WO1996010095A1 - Procede de fabrication de rails - Google Patents

Procede de fabrication de rails Download PDF

Info

Publication number
WO1996010095A1
WO1996010095A1 PCT/BE1995/000082 BE9500082W WO9610095A1 WO 1996010095 A1 WO1996010095 A1 WO 1996010095A1 BE 9500082 W BE9500082 W BE 9500082W WO 9610095 A1 WO9610095 A1 WO 9610095A1
Authority
WO
WIPO (PCT)
Prior art keywords
rails
temperature
rail
variables
cooling
Prior art date
Application number
PCT/BE1995/000082
Other languages
English (en)
Inventor
Marios Economopoulos
Nicole Lambert
Original Assignee
Centre De Recherches Metallurgiques - Centrum Voor Research In De Metallurgie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre De Recherches Metallurgiques - Centrum Voor Research In De Metallurgie filed Critical Centre De Recherches Metallurgiques - Centrum Voor Research In De Metallurgie
Priority to AU34671/95A priority Critical patent/AU3467195A/en
Publication of WO1996010095A1 publication Critical patent/WO1996010095A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
    • C21D9/06Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails with diminished tendency to become wavy

Definitions

  • the present invention relates to a method for manufacturing rails, in particular high-resistance rails, which comprises a heat treatment of the rails as soon as they leave the last rolling stand.
  • the heat treatment considered here essentially consists, in principle, of rapid cooling of the rails from the temperature they exhibit at the outlet of the rolling mill; for this reason, it is generally said that the treatment is carried out in the hot rolling. In practice, however, there may be provided a step for adjusting the temperature of the rails, by natural or forced air cooling, prior to this treatment.
  • the object of the invention is to obtain, preferably without the addition of alloying elements, always expensive, rails having after cooling a high resistance to rupture, wear and impact, an elongation at least equal at 10% and good weldability.
  • a rail having to have the above properties must include a bead made of fine perlite free of martensite and preferably also free of bainite as well as proeutectoid ferrite.
  • the hardness gradient in the bead must be as low as possible, so as to keep the rail sufficient hardness despite the wear of the bead in service.
  • patent EP-A-0 161 326 makes it possible, to a certain extent, to compensate for the effect of a variation in the temperature of entry of the rails, because it provides for the adjustment of the duration and the density of rapidly cooling heat flows to achieve the required degree of transformation. However, it is not intended to take account of a change in the composition of the steel and its effects on the behavior of the rails during cooling.
  • the object of the present invention is to propose a method of manufacturing rails which overcomes the drawbacks associated with the above-mentioned variations.
  • the invention aims to propose a method for conducting the rapid cooling of the rails in the hot rolling, so as to give them a fine pearlitic structure, without martensite and preferably without bainite, ensuring the aforementioned properties, whatever the composition of the steel within the usual limits of rail steels.
  • the "ideal diameter" (ID) of a steel is the diameter of a bar of this steel for which, after quenching in a medium having a heat exchange coefficient considered to be infinitely high, for example an ice brine, the bar has a 50% martensitic structure at its axis.
  • This ideal diameter depends in particular on the chemical composition of the steel, by relationships well known in the art.
  • the carbon content of which is usually between 0.60% and 0.85% by weight the ideal diameter (ID) is generally between 35 mm and 60 mm.
  • the “initial temperature” (T 0 ) of the rail is the temperature of the rail at the start of its heat treatment, that is to say at the inlet of the rapid cooling device. It can be different from the end of rolling temperature, because it can have been adjusted by a controlled stay of the rail on an intermediate cooler.
  • This temperature (T 0 ) must be equal to or greater than the transformation temperature A 3r of the steel, so as to guarantee that the rail is completely austenitic before the start of rapid cooling; otherwise, the perlite formed during the prior slow cooling would be too soft and the rail would not have the required hardness.
  • the running speed (V) is the speed with which the rail passes through the rapid cooling device. This speed is in principle constant; in this case, the parameter (V) can be replaced by (t), which represents the residence time of the rail in the rapid cooling device.
  • the speed (V) could however be modified, for example by a progressive acceleration of the rail as it enters the cooling device; in this case, this device can be divided into several sections, in which the speed (V) can be adjusted independently. This technique reduces the gap between two consecutive rails and therefore increases the production capacity of the processing line.
  • the coolant flow (Q) is the flow through the rapid cooler.
  • the distribution of this flow along the length of the cooling device can be uniform or variable, and in this respect the flow rate per unit of length can be reduced at the end of cooling to better control the hardness profile in the bead of the rail and limit the deformations of the rail in the device cooling.
  • the parameter (Q) represents the average flow rate in the cooling device.
  • the cooling device can be divided into several sections, in which the flow rate (Q) can be adjusted independently. Through the heat exchange coefficient, this flow conditions the intensity of the cooling.
  • the hardness levels to be reached are expressed by the minimum Brinell hardness values (HBN) which must be produced at different depths in the rail bead; they are imposed by users or by standards. For example, a first minimum value imposes an average level of hardness on the surface layer 10 mm thick (H 10 ) and a second minimum value fixes the hardness required at a depth of 20 mm (H 20 ).
  • HBN minimum Brinell hardness values
  • the mechanical properties of the rails are influenced by the average transformation temperature at this point.
  • the average transformation temperature at a point can be defined as the average of the temperatures at which each elementary increase in the proportion of austenite transformed at this point occurs. If Z represents the proportion of austenite transformed at a point, expressed in percent (%), dZ an elementary increase of this proportion of transformed austenite and T (Z) the temperature at which this increase occurs dZ, the average temperature of transformation at this point can be expressed by the relation:
  • obtaining the required properties involves the formation of a fine pearlitic structure, free from quenching structures such as bainite and martensite, at least throughout the cross section of the bead .
  • T. is the maximum temperature reached by the surface of the rail bead during the temperature equalization phase after the end of the rapid cooling. For rail steels, it appeared that this temperature was to reach at least 400 ° C, to prevent difficulty when training rails.
  • a method of manufacturing rails in which the running rails are subjected to a speed (V) to rapid surface cooling in the rolling hot by means of a coolant, then to cooling slower accompanied by an equalization of the temperature in the section of the rails, is characterized in that, for each rail, one calculates the ideal diameter (DI) corresponding to its chemical composition, in that one deter ⁇ mine, for each pair of values comprising a value of said diameter ideal (DI) and a value of one of the group's variables including the running speed of the rail (V), the initial temperature of the rail (T 0 ) and the flow rate of the rapid coolant (Q), the curves shown tatives of conditions imposed on the rails as a function of the two other variables of the aforementioned group, said conditions comprising the minimum level of hardness at different depths in the bead of the rail (H 10 , H 20 ), the minimum value of the temperature at the end of transformation of said bead (T m1n
  • the rails are grouped by families according to their ideal diameter, each family covering a range of IDs, a common set of values of the variables (V, T 0 , Q) is determined for each family of rails conferring the desired properties on each of the rails of the family and applying for the cooling of all the rails belonging to said family values of said variables (V, T 0 , Q) included in said common set.
  • families of rails can be defined by ranges of ideal diameter which have overlap.
  • a set of values of the variables (V, T 0 , Q) common to at least two families of rails is determined and values of said variables are applied for rapid cooling of all the rails belonging to said families.
  • V, T 0 , Q) included in said common set is determined and values of said variables are applied for rapid cooling of all the rails belonging to said families.
  • Fig. 1 illustrates some concepts to which reference is made in the application
  • Fig. 2 represents a hatched area, delimited in accordance with the invention, to be used for the rapid cooling treatment of a particular rail
  • Fig. 3 represents another hatched area, to be used for the rapid cooling treatment of another rail
  • Fig. 4 shows the superposition of three particular areas corresponding respectively to rails of the same family, with indication of the common area usable for the three rails
  • Fig. 5 shows the common areas corresponding respectively to three families of rails, with the overlap areas between the different areas
  • Fig. 6 represents an area corresponding to a family of rails and illustrating the possibilities of adjusting the control variables (Q, T 0 );
  • Fig. 7 illustrates a comparison of the results obtained by the method of the invention with results obtained by the prior art, for identical rails.
  • FIG. 1 illustrates the concepts of mean transformation temperature (TMT) and equalization temperature (T.) used in the present application.
  • TMT average transformation temperature
  • This histogram also indicates the extreme temperatures, upper and lower, here respectively 655 * C and 505 * C, between which the totality of the pearlitic transformation of the point considered is accomplished.
  • the average transformation temperature (TMT) influences various mechanical properties, and in particular the hardness which is particularly important in the case of a rail bead.
  • Fig. l shows an evolution of the Brinell hardness (HBN) as a function of the average transformation temperature (TMT); this diagram clearly shows that an increase in the average transformation temperature at one point of the bead leads to a reduction in the hardness at this point, and vice versa.
  • HBN Brinell hardness
  • TMT average transformation temperature
  • FIG. l (d) shows the evolution of the temperature of the surface of the bead (T s ) as a function of time, apart from the slight fluctuations in this temperature, which have no effect on the process; this temperature decreases, according to a predetermined law, from a temperature (T Q ) at the inlet of the rapid cooling device to a temperature (T f ) at the end of this device, to increase again as a result of equalization of the temperature during the slow cooling which follows.
  • the surface temperature (T s ) thus reaches a maximum, called the equalization temperature (T é ), after which it drops again.
  • the value of the equalization temperature (T é ) depends in particular on the inlet temperature (T 0 ) of the rail, the speed (V R ) of the rapid cooling, the duration (t) of this rapid cooling and the flow (Q) of cooling liquid; it influences certain properties of the rails, as explained below.
  • the length of this cooling device is also known, therefore the duration of the rapid cooling.
  • the cooling must be carried out so that the erasure tempé ⁇ equalization (T) reaches at least 400 ° C, and preferably at least 450 ° C; below this temperature, in fact, the rail has significant deformations which make it difficult and costly to obtain good straightness of the rail.
  • T erasure tempé ⁇ equalization
  • the rail bead does not contain bainite. It is known that starting from an austenitic structure, the steel is transformed on cooling and that this transformation ends at a temperature (T end ) which depends in particular on the cooling rate. In this regard, there exists for each steel a minimum value of the temperature at the end of transformation, for which the austenitic structure has entirely transformed into perlite, without formation of bainite. This particular value, which essentially depends on the composition of the steel, i.e. its ideal diameter, is the minimum temperature (T * m1n ) for which the transformation of the austenite must be completed in the bead . In the case considered here, it is worth 529 ° C (Fig. 2).
  • the hatched domain may have another shape.
  • Fig. 3 presents a diagram with a hatched domain, which is constructed essentially in the same way as that of FIG. 2.
  • the representative point of the treatment is located inside the hatched area; the temperature at the end of treatment (T f1n ) is 556 * C and the equalization temperature (T * ⁇ in ) is equal to 480 * C. Under these conditions, the desired qualities are reached, which is confirmed by the values Brinell hardness measured on this rail, which are 375 for H 10 and 360 for H 20 .
  • a family can include rails whose ID is between 40 mm and 44 mm.
  • Ton has represented, in superposition, the hatched domains corresponding to three IDs (40, 42, 44 mm) and the same speed V (1.1 m / s). These three areas have a common overlap range, which defines the variation field of (T 0 ) and (Q) valid for these three rails of the same family. These can therefore be processed, in any order, without the need to modify (T 0 ) or (Q) to obtain the required properties.
  • Fig. 5 illustrates another possibility of the method of the invention. It represents three zones corresponding respectively to the covering range of three families of rails, for which DI - 40-44 mm; 43-47 mm, 46-50 mm, with different speeds. These three zones partially overlap two by two.
  • (DI - 43-47 mm; V» 1.03 m / s) can be treated with the same values of (T 0 ) and (Q) to be chosen in their common part, by adapting the speed (V) when passing from one family to another.
  • a black dot which corresponds to the setpoint of the inlet temperature (T Q ) on the one hand and the water flow (Q) on the other.
  • this point which in fact constitutes the initial adjustment, is as central as possible in the zone, so as to allow relatively large fluctuations of (T 0 ), of (Q) and even of (V) without leaving of the operating field thus delimited.
  • FIG. 7 shows, by comparative diagrams, the improvement brought by the method of the invention in the case of rails having different IDs.
  • Fig. 7 (a) is a known type diagram showing, as a function of time, the change in temperature T (° C) and in the proportion of transformed austé ⁇ nite Z (%) at a point 5 mm below the upper surface of the rail bead.
  • This diagram relates to two steels having different IDs, namely 35.3 mm and 49 mm respectively, which were cooled under the same conditions of duration and rate of cooling, according to the process of patent EP-A-0 161 326 cited above.
  • the diagram in FIG. 7 (b) indicates, as a function of the ideal diameter (ID) of the steel, the value of the end of transformation temperature (T f1n ), which also varies with the cooling rate.
  • T f1n the value of the end of transformation temperature
  • T m1n the minimum value of (T f1n )
  • the set of these values of (T * min ) constitutes an oblique, increasing line, which separates an upper domain where the transformation is entirely pearlitic, and a shaded lower domain in which bainite is formed at the end of transformation.
  • FIG. 7 (b) shows that the same treatment, namely that of the prior art, does not lead to the same properties in the two rails, because of their difference in DI, therefore in composition.
  • FIG. 7 (c) shows that the cooling time is longer for DI steel - 49 mm (140 s) than for DI steel »35.3 mm (100 s).
  • the slower cooling of the latter results from the application of a lower water flow rate (Q) due to the increase in the DI, in accordance with the indications deduced from FIGS. l (c) and 5.
  • This example illustrates the advantage of knowing the ideal diameter (ID) of the rails which are present at the inlet of the cooling device, as well as optimal treatment conditions corresponding to this chemical composition.
  • the method of the invention is not however limited to the example of implementation which has just been described and illustrated. It also extends to any modification that a person skilled in the art could make to it, in particular by choosing other variables than the ideal diameter (DI) and the running speed (V) of the rails to constitute the families of rails and in adopting other control variables than the flow (Q) and the initial temperature (T Q ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

On soumet les rails en défilement à une vitesse (V) à un refroidissement superficiel rapide dans la chaude de laminage au moyen d'un liquide de refroidissement puis à un refroidissement plus lent s'accompagnant d'une égalisation de la température dans la section des rails. Pour chaque rail, on calcule le diamètre idéal (DI) correspondant à sa composition chimique et on détermine, pour chaque couple de valeurs comprenant une valeur du diamètre idéal (DI) et une valeur d'une des variables du groupe comprenant la vitesse de défilement du rail (V), la température initiale du rail (T0) et de débit du liquide de refroidissement rapide (Q), les courbes représentatives de conditions imposées aux rails en fonction des deux autres variables du groupe précité, ces conditions comprenant le niveau minimum de dureté à différentes profondeurs dans le bourrelet du rail (H*10, H*20), la valeur minimale de la température de fin de transformation du bourrelet (T*min) et la valeur minimale de la température d'égalisation du bourrelet (Tég). On délimite au moyen de ces courbes un domaine de fonctionnement conduisant aux propriétés désirées, et on règle les deux autres variables du groupe précité pour que le point représentatif du refroidissement rapide se situe à l'intérieur de ce domaine de fonctionnement.

Description

Procédé de fabrication de rails.
La présente invention concerne un procédé de fabrication de rails, en particulier de rails à haute résistance, qui comporte un traitement thermique des rails dès leur sortie de la dernière cage de laminoir.
Le traitement thermique considéré ici consiste essentiellement, en principe, en un refroidissement rapide des rails à partir de la tempé¬ rature qu'ils présentent à la sortie du laminoir; pour cette raison, on dit en général que le traitement est effectué dans la chaude de laminage. Dans la pratique, il peut cependant être prévu une étape d'ajustement de la température des rails, par refroidissement naturel ou forcé à l'air, préalablement à ce traitement.
L'invention a pour objet l'obtention, de préférence sans addition d'éléments d'alliage, toujours coûteux, de rails présentant après le refroidissement une résistance élevée à la rupture, à l'usure et aux chocs, un allongement au moins égal à 10 % et une bonne soudabilité.
II est actuellement connu dans la technique qu'un rail devant posséder les propriétés précitées doit comporter un bourrelet constitué de perlite fine exempte de martensite et de préférence également exempte de bainite ainsi que de ferrite proeutectoïde. De plus, le gradient de dureté dans le bourrelet doit être aussi faible que possible, de façon à conserver au rail une dureté suffisante malgré l'usure du bourrelet en service.
On connaît déjà, notamment par le brevet EP-A-0 161 326, un procédé de fabrication de rails, comportant un traitement thermique capable de conférer aux rails les propriétés indiquées plus haut. Ce procédé connu consiste essentiellement à refroidir rapidement les rails, dans la chaude de laminage, dans des conditions de vitesse et de durée de refroidissement contrôlées de façon telle qu'à la fin du refroidissement, moins de 60 % de la section du bourrelet aient subi la transformation de l'austénite en perlite tout en conférant les propriétés désirées à ce bourrelet, et qu'en plus les différences de dilatation entre les différentes parties des rails - bourrelet, âme, patin - soient minimisées.
Ce procédé donne pleinement satisfaction pour la fabrication de rails à partir d'aciers dont la composition chimique varie peu d'un rail à l'autre et correspond par exemple aux valeurs indiquées dans le brevet EP-A-0161 326 précité. On rappellera simplement ici que les aciers à rails ont une teneur en carbone généralement comprise entre 0,60 % et 0,85 % en poids.
L'expérience a cependant montré qu'une modification de la composition de l'acier entraînait une réponse différente du rail au traitement de refroidissement et pouvait conduire à des propriétés insuffisantes des rails considérés.
Le procédé du brevet EP-A-0 161 326 permet, dans une certaine mesure, de compenser l'effet d'une variation de la température d'entrée des rails, du fait qu'il prévoit le réglage de la durée et de la densité des flux calorifiques de refroidissement rapide pour atteindre le degré de trans- formation requis. En revanche, il n'y est pas prévu de tenir compte d'une modification de la composition de l'acier et de ses effets sur le compor¬ tement des rails au cours du refroidissement.
De telles variations de la composition des rails sont cependant observées de plus en plus fréquemment, en raison notamment de l'utilisation croissante de fours électriques pour la fabrication des aciers. La charge de ces fours est largement constituée de ferrailles d'origines diverses, dont la composition varie de façon irrégulière et généralement imprévi¬ sible.
La présente invention a pour objet de proposer un procédé de fabrication de rails qui permet de remédier aux inconvénients liés aux variations précitées. L'invention a l'ambition de proposer un procédé de conduite du refroidissement rapide des rails dans la chaude de laminage, de façon à leur conférer une structure perlitique fine, sans martensite et de préférence sans bainite, assurant les propriétés précitées, quelle que soit la composition de l'acier dans les limites usuelles des aciers à rails.
En premier lieu, il convient d'expliciter ici les diverses notions, par ailleurs connues, auxquelles il va être fait référence dans la présente proposition. Le "diamètre idéal" (DI) d'un acier est le diamètre d'un barreau de cet acier pour lequel, après une trempe dans un milieu présentant un coefficient d'échange thermique considéré comme infiniment élevé, par exemple une saumure glacée, le barreau présente une structure à 50 % martensitique à son axe. Ce diamètre idéal dépend notamment de la composition chimique de l'acier, par des relations bien connues dans la technique.
Pour les aciers à rails, dont la teneur en carbone est habituellement comprise entre 0,60 % et 0,85 % en poids, le diamètre idéal (DI) est généralement compris entre 35 mm et 60 mm.
La "température initiale" (T0) du rail est la température du rail au début de son traitement thermique, c'est-à-dire à l'entrée du dispositif de refroidissement rapide. Elle peut être différente de la température de fin de laminage, car elle peut avoir été ajustée par un séjour contrôlé du rail sur un refroidissoir intermédiaire. Cette température (T0) doit être égale ou supérieure à la température de transformation A3r de l'acier, de façon à garantir que le rail soit entièrement austénitique avant le début du refroidissement rapide; sinon, la perlite formée au cours du refroidissement lent préalable serait trop douce et le rail ne présen¬ terait pas la dureté requise.
La vitesse de défilement (V) est la vitesse avec laquelle le rail traverse le dispositif de refroidissement rapide. Cette vitesse est en principe constante; dans ce cas, le paramètre (V) peut être remplacé par (t), qui représente le temps de séjour du rail dans le dispositif de refroidis¬ sement rapide. La vitesse (V) pourrait cependant être modifiée, par exemple par une accélération progressive du rail à mesure qu'il pénètre dans le dispositif de refroidissement; dans ce cas, ce dispositif peut être divisé en plusieurs sections, dans lesquelles la vitesse (V) peut être réglée de manière indépendante. Cette technique permet de réduire l'écart entre deux rails consécutifs et par conséquent d'augmenter la capacité de production de la ligne de traitement.
Le débit de liquide de refroidissement (Q) est le débit dans le dispositif de refroidissement rapide. La distribution de ce débit suivant la longueur du dispositif de refroidissement peut être uniforme ou variable, et à cet égard le débit par unité de longueur peut être réduit en fin de refroidis¬ sement pour mieux contrôler le profil de dureté dans le bourrelet du rail et limiter les déformations du rail dans le dispositif de refroidissement. Dans ce dernier cas, le paramètre (Q) représente le débit moyen dans le dispositif de refroidissement. A cet effet, le dispositif de refroidisse¬ ment peut être divisé en plusieurs sections, dans lesquelles le débit (Q) peut être réglé de manière indépendante. Par le biais du coefficient d'échange thermique, ce débit conditionne l'intensité du refroidissement.
Les niveaux de dureté à atteindre sont exprimés par les valeurs minimales de la dureté Brinell (HBN) qui doivent être réalisées à différentes profondeurs dans le bourrelet du rail; ils sont imposés par les utilisa¬ teurs ou par des normes. Par exemple, une première valeur minimale impose un niveau moyen de dureté sur la couche superficielle de 10 mm d'épaisseur (H 10) et une seconde valeur minimale fixe la dureté requise à une profondeur de 20 mm (H 20) .
Les propriétés mécaniques des rails, en particulier la dureté en un point de la section droite du bourrelet, qui est spécialement considérée ici, sont influencées par la température moyenne de transformation en ce point.
La température moyenne de transformation en un point peut être définie comme étant la moyenne des températures auxquelles se produit chaque accroissement élémentaire de la proportion d'austénite transformée en ce point. Si Z représente la proportion d'austénite transformée en un point, exprimée en pourcents {%), dZ un accroissement élémentaire de cette proportion d'austénite transformée et T(Z) la température à laquelle se produit cet accroissement dZ, la température moyenne de transformation en ce point peut être exprimée par la relation:
/'10° —±î— . T(,Z.) . dz o 100 La dureté diminue lorsque la température moyenne de transformation augmente, c'est-à-dire lorsque la vitesse de refroidissement diminue.
Comme on l'a déjà indiqué plus haut, l'obtention des propriétés requises implique la formation d'une structure perlitique fine, exempte de struc¬ tures de trempe telles que la bainite et la martensite, au moins dans toute la section transversale du bourrelet.
L'absence de bainite, pour un acier de composition et de grain austéni- tique donnés, est conditionnée notamment par la vitesse de refroidisse¬ ment des rails, c'est-à-dire en définitive par le débit (Q) et la tempé¬ rature du liquide de refroidissement. Il existe pour chaque acier et pour chaque vitesse de refroidissement une température à laquelle la bainite commence à se former. La plus élevée de ces températures de début de formation de la bainite est appelée (T* min) et peut être déterminée par les méthodes de la dilatométrie. Pour éviter la formation de bainite dans le bourrelet du rail, il faut donc que la transformation perlitique y soit achevée à une température (Tf1n) supérieure ou égale à (T* min).
L'absence de martensite est garantie par le fait que le refroidissement rapide est réglé de façon à assurer que l'austénite soit complètement transformée en perlite à une température supérieure au point Ms.
Enfin, la température d'égalisation (T. ) est la température maximale atteinte par la surface du bourrelet du rail pendant la phase d'égali¬ sation de la température après la fin du refroidissement rapide. Pour des aciers à rails, il est apparu que cette température devait atteindre au moins 400*C, pour prévenir toute difficulté lors du dressage des rails.
Conformément à la présente invention, un procédé de fabrication de rails, dans lequel on soumet les rails en défilement à une vitesse (V) à un refroidissement superficiel rapide dans la chaude de laminage au moyen d'un liquide de refroidissement, puis à un refroidissement plus lent s'accompagnant d'une égalisation de la température dans la section des rails, est caractérisé en ce que, pour chaque rail, on calcule le diamètre idéal (DI) correspondant à sa composition chimique, en ce que l'on déter¬ mine, pour chaque couple de valeurs comprenant une valeur dudit diamètre idéal (DI) et une valeur d'une des variables du groupe comprenant la vitesse de défilement du rail (V), la température initiale du rail (T0) et le débit du liquide de refroidissement rapide (Q), les courbes représen¬ tatives de conditions imposées aux rails en fonction des deux autres variables du groupe précité, lesdites conditions comprenant le niveau minimum de dureté à différentes profondeurs dans le bourrelet du rail (H 10, H 20) , la valeur minimale de la température de fin de transformation dudit bourrelet (T m1n) et la valeur minimale de la température d'égalisa¬ tion du bourrelet (T. ), en ce que l'on délimite au moyen desdites courbes un domaine de fonctionnement conduisant aux propriétés désirées, et en ce que l'on règle lesdites deux autres variables du groupe précité pour que le point représentatif du refroidissement rapide se situe à l'intérieur dudit domaine de fonctionnement.
Selon une mise en oeuvre particulière, on groupe les rails par familles en fonction de leur diamètre idéal, chaque famille couvrant une gamme de DI, on détermine pour chaque famille de rails un ensemble commun de valeurs des variables (V, T0, Q) conférant les propriétés désirées à chacun des rails de la famille et on applique pour le refroidissement de tous les rails appartenant à ladite famille des valeurs desdites variables (V, T0, Q) comprises dans ledit ensemble commun.
De plus, des familles de rails peuvent être définies par des gammes de diamètre idéal qui présentent un recouvrement.
Suivant une caractéristique supplémentaire, on détermine un ensemble de valeurs des variables (V, T0, Q) commun à au moins deux familles de rails et on applique pour le refroidissement rapide de tous les rails apparte¬ nant auxdites familles des valeurs desdites variables (V, T0, Q) comprises dans ledit ensemble commun.
Il est ainsi possible d'accroître la souplesse de réglage des conditions de refroidissement rapide lors du passage d'une famille de rails à une autre famille de rails.
D'autres particularités ainsi que divers avantages du procédé de l'invention découleront de la description plus détaillée qui suit, consacrée à des exemples de mise en oeuvre de l'invention et illustrée par les dessins annexés, dans lesquels
la Fig. 1 illustre quelques notions auxquelles il est fait référence dans la demande; la Fig. 2 représente un domaine hachuré, délimité conformément à l'invention, à utiliser pour le traitement de refroidissement rapide d'un rail particulier; la Fig. 3 représente un autre domaine hachuré, à utiliser pour le traitement de refroidissement rapide d'un autre rail; la Fig. 4 montre la superposition de trois domaines particuliers corres¬ pondant respectivement à des rails d'une même famille, avec indication de la zone commune utilisable pour les trois rails; la Fig. 5 montre les zones communes correspondant respectivement à trois familles de rails, avec les plages de recouvrement entre les différentes zones; la Fig. 6 représente une zone correspondant à une famille de rails et illustrant les possibilités de réglage des variables de commande (Q, T0) ; et la Fig. 7 illustre une comparaison des résultats obtenus par le procédé de l'invention avec des résultats obtenus par la technique antérieure, pour des rails identiques.
Pour la bonne compréhension du procédé de l'invention, la Fig. 1 illustre les notions de température moyenne de transformation (TMT) et de température d'égalisation (T. ) utilisées dans la présente demande.
Lorsque l'on refroidit un rail, et particulièrement le bourrelet d'un rail, il va de soi que le refroidissement en un point quelconque de la section du bourrelet est progressif.
La Fig. l(a) montre un histogramme illustrant la proportion d'austénite transformée (Z) à différentes températures en un point de la section du bourrelet, la somme des zones rectangulaires ombrées représentant la transformation complète (Z = 100%) de ce point. On peut en déduire la température moyenne de transformation (TMT) en ce point de la section du bourrelet, qui vaut ici 563,5 *C. Cet histogramme indique également les températures extrêmes, supérieure et inférieure, ici respectivement 655*C et 505*C, entre lesquelles s'accomplit la totalité de la transformation perlitique du point considéré.
Cette répartition de la proportion d'austénite transformée (Z) et les températures qui la déterminent, tant la température moyenne (TMT) que les températures extrêmes, varient avec la vitesse de refroidissement. Plus la vitesse de refroidissement est grande et plus la température moyenne (TMT) et les températures extrêmes seront basses, et inversement.
La température moyenne de transformation (TMT) influence diverses propriétés mécaniques, et notamment la dureté qui est particulièrement importante dans le cas d'un bourrelet de rail.
La Fig. l(b) montre une évolution de la dureté Brinell (HBN) en fonction de la température moyenne de transformation (TMT); ce diagramme montre bien qu'une augmentation de la température moyenne de transformation en un point du bourrelet conduit à une diminution de la dureté en ce point, et inversement.
L'effet de la vitesse de refroidissement (VR) sur la température (TMT) est illustré dans la Fig. l(c); celle-ci montre en outre que cet effet s'accentue lorsque le diamètre idéal de l'acier augmente.
Enfin, la Fig. l(d) montre l'évolution de la température de la surface du bourrelet (Ts) en fonction du temps, abstraction faite des légères fluc¬ tuations de cette température, qui n'ont pas d'effet sur le procédé; cette température diminue, suivant une loi prédéterminée, depuis une température (TQ) à l'entrée du dispositif de refroidissement rapide jusqu'à une tempé- rature (Tf) à la fin de ce dispositif, pour augmenter à nouveau par suite de l'égalisation de la température au cours du refroidissement lent qui suit. La température de surface (Ts) atteint ainsi un maximum, appelé température d'égalisation (Té ), après lequel elle baisse à nouveau.
La valeur de la température d'égalisation (Té ) dépend notamment de la température d'entrée (T0) du rail, de la vitesse (VR) du refroidissement rapide, de la durée (t) de ce refroidissement rapide et du débit (Q) du liquide de refroidissement; elle influence certaines propriétés des rails, comme on le précise plus loin.
La Fig. 2 illustre un exemple de mise en oeuvre du procédé de l'invention, dans le cas d'un rail en un acier ayant un diamètre idéal DI * 42 mm, qui traverse le dispositif de refroidissement à une vitesse V = 1,0 m/s. En pratique, on connaît en outre la longueur de ce dispositif de refroidisse¬ ment, donc la durée du refroidissement rapide.
Selon les conditions imposées dans le cadre de cet exemple, le bourrelet doit présenter une dureté Brinell moyenne d'au moins H* 10 = 351 HBN dans la couche superficielle de 10 mm d'épaisseur et d'au moins H 20 - 341 HBN à une profondeur de 20 mm.
De plus, le refroidissement doit être conduit de telle façon que la tempé¬ rature d'égalisation (T. ) atteigne au moins 400'C, et de préférence au moins 450*C; en dessous de cette température en effet, le rail présente d'importantes déformations qui rendent difficile et coûteuse l'obtention d'une bonne rectitude du rail.
Il est enfin essentiel que le bourrelet du rail ne contienne pas de bainite. On sait qu'en partant d'une structure austénitique, l'acier se transforme au refroidissement et que cette transformation se termine à une température (Tfin) qui dépend notamment de la vitesse de refroidissement. A cet égard, il existe pour chaque acier une valeur minimale de la tempé¬ rature de fin de transformation, pour laquelle la structure austénitique s'est entièrement transformée en perlite, sans formation de bainite. Cette valeur particulière, qui dépend essentiellement de la composition de l'acier, c'est-à-dire de son diamètre idéal, est la température minimale (T* m1n) pour laquelle la transformation de l'austénite doit être achevée dans le bourrelet. Dans le cas envisagé ici, elle vaut 529'C (Fig. 2).
Les conditions précitées de dureté et de température imposées au bourrelet du rail considéré peuvent s'exprimer par des courbes représentatives en fonction des variations des paramètres de contrôle du procédé.
Dans le cas particulier des traitements de refroidissement à vitesse de défilement (V) constante, il s'est avéré intéressant, en pratique, de tracer ces courbes pour chaque couple de valeurs du diamètre idéal (DI) et de la vitesse de défilement (V), en fonction des variations de la température initiale (T0) et du débit d'eau (Q). La vitesse de défilement (V) et la longueur du dispositif de refroidissement déterminent la durée du refroidissement rapide.
La Fig. 2 montre un domaine hachuré, délimité par les courbes représenta¬ tives des conditions précitées dans un plan (T0, Q) pour DI = 42 mm et V = 1,0 m/s. Pour une autre durée de refroidissement, le domaine hachuré pourra présenter une autre forme.
A chacun des points situés à l'intérieur de ce domaine hachuré corres¬ pondent ainsi des valeurs de (T0) et de (Q) qui conduisent à un rail dont le bourrelet respecte les conditions imposées. Le dispositif de refroi¬ dissement ayant ici une longueur de 99 m, la durée d'application du débit (Q) est donc de 99 secondes.
La Fig. 3 présente un diagramme avec un domaine hachuré, qui est construit essentiellement de la même manière que celui de la Fig. 2.
Il présente néanmoins quelques différences notables par rapport à celui- ci. En premier lieu, les valeurs de (DI) et de (V) sont différentes, ce qui modifie la position des courbes et de ce fait la forme du domaine hachuré. La température (T min) vaut ici 538βC. En plus, le domaine hachuré est limité, dans le bas, par la ligne horizontale correspondant à la température du point A3r. Il importe en effet que le bourrelet du rail soit entièrement austénitique au moment où débute le refroidissement rapide, sous peine de comporter une fraction de perlite trop douce par rapport aux conditions de dureté imposées.
A titre d'application du procédé de l'invention dans le cadre de sa représentation à la figure 3, on peut citer l'exemple suivant d'un rail de profil "136 Re", avec une teneur en carbone de 0,81 % et un DI - 48 mm; la température initiale (T0) au début du traitement thermique est de 735*C. Le traitement consiste en un refroidissement par passage dans une ligne de 99 m de longueur, à une vitesse constante de 0,95 m/s, soit pendant une durée de 104 secondes, avec un débit d'eau de refroidissement (Q) de 180 m3/h, uniforme sur toute la ligne. Sur le diagramme de la figure 3, le point représentatif du traitement se trouve à l'intérieur de la zone hachurée; la température de fin de traitement (Tf1n) est de 556*C et la température d'égalisation (T* πin) est égale à 480*C. Dans ces conditions, les qualités recherchées sont atteintes, ce qui est confirmé par les valeurs de dureté Brinell mesurées sur ce rail, qui sont de 375 pour H10 et de 360 pour H20.
Comme on Ta indiqué plus haut, il est intéressant de grouper les rails en familles qui correspondent à des gammes déterminées de valeurs du diamètre idéal; par exemple, une famille peut comprendre les rails dont le DI est compris entre 40 mm et 44 mm.
Cette situation est illustrée dans la Fig. 4, où Ton a représenté, en superposition, les domaines hachurés correspondant à trois DI (40, 42, 44 mm) et une même vitesse V (1,1 m/s). Ces trois domaines présentent une plage de recouvrement commune, qui définit le champ de variation de (T0) et (Q) valable pour ces trois rails d'une même famille. Ceux-ci peuvent donc être traités, dans un ordre quelconque, sans qu'il soit nécessaire de modifier (T0) ou (Q) pour obtenir les propriétés requises.
La Fig. 5 illustre une autre possibilité du procédé de l'invention. Elle représente trois zones correspondant respectivement à la plage de recou- vrement de trois familles de rails, pour lesquelles DI - 40-44 mm; 43-47 mm, 46-50 mm, avec des vitesses différentes. Ces trois zones se recouvrent partiellement deux à deux. Par exemple, les familles (DI » 40-44 mm; V = 1,1 m/s) et (DI - 43-47 mm; V » 1,03 m/s) pourront être traitées avec les mêmes valeurs de (T0) et (Q) à choisir dans leur partie commune, moyennant adaptation de la vitesse (V) lors du passage d'une famille à l'autre.
La situation est analogue pour le passage de la famille (DI= 43-47 mm; V = 1,03 m/s) à la famille (DI - 46-50 mm; V = 0,95 m/s).
Par contre, le passage de la famille (DI = 40-44 mm; V ≈ 1,1 m/s) à la famille (DI » 46-50 mm; V = 0,95 m/s) impliquerait à la fois une modifi¬ cation de la vitesse (V) et du débit (Q) pour une même température (T0). Il en résulte que la succession de différentes familles de rails doit être soigneusement programmée de façon à minimiser les modifications des diffé¬ rentes conditions opératoires (V, Q, T0) .
Dans la Fig.6, on a représenté une zone qui est la zone commune aux rails de la famille (DI » 38-42 mm; V = 1,18 m/s). Dans cette zone se trouve un point noir, qui correspond à la valeur de consigne de la température d'entrée (TQ) d'une part et du débit d'eau (Q) d'autre part.
II est préférable que ce point, qui constitue en fait le réglage initial, soit aussi central que possible dans la zone, de façon à autoriser des fluctuations relativement importantes de (T0), de (Q) et même de (V) sans sortir du champ opératoire ainsi délimité.
Enfin, la Fig. 7 montre, par des diagrammes comparatifs, l'amélioration apportée par le procédé de l'invention dans le cas de rails présentant des DI différents.
La Fig. 7(a) est un diagramme de type connu montrant, en fonction du temps, l'évolution de la température T (°C) et de la proportion d'austé¬ nite transformée Z (%) en un point situé 5 mm sous la surface supérieure du bourrelet du rail. Ce diagramme porte sur deux aciers ayant des DI différents, à savoir respectivement 35,3 mm et 49 mm, qui ont été refroidis dans les mêmes conditions de durée et de vitesse de refroidis- sèment, suivant le procédé du brevet EP-A-0 161 326 précité.
La transformation se terminant de manière asymptotique, on convient de considérer le niveau de 99 % comme la fin clairement perceptible de la transformation. Le diagramme montre qu'à l'instant correspondant à 99 % de transformation, la température au point considéré est respectivement de 564*C pour un rail et de 519*C pour l'autre rail.
Le diagramme de la Fig. 7 (b) indique, en fonction du diamètre idéal (DI) de l'acier, la valeur de la température de fin de transformation (Tf1n), qui varie également avec la vitesse de refroidissement. Pour chaque valeur de DI, il existe une valeur minimale de (Tf1n), appelée (Tm1n), sous laquelle la transformation se termine dans le domaine bainitique. L'ensemble de ces valeurs de (T* min) constitue une ligne oblique, croissante, qui sépare un domaine supérieur où la transformation est entièrement perlitique, et un domaine inférieur ombré dans lequel il se forme de la bainite en fin de transformation.
Si Ton reporte sur le diagramme de la Fig. 7(b) les valeurs de (Tfin) obtenues dans la Fig. 7(a), on constate que le point correspondant à DI = 35,3 mm se situe dans le domaine perlitique, tandis que le point correspondant à DI = 49 mm se place dans le domaine représentatif de la présence de bainite.
Ce diagramme de la Fig. 7(b) montre que le même traitement, à savoir celui de la technique antérieure, ne conduit pas aux mêmes propriétés dans les deux rails, en raison de leur différence de DI, donc de composition.
A titre de comparaison, on a traité des rails des deux mêmes aciers, donc présentant les mêmes DI, par le procédé de l'invention, c'est-à-dire en adaptant le débit (Q), donc la vitesse de refroidissement, en fonction du DI. Les résultats sont illustrés dans les Fig. 7(c) et 7(d).
Le diagramme de la Fig. 7(c) montre que la durée du refroidissement est plus longue pour l'acier DI - 49 mm (140 s) que pour l'acier DI » 35,3 mm (100 s). Le refroidissement moins rapide de ce dernier résulte de l'appli¬ cation d'un débit d'eau (Q) moins élevé en raison de l'augmentation du DI, conformément aux indications déduites des Fig. l(c) et 5.
En appliquant le même raisonnement que dans les Fig. 7(a) et 7(b), on constate que les températures (Tfin) sont ici respectivement égales à 564*C et 546*C (Fig. 7(c)), et que les points correspondants, reportés dans la Fig. 7(d), se situent tous deux dans le domaine entièrement perlitique.
Cet exemple illustre l'intérêt de la connaissance du diamètre idéal (DI) des rails qui se présentent à l'entrée du dispositif de refroidissement, ainsi que des conditions de traitement optimales correspondant à cette composition chimique. Le procédé de l'invention n'est cependant pas limité à l'exemple de mise en oeuvre qui vient d'être décrit et illustré. Il s'étend également à toute modification qu'un homme de métier pourrait y apporter, notamment en choisissant d'autres variables que le diamètre idéal (DI) et la vitesse de défilement (V) des rails pour constituer les familles de rails et en adoptant d'autres variables de réglage que le débit (Q) et la température initiale (TQ) .

Claims

R E V E N D I C A T I O N S
1. Procédé de fabrication de rails, dans lequel on soumet les rails en défilement à une vitesse (V) à un refroidissement superficiel rapide dans la chaude de laminage au moyen d'un liquide de refroidissement, puis à un refroidissement plus lent s'accompagnant d'une égalisation de la température dans la section des rails, caractérisé en ce que, pour chaque rail, on calcule le diamètre idéal (DI) correspondant à sa composition chimique, en ce que Ton détermine, pour chaque couple de valeurs comprenant une valeur dudit diamètre idéal (DI) et une valeur d'une des variables du groupe comprenant la vitesse de défilement du rail (V), la température initiale du rail (T0) et le débit du liquide de refroidissement rapide (Q), les courbes représentatives de conditions imposées aux rails en fonction des deux autres variables du groupe précité, lesdites conditions comprenant le niveau minimum de dureté à différentes profondeurs dans le bourrelet du rail (H* 10, H* 20), la valeur minimale de la température de fin de transformation dudit bourrelet (T min) et la valeur minimale de la température d'égalisation du bourrelet (Tég), en ce que Ton délimite au moyen desdites courbes un domaine de fonctionnement conduisant aux propriétés désirées, et en ce que Ton règle lesdites deux autres variables du groupe précité pour que le point représentatif du refroidissement rapide se situe à l'intérieur dudit domaine de fonctionnement.
2. Procédé suivant la revendication 1, caractérisé en ce que Ton groupe les rails par familles en fonction de leur diamètre idéal (DI), en ce que Ton détermine pour chaque famille de rails un ensemble commun de valeurs des variables (V, T0, Q) conférant les propriétés désirées à chacun des rails de la famille et en ce que Ton applique pour le refroidissement rapide de tous les rails appartenant à ladite famille des valeurs desdites variables (V, T0, Q) comprises dans ledit ensemble commun.
Procédé suivant la revendication 2, caractérisé en ce que Ton détermine un ensemble de valeurs des variables (V, T0, Q) commun à au moins deux familles de rails et en ce que Ton applique pour le refroidissement rapide de tous les rails appartenant auxdites familles des valeurs desdites variables (V, T0, Q) comprises dans ledit ensemble commun.
4. Procédé suivant Tune ou l'autre des revendications 1 à 3, carac¬ térisé en ce que la température initiale (T0) des rails est au moins égale à leur température de transformation A3r.
5. Procédé suivant Tune ou l'autre des revendications 1 à 4, carac ttéérriisséé eenn ccee qqiue ladite température d'égalisation (T. ) est au moins égale à 400*C.
6. Procédé suivant Tune ou l'autre des revendications 1 à 5, carac- térisé en ce que Ton fait varier la vitesse de défilement (V) des rails au cours du refroidissement rapide.
7. Procédé suivant Tune ou l'autre des revendications 1 à 6, carac¬ térisé en ce que Ton fait varier le débit de liquide de refroidis- sèment (Q) au cours du refroidissement rapide.
PCT/BE1995/000082 1994-09-29 1995-09-12 Procede de fabrication de rails WO1996010095A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU34671/95A AU3467195A (en) 1994-09-29 1995-09-12 Method for making rails

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE9400883A BE1008648A6 (fr) 1994-09-29 1994-09-29 Procede de fabrication de rails.
BE9400883 1994-09-29

Publications (1)

Publication Number Publication Date
WO1996010095A1 true WO1996010095A1 (fr) 1996-04-04

Family

ID=3888388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BE1995/000082 WO1996010095A1 (fr) 1994-09-29 1995-09-12 Procede de fabrication de rails

Country Status (3)

Country Link
AU (1) AU3467195A (fr)
BE (1) BE1008648A6 (fr)
WO (1) WO1996010095A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224693B1 (en) 1999-12-10 2001-05-01 Tenedora Nemak, S.A. De C.V. Method and apparatus for simplified production of heat treatable aluminum alloy castings with artificial self-aging
ITLI20090004A1 (it) * 2009-05-21 2010-11-22 Lucchini S P A Rotaie altoresistenziali a morfologia perlitica coloniale con elevato rapporto tenacita'-resistenza a rottura ed omogeneita' di proprieta' meccaniche e tecnologiche e relativo processo di fabbricazione.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0161236A2 (fr) * 1984-05-09 1985-11-13 CENTRE DE RECHERCHES METALLURGIQUES CENTRUM VOOR RESEARCH IN DE METALLURGIE Association sans but lucratif Dispositif perfectionnés pour la fabrication de rails
EP0186373A2 (fr) * 1984-12-24 1986-07-02 Nippon Steel Corporation Procédé et dispositif pour le traitement thermique de rails
EP0358362A1 (fr) * 1988-08-19 1990-03-14 The Algoma Steel Corporation, Limited Procédé pour la fabrication de rails ferroviaires en alliage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0161236A2 (fr) * 1984-05-09 1985-11-13 CENTRE DE RECHERCHES METALLURGIQUES CENTRUM VOOR RESEARCH IN DE METALLURGIE Association sans but lucratif Dispositif perfectionnés pour la fabrication de rails
EP0186373A2 (fr) * 1984-12-24 1986-07-02 Nippon Steel Corporation Procédé et dispositif pour le traitement thermique de rails
EP0358362A1 (fr) * 1988-08-19 1990-03-14 The Algoma Steel Corporation, Limited Procédé pour la fabrication de rails ferroviaires en alliage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224693B1 (en) 1999-12-10 2001-05-01 Tenedora Nemak, S.A. De C.V. Method and apparatus for simplified production of heat treatable aluminum alloy castings with artificial self-aging
ITLI20090004A1 (it) * 2009-05-21 2010-11-22 Lucchini S P A Rotaie altoresistenziali a morfologia perlitica coloniale con elevato rapporto tenacita'-resistenza a rottura ed omogeneita' di proprieta' meccaniche e tecnologiche e relativo processo di fabbricazione.

Also Published As

Publication number Publication date
BE1008648A6 (fr) 1996-07-02
AU3467195A (en) 1996-04-19

Similar Documents

Publication Publication Date Title
EP0478771B1 (fr) Procede d'elaboration de fils d'acier destines a la fabrication de conduites flexibles, fils d'acier obtenus par ce procede et conduites flexibles renforcees par de tels fils
EP0765942B1 (fr) Procédé de traitement thermique d'un rail en acier
FR2522291A1 (fr) Tube centrifuge en fonte a graphite spheroidal et son procede de fabrication
FR2472022A1 (fr) Procede de production d'une tole d'acier laminee a deux phases dont une est formee par refroidissement rapide apres recuit continu
BE1008648A6 (fr) Procede de fabrication de rails.
EP0252895B1 (fr) Procédé et dispositif pour fabriquer un rail à haute résistance
FR2659353A1 (fr) Procede de fabrication de pieces mecaniques, et pieces mecaniques obtenues par ce procede.
EP0161236B1 (fr) Dispositif perfectionnés pour la fabrication de rails
EP0169827B1 (fr) Procédé pour fabriquer du fil machine en acier dur
EP1844169B1 (fr) Cellule de trempe au gaz pour pieces en acier
CA1107179A (fr) Procede d'obtention d'un element allonge en acier dur
EP0132249B1 (fr) Procédé et dispositifs pour la fabrication d'armatures à béton en acier sur train à fil à grande vitesse
BE1004526A6 (fr) Procede de traitement thermique d'un produit en acier.
CH639137A5 (en) Process for the manufacture of steel reinforcements for concrete
FR2488278A1 (fr) Traitement d'aciers pour formage a froid
EP0124501A1 (fr) Procédé pour l'amélioration de la qualité des profilés en acier
FR2479265A1 (fr) Procede de traitement thermique du champignon des rails
BE1005224A7 (fr) Procede de fabrication de fil machine a haute resistance en acier dur et dispositif pour sa mise en oeuvre.
EP0232241B1 (fr) Installation pour le traitement thermique en continu de fil-machine
EP1266041A1 (fr) Procede pour la fabrication d'une bande en acier multiphase laminee a chaud.
FR2673197A1 (fr) Procede de fabrication de blocs ou pieces massives en acier et pieces obtenues.
FR2488279A1 (fr) Traitement par refroidissement accelere de barres en acier dans la chaude de laminage
BE1013580A3 (fr) Procede pour la fabrication d'une bande d'acier laminee a froid a haute resistance et haute formabilite.
EP0240482B1 (fr) Dispositif pour la coulée de l'acier
BE900116A (fr) Procede et dispositifs pour la fabrication d'armatures a beton en acier sur train a fil a grande vitesse.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN JP RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA