WO1996007559A1 - In einem kraftfahrzeug zu verwendendes steuergerät, das ein fuzzylogiksystem enthält - Google Patents

In einem kraftfahrzeug zu verwendendes steuergerät, das ein fuzzylogiksystem enthält Download PDF

Info

Publication number
WO1996007559A1
WO1996007559A1 PCT/EP1995/003492 EP9503492W WO9607559A1 WO 1996007559 A1 WO1996007559 A1 WO 1996007559A1 EP 9503492 W EP9503492 W EP 9503492W WO 9607559 A1 WO9607559 A1 WO 9607559A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
data
fuzzy
rule
class
Prior art date
Application number
PCT/EP1995/003492
Other languages
English (en)
French (fr)
Inventor
Friedrich Graf
Andrea Leufke
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1996007559A1 publication Critical patent/WO1996007559A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/174Using electrical or electronic regulation means to control braking characterised by using special control logic, e.g. fuzzy logic, neural computing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/0275Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using fuzzy logic only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2220/00Monitoring, detecting driver behaviour; Signalling thereof; Counteracting thereof
    • B60T2220/02Driver type; Driving style; Driver adaptive features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0057Frequency analysis, spectral techniques or transforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0053Initializing the parameters of the controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0081Fuzzy logic

Definitions

  • Control device to be used in a motor vehicle which contains a fuzzy logic system
  • the invention relates to a control device according to the preamble of claim 1.
  • control devices are used to control various devices in a motor vehicle, e.g. for controlling the hydraulic pressure in an automatic transmission, for controlling an automatically actuated clutch, etc.
  • Control unit receives signals from one or more sensors in the motor vehicle or also from other control units used in the motor vehicle, processes the received signals and generates actuating or control signals for the device to be controlled.
  • a known control system for switching an automatic transmission (DE-A 42 15 406) works with fuzzy logic. Criteria such as driving performance, consumption and effort are taken into account when determining the shift strategy. By changing the switching behavior as required, the desired driving style and the respective driving state are taken into account. For this purpose, the entirety of the fuzzy production rules used is divided into several fractions.
  • the gears are shifted automatically as a function of the accelerator pedal position and the vehicle speed on the basis of shift maps, taking into account the load state of the motor vehicle and the driving style of the driver (EP-A 0 576 703).
  • a fuzzy logic controller evaluates various signals that report operating states, and then generates control signals that characterize the load state, the driving style, etc. Circuits that result in a dynamically unfavorable driving state are also prevented.
  • the knowledge which enables a fuzzy system to generate a manipulated variable or control variable, for example for an automatic clutch or a transmission, from received information has to be entered into the system up to now, and this can be time-consuming. It is usually an expert's knowledge gained through experience that is entered into the system in the form of membership functions and rules.
  • the invention is based on the object of providing a control device of the type mentioned at the outset which independently generates the required data content.
  • FIG. 1 shows a control device according to the invention
  • FIG. 2 shows a transmission control with a control device according to FIG. 1;
  • FIG. 3 shows an automatically controlled clutch with a control unit according to FIG. 1;
  • FIG. 5 improved membership functions for the parameter n_ab_m
  • FIG. 6 improved membership functions for the parameter a_quer_m
  • FIG. 7 shows a decision tree generated in the control device according to FIG. 1, and
  • Figure 8 shows an automatically generated fuzzy rule base.
  • a control unit 1 (FIG. 1) contains a fuzzy logic system 2 - hereinafter also referred to as a fuzzy system -, a signal conditioning circuit or signal conditioning 3 and one Generation circuit 4.
  • the generation circuit 4 which can also be referred to as a learning machine, in turn contains a data memory 5, a computing circuit 6 for knowledge determination and a classification circuit 7.
  • an input line 8 which can also be designed as a bus of a local area network LAN
  • sensor signals or, for example, data sent from another control device arrive at the signal processing unit 3. They are processed in this way so that they are processed in the fuzzy mode.
  • System 2 can be processed (see also the aforementioned EP-A 0 576 703).
  • training data they arrive via a line 9 on the one hand to the fuzzy system 2 and on the other hand to the data memory 5.
  • the generation circuit 4 is connected to the fuzzy system 2 via a data line 10.
  • the lines 9 and 10 and an output line 11 of the fuzzy system 2 are also indicated as multiple data lines or buses, indicated by small cross lines.
  • measurement data obtained in the classification circuit 7 can also come from a control observer.
  • a target specification must be attached to the measurement data, i.e. a conclusion resulting from a sensible design of the fuzzy system from the measurement data in
  • the classification circuit 7 breaks down the training data and the measurement data into partial quantities or classes.
  • the arithmetic circuit 6 then leads
  • Initial knowledge can also be input into the computing circuit 6 via a further input line 14. If a human expert already has partial knowledge, he can inform the arithmetic circuit 6 and thus shorten the learning process. In this way, membership functions and rules are generated in the generation circuit 4 and transmitted to the fuzzy system 2 via a data line 15. You can e.g. in the form of commands in the program language C to a computing unit contained in the fuzzy system or as control code characters to a special fuzzy logic computing unit. Such computing units are commercially available. It is of crucial importance here that the knowledge base of the fuzzy system does not have to be formulated in detail by a human expert. Rather, it is sufficient to specify a quality criterion according to which the system is to be trained. In the case of automatic clutch control in a motor vehicle, this is
  • a control unit 16 (FIG. 2) contains a fuzzy system 17 and a transmission control in the narrower sense 18.
  • the fuzzy system 17 has already been trained as described, ie it has the required control behavior.
  • This fuzzy system 17 and the transmission control 18 are connected to a motor control 19 via data and signal lines 20 and control lines 21.
  • the motor controller 19 is connected to a motor 22 via signal lines 23 (in the drawing is the For the sake of simplicity, only one line is shown) and connected via control lines 24, via which control signals for actuators, actuators or actuators in the motor are transmitted.
  • the transmission control 18 is also connected to a transmission 26 via signal lines 23 and control lines 24.
  • the fuzzy system 17 is also connected directly to the transmission 26 by a control line 25.
  • the drive torque of the motor 22 is transmitted to the transmission 26 by a drive shaft 28.
  • An intermediate mechanical or hydrodynamic coupling is not shown here since it is generally known and is not affected by the invention.
  • the transmission output in turn is connected to the driven wheels of the motor vehicle via an output shaft 29 and via one or more differentials (also not shown here), which are only indicated by a wheel 30 here.
  • the fuzzy system 17 can, however, also provide information about the road type and course of the transmission control and thus influence the shift behavior of the transmission.
  • Another control device 32 (FIG. 3) contains a fuzzy system 33 and a clutch actuation or control device 34, which are connected to one another by data and signal lines 35.
  • the fuzzy system 33 is also connected to the motor controller 19 via data and signal lines 38.
  • the control device 32 acts on a clutch 42 via a control line 36 and an actuator 41.
  • the position of an accelerator pedal 44 is reported by a sensor 45 to the engine 22 via a line 46. With the accelerator pedal, a throttle valve (not shown here) in the intake tract of engine 22 is thus controlled.
  • the sensor 45 is connected to the fuzzy system 33 of the control unit 32 by a signal line 47.
  • a sensor 49 which detects the position of a shift lever 48 is connected to the control unit 32 via a signal line 50 and to the transmission 26 via a line 51.
  • a sensor 53 which detects the position of a clutch pedal 52 is connected to the actuator 41 by a signal line 54.
  • the signal line 54 is only in the generation or learning phase of the
  • Control unit required in which it "learns” the driver to actuate the clutch pedal 52. It is therefore shown in dashed lines.
  • the respective position of the actuator 41 is transmitted to the control device 32 via a line 57 in the learning phase and stored in its data memory 5 (cf. FIG. 1).
  • the fuzzy system 33 is supplied with input data via the signal and data lines 35, 38, 47 50 and 56. On the other hand, it can also send control or data signals to the motor control 19 via the line 38 in order to e.g. to change the engine torque during clutching.
  • the control unit 32 controls the clutch 42. In the case of an automatic transmission 26, it also controls this.
  • the start of the shifting process initiated by the driver of the motor vehicle via the shift lever 48 is transmitted to the control unit via the data line 50.
  • the clutch 42 is operated by the driver via the clutch pedal 29 only in the training phase. Both the respective position of the actuator 41 and other information, for example about the engine speed, the engine torque, ment, the gear engaged in each case and the actuation of the brakes (via the brake light switch) in the training phase via the signal conditioning 3 into the data memory 5 of the generation circuit 4.
  • the generation of the rules for the fuzzy system 2 in the generation circuit 4 takes place in an exemplary embodiment based on the data described below. Five different measurement series messl to mess5 are available, which were recorded when driving a motor vehicle on roads of different types (Table 1):
  • Accelerator pedal activity (average of the amount of the ddk_guer accelerator pedal adjustment speed)
  • Table 2 The sensor signals listed in Table 2 and referred to as parameters or values derived from such sensor signals were used for automatic rule generation
  • the output is controlled via the following parameters:
  • a limit for sample weights indicates the value from which an example is neglected, i.e. is no longer considered in the further course of learning. All examples weighing less than this barrier are removed.
  • An acceptance value indicates whether a rule found is actually included in the rule set or not.
  • a value of e.g. 2 means that at least 2 examples of the majority class from the training data must be recorded by this rule, otherwise the rule will not be included.
  • Classification like learning set3 There is exactly one test set for each series of measurements, whereby the chronological order of the measuring points has been retained. These test sets were mostly used to make a comparison between the actual class and the calculated class over the entire time course of the measurement series. This comparison can be illustrated by a graphic (see appendix). For this purpose, a numerical value was assigned to each class, there being a "pseudo" order on the classes. The values of the classes are:
  • Test sets or BS Like test sets, but to distinguish the two BS data series, the measuring points in mes ⁇ 2 were classified with BS2, those in mess4 with BS4. The specification of the classification is as in learning sets40. -
  • Membership functions for the data from the learning set 5 membership functions for each parameter evenly distributed over the value range (see FIG. 4).
  • the initial or original membership functions of the fuzzy system can be seen from FIG. 4, the optimized membership functions for the parameter n_ab_m from FIG. 5 and the optimized membership functions for the parameter a_guer_m from FIG.
  • Results are shown by way of example in Table 1 below.
  • a rule base is generated with learning data and subsequently it is checked with test data in order to determine its correctness.
  • the experiments carried out with learning set 3 show that even with compact rule bases a high correctness of the conclusion, i.e. of the classification result can be achieved.
  • the learning sets are used to generate, in the generation circuit 4, individual fuzzy rules "Rule 1" to "Rule n".
  • Rule 1 An example of such a rule base with the rules Rule 1 to Rule 20 is shown below.
  • a fuzzy decision tree is generated from a set of numerically described training data, which is then transformed into an equivalent set of rules.
  • An example of a decision tree can be seen in FIG. 7.
  • the inner nodes receive tests on the parameters by which the objects are described.
  • the outgoing edges are labeled with the values of the parameter, and the terminal nodes are assigned to classes.
  • the decision tree is top down, i.e. constructed, so to speak, from the root to the end or terminal nodes using the following greatly simplified method:
  • the parameter selection and quantity decomposition must be adapted to fuzzy sets. It is essential that a weight is assigned to each example, the initial value of which is 1. If a parameter is selected (step 3.1), the considered training set is broken down into (non-disjoint) subsets according to the values of the selected parameter (step 3.3). The weights of the training data are modified according to the membership functions and a defined AND operator. The parameters are selected according to a modified entropy criterion (step 3.1)
  • a decision tree is transformed into an equivalent rule set, in which each path from the root to a leaf or node is interpreted as a rule.
  • a fuzzy classification system with two inputs, AI and A2, is to be created. There are two classes, Classl and Class2. The fuzzy system is first defined with the generation circuit 4 (see FIG. 7). Training data is available for which class membership has already been determined (Table 7). Class AI A2
  • Figure 7 shows the generated decision tree.
  • a set of weighted examples is assigned to each node of the tree. All examples whose weight is less than 0.1 are removed from the sample quantity just considered.
  • the branch, i.e. the rule IF AI IS all and A2 IS ok THEN CLASS IS Class2 was completely removed, since here the sum of the weights of the majority class (Class2) was only 0.32, which is less than 10% of 4.
  • FPL Fuzzy Programming Language
  • the rule base is integrated into an already existing FPL file. This file can then be processed further with the generation circuit 4.
  • the rule base automatically generated in this way is shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Transmission Device (AREA)

Abstract

Das Steuergerät (1) enthält ein Fuzzysystem (2), durch das Eingangssignale, die in dem Steuergerät von mindestens einem Sensor oder einem anderen Steuergerät empfangen werden, ausgewertet und Stell- oder Steuersignale für mindestens eine Einrichtung (Getriebe, automatische Kupplung, ...) in dem Kraftfahrzeug erzeugt werden. Das Steuergerät (1) enthält eine Generierungsschaltung (4), durch die anhand von empirisch gewonnenen Daten (z.B. Meß- und Trainingsdaten) Zugehörigkeitsfunktionen und Regeln für eine Regelbasis des Fuzzysystems (2) nach einem Entscheidungsbaumverfahren selbsttätig erzeugt werden. In einer Lernphase des Fuzzysystems werden zusätzlich zu den Trainingsdaten diesen adäquat zugeordnete Schlußfolgerungen in das Steuergerät (1) eingegeben.

Description

Beschreibung
In einem Kraftfahrzeug zu verwendendes Steuergerät, das ein Fuzzylogiksystem enthält
Die Erfindung betrifft ein Steuergerät nach dem Oberbegriff von Anspruch 1. Solche Steuergeräte dienen zum Steuern von verschiedenen Einrichtungen in einem Kraftfahrzeug, z.B. zum Steuern des Hydraulikdrucks in einem automatischen Getriebe, zum Steuern einer automatisch betätigten Kupplung usw. Das
Steuergerät empfängt Signale von einem oder mehreren Sensoren in dem Kraftfahrzeug oder auch von anderen in dem Kraftfahr¬ zeug eingesetzten Steuergeräten, verarbeitet die empfangenen Signale und erzeugt Stell- oder Steuersignale für die zu steuernde Einrichtung.
Ein bekanntes Steuersystem zum Schalten eines Automatgetrie- bes (DE-A 42 15 406) arbeitet mit einer Fuzzy-Logik. Bei der Festlegung der Schaltstrategie werden Kriterien wie Fahrlei- stung, Verbrauch und Aufwand berücksichtigt. Durch eine be¬ darfsweise Änderung des Schaltverhaltens werden die ge¬ wünschte Fahrweise und der jeweilige Fahrzustand berücksich¬ tigt. Dazu wird die Gesamtheit der verwendeten Fuzzy-Produk- tionsregeln in mehrere Fraktionen aufgeteilt.
Bei einer anderen bekannten Getriebesteuerung werden die Gänge in Abhängigkeit von der Fahrpedalstellung und der Fahr¬ zeuggeschwindigkeit anhand von Schaltkennfeldern automatisch geschaltet und dabei der Lastzustand des Kraftfahrzeugs und der Fahrstil des Fahrers berücksichtigt (EP-A 0 576 703) .
Durch einen Fuzzy-Logik-Regler werden verschiedene Signale, die Betriebszustände melden, ausgewertet, und daraufhin Steu¬ ersignale erzeugt, die den Lastzustand, den Fahrstil usw. kennzeichnen. Außerdem werden Schaltungen verhindert, die ei- nen dynamisch ungünstigen Fahrzustand ergeben. Das Wissen, das es einem Fuzzy-System ermöglicht, aus empfan¬ genen Informationen eine Stell- oder Steuergröße, z.B. für eine automatische Kupplung oder ein Getriebe, zu erzeugen, muß dem System bislang im einzelnen eingegeben werden, und das kann zeitaufwendig sein. Üblicherweise ist es ein durch Erfahrung gewonnenes Wissen eines Experten, das in Form von Zugehörigkeitsfunktionen und Regeln in das System eingegeben wird.
Der Erfindung liegt die Aufgabe zugrunde, ein Steuergerät der eingangs genannten Art zu schaffen, welches den erforderli¬ chen Wd snensinhalt selbständig generiert.
Diese Aufgabe wird erfindungsgemäß durch das Steuergerät nach Anspruch 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen niedergelegt.
Ein Ausführungsbeispiel der Erfindung wird im folgenden an¬ hand der Zeichnung erläutert. Es zeigen:
Figur 1 ein erfindungsgemäßes Steuergerät;
Figur 2 eine Getriebesteuerung mit einem Steuergerät nach Fi¬ gur 1;
Figur 3 eine automatisch gesteuerte Kupplung mit einem Steu- ergerät nach Figur l;
Figur 4 initiale Zugehörigkeitsfunktionen;
Figur 5 verbesserte Zugehörigkeitsfunktionen für den Parame¬ ter n_ab_m;
Figur 6 verbesserte Zugehörigkeitsfunktionen für den Parame- ter a_quer_m;
Figur 7 ein in dem Steuergerät nach Figur 1 generierter Ent¬ scheidungsbaum, und
Figur 8 eine automatisch generierte Fuzzy-Regelbasis.
Ein Steuergerät 1 (Figur 1) enthält ein Fuzzylogiksystem 2 - im folgenden auch als Fuzzy-System bezeichnet -, eine Signal¬ aufbereitungsschaltung oder Signalaufbereitung 3 und eine Generierungsschaltung 4. Die Generierungsschaltung 4, die auch als lernende Maschine bezeichnet werden kann, enthält ihrerseits einen Datenspeicher 5, eine Rechenschaltung 6 zur Wissensermittlung und eine Klassifikationsschaltung 7.
Über eine Eingangsleitung 8, die auch als Bus eines lokalen Netzwerks LAN ausgebildet sein kann, gelangen Sensorsignale oder zum Beispiel von einem anderen Steuergerät gesendete Da¬ ten zu der Signalaufbereitung 3. Sie werden in dieser so auf- bereitet, daß sie in dem Fuzzy-System 2 verarbeitet werden können (vgl. auch die eingangs genannte EP-A 0 576 703). In Form von Trainingsdaten gelangen sie über eine Leitung 9 ei¬ nerseits zu dem Fuz-zy-System 2 und andererseits zu dem Daten¬ speicher 5. Die Generierungsschaltung 4 ist über eine Daten- leitung 10 mit dem Fuzzy-System 2 verbunden. Wie in der
Zeichnung durch kleine Querstriche angedeutet sind auch die Leitungen 9 und 10 sowie eine Ausgangsleitung 11 des Fuzzy¬ systems 2 als Mehrfachdatenleitungen oder Busse ausgebildet.
Über eine Eingangsleitung 12 der Generierungsschaltung 4 ge¬ langen Meßdaten in die Klassifikationsschaltung 7. Diese Me߬ daten können auch von einem regeltechnischen Beobachter stam¬ men. Den Meßdaten muß jeweils eine Sollvorgabe beigefügt sein, d.h. eine sich bei einer sinnvollen Auslegung des Fu- zzy-Systems aus den Meßdaten ergebende Schlußfolgerung in
Form eines Stell- oder Steuersignals, das von dem Rechengerät über die Ausgangsleitung 11 an die zu steuernde Einrichtung im Kraf fahrzeug ausgegeben wird. Die Klassifikationsschal¬ tung 7 zerlegt die Trainingsdaten und die Meßdaten in Teil- mengen oder Klassen. Die Rechenschaltung 6 führt daraufhin
Zuordnungen mit Hilfe eines Entscheidungsbaumverfahrens durch. Er sucht dann für jede vorgegebene Stellgröße nach si¬ gnifikanten Kombinationen von Teilmengen aus der Menge der Trainingsdaten. Damit kann die Rechenschaltung 6 lernen, bei welchen Trainingsdaten welche Schlüsse zu ziehen sind, d.h. welchen Wert die Stellgröße anzunehmen hat. Einzelheiten zu den hier aufgeführten Schritten werden weiter hinten erläu¬ tert.
Über eine weitere Eingangsleitung 14 kann auch initiales Wis- sen in die Rechenschaltung 6 eingegeben werden. Verfügt ein menschlicher Experte schon über ein Teilwissen, so kann er dies der Rechenschaltung 6 mitteilen und damit den Lernvor¬ gang verkürzen. In der Generierungsschaltung 4 werden auf diese Weise Zugehörigkeitsfunktionen und Regeln generiert und über eine Datenleitung 15 an das Fuzzy-System 2 übermittelt. Sie können z.B. in Form von Befehlen in der Programmsprache C an eine in dem Fuzzy-System enthaltene Recheneinheit oder als Steuercodezeichen an eine spezielle Fuzzy-Logik-Recheneinheit übermittelt werden. Solche Recheneinheiten sind im Handel erhältlich. Von entscheidender Bedeutung ist hier, daß die Wissensbasis des Fuzzy-Syste s nicht in allen Einzelheiten durch einen menschlichen Experten formuliert werden muß. Es reicht vielmehr, ein Gütekriterium vorzugeben, nach dem das System zu trainieren ist. Im Falle einer automatischen Kupplungssteuerung in einem Kraftfahrzeug ist dieses
Gütekriterium die Position des Kupplungspedals, so wie sie durch einen Fahrer eingestellt wird. Nach dem Training ist sie dann genau so durch einen technischen Aktor oder Aktuator nachzubilden, zum Beispiel durch einen hydraulischen Stellzy- linder für die Kupplung, der durch das Stellsignal über die Ausgangsleitung 11 gesteuert wird. Auf diese Weise können Entwicklungsprozesse verkürzt und die Funktionssicherheit von Steuergeräten erhöht werden.
Ein Steuergerät 16 (Figur 2) enthält ein Fuzzy-System 17 und eine Getriebesteuerung im engeren Sinne 18. Das Fuzzy-System 17 ist bereits wie beschrieben trainiert worden, d.h. es weist das erforderliche Steuerverhalten auf. Dieses Fuzzy-Sy¬ stem 17 und die Getriebesteuerung 18 sind mit einer Motor- Steuerung 19 über Daten- und Signalleitungen 20 und Steuer¬ leitungen 21 verbunden. Die Motorsteuerung 19 ist mit einem Motor 22 über Signalleitungen 23 (in der Zeichnung ist der Einfachheit halber nur eine Leitung dargestellt) und über Steuerleitungen 24, über die Steuersignale für Aktuatoren, Aktoren oder Stellglieder in dem Motor übertragen werden, verbunden. Die Getriebesteuerung 18 ist mit einem Getriebe 26 ebenfalls über Signalleitungen 23 und Steuerleitungen 24 ver¬ bunden. Auch das Fuzzy-System 17 ist durch eine Steuerleitung 25 direkt mit dem Getriebe 26 verbunden.
Das Antriebsdrehmoment des Motors 22 wird durch eine An- triebswelle 28 auf das Getriebe 26 übertragen. Eine zwischen¬ geschaltete mechanische oder hydrodynamische Kupplung ist, da allgemein bekannt und von der Erfindung nicht berührt, hier nicht dargestellt. Der Getriebeausgang seinerseits ist über eine Abtriebswelle 29 und über einen oder mehrere, hier eben- falls nicht dargestellte, Differentiale mit den angetriebenen Rädern des Kraftfahrzeugs verbunden, die hier nur durch ein Rad 30 angedeutet sind.
Über die Steuerleitungen 24, 25 werden verschiedene Aktuato- ren in dem Getriebe gesteuert, mit denen z.B. der hydrauli¬ sche Betätigungsdruck für die Reibelemente in dem Getriebe gesteuert wird. Das Fuzzy-System 17 kann aber auch Informa¬ tionen über den Straßentyp und -verlauf der Getriebesteuerung zur Verfügung stellen und damit das Schaltverhalten des Ge- triebes beeinflussen.
Ein weiteres Steuergerät 32 (Fig. 3) enthält ein Fuzzy-System 33 und eine Kupplungsbetätigungs- oder -Steuereinrichtung 34, die durch Daten- und Signalleitungen 35 miteinander verbunden sind. Mit der Motorsteuerung 19 ist das Fuzzy-System 33 eben¬ falls über Daten- und Signalleitungen 38 verbunden. Das Steu¬ ergerät 32 wirkt über eine Steuerleitung 36 und einen Aktor 41 auf eine Kupplung 42 ein. Die Stellung eines Gaspedals 44 wird von einem Sensor 45 über eine Leitung 46 an den Motor 22 gemeldet. Mit dem Gaspedal wird so eine hier nicht darge¬ stellte Drosselklappe in dem Ansaugtrakt des Motors 22 gesteuert. Der Sensor 45 ist durch eine Signalleitung 47 mit dem Fuzzy-System 33 des Steuergeräts 32 verbunden.
Im Falle eines manuell zu schaltenden Getriebes 26 ist ein die Stellung eines Schalthebels 48 erfassender Sensor 49 über eine Signalleitung 50 mit dem Steuergerät 32 und über eine Leitung 51 mit dem Getriebe 26 verbunden. Ein die Stellung eines Kupplungspedals 52 erfassender Sensor 53 ist durch eine Signalleitung 54 mit dem Aktor 41 verbunden. Die Signallei- tung 54 wird nur in der Generierungs- oder Lernphase des
Steuergeräts benötigt, in der dieses das Betätigen des Kupp¬ lungspedals 52 durch den Fahrer "lernt". Sie ist deshalb ge¬ strichelt dargestellt. Auch eine Signalleitung 56, die das Steuergerät 32 mit dem Getriebe 26 verbindet wird nur in der Lernphase benötigt.
Die jeweilige Stellung des Aktors 41 wird in der Lernphase über eine Leitung 57 an das Steuergerät 32 übermittelt und in dessen Datenspeicher 5 (vgl. Figur 1) gespeichert.
Das Fuzzy-System 33 wird über die Signal- und Datenleitungen 35, 38, 47 50 und 56 mit Eingangsdaten versorgt. Es kann sei¬ nerseits auch Steuer- oder Datensignale über die Leitung 38 an die Motorsteuerung 19 senden, um z.B. während des Kuppeins das Motordrehmoment zu verändern. Das Steuergerät 32 steuert, nachdem der Wissensinhalt des Fuzzy-Systems 33 generiert wor¬ den ist, die Kupplung 42. Im Falle eines automatischen Ge¬ triebes 26 steuert es auch dieses. Bei einem von Hand gesteu¬ erten Getriebe 26 wird der Beginn des von dem Fahrer des Kraftfahrzeugs über den Schalthebel 48 eingeleiteten Schalt¬ vorgangs über die Datenleitung 50 an das Steuergerät übermit¬ telt.
Wie bereits erwähnt wird die Kupplung 42 nur in der Trai- ningsphase von dem Fahrer über das Kupplungspedal 29 bedient. Sowohl die jeweilige Stellung des Aktors 41 als auch andere Informationen, z.B. über die Motordrehzahl, das Motordrehmo- ment, der jeweils eingelegte Gang und die Betätigung der Bremsen (über den Bremslichtschalter) gelangen in der Trai¬ ningsphase über die Signalaufbereitung 3 in den Datenspeicher 5 der Generierungsschaltung 4. Das Generieren der Regeln für das Fuzzy-System 2 in der Generierungsschaltung 4 erfolgt in einem Ausführungsbeispiel anhand der nachfolgend beschriebe¬ nen Daten. Zur Verfügung stehen fünf verschiedene Meßreihen messl bis mess5, die bei Fahrten mit einem Kraftfahrzeug über Straßen unterschiedlichen Typs aufgenommen worden sind (Tabelle 1) :
Meßreihe Straßentyp Kurzbezeichnung Anzahl der Meßpunkte messl Landstraße LS 41738 mess2 Bundesstraße BS 33383 mess3 Autobahn BAB 13408 mess4 Bundesstraße BS 26049 mess5 Stadt ST 22072
Tabelle 1
Parameter Beschreibung mittlere Abtriebsdrehzahl (proportional zur Ge¬ n_ab_m schwindigkeit mittlerer Betrag des Differenzmoments (daraus kann m_d_m eine Schlußfolgerung über lange Steigungen und Ge¬ fälle gezogen werden) a_quer_m mittlerer Betrag der Querbeschleunigung dk_quer Mittelwert der Drosselklappe
Fahrpedalaktivität (Mittelwert des Betrags der ddk_guer Fahrpedalverstellgeschwindigkeit)
Bremshäufigkeit (wie stark gebremst wurde, wird br_m nicht berücksichtigt)
Tabelle 2 Zur automatischen Regelgenerierung wurden die in Tabelle 2 aufgeführten und als Parameter bezeichneten Sensorsignale oder von solchen Sensorsignalen abgeleiteten Werte verwendet
Als Daten für die Generierung der Regeln wird
1. eine Menge von klassifizierten Lernbeispielen und Lernda¬ ten der Form
56 8 5 84 16 7 LS
2. Eine Menge von Fuzzy-Sets für jeden Eingabe-Parameter
verwendet. Die Ausgabe wird über folgende Parameter gesteu¬ ert:
1. eine Schranke für Beispielgewichte gibt an, ab welchem Wert ein Beispiel vernachlässigt wird, d.h. im weiteren Verlauf des Lernens nicht mehr berücksichtigt wird. Alle Beispiele mit einem Gewicht kleiner dieser Schranke werden entfernt.
2. ein Akzeptanzwert gibt an, ob eine gefundene Regel tat¬ sächlich in die Regelmenge aufgenommen wird oder nicht. Ein Wert von z.B. 2 besagt, daß mindestens 2 Beispiele der Mehrheitsklasse aus den Trainingsdaten von dieser Regel erfaßt werden müssen, andernfalls wird die Regel nicht aufgenommen.
Ausgehend von den Datenreihen messl bis mess5, wobei jedem Punkt dieser Meßreihen eine Klasse (Straßentyp) nach Tabelle 1 zugeordnet wurde, werden aus den ursprünglichen Meßdaten werden verschiedene Lern- und Testdatenmengen generiert. Im allgemeinen entstehen diese Mengen aus den Originaldaten da¬ durch, daß jeder n-te Meßpunkt ausgewählt wurde, und zwar mit unterschiedlichen Werten von n. Außerdem wurden bezüglich der Klassifikation und der Parameter noch Änderungen vorgenommen, die bei folgenden Beispielsmengen erläutert werden: • Lernseti: n = 100
Start je an den Positionen (Meßpunkten) 10, 20, 30, 40 im Originalfile (=> 4 * 5 = 20 Lernsets)
• Lernset2 : n = 200
Start je an den Positionen 1, 51, 101, 151
• Lernset3 : n = 300
Start je an den Positionen 1, 51, 101, 151
Die Klassifikation der Beispiele wurde weiter spezifiziert
Meßreihe Datenpunkte Klasse messl : 1 - 2725 SEP-LS
17088 - 19199 STOP mess2 : 1 - 3101 SEP-BS mess3 : 1 - 1443 SEP-BAB mess4 : - mess5: 1 - 4682 VORST
"SEP" bedeutet "Start-Ende-Phase" . Diese Klassen wurden ein¬ geführt für die Beschleunigungs- und Abbremsphasen. "VORST" bedeutet "Vorstadt".
• Lernset4:
Genauso wie Lernset3, aber aus jeder Meßreihe wurde nur die erste Hälfte der Meßpunkte verwendet.
• LernsetlO: n « 200
Start je an den Positionen 1, 51, 101, 151 Für jeden Parameter wurden auch die zeitlichen Ableitungen gebildet. Dabei wurde jeweils die Differenz zum zuletzt aus¬ gewählten Meßpunkt bestimmt. Bei einer Abtastzeit von 20ms in den Originaldaten und n = 200 ist die Schrittbreite für die Ableitungen somit 4sec.
• Lernset20: Wie Lernsets3, aber alle Beispiele, die nicht mit LS, BS, BAB oder ST klassifiziert sind, wurden herausgenommen.
• Lernset40:
Wie Lernset3, aber mess2 wurde die Klasse BS2, mess4, die Klasse BS4 zugeordnet. Die Klassen SEP-LS und SEP-BS wurden zusammengefaßt .
• Teβtsets: n = 50 Start an Position 10
Klassifikation wie Lernset3. Für jede Meßreihe gibt es genau ein Testset, wobei die zeitliche Reihenfolge der Meßpunkte beibehalten wurde. Diese Testsets wurden i.W. dazu verwendet, einen Vergleich zwischen tatsächlicher Klasse und berechneter Klasse über den gesamten zeitlichen Verlauf der Meßreihe zu machen. Dieser Vergleich kann durch eine Graphik verdeutlicht werden (siehe Anhang) . Dazu wurde jeder Klasse ein numeri¬ scher Wert zugeordnet, wobei es eine "Pseudo"-Ordnung auf den Klassen gibt. Die Werte der Klassen sind:
nicht klassifiziert 0
Stop 1
Stadt 2 vor-Stadt 3
SEP-LS 4
Landstraße 5
SEP-BS 6
Bundesstraße 7
SEP-BAB 8
Autobahn 9 • Testsetsl:
Wie Testsets, aber die Klassen SEP-LS und SEP-BS wurden zu einer Klasse zusammengefaßt.
• Testsets2:
Wie Testsets, aber Klassifizierung wie Lernsets2 (nur LS, BS, BAB, ST) .
• Testsets- odBS: Wie Testsets, aber zur Unterscheidung der beiden BS-Datenrei- hen wurden die Meßpunkte in mesε2 mit BS2 klassifiziert, die in mess4 mit BS4. Die Spezifikation der Klassifizierung ist wie in Lernsets40. -
Es werden folgende Mengen von Zugehörigkeitsfunktionen ver¬ wendet.
• mbfactsl: fünf initiale Zugehörigkeitsfunktionen für jeden Parameter, gleichverteilt über den Wertebereich (siehe Figur 4)
Wertebereiche der Parameter:
Parameter Minimum Maximum n_ab_m 0 135 m_d_m 0 39 a_quer_m 0 31 dk_quer 0 197 ddk_quer 0 76 br m 0 104
• mbfacts2: wie mbfctsl, aber die Zugehörigkeitsfunktionen für den Para¬ meter n ab m wurden verbessert (siehe Figur 5) . • mbfacts3: wie mbfcts2, aber die Zugehörigkeitsfunktionen für den Para¬ meter a_quer_m wurden verbessert (siehe Figur 6) .
• inbfacts_deltal:
Zugehörigkeitsfunktionen für die Daten aus LernsetlO, 5 Zuge¬ hörigkeitsfunktionen für jeden Parameter gleichverteilt über dem Wertebereich (siehe Figur 4).
Aus Figur 4 sind die initialen oder ursprünglichen Zugehörig¬ keitsfunktionen des Fuzzy-Systems ersichtlich, aus Figur 5 die optimierten Zugehörigkeitsfunktionen für den Parameter n_ab_m und aus Figur 6 die optimierte Zugehδrigkeitsfunktio- nen für den Parameter a_guer_m.
Ergebnisse sind beispielhaft in der nachfolgenden Tabelle 1 aufgeführt. In den durchgeführten Experimenten wird mit Lern¬ daten eine Regelbasis generiert und nachfolgend wird sie mit Testdaten geprüft, um ihre Korrektheit zu bestimmen. Die mit Lernset3 durchgeführten Experimente zeigen, daß auch bei kompakten Regelbasen eine hohe Korrektheit der Schlußfolger¬ ung, d.h. des Klassifikationsergebnisses, erreicht werden kann.
- 13 -
Experiment mit Lernset3
Lerndaten: alle Position-l-Mengen
Zugehörigkeitsfunktionen: mbfctsl Testdaten: Testsets
Schranke Akzeptanz Anzahl der Regeln Testdaten Korrektheit
0.2 1.0 39* messl 77.96 mess2 69.76 mess3 81.41 mess4 91.75 mess5 90.27 alle 80.92
0.2 2.0 25* messl 75.57 mess2 67.66 mess3 81.72 mess4 92.32 mess5 73.76 alle 80.18
0.3 2.0 16* messl 66.95 mess2 77.25 mess3 81.72 mess4 93.67 mess5 70.14 alle 79.34
Tabelle 5
Aus den Lernsätzen werden in der Generierungsschaltung 4 aus einzelnen Fuzzy-Regeln "Rule 1" bis "Rule n" bestehende Re¬ gelbasen erzeugt. Ein Beispiel einer solchen Regelbasis mit den Regeln Rule 1 bis Rule 20 ist nachfolgend dargestellt. Zugehörigkeitsfunktionen: mbfcts2
Schranke: 0.2
Akzeptanz : 1.0
Rule 1:
IF N_AB_M IS HIGH AND DK_QUER IS VHIGH
THEN CLASS IS BAB ((0.0 LS) (0.0 BS) (6.9 BAB) (0.0 ST))
Rule 2 :
IF N_AB_M IS HIGH AND DK_QUER IS HIGH
THEN CLASS IS BAB ((0.0 LS) (0.0 BS) (24.35 BAB) (0.0 ST))
Rule 4 : IF N_AB_M IS HIGH AND DK_QUER IS LOW
THEN CLASS IS BS ((0.0 LS) (4.38 BS) (0.0 BAB) (0.0 ST))
Rule 5:
IF N_AB_M IS MED AND A_QUER_M IS VHIGH THEN CLASS IS LS ((3.05 LS) (0.0 BS) (0.0 BAB) (0.0 ST))
Rule 6:
IF N_AB_M IS MED AND A_QUER_M IS HIGH
THEN CLASS IS LS ((3.08 LS) (0.0 BS) (0.0 BAB) (0.0 ST))
Rule 7:
IF N_AB_M IS MED AND A_QUER_M IS MED
THEN CLASS IS LS ((11.68 LS) (0.0 BS) (0.0 BAB) (0.0 ST))
Rule 8:
IF N_AB_M IS MED AND A_QUER_M IS LOW
AND M_D_M IS VHIGH THEN CLASS IS LS ((3.14 LS) (0.0 BS) (0.0 BAB) (0.0 ST))
Rule 9:
IF N_AB_M IS MED AND A_QUER_M IS LOW AND M D M IS HIGH THEN CLASS IS LS ((3.93 LS) (0.0 BS) (0.0 BAB) (0.0 ST))
Rule 10:
IF N_AB_M IS MED AND A_QUER_M IS LOW AND M_D_M IS MED
AND DDK_QUER IS MED THEN CLASS IS LS ((1.71 LS) (0.41 BS) (0.0 BAB) (0.0 ST))
Rule 11: IF N_AB_M IS MED AND A_QUER_M IS LOW AND M_D_M IS MED AND DDK_QUER IS LOW THEN CLASS IS LS U3.66 LS) (1.61 BS) (0.0 BAB) (0.0 ST))
Rule 12:
IF N_AB_M IS MED AND A_QUER_M IS LOW AND M_D_M IS MED AND DDK_QUER IS VLOW THEN CLASS IS BS ((0.0 LS) (1.09 BS) (0.0 BAB) (0.0 ST))
Rule 15:
IF N_AB_M IS MED AND A_QUER_M IS LOW AND M_D_M IS VLOW AND DK_QUER IS LOW AND DDK_QUER IS LOW
THEN CLASS IS BS ((1.55 LS) (4.41 BS) (0.0 BAB) (0.0 ST) )
Rule 16:
IF N_AB_M IS MED AND A_QUER_M IS LOW AND M_D_M IS VLOW
AND DK_QUER IS LOW
AND DDK_QUER IS VLOW THEN CLASS IS LS ((2.08 LS) (1.27 BS) (0.0 BAB) (0.0 ST) )
Rule 18:
IF N_AB_M IS LOW AND DK_QUER IS MED
THEN CLASS IS BS ((0.0 LS) (1.13 BS) (0.0 BAB) (0.0 ST)) Rule 20:
IF N_AB_M IS LOW AND DK_QUER IS VLOW
THEN CLASS IS ST ((0.0 LS) (0.0 BS) (0.0 BAB) (44.97 ST))
Erzeugt werden diese Regeln nach einem Entscheidungsbaumver¬ fahren. Aus einer Menge von numerisch beschriebenen Trai¬ ningsdaten wird ein Fuzzy-Entscheidungsbaum erzeugt, der dann in eine äquivalente Regelmenge transformiert wird. Ein Bei¬ spiel für einen Entscheidungsbaum ist aus Figur 7 ersicht¬ lich. Die inneren Knoten erhalten Tests auf den Parametern, durch die die Objekte beschrieben werden. Die ausgehenden Kanten sind mit den Werten des Parameters beschriftet, und den terminalen Knoten sind Klassen zugeordnet.
Der Entscheidungsbaum wird von oben nach unten, d.h. sozusa¬ gen von der Wurzel zu den End- oder terminalen Knoten nach folgendem stark vereinfachten Verfahren konstruiert:
1. Wenn eine Trainingsmenge M nur Beispiele einer Klasse ent¬ hält, dann füge einen terminalen Knoten für diese Klasse in den Baum ein.
2. Wenn der gerade betrachtete Pfad bereits alle Parameter enthält, dann füge einen terminalen Knoten für die Mehr¬ heitsklasse ein.
3. Sonst
1. Wähle - nach einem vorgegebenen Kriterium - einen Pa¬ rameter P aus, der noch nicht auf dem gerade betrach¬ teten Pfad vorkommt. P habe die Werte Pi... , pn.
2. Füge den Teilbaum pi, P2... , Pn an die gerade betrach¬ tete Stelle in dem Baum ein. 3. Zerlege M gemäß P in Teilmengen M1;...,Mn. Ordne jeder Kante oder Ast pi die Teilmenge M^ zu.
4. Verfahre mit jedem Mj_ wie mit M.
Um aus numerischen Trainingsdaten eine Fuzzy-Entscheidungs¬ baum zu erhalten, muß die Parameterauswahl und Mengenzerle¬ gung an Fuzzy-Sets angepaßt werden. Wesentlich ist, daß jedem Beispiel ein Gewicht zugeordnet wird, dessen Ausgangswert 1 ist. Wird ein Parameter ausgewählt (Schritt 3.1), so wird die betrachtete Trainingsmenge entsprechend der Werte des ausge¬ wählten Parameters in (nicht-disjunkte) Teilmengen zerlegt (Schritt 3.3) . Dabei werden die Gewichte der Trainingsdaten entsprechend der Zugehörigkeitsfunktionen und eines definier¬ ten UND-Operators modifiziert. Die Parameter werden gemäß ei¬ nes modifizierten Entropiekriteriums ausgewählt (Schritt 3.1)
Ein Entscheidungsbaum wird in eine äquivalente Regelmenge transformiert, in dem jeder Pfad von der Wurzel zu einem Blatt oder Knoten als Regel interpretiert wird.
Im folgenden wird ein kleines Beispiel zur weiteren Verdeut¬ lichung des Verfahrens und dessen Durchführung in der die Ge- nerierungsschaltung 4 dargestellt. Ein Fuzzy-Klassifikations- system mit zwei Eingängen, AI und A2, soll erstellt werden. Es gibt die beiden Klassen Classl und Class2. Das Fuzzy-Sy¬ stem wird zunächst mit der Generierungsschaltung 4 definiert (siehe Figur 7) . Zur Verfügung stehen Trainingsdaten, für die die Klassenzugehörigkeit bereits bestimmt wurde (Tabelle 7) . Nr. Klasse AI A2
1 Classl 1.0 -0.1
2 Classl 0.8 0.1
3 Classl 0.5 0.0
4 Classl 0.2 0.4
5 Class2 0.4 -0.4
6 Class2 0.3 0.4
7 Class2 0.1 -0.3
8 Class2 0.3 -0.4
Tabelle 7
In der Generierungschaltung 4 wurden folgende Lernparameter gewähl :
AND-Operator: Produkt (AP) , Schwellwert für Beispielgewichte: 0.1, Akzeptanzgrenze für die Regeln: 10%.
Figur 7 zeigt den generierten Entscheidungsbaum. Jedem Knoten des Baumes ist eine Menge von gewichteten Beispielen zugeord¬ net. Alle Beispiele, deren Gewicht kleiner ist als 0.1, wer¬ den aus der gerade betrachteten Beispielmenge entfernt. Der Zweig, d.h. die Regel IF AI IS s all and A2 IS ok THEN CLASS IS Class2, wurde ganz entfernt, da hier die Summe der Gewich¬ te der Mehrheitsklasse (Class2) nur 0.32 war, was kleiner 10% von 4 ist.
Ausgabe der Generierungschaltung 4 ist eine zum Entschei¬ dungsbaum äquivalente Regelbasis in FPL-Format (FPL = Fuzzy Programming Language) . Dabei wird die Regelbasis in ein be¬ reits bestehendes FPL-File eingebunden. Dieses File kann an¬ schließend mit der Generierungsschaltung 4 weiter bearbeitet werden. Die solchermaßen automatisch generierte Regelbasis ist in Figur 8 dargestellt.
PCT/EP1995/003492 1994-09-09 1995-09-05 In einem kraftfahrzeug zu verwendendes steuergerät, das ein fuzzylogiksystem enthält WO1996007559A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP94114198.8 1994-09-09
EP94114198 1994-09-09

Publications (1)

Publication Number Publication Date
WO1996007559A1 true WO1996007559A1 (de) 1996-03-14

Family

ID=8216270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/003492 WO1996007559A1 (de) 1994-09-09 1995-09-05 In einem kraftfahrzeug zu verwendendes steuergerät, das ein fuzzylogiksystem enthält

Country Status (1)

Country Link
WO (1) WO1996007559A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005408A1 (de) * 1995-07-26 1997-02-13 Siemens Aktiengesellschaft Schaltungsanordnung zum steuern eines fahrwerks- oder antriebssystems in einem kraftfahrzeug
EP0800124A1 (de) * 1996-04-03 1997-10-08 General Motors Corporation Adaptives Gangschaltungssteuersystem basiert auf unscharfer Logik
GB2350695A (en) * 1999-05-07 2000-12-06 Wivenhoe Technology Ltd Genetic fuzzy real-time controller
EP1065413A1 (de) * 1999-06-29 2001-01-03 Peugeot Citroen Automobiles SA Steuereinrichtung für ein mechanisches Kraftfahrzeug-Schaltgetriebe
CN112943913A (zh) * 2021-02-26 2021-06-11 北京理工大学 一种基于决策树算法的amt挂挡过程冗余控制方法
DE102022205730A1 (de) 2022-06-07 2023-12-07 Volkswagen Aktiengesellschaft Konzept zum Auswählen von Audioausschnitten von Bremsquietschgeräuschen in einem Fahrzeug

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0292286A1 (de) * 1987-05-19 1988-11-23 Honda Giken Kogyo Kabushiki Kaisha Fahrzeug-Regelsystem
DE4215406A1 (de) * 1992-05-11 1993-11-18 Zahnradfabrik Friedrichshafen Steuersystem zum Schalten eines automatischen Getriebes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0292286A1 (de) * 1987-05-19 1988-11-23 Honda Giken Kogyo Kabushiki Kaisha Fahrzeug-Regelsystem
DE4215406A1 (de) * 1992-05-11 1993-11-18 Zahnradfabrik Friedrichshafen Steuersystem zum Schalten eines automatischen Getriebes
WO1993023689A1 (de) * 1992-05-11 1993-11-25 Zf Friedrichshafen Ag Steuersystem zum schalten eines automatischen getriebes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI-XIN WANG: "Generating Fuzzy Rules by Learning from Examples", IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS, vol. 22, no. 6, NEW YORK, US, pages 1414 - 1427 *
WON CHANG JUNG: "Optimization of the decision tree", PROC. OF THE 1991 IEEE INT. CONF. ON TOOLS FOR AI, SAN JOSE, CA, US, pages 522 - 523 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005408A1 (de) * 1995-07-26 1997-02-13 Siemens Aktiengesellschaft Schaltungsanordnung zum steuern eines fahrwerks- oder antriebssystems in einem kraftfahrzeug
EP0800124A1 (de) * 1996-04-03 1997-10-08 General Motors Corporation Adaptives Gangschaltungssteuersystem basiert auf unscharfer Logik
GB2350695A (en) * 1999-05-07 2000-12-06 Wivenhoe Technology Ltd Genetic fuzzy real-time controller
GB2350695B (en) * 1999-05-07 2003-08-13 Wivenhoe Technology Ltd Genetic-Fuzzy real-time controller
EP1065413A1 (de) * 1999-06-29 2001-01-03 Peugeot Citroen Automobiles SA Steuereinrichtung für ein mechanisches Kraftfahrzeug-Schaltgetriebe
FR2795796A1 (fr) * 1999-06-29 2001-01-05 Peugeot Citroen Automobiles Sa Systeme de commande d'une boite de vitesses mecanique d'un vehicule automobile
CN112943913A (zh) * 2021-02-26 2021-06-11 北京理工大学 一种基于决策树算法的amt挂挡过程冗余控制方法
DE102022205730A1 (de) 2022-06-07 2023-12-07 Volkswagen Aktiengesellschaft Konzept zum Auswählen von Audioausschnitten von Bremsquietschgeräuschen in einem Fahrzeug

Similar Documents

Publication Publication Date Title
DE4101902C2 (de) Steuereinrichtung zur Steuerung einer Fahrzeugkomponente
DE3341652C2 (de)
EP0870132B1 (de) Schaltungsanordnung zum steuern eines fahrwerks- oder antriebssystems in einem kraftfahrzeug
DE102007050773A1 (de) Kraftfahrzeugsteuerungssystem
DE102007006616B3 (de) Verfahren zur Optimierung eines elektronisch gesteuerten automatisch schaltenden Getriebes für ein Kraftfahrzeug
WO1996007559A1 (de) In einem kraftfahrzeug zu verwendendes steuergerät, das ein fuzzylogiksystem enthält
WO2002053952A1 (de) System zur getriegesteuerung
EP0622570B1 (de) Steuerung für ein automatisches Kraftfahrzeug-Getriebe
EP1105663B1 (de) Verfahren zum steuern des antriebsstrangs eines kraftfahrzeugs und antriebsstrangsteuerung
DE19963564A1 (de) System zur Einstellung einer Getriebeübersetzung bei einem in einem Kraftfahrzeug eingebauten Getriebe
EP0834028B1 (de) Steuerung für ein kraftfahrzeug-getriebe
DE102020119853B3 (de) Verfahren zum Steuern eines Automatisierungssystems mit Visualisierung von Programmobjekten eines Steuerprogramms des Automatisierungssystems und Automatisierungssystem
DE102006007717A1 (de) Verfahren zur Vorhersage einer Gangwahl in einem motorgetriebenen Fahrzeug
DE102007050771A1 (de) Kraftfahrzeugsteuerungssystem
DE10332202A1 (de) Bayesnetz-basiertes Expertensystem zur Diagnose, Risikoanalyse und Funktions-Wiederherstellung, insbesondere bei Kraftfahrzeugen
WO2015091386A1 (de) Verfahren zum erstellen einer zuordnungsdatei eines kommunikationsprotokolls
DE102007050775A1 (de) Kraftfahrzeugsteuerungssystem
EP0984874A1 (de) Verfahren und vorrichtung zur erzeugung eines fehlersignals bei einem kraftfahrzeug
DE102016202011A1 (de) Verfahren und Steuerungssystem zum Betreiben eines Kraftfahrzeugs
DE102007000869A1 (de) Kraftfahrzeugsteuerungssystem
EP1120588B1 (de) Verfahren zur Verbesserung der Auslegung von Antriebssträngen für Fahrzeuge
DE102009015841A1 (de) Verfahren zur Prognostizierung eines Kraftstoffverbrauches und/oder eines Verschleißes eines Funktionsbauteiles eines Fahrzeuges
DE102022002916A1 (de) Verfahren zum Ermitteln einer Schaltstrategie für ein Schaltgetriebe eines Fahrzeugs, sowie Verfahren zum Trainieren eines lernfähigen Systems zur Prädiktion einer Schaltstrategie und Fahrerassistenzsystem
DE10024211A1 (de) Diagnoseverfahren für den Zustand eines Kraftfahrzeuges
DE19821689A1 (de) Anzeigevorrichtung für Lärmemissionen von Kraftfahrzeugen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase