-03-25 | 2018-01-23 | Masimo Corporation | Arm mountable portable patient monitor |
US7809420B2 (en) | 2003-06-25 | 2010-10-05 | Nellcor Puritan Bennett Llc | Hat-based oximeter sensor |
US7979102B2 (en) | 2003-06-25 | 2011-07-12 | Nellcor Puritan Bennett Llc | Hat-based oximeter sensor |
US7877127B2 (en) | 2003-06-25 | 2011-01-25 | Nellcor Puritan Bennett Llc | Hat-based oximeter sensor |
US7877126B2 (en) | 2003-06-25 | 2011-01-25 | Nellcor Puritan Bennett Llc | Hat-based oximeter sensor |
US7813779B2 (en) | 2003-06-25 | 2010-10-12 | Nellcor Puritan Bennett Llc | Hat-based oximeter sensor |
EP1848336A4 (en) * | 2005-02-07 | 2009-11-11 | Widemed Ltd | Detection and monitoring of stress events during sleep |
EP1848336A2 (en) * | 2005-02-07 | 2007-10-31 | Widemed Ltd. | Detection and monitoring of stress events during sleep |
US8965473B2 (en) | 2005-09-29 | 2015-02-24 | Covidien Lp | Medical sensor for reducing motion artifacts and technique for using the same |
EP2083678A4 (en) * | 2006-06-16 | 2012-04-11 | Chang-An Chou | Pulse oximeter with changeable structure |
EP2083678A1 (en) * | 2006-06-16 | 2009-08-05 | Chang-An Chou | Pulse oximeter with changeable structure |
WO2009056859A1 (en) * | 2007-11-02 | 2009-05-07 | Sensor Technology & Devices Ltd | Measurement of oxygen saturation of blood haemoglobin |
NL1036012C (en) * | 2008-10-03 | 2010-04-06 | Stephan Arend Hulsbergen | MONITORING SYSTEM, RING FITTED WITH SUCH A SYSTEM, AND A SENSOR AND A PROCESSING UNIT AS PART OF THIS SYSTEM. |
CN101884538A (en) * | 2009-05-11 | 2010-11-17 | 北京超思电子技术有限责任公司 | Hand-held oximeter provided with fixing band |
US10718751B2 (en) | 2013-03-14 | 2020-07-21 | Trividia Health, Inc. | Meter with changeable modules |
WO2022170886A1 (en) * | 2021-02-11 | 2022-08-18 | 先阳科技有限公司 | Method and apparatus for measuring tissue composition, and wearable device |
Also Published As
Publication number | Publication date |
---|---|
FI98266B (en) | 1997-02-14 |
EP0796056A1 (en) | 1997-09-24 |
FI945613A0 (en) | 1994-11-29 |
AU3985095A (en) | 1996-06-19 |
AU690764B2 (en) | 1998-04-30 |
FI945613A (en) | 1996-05-30 |
FI98266C (en) | 1997-05-26 |
JPH10509083A (en) | 1998-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU690764B2 (en) | A personal device for monitoring vital functions | |
US7606607B2 (en) | Physiological stress detector device and system | |
US6553242B1 (en) | Physiological stress detector device and method | |
US5919141A (en) | Vital sign remote monitoring device | |
US6529752B2 (en) | Sleep disorder breathing event counter | |
US9420952B2 (en) | Temperature probe suitable for axillary reading | |
US20070197887A1 (en) | Noninvasive vital signs sensor | |
US20070038050A1 (en) | Device for use with reflective pulse oximetry | |
US20160150981A1 (en) | Monitoring systems | |
US20180235489A1 (en) | Photoplethysmographic wearable blood pressure monitoring system and methods | |
JP2004532710A (en) | Site irradiation pressurization zone for extracorporeal optical measurement of blood index | |
JPH11299740A (en) | Organism monitor | |
JP2009011850A (en) | Bio-information measuring apparatus | |
US20050119533A1 (en) | Radiofrequency adapter for medical monitoring equipment | |
US6921368B2 (en) | Blood pressure monitor apparatus | |
EP1083822A1 (en) | Physiological stress detector device and method | |
WO2010103390A1 (en) | Vital signs monitoring system and components thereof | |
TW202015615A (en) | Multi-parameter vital signs monitoring device for early warning score system | |
US20240081655A1 (en) | Systems and methods for predicting and preventing cases of sudden unexpected infant death caused by sudden unexpected postnatal collapse | |
CN115736859A (en) | Blood pressure and pulse oxygen meter system capable of uploading data | |
KR20220122535A (en) | Incubator with the ability to awaken premature babies with apnea | |
Rhee et al. | Design and Evaluation of Artifact-Resistant Finger-Ring Plethysmographic Sensors | |
JPH11267115A (en) | Pillow device | |
Priyadharshini | Diagnosis and Analysis of Heart RateUsing Pulse Sensor | |
Austin et al. | The Open Biomedical Engineering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref country code: US Ref document number: 1997 849121 Date of ref document: 19970528 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1995938477 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1995938477 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1995938477 Country of ref document: EP |