JPH11267115A - Pillow device - Google Patents
Pillow deviceInfo
- Publication number
- JPH11267115A JPH11267115A JP10070207A JP7020798A JPH11267115A JP H11267115 A JPH11267115 A JP H11267115A JP 10070207 A JP10070207 A JP 10070207A JP 7020798 A JP7020798 A JP 7020798A JP H11267115 A JPH11267115 A JP H11267115A
- Authority
- JP
- Japan
- Prior art keywords
- pillow device
- optical fiber
- probes
- probe
- mounting surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明はまくら装置に関し、特
にたとえば睡眠時の呼吸状態を測定するようにした、ま
くら装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pillow device, and more particularly to a pillow device for measuring, for example, a respiratory state during sleep.
【0002】[0002]
【従来の技術】従来、睡眠時における呼吸状態を測定す
る装置としては、患者等の指、耳たぶ、胸などにセンサ
を装着して測定を行うために特別な器具が必要となり、
一般家庭等において容易に測定できないのが現状であ
る。2. Description of the Related Art Conventionally, as a device for measuring a respiratory state during sleep, a special instrument is required to perform measurement by attaching a sensor to a finger, an earlobe, a chest, or the like of a patient or the like.
At present, it cannot be easily measured in ordinary households and the like.
【0003】[0003]
【発明が解決しようとする課題】近年、睡眠時の無呼吸
症は、高血圧、不整脈、脳卒中、虚血性心疾患などの循
環器疾患、あるいは過労死、突然死などとの関連も指摘
され医療上重要な問題となってきている。たとえば、我
が国での睡眠時無呼吸症候群の患者数は約200万人と
推定され、その割合は、国民約60人に1人に相当す
る。In recent years, sleep apnea has been pointed out to be associated with cardiovascular diseases such as hypertension, arrhythmia, stroke, and ischemic heart disease, as well as overwork death and sudden death. It is becoming an important issue. For example, the number of patients with sleep apnea in Japan is estimated to be about 2 million, the ratio of which is equivalent to about 1 in 60 people.
【0004】一方、米国の推計によれば、睡眠時無呼吸
症候群の患者は、健常な人達と比較して、高血圧は2
倍、心疾患は3倍、脳血管障害は4倍の罹患率がみられ
ている。そのため、米国においても睡眠時の無呼吸症候
群に対する治療は、今後非常に重要な医療上の課題にな
るものと考えられている。[0004] On the other hand, according to estimates in the United States, patients with sleep apnea have a hypertension of 2 compared to healthy people.
The incidence rate is three times higher, heart disease is three times higher, and cerebrovascular disease is four times higher. Therefore, in the United States, treatment for sleep apnea is considered to be a very important medical problem in the future.
【0005】ところで、睡眠時無呼吸症候群の検査の国
際標準法としては、ポリソノムグラフィー(PSG)が
あるが、このPSGにより検査を行うには、患者は多く
の電極を体にセットし、脳波、眼球運動、鼻の呼吸気
流、胸腹壁運動など多くの項目の測定を必要とし、検
者、被検者の双方にとって負担が大きく、また、PSG
を行える施設は日本国内ではごく少数の大学病院などに
限られている。[0005] By the way, polysonomography (PSG) is an international standard method for examining sleep apnea syndrome. In order to conduct an examination using this PSG, a patient sets many electrodes on the body, It requires measurement of many items such as EEG, eye movement, nasal respiratory airflow, chest and abdominal wall movement, which places a heavy burden on both examiners and subjects.
In Japan, only a small number of university hospitals are available.
【0006】さらに、これらの限られた施設だけでは、
近年日本においても増加しつつある睡眠時無呼吸障害を
訴える患者数に対応しきれなくなってきており、そのた
めに一般の施設または家庭でも行える睡眠時無呼吸障害
のスクリーニングとしての簡易検査の必要性が生じてい
る。通常、無呼吸症の定義としては、7時間以上の睡眠
中に10秒以上続く呼吸停止が30回以上あるもの、あ
るいは、1時間に7回以上の呼吸停止のあるものとされ
ている。[0006] Furthermore, these limited facilities alone
The number of patients complaining of sleep apnea disorder, which has been increasing in Japan in recent years, has become unable to cope with the number of patients complaining of sleep apnea disorder. Has occurred. Usually, the definition of apnea is defined as a case where there are 30 or more breath stops that last for 10 seconds or more during a sleep period of 7 hours or more, or a case that there are 7 or more breath stops per hour.
【0007】また、近赤外線光による血中酸素飽和濃度
の測定方法としては、特開平5―228129号公報な
どで開示されているように、複数波長の近赤外光を生体
組織に照射し、酸素化ヘモグロビン濃度(HbO2 )お
よび脱酸素化ヘモグロビン濃度(Hb)によるそれぞれ
の波長の吸光度の違いから測定する方法が一般に知られ
ている。As a method for measuring the oxygen saturation concentration in blood using near-infrared light, a living tissue is irradiated with near-infrared light having a plurality of wavelengths as disclosed in Japanese Patent Application Laid-Open No. 5-228129. A method is generally known in which the measurement is performed based on the difference in absorbance at each wavelength depending on the oxygenated hemoglobin concentration (HbO 2 ) and the deoxygenated hemoglobin concentration (Hb).
【0008】それゆえに、この発明の主たる目的は、睡
眠時における呼吸状態を容易にしかも簡単に測定でき
る、まくら装置を提供することである。SUMMARY OF THE INVENTION Therefore, a main object of the present invention is to provide a pillow device capable of easily and easily measuring a respiratory state during sleep.
【0009】[0009]
【課題を解決するための手段】この発明は、頭部載置面
を有する本体と、頭部載置面に設けられかつ各々が近赤
外光発光素子と受光素子とを含む複数のプローブと、こ
の複数のプローブの出力を受けて呼吸状態を判定する判
定手段と、呼吸状態を表示する表示手段とを備える、ま
くら装置である。According to the present invention, there is provided a body having a head mounting surface, and a plurality of probes provided on the head mounting surface and each including a near-infrared light emitting element and a light receiving element. A pillow device comprising: a determination unit that receives outputs of the plurality of probes to determine a respiratory state; and a display unit that displays a respiratory state.
【0010】[0010]
【作用】まくら装置の頭部載置面に設けられた各々が近
赤外光発光素子と受光素子とを含む複数のプロ―ブから
の出力により、睡眠時の血中酸素飽和濃度に基き呼吸状
態が判定手段で自動的に判定され、その結果が表示手段
に表示される。[Function] Based on the output from a plurality of probes each including a near-infrared light emitting element and a light receiving element provided on the head mounting surface of the pillow device, breathing based on blood oxygen saturation concentration during sleep is performed. The state is automatically determined by the determination means, and the result is displayed on the display means.
【0011】[0011]
【発明の効果】この発明によれば、睡眠時の無呼吸状態
が判定されかつその結果が表示されるので、被測定者に
違和感を持たせることはなく自然な睡眠状態で簡単に無
呼吸の有無等を測定される。また、測定結果により自己
の健康状態も確認でき、万一異常が発見された場合早期
治療を行うことができる。According to the present invention, the apnea state during sleep is determined and the result is displayed, so that the subject does not feel uncomfortable and easily apnea in a natural sleep state. The presence or absence is measured. In addition, the self-health state can be confirmed from the measurement result, and if an abnormality is found, early treatment can be performed.
【0012】この発明の上述の目的,その他の目的,特
徴および利点は、図面を参照して行う以下の実施例の詳
細な説明から一層明らかとなろう。The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.
【0013】[0013]
【実施例】図1および図2に示すこの実施例のまくら装
置10は、頭部載置面12を有する本体14と、頭部載
置面12に設けた脳内の血中酸素飽和度を検出する複数
のプローブ16,16および16…を含む。各プローブ
16は、図3に示すように発光部18、受光部20およ
び接触状態を検知する小型押圧検知スイッチ22とによ
り単位ユニットを構成し、発光部18と受光部20は夫
々第1光ファイバ24および第2光ファイバ26により
図5および図6で示されるように制御装置28内に対で
設けられる近赤外光発光ダイオード30および30と受
光用フォトダイオード32で構成する受発光部34に接
続されている。受発光部34のうち各発光部18は、図
7に示すように波長λ1とλ2を有する2個のLEDで構
成するとともに、各LEDの一端は抵抗を介してLED
電源に接続され、他端はLED切換器36を介して演算
・制御部を備えたマイクロコンピュータ38に接続され
ている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A pillow device 10 according to this embodiment shown in FIGS. 1 and 2 has a body 14 having a head mounting surface 12 and a blood oxygen saturation in the brain provided on the head mounting surface 12. Include a plurality of probes 16 to be detected. As shown in FIG. 3, each probe 16 constitutes a unit unit including a light emitting unit 18, a light receiving unit 20, and a small pressing detection switch 22 for detecting a contact state, and the light emitting unit 18 and the light receiving unit 20 are each a first optical fiber. As shown in FIG. 5 and FIG. 6, the near-infrared light emitting diodes 30 and 30 provided in pairs in the control device 28 and the light receiving / emitting unit 34 constituted by the light receiving photodiode 32 by the second optical fiber 26. It is connected. As shown in FIG. 7, each light emitting section 18 of the light receiving / emitting section 34 is composed of two LEDs having wavelengths λ1 and λ2, and one end of each LED is connected to a LED via a resistor.
The other end is connected to a power supply, and the other end is connected via an LED switch 36 to a microcomputer 38 having an operation / control unit.
【0014】波長λ1 は脱酸素化ヘモグロビンの吸収ピ
ーク波長で750nm、波長λ2 は酸素型ヘモグロビン
と脱酸素型ヘモグロビンの等吸収波長で805nmであ
る。また、各受発光部34のうち各受光部20は、図8
に示されるように、フォトダイオード32で構成されて
おり、その一端はアースに接続されるとともに他端はフ
ォトダイオード切換器40、増幅器42およびA/D変
換器44を介してマイクロコンピュータ38に接続され
ている。さらに、各プローブ16に設けられる各押圧検
知スイッチ22は、図9に示される、デジタル入力ポー
ト46を介してマイクロコンピュータ38に接続されて
いる。The wavelength λ 1 is 750 nm as the absorption peak wavelength of deoxygenated hemoglobin, and the wavelength λ 2 is 805 nm as the equal absorption wavelength of oxygenated hemoglobin and deoxygenated hemoglobin. Further, among the light receiving / emitting units 34, each light receiving unit 20 is configured as shown in FIG.
As shown in FIG. 2, the photodiode 32 is constructed, one end of which is connected to the ground and the other end is connected to a microcomputer 38 via a photodiode switch 40, an amplifier 42 and an A / D converter 44. Have been. Further, each press detection switch 22 provided on each probe 16 is connected to a microcomputer 38 via a digital input port 46 shown in FIG.
【0015】また、マイクロコンピュータ38には、測
定結果を表示する表示装置48と電源SW等を含む操作
部50が接続されている。この実施例のまくら装置10
において、制御装置28に各プローブ16の発光部18
と受光部20に第1光ファイバ24および第2光ファイ
バ26で接続される発光ダイオード30と受光フォトダ
イオード32を内蔵する構成にしているが、図4に示す
ように小型の発光素子30および受光素子32を使用し
て各プローブ16に小型押圧検知スイッチ22とともに
これらの素子を直接埋込方式にすれば、配線の取り回し
やノイズ対策などの実装面でより望ましい。The microcomputer 38 is connected to a display device 48 for displaying measurement results and an operation unit 50 including a power switch and the like. The pillow device 10 of this embodiment
In the control device 28, the light emitting unit 18 of each probe 16 is
A light emitting diode 30 and a light receiving photodiode 32, which are connected to the light receiving unit 20 by the first optical fiber 24 and the second optical fiber 26, are built in, but as shown in FIG. If these elements are directly embedded in the probes 16 together with the small pressure detection switches 22 using the elements 32, it is more desirable in terms of mounting of wiring and noise countermeasures.
【0016】さらに、近赤外光の発光と受光は、図7お
よび図8に示すように、各プローブ16の2個の発光ダ
イオード30および30による光源と1個の受光フォト
ダイオード32による受光をマイクロコンピュータ38
から供給されるセレクト信号に基き各切換器36と40
で切換えることにより同一の受発光部34で行える構成
になっている。Further, as shown in FIGS. 7 and 8, the near-infrared light is emitted and received by a light source by two light emitting diodes 30 and 30 of each probe 16 and a light received by one light receiving photodiode 32. Microcomputer 38
Switches 36 and 40 based on the select signal supplied from
The switching can be performed by the same light receiving / emitting unit 34.
【0017】制御装置28における測定結果を表示する
表示装置48に、図2に示されるようにベッド52に横
たわる人体54の頭部56が本体12の頭部載置面14
に接触している時間(一応睡眠時間と見做せる)中にお
ける、トータル睡眠時間,呼吸停止状態の有無,1時間
当たりの呼吸停止回数および血中酸素飽和濃度の変化グ
ラフ(通常の呼吸状態では血中酸素飽和濃度は97%程
度であるが、無呼吸状態が数分続くと90%以下にさが
るので、90%をしきい値に表示)等を表示することが
できる。As shown in FIG. 2, a head 56 of a human body 54 lying on a bed 52 is provided on a display device 48 for displaying the measurement result in the control device 28.
Graph of change in total sleep time, presence or absence of respiratory arrest, number of respiratory arrests per hour, and blood oxygen saturation during the time of contact with the body Although the blood oxygen saturation level is about 97%, if the apnea condition continues for several minutes, it drops to 90% or less, so that 90% is displayed as a threshold value).
【0018】この実施例のまくら装置10において、図
10に示すフローチャートにしたがい睡眠中の呼吸状態
の測定およびその表示について説明すと、まず、スター
トはステップS1で操作部のスイッチをONし、ステッ
プS3でプローブの変数iを1に設定する。ステップS
5でデジタル入力ポートのi番目の信号線の値を読んで
プローブi番目の押圧検知スイッチ22がONしている
かを確認する。ステップS7で確認の結果ONであれ
ば、ステップS9でプローブi番目の波長λ1 用LED
をLED切換器で選択、同時にi番目のフォトダイオー
ドをその切換器で選択し、受光量Iiを読み取る。ステ
ップS11でこの受光量Iiを数1により吸光度OD(λ
1 )に変換する。In the pillow device 10 of this embodiment, the measurement of the breathing state during sleep and the display thereof will be described with reference to the flowchart shown in FIG. 10. First, in step S1, the switch of the operation unit is turned on. In step S3, the variable i of the probe is set to 1. Step S
In step 5, the value of the i-th signal line of the digital input port is read to confirm whether the i-th push detection switch 22 of the probe is ON. If the result of the check is ON in step S7, the LED for the i-th wavelength λ 1 in the probe is set in step S9.
Is selected by the LED switch, and at the same time, the i-th photodiode is selected by the switch, and the received light amount Ii is read. In step S11, the received light amount Ii is calculated by the equation (1) using the absorbance OD (λ
1 ) to convert.
【0019】[0019]
【数1】OD(λ1 )=Log10(I0 /Ii ) ステップS13で同様にプローブi番目の波長λ2 用L
EDを用いてλ2 の吸光度OD(λ2 )を求める。ステ
ップS15でiを1つ増やし、ステップS17でNまで進
んでいると、ステップS19でスイッチがONになって
いるプローブについて計測した吸光度OD(λ1 )とO
D(λ2 )の値を平均化する。ステップS21でこの吸
光度OD(λ1 )とOD(λ2 )から酸素化ヘモグロビ
ン濃度CHbO2 と脱酸素化ヘモグロビン濃度CHbを
求め、これより脳内の血中酸素飽和濃度SpO2 を、数
2により求める。OD (λ 1 ) = Log 10 (I 0 / I i ) Similarly, in step S13, L for the i-th wavelength λ 2 of the probe
Request lambda 2 absorbance OD (lambda 2) with ED. In step S15, i is incremented by one, and if it has proceeded to N in step S17, the absorbance OD (λ 1 ) and O measured for the probe whose switch is ON in step S19.
The value of D (λ 2 ) is averaged. In step S21, the oxygenated hemoglobin concentration CHbO 2 and the deoxygenated hemoglobin concentration CHb are obtained from the absorbances OD (λ 1 ) and OD (λ 2 ), and the blood oxygen saturation concentration SpO 2 in the brain is calculated from the equation ( 2 ). Ask.
【0020】[0020]
【数2】SpO2 ={CHbO2 /(CHbO2 +CH
b)}×100(%) ステップS21で算出されたSpO2 の値、つまり、血
中酸素飽和濃度を表示装置に表示、また、その値を時刻
とともに記録しグラフ表示をする。この値が無呼吸状態
を示す値(約90以下)になると、その時間帯と回数を
記録する。ステップS25で操作部に設けた測定終了ス
イッチが押されるまでこの作業を繰り返す。そして測定
終了スイッチがONすると測定作業は終了する。## EQU2 ## SpO 2 = {CHbO 2 / (CHbO 2 + CH)
b)} × 100 (%) The value of SpO 2 calculated in step S21, that is, the blood oxygen saturation concentration is displayed on a display device, and the value is recorded with time and displayed in a graph. When this value becomes a value indicating an apnea state (about 90 or less), the time period and the number of times are recorded. This operation is repeated until the measurement end switch provided on the operation unit is pressed in step S25. When the measurement end switch is turned on, the measurement operation ends.
【0021】上述の演算および制御等は全てマイクロコ
ンピュータ38により行われて睡眠時における呼吸状態
が判定され、その結果は表示装置48に表示される。睡
眠時の無呼吸症は、睡眠中の現象であるから、自分自身
では自覚症状として判断しずらいが、この発明によるま
くら装置10を使用することにより、専門の医師にかか
らなくても自分の普段の睡眠状態がチェックできて、早
期に体調不良の発見が可能となり、健康の維持増進に役
立つものである。The above calculations and controls are all performed by the microcomputer 38 to determine the respiratory condition during sleep, and the result is displayed on the display device 48. Since apnea during sleep is a phenomenon during sleep, it is difficult to judge as a subjective symptom by oneself. However, by using the pillow device 10 according to the present invention, it is possible to use You can check your usual sleep condition, and you can detect poor physical condition at an early stage, which will help maintain and improve your health.
【図1】この発明の一実施例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.
【図2】使用例の要部説明図である。FIG. 2 is an explanatory diagram of a main part of a usage example.
【図3】光ファイバ方式の単位プローブの構成図であ
る。FIG. 3 is a configuration diagram of an optical fiber type unit probe.
【図4】図3に相当する他の実施例の単位プローブの構
成図である。FIG. 4 is a configuration diagram of a unit probe according to another embodiment corresponding to FIG. 3;
【図5】制御装置の電気回路ブロック図である。FIG. 5 is an electric circuit block diagram of the control device.
【図6】図5における受発光部の拡大説明図である。FIG. 6 is an enlarged explanatory view of a light emitting / receiving unit in FIG. 5;
【図7】図5における要部の詳細説明図である。FIG. 7 is a detailed explanatory diagram of a main part in FIG. 5;
【図8】図5における要部の詳細説明図である。FIG. 8 is a detailed explanatory view of a main part in FIG. 5;
【図9】押圧検知スイッチ部の詳細説明図である。FIG. 9 is a detailed explanatory diagram of a pressing detection switch unit.
【図10】呼吸状態を測定するフローチャートである。FIG. 10 is a flowchart for measuring a respiratory state.
10 …まくら装置 12 …本体 14 …頭部載置面 16 …プローブ 18 …発光部 20 …受光部 22 …押圧検知スイッチ 24 …第1光ファイバ 26 …第2光ファイバ 28 …制御装置 34 …受発光部 38 …マイクロコンピュータ(CPU) 48 …表示装置 DESCRIPTION OF SYMBOLS 10 ... Pillow device 12 ... Main body 14 ... Head mounting surface 16 ... Probe 18 ... Light emitting unit 20 ... Light receiving unit 22 ... Pressure detection switch 24 ... First optical fiber 26 ... Second optical fiber 28 ... Control device 34 ... Receiving and emitting light Unit 38: microcomputer (CPU) 48: display device
Claims (3)
と受光素子とを含む複数のプローブ、 前記複数のプローブの出力を受けて呼吸状態を判定する
判定手段、および前記呼吸状態を表示する表示手段を備
える、まくら装置。1. A main body having a head mounting surface, a plurality of probes provided on the head mounting surface, each including a near-infrared light emitting element and a light receiving element, and receiving outputs of the plurality of probes. A pillow device comprising: a determination unit configured to determine a respiratory state by using the display unit; and a display unit configured to display the respiratory state.
判定手段は前記押圧検知手段から信号が出力されている
プローブからの出力に基づいて呼吸状態を判定する、請
求項1記載のまくら装置。2. The pillow device according to claim 1, wherein said probe includes a pressure detecting means, and said determining means determines a breathing state based on an output from the probe to which a signal is output from said pressing detecting means.
面を露出した第1光ファイバと、 前記第1光ファイバの他方端面から近赤外光を入力する
発光素子と、 前記頭部載置面に一方端面が露出した第2光ファイバ
と、 前記第2光ファイバを通って入力される近赤外光の反射
光を他方端面から受ける受光素子とを含む、請求項1ま
たは2記載のまくら装置。3. A probe comprising: a first optical fiber having one end exposed on the head mounting surface; a light emitting element for inputting near-infrared light from the other end of the first optical fiber; 3. A second optical fiber having one end face exposed to the mounting surface, and a light receiving element receiving reflected light of near-infrared light input through the second optical fiber from the other end face, 3. Pillow device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10070207A JPH11267115A (en) | 1998-03-19 | 1998-03-19 | Pillow device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10070207A JPH11267115A (en) | 1998-03-19 | 1998-03-19 | Pillow device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11267115A true JPH11267115A (en) | 1999-10-05 |
Family
ID=13424860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10070207A Withdrawn JPH11267115A (en) | 1998-03-19 | 1998-03-19 | Pillow device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11267115A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007138799A1 (en) * | 2006-05-30 | 2007-12-06 | Omron Healthcare Co., Ltd. | Apnea management device presenting information with high reliability |
-
1998
- 1998-03-19 JP JP10070207A patent/JPH11267115A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007138799A1 (en) * | 2006-05-30 | 2007-12-06 | Omron Healthcare Co., Ltd. | Apnea management device presenting information with high reliability |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100552681B1 (en) | Apparatus and method for diagnosing sleep apnea | |
Ray et al. | A review of wearable multi-wavelength photoplethysmography | |
JP5748160B2 (en) | Portable diagnostic device | |
US7828739B2 (en) | Apnea detection system | |
US10231667B2 (en) | Non-invasive dehydration monitoring | |
US7570979B2 (en) | Methods and apparatus for patient monitoring | |
US6529752B2 (en) | Sleep disorder breathing event counter | |
KR100660349B1 (en) | Hand-held type blood pressure monitoring system using PPG signal | |
JP4903980B2 (en) | Pulse oximeter and operation method thereof | |
US11918351B2 (en) | System and method for non-invasive monitoring of hemoglobin | |
US20070167693A1 (en) | Display means for vital parameters | |
US20140142434A1 (en) | System and method of measurement of systolic blood pressure | |
JP2002516689A (en) | Stereo pulse oximeter | |
JP2008532680A (en) | Improved in vivo blood spectroscopy | |
JPH0628662B2 (en) | A mobile device for detecting and storing patient physiological parameters for outpatient cognition and diagnosis of sleep apnea syndrome | |
US20150297125A1 (en) | Oximetry sensor assembly and methodology for sensing blood oxygen concentration | |
CN115988985A (en) | Device and method for compensating for the assessment of peripheral arterial tone | |
US20230263453A1 (en) | Method and apparatus for assessing peripheral arterial tone | |
US20110184298A1 (en) | Portable cardio waveform acquisiton and heart rate variability (hrv) analysis | |
Bergstrand et al. | Microcirculatory responses of sacral tissue in healthy individuals and inpatients on different pressure-redistribution mattresses | |
Yoon et al. | Development of a compact home health monitor for telemedicine | |
JPH11267115A (en) | Pillow device | |
Finnerty | How to Design a Better Pulse Oximeter | |
Samuel et al. | Embedded Based Low Cost Pulse Oximeter | |
Cysewska-Sobusiak | Problems with evaluating readings of pulse oximeters used at home during the ongoing COVID-19 pandemic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050607 |