WO1996013871A2 - Brennstoffzellenanlage mit wärmenutzung des kathodenabgases und verfahren zu ihrem betrieb - Google Patents
Brennstoffzellenanlage mit wärmenutzung des kathodenabgases und verfahren zu ihrem betrieb Download PDFInfo
- Publication number
- WO1996013871A2 WO1996013871A2 PCT/DE1995/001388 DE9501388W WO9613871A2 WO 1996013871 A2 WO1996013871 A2 WO 1996013871A2 DE 9501388 W DE9501388 W DE 9501388W WO 9613871 A2 WO9613871 A2 WO 9613871A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- exhaust gas
- cathode exhaust
- cathode
- line
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims description 17
- 238000010438 heat treatment Methods 0.000 claims abstract 3
- 239000007789 gas Substances 0.000 claims description 117
- 238000002485 combustion reaction Methods 0.000 claims description 17
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 13
- 239000003546 flue gas Substances 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 abstract 1
- 239000007784 solid electrolyte Substances 0.000 abstract 1
- 238000007792 addition Methods 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 239000002737 fuel gas Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000002407 reforming Methods 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- -1 oxygen ions Chemical class 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04097—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
- H01M2008/147—Fuel cells with molten carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0048—Molten electrolytes used at high temperature
- H01M2300/0051—Carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
- H01M2300/0074—Ion conductive at high temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
- H01M8/04022—Heating by combustion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04067—Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
- H01M8/04074—Heat exchange unit structures specially adapted for fuel cell
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention relates to a fuel cell system, in particular a high-temperature fuel cell system, with at least one fuel cell block with an anode and a cathode part, and to a method for operating such a fuel cell system.
- a fuel cell contains an anode and a cathode, which are separated by an immediately adjacent ion-conducting electrolyte.
- This electrolyte can be made from an ion-conducting liquid or from a polymer membrane or, as in a high-temperature fuel cell, from a solid, such as e.g. made of zirconium oxide with small additions of ytrium oxide.
- the electrolyte of a high-temperature fuel cell conducts oxygen ions at the operating temperature of the high-temperature fuel cell of approximately 1000 ° C.
- the fuel usually hydrogen
- the fuel is directed to the anode and the oxygen or the combustion air to the cathode, and the water formed during the conversion of hydrogen and oxygen, depending on the type of fuel cell, with the anode or the cathode exhaust gas discharged from the fuel cell.
- a fuel cell can convert the fuel into electrical energy with a higher degree of efficiency and less pollution for the environment than conventional conventional internal combustion engines known to date, the efficiency of which is limited by the so-called Carnot process.
- the inflow of cooler air, together with the cooled partial stream of the cathode exhaust gas, is introduced back into the cathode gas spaces via a compressor and the same recuperative heat exchanger.
- the non-recirculated part of the cathode exhaust gas is burned with the anode exhaust gas in a burner.
- the flue gas from this combustion process is usually fed to a gas turbine.
- This circuit is thermodynamically quite useful, but has the disadvantage that the approximately 1000 ° C hot cathode exhaust must be branched. This requires a high outlay in terms of the line system and the connection and welding technology.
- Another disadvantage of this circuit is that the amount of recirculated cathode exhaust gas must not fall below a certain proportion, because otherwise the amount of heat for preheating the cathode gas to be supplied to the fuel cell could no longer be sufficient.
- the invention is therefore based on the object of specifying a fuel cell system and a method for its operation, in which the problem of Dissipation of the cathode exhaust gas and the heat utilization of the cathode exhaust gas is solved.
- an exhaust gas line for the entire cathode exhaust gas is provided via a heat exchanger to a branching with two partial lines, the first partial line via a mixing point for Air and the heat exchanger open into the cathode part, and a second partial line preferably opens into means for heat use, in particular via means for increasing the temperature in the means for heat use.
- this object is achieved according to the invention in that the entire cathode exhaust gas originating from the cathode part is cooled and divided into at least two partial cathode exhaust gas streams, a first partial cathode exhaust gas stream being supplemented with air, heated and in the cathode part of the fuel cell block is performed, and preferably the heat of the second cathode exhaust gas partial stream is used.
- An advantageous embodiment can provide that a compressor is arranged between the heat exchanger and the addition point for air. Due to the addition of air, the temperature of the partial cathode exhaust gas stream is lowered, so that a particularly simple and inexpensive air compressor, in particular an induced draft fan, can be used. Alternatively, it can also be provided, starting from the branching in the first partial line, to arrange a first further heat exchanger and a compressor in front of the admixing point for air in the order mentioned, the air being able to be fed to the admixing point via the first further heat exchanger. In this case, the temperature of the cathode exhaust gas flow is lowered by the first further heat exchanger, so that again a compressor mentioned above can be provided. The air supplied to the addition point is heated by the heat extracted from the partial cathode exhaust gas stream and can be supplied to the partial cathode exhaust gas stream upstream of the heat exchanger.
- the means for increasing the temperature can be a second further heat exchanger, the second partial line being led from the second further heat exchanger into the inlet of a turbine, and a flue gas line being provided over the second further one Heat exchanger opens into the turbine outlet.
- a flue gas line being provided over the second further one Heat exchanger opens into the turbine outlet.
- the means for increasing the temperature can alternatively be a combustion chamber, to the input side of which, in addition to the second sub-line, a supply line for a gas mixture originating from the anode part of the fuel cell block and a supply line for air and on the output side one connected to the inlet of the turbine Line are connected.
- a suitable gas mixture here the exhaust gas and air coming from the anode part, which is noticeable in the turbine at a relatively high inlet temperature.
- a gas mixture originating from the anode part of the fuel cell block means, inter alia, the anode exhaust gas itself, but also an anode exhaust gas additionally reduced by fuel (hydrogen) or an anode exhaust gas additionally reduced by fuel and carbon dioxide, a so-called anode residual gas .
- FIG. 1 shows the process diagram of a high-temperature fuel cell system with a downstream gas turbine; 2 shows the process diagram of a fuel cell system modified compared to FIG. 1; and 3 shows the process diagram of a further high-temperature fuel cell system which is slightly modified compared to FIG.
- a high-temperature fuel cell block 4 is shown in a schematic representation, which is divided into an anode part 6 with anode gas spaces (not shown) and a cathode part 8 with cathode gas spaces (not shown further).
- the high-temperature fuel cell block 4 is composed of a large number of planarly constructed and not shown high-temperature fuel cells and has an electrical output of 40 megawatts.
- An inverter 10 is connected to the fuel cell block 4, which converts the direct current generated by the fuel cell block 4 into alternating current for a power grid (not shown further here).
- a water supply, hydrogen and / or carbon monoxide-containing fuel gas 14 is supplied to the anode side 6 via a fuel supply line 12, which fuel is previously heated to approximately 900 ° C. in a recuperative heat exchanger 16 on the anode side.
- An anode exhaust gas 20 which is depleted in hydrogen and / or carbon monoxide and has a temperature of about 1000 ° C. emerges from the anode part 6 via an anode exhaust gas line 18.
- the anode exhaust gas 20 flows over the recuperative heat exchanger 16 and there releases most of its heat to the fuel gas 14 flowing into the anode part 6.
- the anode exhaust gas 20 is fed directly into a combustion chamber 22, in which the residual hydrogen contained in the anode exhaust gas 20 is burned with air supplied via a compressor 24, which is arranged in an air supply line 25 becomes.
- the flue gas 26 produced in the combustion chamber 22 is fed via a flue gas line 28 to a first further heat exchanger 30, in which heat is extracted from the flue gas 26.
- the flue gas line 28 opens behind the first further heat exchanger 30 into a turbine outlet line 32 connected to the turbine outlet 31.
- the flue gas 28 therefore has approximately the temperature of the gas leaving the turbine 34 when it enters the turbine outlet line 32.
- a cathode exhaust gas line 36 is connected to the cathode part 8 on the output side, via which a cathode exhaust gas 38 which is approximately 1000 ° C. is fed to a branch 42 via a recuperative heat exchanger 40 on the cathode side.
- a first and a second cathode exhaust gas line 44 or 46 for a first and a second cathode exhaust gas stream 48 or 50 originate from this branch 42.
- the first cathode exhaust line 44 is led from the branch 42 via an addition point 52 for air, a circuit fan 54 and the heat exchanger 40 into the cathode gas spaces of the cathode part 8, which are not shown in any more detail.
- the addition point 52 for air is supplied with comparatively cool air via an air supply line 56 and a compressor 58 arranged therein. This leads to a lowering of the temperature of the first cathode exhaust gas stream 48 enriched with air.
- the circuit blower 54 can therefore be operated at operating temperatures below 600 ° C., which has an advantageous effect on the price and the design of the circuit blower 54.
- the first cathode exhaust gas stream 48 makes up approximately 50 to 90%, preferably approximately 60 to 80%, of the cathode exhaust gas 38 brought up to the branch 42. In the heat exchanger 40, the first cathode exhaust gas partial stream 48 is heated to approximately 850 to 900 ° C. by means of the heat given off by the cathode exhaust gas 38.
- the part of the cathode exhaust gas 38 remaining at the branch 42 is led as a second cathode exhaust gas stream 50 via the heat exchanger 30 to the inlet 60 of the turbine 34.
- the second cathode exhaust gas partial flow 50 is heated to a particularly high turbine inlet temperature in order to achieve the highest possible output during the expansion of the second cathode exhaust gas partial flow 50 in the turbine 34.
- the gas mixture emerging from the turbine 34 can escape to the outside via a throttle valve 62 when the valve 62 is in the open position, or can be passed to a steam generator 64 and from there to the outside when the valve position is completely closed or throttled.
- the steam generator 64 supplied with water 66 supplies process steam 68 which can be used in a steam turbine (not shown further here). Part of the process steam 68 can also be fed into the fuel gas 14, where it is used for reforming a carbon-containing fuel gas. If there is an excess of water vapor in the fuel gas, one can usually increase when reforming natural gas
- the hot cathode exhaust gas 38 emerging from the cathode part 8 is only branched after it has cooled in the cathode-side heat exchanger 40.
- the addition point 52 for air in the direction of flow of the first cathode exhaust gas stream 48 is arranged in front of the circuit blower 54, so that the temperature of the first cathode exhaust gas stream 48 flowing to the circuit blower 54 is considerably reduced by the addition of the comparatively cool compressed air.
- the temperature of the second partial cathode exhaust stream 50 is raised considerably, which at the same time corresponds to a higher gas inlet temperature at the inlet 60 of the turbine 34.
- sufficient preheating of the cathode exhaust gas stream 48 is always ensured, regardless of the division of the cathode exhaust gas 38 at the branch 42.
- the drive line generated by the turbine 34 is used in the exemplary embodiment to drive the air compressor 58, a generator 70 and the air compressor 24.
- the above-mentioned components are arranged on a common shaft 72.
- the generator can advantageously also be operated as a motor for starting the turbine 34.
- a fuel cell system 74 which is slightly modified compared to FIG. 1 is shown in FIG.
- This fuel cell system 74 differs from the system shown in FIG. 1 only in a modification of the supply of fresh air to the addition point 52 in the first cathode exhaust gas stream 48.
- the circulation fan 54 and then the addition point 52 are arranged in the direction of flow of the first cathode exhaust gas stream 48 after the branch 42.
- the air brought in by means of the air compressor 58 is now heated in the second further heat exchanger 76, which leads to the intended and advantageous temperature reduction of the first cathode exhaust gas partial stream 48.
- the circuit blower 54 must therefore also convey the first cathode exhaust gas partial stream 48, which has a comparatively low temperature, in this exemplary embodiment as well.
- the air which is subsequently supplied to the addition point 52 and which has already been heated flows from there together with the first cathode exhaust partial flow 48 to the cathode-side heat exchanger 40.
- FIG. 3 shows a fuel cell system 78 that is modified compared to FIG. 2.
- the modifications here relate to the second cathode exhaust gas stream 50 and the routing of the anode exhaust gas 20.
- the second line 46 for the second cathode exhaust gas stream 50 is now based on the branching 42 led via a combustion chamber 80 to the inlet 60 of the turbine 34.
- the anode exhaust gas line 18 is now led into the combustion chamber 80 via an anode exhaust gas compressor 82.
- a partial branch of the air supply line 56 line 84 which also opens into the combustion chamber 80.
- the combustion chamber 80 serves as a means for increasing the temperature.
- the heat released during the combustion of the anode exhaust gas 20 with the air and the second cathode exhaust gas stream 50 leads to the second cathode exhaust gas stream 50 flowing into the inlet 60 of the turbine 34 having a comparatively high inlet temperature and a comparatively high mass flow, which is has an advantageous effect on the power achievable with the turbine 34.
- the exhaust gas mass flow and thus also the exhaust gas losses can be reduced compared to the circuit shown in FIG. 2.
- the compressor 82 which brings the anode exhaust gas 20 to the pressure of the cathode exhaust gas stream 38, is driven by the turbine 34 via the shaft 72.
- the anode exhaust gas 20 can additionally be subjected to a gas separation before compression in the compressor 82.
- inert constituents in the anode exhaust gas 20, in particular carbon dioxide can be removed. This leads on the one hand to a reduction in the mass flow of the anode exhaust gas 20, but on the other hand to an increase in the temperature in the combustion chamber 80, because inert gas components, such as e.g. the carbon dioxide, no longer need to be heated.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Fuel Cell (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8514225A JPH10507867A (ja) | 1994-10-19 | 1995-10-06 | 燃料電池設備及び燃料電池設備の運転方法 |
AU36497/95A AU683776B2 (en) | 1994-10-19 | 1995-10-06 | Fuel cell plant with utilization of the cathode heat, and process for operating it |
DE59502015T DE59502015D1 (de) | 1994-10-19 | 1995-10-06 | Brennstoffzellenanlage mit wärmenutzung des kathodengases und verfahren zu ihrem betrieb |
EP95934047A EP0787367B1 (de) | 1994-10-19 | 1995-10-06 | Brennstoffzellenanlage mit wärmenutzung des kathodengases und verfahren zu ihrem betrieb |
DK95934047T DK0787367T3 (da) | 1994-10-19 | 1995-10-06 | Brændstofcelleanlæg med varmeudnyttelse af katodespildegassen og fremgangsmåde til dets drift |
US08/843,805 US5900329A (en) | 1994-10-19 | 1997-04-21 | Fuel-cell system and method for operating a fuel-cell system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP4437413.5 | 1994-10-19 | ||
DE4437413 | 1994-10-19 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/843,805 Continuation US5900329A (en) | 1994-10-19 | 1997-04-21 | Fuel-cell system and method for operating a fuel-cell system |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1996013871A2 true WO1996013871A2 (de) | 1996-05-09 |
WO1996013871A3 WO1996013871A3 (de) | 1996-06-13 |
Family
ID=6531207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1995/001388 WO1996013871A2 (de) | 1994-10-19 | 1995-10-06 | Brennstoffzellenanlage mit wärmenutzung des kathodenabgases und verfahren zu ihrem betrieb |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0787367B1 (de) |
JP (1) | JPH10507867A (de) |
AT (1) | ATE165478T1 (de) |
AU (1) | AU683776B2 (de) |
CA (1) | CA2202984A1 (de) |
DE (1) | DE59502015D1 (de) |
DK (1) | DK0787367T3 (de) |
ES (1) | ES2116770T3 (de) |
WO (1) | WO1996013871A2 (de) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19807878A1 (de) * | 1998-02-25 | 1999-08-26 | Dbb Fuel Cell Engines Gmbh | Brennstoffzellensystem |
WO2000016425A1 (en) * | 1998-09-14 | 2000-03-23 | Questor Industries Inc. | Electrical current generation system |
AT501963A1 (de) * | 2006-05-09 | 2006-12-15 | Avl List Gmbh | Brennstoffzellensystem, sowie verfahren zum betrieb eines brennstoffzellensystems |
AT502009A1 (de) * | 2006-05-09 | 2006-12-15 | Avl List Gmbh | Brennstoffzellensystem, sowie verfahren zum betrieb eines brennstoffzellensystems |
EP1804322A1 (de) * | 2004-10-19 | 2007-07-04 | Central Research Institute of Electric Power Industry | Kombinierte stromerzeugungsgeräte |
DE102010035727A1 (de) * | 2010-08-28 | 2012-03-01 | Daimler Ag | Aufladeeinrichtung für eine Brennstoffzelle, Brennstoffzelleneinrichtung sowie Verfahren zum Betreiben einer solchen Brennstoffzelleneinrichtung |
WO2018184800A1 (de) * | 2017-04-04 | 2018-10-11 | Robert Bosch Gmbh | Turbokompressor, insbesondere für ein brennstoffzellensystem |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10042314B4 (de) * | 2000-08-29 | 2010-06-17 | Alstom Technology Ltd. | Gasturbinenanordnung mit einer Brennstoffzelle |
US6989209B2 (en) * | 2002-12-27 | 2006-01-24 | General Electric Company | Power generation method |
DE102004002337A1 (de) * | 2004-01-16 | 2005-08-11 | Bayerische Motoren Werke Ag | Energieumwandlungsvorrichtung und Verfahren zum Betreiben der Energieumwandlungsvorrichtung |
DE102004004914B4 (de) * | 2004-01-31 | 2006-11-23 | Forschungszentrum Jülich GmbH | Verfahren zur Erzeugung von Strom und Wärme |
DE102006003740B4 (de) * | 2006-01-20 | 2011-06-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 | Verfahren und System zum Betreiben einer Hochtemperaturbrennstoffzelle |
GB201012775D0 (en) * | 2010-07-30 | 2010-09-15 | Rolls Royce Fuel Cell Systems Ltd | A solid ovide fuel cell system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3976506A (en) * | 1975-02-12 | 1976-08-24 | United Technologies Corporation | Pressurized fuel cell power plant with air bypass |
JPS61176075A (ja) * | 1985-01-30 | 1986-08-07 | Hitachi Ltd | 燃料電池冷却システム |
JPS63152878A (ja) * | 1986-12-17 | 1988-06-25 | Mitsubishi Heavy Ind Ltd | 固体電解質燃料電池発電システム |
JPS63279576A (ja) * | 1987-05-11 | 1988-11-16 | Ishikawajima Harima Heavy Ind Co Ltd | 溶融炭酸塩型燃料電池のカソ−ドリサイクル装置 |
JPS63289774A (ja) * | 1987-05-22 | 1988-11-28 | Ishikawajima Harima Heavy Ind Co Ltd | 溶融炭酸塩型燃料電池発電装置 |
EP0459165A2 (de) * | 1990-05-01 | 1991-12-04 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Energiegewinnungssystem mit Anwendung von geschmolzenen Karbonatbrennstoffzellen |
DE4021097A1 (de) * | 1990-07-02 | 1992-01-09 | Siemens Ag | Brennstoffzellen-kraftwerk |
-
1995
- 1995-10-06 AU AU36497/95A patent/AU683776B2/en not_active Ceased
- 1995-10-06 EP EP95934047A patent/EP0787367B1/de not_active Expired - Lifetime
- 1995-10-06 AT AT95934047T patent/ATE165478T1/de not_active IP Right Cessation
- 1995-10-06 CA CA002202984A patent/CA2202984A1/en not_active Abandoned
- 1995-10-06 DE DE59502015T patent/DE59502015D1/de not_active Expired - Fee Related
- 1995-10-06 JP JP8514225A patent/JPH10507867A/ja active Pending
- 1995-10-06 DK DK95934047T patent/DK0787367T3/da active
- 1995-10-06 ES ES95934047T patent/ES2116770T3/es not_active Expired - Lifetime
- 1995-10-06 WO PCT/DE1995/001388 patent/WO1996013871A2/de active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3976506A (en) * | 1975-02-12 | 1976-08-24 | United Technologies Corporation | Pressurized fuel cell power plant with air bypass |
JPS61176075A (ja) * | 1985-01-30 | 1986-08-07 | Hitachi Ltd | 燃料電池冷却システム |
JPS63152878A (ja) * | 1986-12-17 | 1988-06-25 | Mitsubishi Heavy Ind Ltd | 固体電解質燃料電池発電システム |
JPS63279576A (ja) * | 1987-05-11 | 1988-11-16 | Ishikawajima Harima Heavy Ind Co Ltd | 溶融炭酸塩型燃料電池のカソ−ドリサイクル装置 |
JPS63289774A (ja) * | 1987-05-22 | 1988-11-28 | Ishikawajima Harima Heavy Ind Co Ltd | 溶融炭酸塩型燃料電池発電装置 |
EP0459165A2 (de) * | 1990-05-01 | 1991-12-04 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Energiegewinnungssystem mit Anwendung von geschmolzenen Karbonatbrennstoffzellen |
DE4021097A1 (de) * | 1990-07-02 | 1992-01-09 | Siemens Ag | Brennstoffzellen-kraftwerk |
Non-Patent Citations (5)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 010 no. 384 (E-466) ,23.Dezember 1986 & JP,A,61 176075 (HITACHI LTD) 7.August 1986, * |
PATENT ABSTRACTS OF JAPAN vol. 012 no. 414 (E-677) ,2.November 1988 & JP,A,63 152878 (MITSUBISHI HEAVY IND LTD) 25.Juni 1988, * |
PATENT ABSTRACTS OF JAPAN vol. 013 no. 109 (E-727) ,15.März 1989 & JP,A,63 279576 (ISHIKAWAJIMA HARIMA HEAVY IND CO LTD) 16.November 1988, * |
PATENT ABSTRACTS OF JAPAN vol. 013 no. 117 (E-731) ,22.März 1989 & JP,A,63 289774 (ISHIKAWAJIMA HARIMA HEAVY IND CO LTD) 28.November 1988, * |
VDI BERICHTE 1029, Bd. 1, Nr. 10, 24. - 25.M{rz 1993 BOCHUM, Seiten 250-259, XP 000565980 E. ERDLE 'Hochtemperatur-Brennstoffzelle SOFC - Stand der Forschung f}r eine neue Technik zur Stromerzeugung' in der Anmeldung erw{hnt * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19807878A1 (de) * | 1998-02-25 | 1999-08-26 | Dbb Fuel Cell Engines Gmbh | Brennstoffzellensystem |
DE19807878C2 (de) * | 1998-02-25 | 2001-10-31 | Xcellsis Gmbh | Brennstoffzellensystem |
WO2000016425A1 (en) * | 1998-09-14 | 2000-03-23 | Questor Industries Inc. | Electrical current generation system |
EP1804322A1 (de) * | 2004-10-19 | 2007-07-04 | Central Research Institute of Electric Power Industry | Kombinierte stromerzeugungsgeräte |
EP1804322A4 (de) * | 2004-10-19 | 2009-11-11 | Central Res Inst Elect | Kombinierte stromerzeugungsgeräte |
US8329345B2 (en) | 2004-10-19 | 2012-12-11 | Central Research Institute Of Electric Power Industry | Combined power generation equipment |
AT501963A1 (de) * | 2006-05-09 | 2006-12-15 | Avl List Gmbh | Brennstoffzellensystem, sowie verfahren zum betrieb eines brennstoffzellensystems |
AT502009A1 (de) * | 2006-05-09 | 2006-12-15 | Avl List Gmbh | Brennstoffzellensystem, sowie verfahren zum betrieb eines brennstoffzellensystems |
AT502009B1 (de) * | 2006-05-09 | 2007-09-15 | Avl List Gmbh | Brennstoffzellensystem, sowie verfahren zum betrieb eines brennstoffzellensystems |
DE102010035727A1 (de) * | 2010-08-28 | 2012-03-01 | Daimler Ag | Aufladeeinrichtung für eine Brennstoffzelle, Brennstoffzelleneinrichtung sowie Verfahren zum Betreiben einer solchen Brennstoffzelleneinrichtung |
WO2018184800A1 (de) * | 2017-04-04 | 2018-10-11 | Robert Bosch Gmbh | Turbokompressor, insbesondere für ein brennstoffzellensystem |
Also Published As
Publication number | Publication date |
---|---|
ATE165478T1 (de) | 1998-05-15 |
EP0787367A2 (de) | 1997-08-06 |
AU683776B2 (en) | 1997-11-20 |
DK0787367T3 (da) | 1999-01-18 |
ES2116770T3 (es) | 1998-07-16 |
JPH10507867A (ja) | 1998-07-28 |
EP0787367B1 (de) | 1998-04-22 |
WO1996013871A3 (de) | 1996-06-13 |
DE59502015D1 (de) | 1998-05-28 |
CA2202984A1 (en) | 1996-05-09 |
AU3649795A (en) | 1996-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69025496T2 (de) | Methode und Anlage zur Erzeugung elektrischer Energie | |
EP0553125B1 (de) | Verfahren und anlage zur kombinierten erzeugung elektrischer und mechanischer energie | |
DE69931548T2 (de) | Turbinenanlage | |
EP2865045B1 (de) | Kraftwerksanordnung mit hochtemperatur-speichereinheit | |
DE60314432T2 (de) | Festoxidbrennstoffzelle | |
DE102005012230A1 (de) | Verfahren und System zum Anfahren und transienten Betrieb eines integrierten Brennstoffzellen-Gasturbinensystems | |
WO1996013871A2 (de) | Brennstoffzellenanlage mit wärmenutzung des kathodenabgases und verfahren zu ihrem betrieb | |
WO1996020506A1 (de) | Brennstoffzellenmodul, bei dem zellenstapel, katalytische verbrennungseinrichtung und reformer in einem isolierenden schutzgehäuse zusammengefasst sind | |
DE102014217114A1 (de) | Kraft-Wärme-Kopplungsanlage zur dezentralen Strom- und Wärmeversorgung | |
WO2004095618A2 (de) | Energieumwandlungsvorrichtung sowie reformereinrichtung und brennstoffzelleneinrichtung hierfür | |
WO1991011597A1 (de) | Verfahren und anlage zur erzeugung mechanischer energie | |
DE10024570A1 (de) | Brennstoffzellensystem sowie Verfahren zum Betreiben des Brennstoffzellensystems | |
EP1104039A2 (de) | Anordnung mit Brennstoffzellen und Gasversorgungssystem sowie Verfahren zum Betreiben der Anordnung | |
DE19706584C2 (de) | Hochtemperaturbrennstoffzellen mit Erwärmung des Reaktionsgases | |
EP0613588B1 (de) | Verfahren zur auskopplung von wärme aus brennstoffzellen und wärmeauskopplungseinrichtung zur durchführung des verfahrens | |
EP2876280B1 (de) | Mikrogasturbinenanordnung | |
EP1564830A2 (de) | Verfahren zur Erzeugung von Strom und Wärme | |
DE10006006B4 (de) | Kraft-Wärme-Kopplungsapparat | |
EP0530519A1 (de) | Kraftwerksanlage mit nuklearer und fossiler Feuerung | |
EP1189298A1 (de) | Anlage und Verfahren zum Erzeugen elektrischer Energie | |
WO1998048161A1 (de) | Verfahren zum betreiben einer gasturbine und danach arbeitende gasturbine | |
WO1997042675A1 (de) | Vorrichtung zur erzeugung von wärme und zur elektrochemischen stromerzeugung | |
DE102017120369A1 (de) | Mikrogasturbinenanordnung und Verfahren zum Betreiben einer Mikrogasturbinenanordnung | |
EP3862547B1 (de) | Gasturbinenanordnung und verfahren zum betreiben einer gasturbinenanordnung | |
WO2002023652A2 (de) | Vorrichtung und verfahren zur stromerzeugung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AU CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AU CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1995934047 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2202984 Country of ref document: CA Ref country code: CA Ref document number: 2202984 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 1995934047 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1995934047 Country of ref document: EP |