WO1996012588A1 - Systeme de reparation au moyen de materiaux a memoire de forme et procede d'utilisation de ces materiaux a cet effet - Google Patents

Systeme de reparation au moyen de materiaux a memoire de forme et procede d'utilisation de ces materiaux a cet effet Download PDF

Info

Publication number
WO1996012588A1
WO1996012588A1 PCT/US1995/002169 US9502169W WO9612588A1 WO 1996012588 A1 WO1996012588 A1 WO 1996012588A1 US 9502169 W US9502169 W US 9502169W WO 9612588 A1 WO9612588 A1 WO 9612588A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape
memory
repair
structural member
shape memory
Prior art date
Application number
PCT/US1995/002169
Other languages
English (en)
Inventor
Parviz Soroushian
Jer-Wen Hsu
Original Assignee
Dpd, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dpd, Inc. filed Critical Dpd, Inc.
Priority to AU21149/95A priority Critical patent/AU2114995A/en
Publication of WO1996012588A1 publication Critical patent/WO1996012588A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/12Mounting of reinforcing inserts; Prestressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/04Repairing fractures or cracked metal parts or products, e.g. castings
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D22/00Methods or apparatus for repairing or strengthening existing bridges ; Methods or apparatus for dismantling bridges
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G2023/0251Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G2023/0251Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements
    • E04G2023/0255Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements whereby the fiber reinforced plastic elements are stressed
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G2023/0251Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements
    • E04G2023/0255Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements whereby the fiber reinforced plastic elements are stressed
    • E04G2023/0259Devices specifically adapted to stress the fiber reinforced plastic elements

Definitions

  • This invention relates to systems and methods for repairing structural members in which shape memory materials apply a corrective force to achieve a repair or strengthening objective.
  • Shape-memory is a physical phenomenon by which a plastically deformed metal is restored to its original shape by a solid state phase change caused by heating (Van Hambeck, I. J., "From a Seed to a Need: The Growth of Shape Memory Applications in Europe,” Materials Research Society Symposium Proceedings, Vol. 246, 1992, pp. 377-387). This process of regaining the original shape is associated with a reverse transformation of the deformed martensitic phase to the higher temperature austenitic phase (Wu, R.H., "Structure and Properties of Rapidly Solidified Nitinol Materials,” Materials Research Society Symposium Proceedings, Vol. 246, 1992, pp. 361-366).
  • Nitinol nickel-titanium alloys
  • some copper alloy systems Nitinol can be plastically deformed in its low-temperature martensitic phase to strains as high as 6 to 8%, and then regain its original shape upon heating to the austenitic phase.
  • the restraint of Nitinol from regaining the memory shape can result in stresses exceeding 700 Mpa (Gandhi, M.V. and Thompson, B.S., " Smart Materials and Structures," Chapman & Hall, 1993, pp. 192-215).
  • Nitinol generally shows higher elastic modulus and yield stress at the high-temperature austemtic phase than at the low-temperature martensitic phase.
  • the transformation temperature of Nitinol can be adjusted, and it typically ranges from -50 to 100 deg. C (Gandhi and Thompson, 1993).
  • Shape-memory actuators can be moved back and forth and rotated by heating or employing other forms of control. Electrical energy is typically employed for heating purposes; however, hot water, hot air, high- frequency induction heating, microwave heating, laser light, infrared rays, etc. can also be employed for heating. Shape-memory actuators have the distinct advantage of small size, because they are constructed as a single unit with a simple material-based mechanism for actuation. Other applications of shape- memory alloys include pipe couplings, blood clot filters, drive elements of artificial heating, etc. (Gandhi and Thompson, 1993).
  • U.S. Pat. No. 5,093,065 issued to R. L. Creedon in 1992 illustrates a prestressing arrangement with a shape-memory material member.
  • a formable material such as concrete
  • This shape-memory material is then shrunk by heating it above its characteristic threshold temperature, placing the formed material in compression (and the member itself in tension).
  • U. S. Pat. No. 5,024,388 issued to K. Kaneko and M. Nishida in 1991 illustrates the construction of a stonework crusher utilizing thermal deformation shape-memory alloy.
  • shape-memory plates or rods or polymer matrix composite plates or rods incorporating shape-memory ribbons or wires, may be elongated and kept at a temperature below their transformation temperature, or may be used without prior elongation particularly if their transformation temperature is below ambient temperature.
  • FIG. 1 is a perspective view of plate and rod shaped repair members according to the present invention formed of a shape memory alloy
  • FIG. 2 is a perspective view of plate and rod like repair members according to the invention formed of a polymer matrix containing fibers of shape memory alloy;
  • FIG. 3 is a perspective view of a structural component in need of repair to which is attached the plate of FIG. 1;
  • FIG. 4 is a perspective view of the beam of FIG. 3 after a repair has been effected by the plate;
  • FIG. 5 is a perspective view of a plate plastically elongated in more than one direction in order to transfer bi-directional forces to a structural member;
  • FIG. 6 is a perspective view of a column having a girdle formed with a shape memory alloy
  • FIG. 7 is a perspective view of a beam having a shape memory plate anchored thereto by a shape memory girdle;
  • FIG. 8 is a perspective view of a structural member with rods formed of a shape memory alloy inserted into bore holes through the structural member;
  • FIG. 9 is an end view of a reinforcing rod formed of a shape memory alloy and anchored into a hole in a structural member by the shape memory phenomena;
  • FIG. 10 is a side view of an anchor formed of a shape memory alloy
  • FIG. 11 is a side elevational view of a structural member incorporating shape memory alloy fibers having a transformation temperature below ambient;
  • FIG. 12 is a perspective view of the beam of FIG. 3 and further incorporating sensors and a processor;
  • FIG. 13 is a side elevational view in section of a method for applying an overlay to a substrate
  • FIG. 14 is a perspective view of a beam employing a shape memory alloy plate having a transformation temperature below ambient;
  • FIG. 15 is a perspective view of the beam of FIG. 14 after a corrective force has been applied by the shape memory alloy plate;
  • FIG. 16 is a side elevational view of a lap splice at a bridge column base;
  • FIG. 17 is a cross-sectional view of the bridge column of FIG. 16 with a shape-memory alloy girdle according to the invention.
  • a plate 10 or rod 12 formed of a shape memory alloy (SMA) can be employed, with its characteristic temperature controlled shape changing phenomena supplying the necessary corrective force in place of complicated mechanical or hydraulic jacks (not shown).
  • the shape- memory plate 10 or rod 12 used in this invention may be made fully of a shape- memory alloy (SMA) as shown in FIG. 1.
  • plates 14 or rods 16 may be formed of a polymer matrix composite 18 incorporating ribbons or wires of SMA 20.
  • the shape-memory plate 10 is plastically elongated and then, while kept below its transformation temperature, is adhered or otherwise anchored to a component or structure, such as a concrete beam 22 to be repaired or retrofitted.
  • raising the temperature of the plate 10 (e.g. through electric heating) above the transformation temperature includes a solid state phase change causing the plate 10 to seek its original shape, i.e, shorten.
  • the shortening tendency of plate 10 transfers corrective forces 24 to the beam 22 in order to accomplish repair or retrofit objective such as reducing crack widths, deformations and stresses.
  • the plate 10 closes cracks 26 previously formed in the beam 22.
  • a shape-memory plate 28 may be plastically elongated in two directions in order to transfer bi-directional forces 30 to a component or structure 32.
  • a compressive girdle 36 employing SMA can apply the desired compressive forces 38.
  • the girdle is formed entirely of SMA, or alternatively, comprises a polymer matrix containing SMA elements, such as wires. In either event, the SMA is plastically elongated prior to the girdle 36 being applied to the column 34. Raising the temperature above the transformation temperature causes the SMA to contract and the girdle 36 to apply confining corrective pressure to the column 34. It will be evident that the girdle 36 may similarly be applied to other structured components such as beams.
  • this type of confining pressure applied by the girdle 36 is used for anchorage purposes.
  • the girdle 36 aids in anchoring another shape-memory system 40 to a component or structure 42 for better transfer of corrective forces 44 to the component or structure 42 by the second SMA system 40.
  • SMA's for repair is not limited to external surfaces of a component as disclosed thus far.
  • plastically elongated shape-memory rods 12 are placed inside holes 46 which are drilled into a component or structure 48.
  • An epoxy or other suitable adhesive secures the rods inside the holes 46. Raising the temperature of the rods 12 above the transformation temperature induces the rods 12 to shorten, thus transferring corrective forces 50 to the component or structure 48 to accomplish such repair or retrofit objectives as closing cracks 52 or increasing the strength of the component or structure 48.
  • the shape-memory rod 12 is not only elongated but also, after its memory diameter or cross-sectional dimension has been established, pressed laterally to reduce its diameter, and then placed inside hole 54.
  • the reduced-diameter and elongated shape-memory rod 12 tends to expand and shorten inside the hole 54.
  • the expansion tendency produces pressure inside the hole 54 which generates frictional resistance against movement and provides for the anchorage of the rod 12 inside the hole 54.
  • the memory shape includes hooks 56 at the end of a shape-memory rod 58 for anchorage.
  • the hook 56 is also straightened.
  • the hook 56 After placing the rod 58 inside a hole 60 and upon heating to cause shortening tendencies, the hook 56 also re-emerges, providing for end anchorage of the rod 58 and transfer of forces to a component or structure 62.
  • the anchorage methods of FIGS. 9 and 10 may be used in various applications; for example, referring to the method of FIG. 9, conventional reinforcing bars or pipes (not shown) can be coated with shape-memory alloys which are then reduced in thickness under pressure. Their expansion tendency upon heating can then be used for anchorage purposes.
  • an elongated shape-memory rod, ribbon or wire is cut into discrete short fibers 64 which are mixed into formable materials 66 such as concrete, plastics or ceramics during mixing and forming. Later, during service life and upon failure marked by excess widths or strains of crack 68, the shape memory fibers 64 are heated, causing them to seek their shorter memory shape. Their shortening tendencies produce internal stresses 70 for closing the cracks 68 or reducing strains and deformations.
  • the shape-memory fibers 64 can also be pressed laterally during elongation to provide for better anchorage upon heating and expansion using the mechanism introduced in FIG. 9.
  • Sensors can be used in conjunction with any of the previous shape- memory systems to automatically prompt the repair action based on the shape- memory phenomenon once failures marked by cracking, excess strains or the like are detected.
  • the composite shape-memory system of FIG. 3 can incorporate fiber-optics or other sensors as shown in FIG. 12.
  • Fiber optic strain sensors 72 detect failure signs such as excess widths of cracks 26 and other strains.
  • a signal from the sensor will automatically actuate the shape-memory plate 10 when needed in order to accomplish the necessary repair objectives.
  • Such systems would thus have self- repair capabilities in case of future distress.
  • the invention is used for providing better bonding of overlay systems to a substrate such as concrete, rock or other materials.
  • a substrate such as concrete, rock or other materials.
  • holes 76 are drilled into a substrate 78.
  • Elongated shape-memory rods 80 are then placed inside the holes 76 and anchored to the substrate 78 using adhesives and/or either of the concepts introduced in FIGS. 9 and 10.
  • heating of the shape-memory rods 80 produces shortening tendencies which pull the overlay 82 against the substrate 78 and provide for a more integrated system of overlay and substrate.
  • the rods 80 are provided with enlarged heads 84 disposed within the overlay 82 to improve anchorage of the rods 80 within the overlay 82.
  • a super-elastic shape-memory plate 86 with transformation temperature below ambient temperature, is used without prior plastic elongation.
  • any future cause of damage say in the form of external loading 90, which would plastically elongate the shape-memory plate 86, would activate, as shown in FIG. 15, the shape-memory phenomenon (which now takes place at ambient temperature) and transfer corrective forces 92 to the component or structure to resist the load 90 and thereby providing a self-repair capability.
  • This self-repair capability with super-elastic memory alloys which are not plastically elongated can be built into any of the systems of Figs. 5, 6, 8, 11 and 13.
  • this embodiment can use either discrete or continuous shape-memory systems which are incorporated into the deformable material without prior elongation.
  • inelastic flexural actions must develop to provide the ductile response necessary to enable a structure supported by the column 84, such as a bridge, to survive intense seismic attack.
  • Lap-splices 86 generally break down under the cyclic inelastic action, typical of seismic excitation, with a consequent reduction in flexural strength and energy absorption.
  • FIG. 17 illustrates another girdle embodiment where pre- elongated shape-memory Nitinol wires with a diameter of 3 mm located at 5- mm spacing (on-center) and embedded in a protective composite matrix 102 apply suggested confining pressure of approximately 1 Mpa for seismic retrofit of the column 84.

Abstract

Système et procédé permettant d'utiliser les alliages à mémoire de forme pour la réparation et le rattrapage. Les alliages à mémoire de forme sont utilisés sous forme de plaques ou de tiges constituées de ces alliages, ou sous la forme de plaques (10) ou de tiges composites constituées d'une matrice en polymère et de rubans ou de câbles d'alliage à mémoire de forme. Selon un aspect de l'invention, des plaques à mémoire de forme ayant subi une élongation plastique sont maintenues à une température inférieure à leur température de transformation et sont fixées par adhérence sur une pièce ou une structure (22). Elles sont ensuite portées à une température supérieure à leur température de transformation, ce qui tend à les raccourcir et entraîne un transfert des forces correctives à la pièce ou à la structure qui permet de réaliser certaines réparations ou certains rattrapages (par exemple fermer des fissures ou réduire des déformations). Selon un autre aspect, la température de transformation de la plaque à mémoire de forme est inférieure à la température ambiante et la plaque est fixée par adhérence à la pièce ou à la structure sans élongation préalable. Tout dommage ultérieur causé à la structure qui provoque une élongation plastique des plaques à mémoire de forme active le phénomène de mémoire de forme, qui a alors lieu à température ambiante, ce qui entraîne le transfert de forces correctives à la pièce ou à la structure.
PCT/US1995/002169 1994-10-19 1995-02-21 Systeme de reparation au moyen de materiaux a memoire de forme et procede d'utilisation de ces materiaux a cet effet WO1996012588A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU21149/95A AU2114995A (en) 1994-10-19 1995-02-21 Shape-memory material repair system and method of use therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32568794A 1994-10-19 1994-10-19
US08/325,687 1994-10-19

Publications (1)

Publication Number Publication Date
WO1996012588A1 true WO1996012588A1 (fr) 1996-05-02

Family

ID=23268977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/002169 WO1996012588A1 (fr) 1994-10-19 1995-02-21 Systeme de reparation au moyen de materiaux a memoire de forme et procede d'utilisation de ces materiaux a cet effet

Country Status (2)

Country Link
AU (1) AU2114995A (fr)
WO (1) WO1996012588A1 (fr)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0835355A1 (fr) * 1995-06-29 1998-04-15 Hexcel-Fyfe Co.L.L.C. Poutres et raccords de poutre a armature textile
EP1013851A1 (fr) * 1998-12-14 2000-06-28 Top Glass S.p.A. Procédé de fabrication d'un élément de renforcement pour constructions et élément de renforcement obtenu
GB2358880A (en) * 2000-01-12 2001-08-08 Stuart Ian Jackman Method for reinforcing material
WO2001086096A1 (fr) 2000-05-10 2001-11-15 Qinetiq Limited Procede de renforcement de structures
WO2002004759A3 (fr) * 2000-07-07 2002-04-25 Josef Scherer Armature pour surfaces de batiments
EP1755871A2 (fr) * 2004-06-04 2007-02-28 Cornerstone Research Group, Inc. Procede permettant de fabriquer et d'utiliser des timbres composites polymeres a memoire de forme
CN100445499C (zh) * 2005-07-27 2008-12-24 同济大学 智能预应力系统
WO2009019464A1 (fr) * 2007-08-03 2009-02-12 University College Cardiff Consultants Ltd Précontrainte ou confinement de matériaux utilisant des polymères
US20090314406A1 (en) * 2008-06-24 2009-12-24 Gm Global Technology Operations, Inc. Self-healing and self-cleaning tires utilizing active material actuation
US7981229B2 (en) 2004-06-04 2011-07-19 Cornerstone Research Group, Inc Method of making and using shape memory polymer patches
WO2014026299A1 (fr) * 2012-08-14 2014-02-20 S&P Clever Reinforcement Company Ag Système d'ancrage dans un support dans le domaine du bâtiment, et son procédé d'utilisation
US20140082912A1 (en) * 2012-09-27 2014-03-27 General Electric Company Turbomachine including a crack arrestment system and method
US8721822B2 (en) 2004-06-04 2014-05-13 Cornerstone Research Group, Inc. Method of making and using shape memory polymer composite patches
US8808479B2 (en) 2004-06-04 2014-08-19 Cornerstone Research Group, Inc. Method of making and using shape memory polymer composite patches
WO2014166003A3 (fr) * 2013-04-08 2015-04-02 Re-Fer Ag Procédé de production de structures en béton précontraint au moyen de profilés en alliage à mémoire de forme, et structure fabriquée selon ledit procédé
WO2016096737A1 (fr) * 2014-12-18 2016-06-23 Re-Fer Ag Procédé pour la réalisation d'ouvrages de construction et d'éléments de construction précontraints au moyen d'éléments de traction sma et ouvrage de construction et élément de construction ainsi équipé
US9454188B2 (en) 2014-06-03 2016-09-27 Apple Inc. Electronic device structures joined using shrinking and expanding attachment structures
ES2592554A1 (es) * 2016-10-14 2016-11-30 Universitat De Les Illes Balears Método de refuerzo activo frente a esfuerzo cortante o punzonamiento en elementos portantes estructurales, y sistema de refuerzo activo
CN109695458A (zh) * 2019-01-16 2019-04-30 上海理工大学 利用形状记忆合金的跨海隧道衬砌结构裂缝修复系统
CN110485628A (zh) * 2019-07-11 2019-11-22 同济大学 带预应力铝合金板的混凝土受弯构件及抗弯加固方法
CN111070735A (zh) * 2019-12-30 2020-04-28 扬州大学 一种预应力形状记忆合金-连续纤维复合筋的制备及其使用方法
EP3656948A1 (fr) 2018-11-22 2020-05-27 fischerwerke GmbH & Co. KG Élément de serrage pour un composant et procédé d'introduction d'une tension de pression dans un composant
DE102018129640A1 (de) * 2018-11-23 2020-05-28 Thyssenkrupp Ag Verfahren zum Vorspannen eines Bauwerks mit einer Spannvorrichtung und Verwendung einer solchen Spannvorrichtung zum Befestigen an einem Bauwerk
DE102019128494A1 (de) 2018-11-22 2020-05-28 Fischerwerke Gmbh & Co. Kg Spannelement zur Verstärkung eines Bauteils im Bauwesen und Verfahren zur Einleitung einer Druckspannung in ein Bauteil
US20210115684A1 (en) * 2019-10-16 2021-04-22 The Board Of Trustees Of The University Of Illinois Method to strengthen or repair concrete and other structures
CN114991028A (zh) * 2022-06-17 2022-09-02 苏交科集团股份有限公司 一种钢桥疲劳裂纹自调节预应力加固系统及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE843363A (fr) * 1976-06-24 1976-10-18 Procede et dispositif pour la renovation d'immeubles par la coulee de dalles de beton sur des planchers existants
GB2094435A (en) * 1981-03-10 1982-09-15 Nat Nuclear Corp Ltd Repairing tubes
DE3322598A1 (de) * 1983-06-03 1984-12-06 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Verbundwerkstoff mit hoher zugfestigkeit bestehend aus einer kunststoffmatrix mit einer eingebetteten bewehrung und verfahren zu dessen herstellung
EP0416102A1 (fr) * 1989-03-15 1991-03-13 Mitsubishi Materials Corporation Procede de reparation de fissures
US5043033A (en) * 1991-01-28 1991-08-27 Fyfe Edward R Process of improving the strength of existing concrete support columns
JPH03199997A (ja) * 1989-12-27 1991-08-30 Hitachi Ltd 中性子束モニタハウジングの補修方法
JPH04239793A (ja) * 1991-01-23 1992-08-27 Sharp Corp 自己修復型の積層基板
EP0501879A1 (fr) * 1991-02-27 1992-09-02 Cogema (Compagnie Generale Des Matieres Nucleaires) Béton et son procédé de mise en précontrainte, conteneur fabriqué avec ce béton
JPH06186376A (ja) * 1992-12-17 1994-07-08 Toshiba Corp 構造材の欠陥補修方法
JPH06212018A (ja) * 1993-01-14 1994-08-02 Yasubumi Furuya 高分子基複合機能性材料

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE843363A (fr) * 1976-06-24 1976-10-18 Procede et dispositif pour la renovation d'immeubles par la coulee de dalles de beton sur des planchers existants
GB2094435A (en) * 1981-03-10 1982-09-15 Nat Nuclear Corp Ltd Repairing tubes
DE3322598A1 (de) * 1983-06-03 1984-12-06 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Verbundwerkstoff mit hoher zugfestigkeit bestehend aus einer kunststoffmatrix mit einer eingebetteten bewehrung und verfahren zu dessen herstellung
EP0416102A1 (fr) * 1989-03-15 1991-03-13 Mitsubishi Materials Corporation Procede de reparation de fissures
JPH03199997A (ja) * 1989-12-27 1991-08-30 Hitachi Ltd 中性子束モニタハウジングの補修方法
JPH04239793A (ja) * 1991-01-23 1992-08-27 Sharp Corp 自己修復型の積層基板
US5043033A (en) * 1991-01-28 1991-08-27 Fyfe Edward R Process of improving the strength of existing concrete support columns
EP0501879A1 (fr) * 1991-02-27 1992-09-02 Cogema (Compagnie Generale Des Matieres Nucleaires) Béton et son procédé de mise en précontrainte, conteneur fabriqué avec ce béton
JPH06186376A (ja) * 1992-12-17 1994-07-08 Toshiba Corp 構造材の欠陥補修方法
JPH06212018A (ja) * 1993-01-14 1994-08-02 Yasubumi Furuya 高分子基複合機能性材料

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 15, no. 466 (P - 1280) 26 November 1991 (1991-11-26) *
PATENT ABSTRACTS OF JAPAN vol. 17, no. 6 (E - 1302) 7 January 1993 (1993-01-07) *
PATENT ABSTRACTS OF JAPAN vol. 18, no. 530 (P - 1809) 6 October 1994 (1994-10-06) *
PATENT ABSTRACTS OF JAPAN vol. 18, no. 578 (C - 1269) 7 November 1994 (1994-11-07) *

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0835355A1 (fr) * 1995-06-29 1998-04-15 Hexcel-Fyfe Co.L.L.C. Poutres et raccords de poutre a armature textile
EP0835355A4 (fr) * 1995-06-29 1999-03-31 Hexcel Fyfe Co L L C Poutres et raccords de poutre a armature textile
EP1013851A1 (fr) * 1998-12-14 2000-06-28 Top Glass S.p.A. Procédé de fabrication d'un élément de renforcement pour constructions et élément de renforcement obtenu
GB2358880A (en) * 2000-01-12 2001-08-08 Stuart Ian Jackman Method for reinforcing material
WO2001086096A1 (fr) 2000-05-10 2001-11-15 Qinetiq Limited Procede de renforcement de structures
US6865791B2 (en) 2000-05-10 2005-03-15 Qinetiq Limited Method of generating force between a structure and an additional member
WO2002004759A3 (fr) * 2000-07-07 2002-04-25 Josef Scherer Armature pour surfaces de batiments
EP1755871A4 (fr) * 2004-06-04 2008-02-27 Cornerstone Res Group Inc Procede permettant de fabriquer et d'utiliser des timbres composites polymeres a memoire de forme
US8721822B2 (en) 2004-06-04 2014-05-13 Cornerstone Research Group, Inc. Method of making and using shape memory polymer composite patches
EP1755871A2 (fr) * 2004-06-04 2007-02-28 Cornerstone Research Group, Inc. Procede permettant de fabriquer et d'utiliser des timbres composites polymeres a memoire de forme
US7938923B2 (en) 2004-06-04 2011-05-10 Cornerstone Research Group, Inc. Method of making and using shape memory polymer composite patches
US7981229B2 (en) 2004-06-04 2011-07-19 Cornerstone Research Group, Inc Method of making and using shape memory polymer patches
US8808479B2 (en) 2004-06-04 2014-08-19 Cornerstone Research Group, Inc. Method of making and using shape memory polymer composite patches
CN100445499C (zh) * 2005-07-27 2008-12-24 同济大学 智能预应力系统
WO2009019464A1 (fr) * 2007-08-03 2009-02-12 University College Cardiff Consultants Ltd Précontrainte ou confinement de matériaux utilisant des polymères
GB2465707A (en) * 2007-08-03 2010-06-02 Univ Cardiff Pre-stressing or confinement of materials using polymers
US9211687B2 (en) * 2008-06-24 2015-12-15 GM Global Technology Operations LLC Self-healing and self-cleaning tires utilizing active material actuation
US20090314406A1 (en) * 2008-06-24 2009-12-24 Gm Global Technology Operations, Inc. Self-healing and self-cleaning tires utilizing active material actuation
WO2014026299A1 (fr) * 2012-08-14 2014-02-20 S&P Clever Reinforcement Company Ag Système d'ancrage dans un support dans le domaine du bâtiment, et son procédé d'utilisation
US20150218797A1 (en) * 2012-08-14 2015-08-06 S&P Clever Reinforcement Company Ag Anchoring system for a bearing ground in the building industry as well as procedure for applying the same
US9476195B2 (en) * 2012-08-14 2016-10-25 S&P Clever Reinforcement Company Ag Anchoring system for a bearing ground in the building industry as well as procedure for applying the same
US20140082912A1 (en) * 2012-09-27 2014-03-27 General Electric Company Turbomachine including a crack arrestment system and method
CN103696815A (zh) * 2012-09-27 2014-04-02 通用电气公司 包括裂缝抑制系统和方法的涡轮机
US9758968B2 (en) 2013-04-08 2017-09-12 Re-Fer Ag Method for building prestressed concrete structures by means of profiles consisting of a shape-memory alloy, and structure produced using said method
WO2014166003A3 (fr) * 2013-04-08 2015-04-02 Re-Fer Ag Procédé de production de structures en béton précontraint au moyen de profilés en alliage à mémoire de forme, et structure fabriquée selon ledit procédé
CN105378129A (zh) * 2013-04-08 2016-03-02 Re-Fer股份公司 通过由形状记忆合金制成的轮廓制造加预应力的混凝土结构的方法以及根据该方法建造的结构
KR20160037836A (ko) * 2013-04-08 2016-04-06 엠파 형상-기억 합금에 의하여 제조된 프로파일에 의한 프리스트레스 콘크리트 구조물의 시공방법 및 이 방법에 따라 시공된 구조물
KR102293794B1 (ko) 2013-04-08 2021-08-25 엠파 형상-기억 합금에 의하여 제조된 프로파일에 의한 프리스트레스 콘크리트 구조물의 시공방법 및 이 방법에 따라 시공된 구조물
US10162392B2 (en) 2014-06-03 2018-12-25 Apple Inc. Electronic device structures joined using shrinking and expanding attachment structures
US9454188B2 (en) 2014-06-03 2016-09-27 Apple Inc. Electronic device structures joined using shrinking and expanding attachment structures
US10246887B2 (en) 2014-12-18 2019-04-02 Re-Fer Ag Method for producing prestressed structures and structural parts by means of SMA tension elements, and structure and structural part equipped therewith
WO2016096737A1 (fr) * 2014-12-18 2016-06-23 Re-Fer Ag Procédé pour la réalisation d'ouvrages de construction et d'éléments de construction précontraints au moyen d'éléments de traction sma et ouvrage de construction et élément de construction ainsi équipé
WO2018069560A1 (fr) * 2016-10-14 2018-04-19 Universitat De Les Illes Balears Procédé de renforcement actif contre une contrainte de cisaillement ou de poinçonnage dans des éléments porteurs structuraux, et système de renforcement actif
ES2592554A1 (es) * 2016-10-14 2016-11-30 Universitat De Les Illes Balears Método de refuerzo activo frente a esfuerzo cortante o punzonamiento en elementos portantes estructurales, y sistema de refuerzo activo
DE102019128494A1 (de) 2018-11-22 2020-05-28 Fischerwerke Gmbh & Co. Kg Spannelement zur Verstärkung eines Bauteils im Bauwesen und Verfahren zur Einleitung einer Druckspannung in ein Bauteil
EP3656948A1 (fr) 2018-11-22 2020-05-27 fischerwerke GmbH & Co. KG Élément de serrage pour un composant et procédé d'introduction d'une tension de pression dans un composant
DE102018129640A1 (de) * 2018-11-23 2020-05-28 Thyssenkrupp Ag Verfahren zum Vorspannen eines Bauwerks mit einer Spannvorrichtung und Verwendung einer solchen Spannvorrichtung zum Befestigen an einem Bauwerk
CN109695458A (zh) * 2019-01-16 2019-04-30 上海理工大学 利用形状记忆合金的跨海隧道衬砌结构裂缝修复系统
CN109695458B (zh) * 2019-01-16 2020-08-04 上海理工大学 利用形状记忆合金的跨海隧道衬砌结构裂缝修复系统
CN110485628A (zh) * 2019-07-11 2019-11-22 同济大学 带预应力铝合金板的混凝土受弯构件及抗弯加固方法
US20210115684A1 (en) * 2019-10-16 2021-04-22 The Board Of Trustees Of The University Of Illinois Method to strengthen or repair concrete and other structures
US11697944B2 (en) * 2019-10-16 2023-07-11 The Board Of Trustees Of The University Of Illinois Method to strengthen or repair concrete and other structures
CN111070735A (zh) * 2019-12-30 2020-04-28 扬州大学 一种预应力形状记忆合金-连续纤维复合筋的制备及其使用方法
CN111070735B (zh) * 2019-12-30 2021-07-16 扬州大学 一种预应力形状记忆合金-连续纤维复合筋的制备及其使用方法
CN114991028A (zh) * 2022-06-17 2022-09-02 苏交科集团股份有限公司 一种钢桥疲劳裂纹自调节预应力加固系统及方法
CN114991028B (zh) * 2022-06-17 2024-02-20 苏交科集团股份有限公司 一种钢桥疲劳裂纹自调节预应力加固系统及方法

Also Published As

Publication number Publication date
AU2114995A (en) 1996-05-15

Similar Documents

Publication Publication Date Title
WO1996012588A1 (fr) Systeme de reparation au moyen de materiaux a memoire de forme et procede d'utilisation de ces materiaux a cet effet
Shahverdi et al. Iron-based shape memory alloys for prestressed near-surface mounted strengthening of reinforced concrete beams
Michels et al. Flexural strengthening of structural concrete with iron‐based shape memory alloy strips
Shahverdi et al. Strengthening of RC beams by iron-based shape memory alloy bars embedded in a shotcrete layer
Fritsch et al. Development of nail-anchor strengthening system with iron-based shape memory alloy (Fe-SMA) strips
Lees et al. Experimental study of influence of bond on flexural behavior of concrete beams pretensioned with aramid fiber reinforced plastics
Soroushian et al. Repair and strengthening of concrete structures through application of corrective posttensioning forces with shape memory alloys
Rojob et al. Self-prestressing using iron-based shape memory alloy for flexural strengthening of reinforced concrete beams
US6082063A (en) Prestressing anchorage system for fiber reinforced plastic tendons
Nehdi et al. Development of corrosion-free concrete beam–column joint with adequate seismic energy dissipation
Raza et al. Shape memory alloy reinforcement for strengthening and self-centering of concrete structures—State of the art
Rius et al. Shear strengthening of reinforced concrete beams using shape memory alloys
Chen et al. Influence of FRP thickness and confining effect on flexural performance of HB-strengthened RC beams
Li et al. Behavior of a simple concrete beam driven by shape memory alloy wires
Choi et al. Pullout behavior of superelastic SMA fibers with various end-shapes embedded in cement mortar
CN108798062A (zh) 基于形状记忆合金的钢-混凝土界面损伤监测及加固方法
Diab et al. Short and long-term bond performance of prestressed FRP sheet anchorages
El-Hacha et al. Flexural strengthening of large-scale reinforced concrete beams using near-surface-mounted self-prestressed iron-based shape-memory alloy strips
Rojob et al. Performance of RC beams strengthened with self-prestressed Fe-SMA bars exposed to freeze-thaw cycles and sustained load
Choi et al. Monotonic and hysteretic pullout behavior of superelastic SMA fibers with different anchorages
Li et al. Flexural behaviour of notched steel beams strengthened with a prestressed CFRP plate subjected to fatigue damage and wetting/drying cycles
Cupać et al. Flexural behaviour of post-tensioned glass beams: Experimental and analytical study of three beam typologies
Sung et al. Adaptive prestressing system using shape memory alloys and conventional steel for concrete crossties
Poon et al. Interfacial debond of shape memory alloy composites
Qiang et al. Experimental study on anchorage and activation performance of Fe-SMA strips for structural reinforcements

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU JP KG KP KR KZ LK LR LT LU LV MD MG MN MW NL NO NZ PL PT RO RU SD SE SI SK TT UA UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA