WO1996005876A1 - Dispositif de motorisation pour produire de tres faibles deplacements - Google Patents

Dispositif de motorisation pour produire de tres faibles deplacements Download PDF

Info

Publication number
WO1996005876A1
WO1996005876A1 PCT/FR1995/001123 FR9501123W WO9605876A1 WO 1996005876 A1 WO1996005876 A1 WO 1996005876A1 FR 9501123 W FR9501123 W FR 9501123W WO 9605876 A1 WO9605876 A1 WO 9605876A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
chamber
plate
liquid
deformable
Prior art date
Application number
PCT/FR1995/001123
Other languages
English (en)
Inventor
Yves Lecoffre
Claude Tournassat
Original Assignee
Yves Lecoffre
Claude Tournassat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9410451A external-priority patent/FR2723851A1/fr
Priority claimed from FR9501637A external-priority patent/FR2730325A1/fr
Application filed by Yves Lecoffre, Claude Tournassat filed Critical Yves Lecoffre
Priority to AU32610/95A priority Critical patent/AU3261095A/en
Publication of WO1996005876A1 publication Critical patent/WO1996005876A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • A61L9/12Apparatus, e.g. holders, therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/148Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons flexible, e.g. independent bags
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16804Flow controllers
    • A61M5/16822Flow controllers by controlling air intake into infusion reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/141Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor with capillaries for restricting fluid flow

Definitions

  • the invention relates to a motorization device making it possible to vary the volume of a closed enclosure very slowly and, in particular, making it possible to move one of the walls constituting it.
  • the invention also relates to the use of the motorization device for the production of a device for delivering very small quantities of fluids from flexible or hard tanks, another application is the production of very slow movements, another application is drug delivery by infusion.
  • the existing processes for example textile wicks or soaked porous bodies have flow rates which are difficult to control.
  • the flow they deliver is a function of the altitude of the injection point relative to that of the reservoir. It is therefore not possible to inject liquid at an altitude higher than that of the free surface of the tank.
  • This variation in volume can be used to generate a flow of fluid or to move a wall supporting an object.
  • the applications envisaged relate to the control of fluid flow rates and the position control of objects.
  • the device will preferably be of reduced cost.
  • the very slow motorization device making it possible to move at least one plate is characterized in that it comprises: a deformable chamber which can contain a fluid, said plate constituting a part of the wall of said chamber, said chamber comprising furthermore a flexible wall. a medium, external to said deformable chamber, containing the same fluid. means making it possible to vary the pressure of said chamber relative to that of said external medium,
  • the pressure in the deformable chamber is imposed by a prestressed elastic body, a spring or strips of materials similar to rubber for example.
  • the pressure in the deformable chamber is imposed by a mechanical load, the pressure in the environment external to this chamber being produced by a pressure regulating apparatus.
  • the external medium is the atmosphere and the transferred fluid is air.
  • the capillary is then connected to the ambient medium on one side and to the deformable chamber on the other.
  • the pressure drop consists of the very long channel formed by the passage left free between a flat plate engraved with a spiral-shaped channel and a flat counterplate.
  • This counterplate may be a flat seal which will be held in place on its opposite face by equally spaced pins which make it possible to ensure uniform pressure on the face of said seal in contact with the spiral.
  • the deformable motor is placed in a closed rigid box. It delivers through a hole drilled in this box a flow of fluid controlled by the change in volume of said motor.
  • the fluid escaping from the box is air which is admitted through a pipe to a container containing a liquid provided with a dip tube.
  • the pressurization of said tank by the gas causes the release of the liquid at the same rate as the change in volume of the engine.
  • the displacement of the motor causes the deformation of at least one flexible pocket which delivers a controlled fluid flow.
  • said flexible pouch contains an injectable medicament.
  • the deformable pocket is flexible and is compressed by a spring.
  • the fluid it contains escapes through the laminar pressure drop and is used in the external environment. If said fluid is air, it will for example be used to empty a liquid contained in a bottle or a vial.
  • a fluid delivery device which uses a motor device of the type defined above and which, moreover, includes a laminar pressure drop on the outlet of the delivered fluid, it is advantageous to provide specific provisions aimed at overcoming the effect of temperature variations on the flow of fluid delivered.
  • the invention consists in distributing the pressure drop between the gas and the liquid.
  • the two pressure drops operate in series and the total pressure difference between the two extreme pressures of the circuit thus formed is equal to the sum of the two pressure differences on each of the fluids.
  • the viscosity of a liquid decreases with temperature while the viscosity of gas increases with temperature.
  • the viscosity of a liquid decreases relatively faster than that of the gas increases.
  • the pressure drop on the liquid is lower than that of the gas flow.
  • two capillaries for example a capillary 1 m in length and 217 micrometers in diameter on the air and a capillary of lm in length and 565 micrometers in diameter on the water outlet.
  • the viscosity of water at 20 * C is 10 " 3 Pa.s.
  • the method according to the invention does not imply that the pressure is decreasing when passing from the first tank to the second, then to the third.
  • the total pressure drop is the algebraic sum of the two successive pressure drops. This means that in certain arrangements, the pressure can be the same in the upstream reservoir and at the outlet of the liquid.
  • the above system of equations is then solved by considering the absolute values of the pressure drops between the first and the second tank, then between the second tank and the outlet ⁇ p is then the sum of the absolute values of these pressure drops. It will be appreciated that this aspect of the invention provides a great deal of flexibility in the use of liquid metering devices from pressurized air tanks.
  • one application of this device relates to the dosing of drugs in ambulatory medicine, an operation which requires great consistency in the flow rates of the injected liquid.
  • Another application relates to the injection of perfumes or antiseptic products into an automobile whose cabin constitutes an environment subjected to very large temperature variations.
  • By relatively decreasing the pressure drop on the liquid there is a tendency to decrease the flow rate when the temperature increases.
  • the relative proportion of pressure drop of the liquid will be increased.
  • Figure 8 gives another embodiment of a low liquid flow diffuser;
  • Figure 9 sounds a third embodiment of a diffuser;
  • Figure 10 gives a fourth embodiment of a diffuser;
  • FIG. 11 gives an example of application of the previous system to toilet bowls;
  • FIG. 12a and 12b give a fifth embodiment of the diffuser;
  • - Figure 13 gives an application of the system to the perfusion of medical patients;
  • - Figure 14 gives a preferred mode of commissioning of the device in the case of a flexible joint type capillary;
  • FIG. 16 shows a first embodiment of a diffuser with compensation for the temperature effect by the use of two laminar pressure drops
  • Figure 17 shows a second embodiment of the diffuser of the type of Figure 16
  • Figure 18 shows a third embodiment of the diffuser of the type of Figure 16
  • - Figure 19 shows an embodiment of a diffuser comprising a capillary tube on the liquid outlet.
  • FIG. 1a shows a motor 1 in the closed position of the fluid distributor block 2 and of the movable plate 3 connected together by the deformable membrane 4 and by the spring 5 which tends, in this figure, to separate the assemblies 2 and 3.
  • the distributor block 2 consists of a flexible seal 6 pressing through a plate 7 provided with pins 20 on a plate 8 engraved with a groove 9, so that a channel is formed between the seal and the engraved plate of great length and small section. This channel constitutes a laminar pressure drop which limits the flow rate of the fluid passing through it.
  • Figure 6 shows this arrangement in more detail.
  • the section of the channel is less than 1 mm ⁇ and preferably less than 0.2 mm ⁇ .
  • FIGS. 2a and 2b give another embodiment of the motor in which the spring has returned to the distributor block, which makes it possible to obtain a unit which is a little more compact than in the previous case.
  • the springs are 4 in number and are located outside the deformable chamber. A very flat motor is thus obtained when it is at rest.
  • elastic bands 14 have been put in place instead of the springs, their mode of action is comparable, the choice between the two systems involving implementation criteria, quality and price.
  • the strips 14 are integral with the plate 3 and a rigid support 14.
  • the cross section of the motor chamber has a relatively large equivalent diameter relative to the length of the spring at the end of its travel, that is to say when the chamber has reached its maximum volume.
  • This arrangement makes it possible to control the movement of a plate having a relatively large surface area while limiting the stroke of the spring. Limiting the spring stroke is important because it is in this operating zone that the relationship between the force applied to the spring and its elongation is most linear. It will also be understood that the larger the surface area of the plate, the more efficient the "motor”.
  • the ratio between the equivalent diameter of the plate and the total stroke of the spring is greater than 1 and more preferably still greater than 1.5.
  • the fluid allowing the deformation of the chamber comes from an external pressurized reservoir 15 connected to the engine by a pipe 19 comprising a laminar pressure drop 16.
  • the flexible membrane is, in this example, replaced by a bellows 17 in steel.
  • the pressure in this bellows is controlled by the spring 18 which tends, in this example, to close the bellows.
  • the device represented in this figure makes it possible to very precisely control the displacements of the movable plate 3, the assembly possibly constituting a linear actuator according to the direction of the arrow FI of great precision.
  • the pressure in the tank 15 is 2 bar
  • the pressure in the deformable tank is 1 bar
  • the working fluid is water
  • the section of the deformable chamber of 5 cm 2
  • the speed would be 16 times greater under the same conditions.
  • this particularly simple apparatus to implement constitutes an actuator of extreme precision whose stroke can be several centimeters with a resolution of the order of a nanometer. It is therefore a particularly interesting application of the device. By associating, moreover, several devices of this type, one can easily carry out complex movements in space, going so far as to position a body according to the six components of the displacement torsor.
  • FIG. 6 represents an arrangement for mounting a flat flexible seal 16 allowing it to be pressed perfectly onto a flat or slightly deformed surface.
  • This technique is used in the various pressure drop blocks presented in the figures illustrating this text.
  • One of the faces of the seal 6 is applied against the spiral 9 etched in the upper flat plate 8.
  • the other face is in contact with the pins 20 of the lower plate, these being slightly pressed into the joint so that they apply a force in the form of very localized pressures.
  • the seal is free to deform and the pressure that it exerts on the upper plate 9 is well distributed, but fairly low, so that said seal does not tend to close the channels of the spiral.
  • Figures 7a and 7b show an arrangement for slowly diffusing a fluid, for example a room fragrance.
  • the device consists of three assemblies, a lower part, an intermediate part and an upper part forming a cover.
  • the lower part comprises the motor with deformable walls described in FIGS. 2a and 2b on which is fixed in a sealed manner by welding a box d21 provided with an outlet orifice 22 on which is fixed a tube 23.
  • a tank 24 in which is finds the liquid to be dispersed is put in place on the previous motorized assembly.
  • the tube 25 sinks onto the tube 23 and the assembly of these tubes is sealed.
  • the reservoir is provided with a dip tube 27 allowing to evacuate the liquid from the bottom of the tank in which a low point 28 has been formed.
  • This tube 27 is extended in its lower part by a bulge 29 which makes it possible to compensate for possible temperature variations and the resulting expansions of the air contained in the deformable chamber and the upper part of the reservoir.
  • the reservoir is surmounted by a cover carrying a dip tube 26 which is introduced into the tube 27 in order to prevent the liquid from spilling in the event of the assembly falling.
  • Said liquid can then spread over the cellulose wadding 32 and diffuse into the atmosphere through the orifices 31 of the cover.
  • the bulge 29 of the piping 27 allows storage of the air drawn back by the piping 27 which can result from the cooling of the air contained in the deformable chamber and the upper part of the tank. If we imagine a heating of the air during operation of the device, its expansion will produce a peak flow of liquid. When this air cools again, it retracts and tends to suck atmospheric air through the pipe 27. If the pipe 27 was a capillary, the air thus sucked would immediately go into the sky of the tank. Subsequent heating would therefore immediately expel liquid. On the contrary, with the proposed arrangement, the sucked air is stored in the pipe 27 and in its bulge. A untimely heating after the device has cooled will only replace this quantity of air with the liquid. The total flow of liquid will therefore not be disturbed in the event of cyclic temperature variations thanks to this air buffer reserve which prevents too rapid alternating emptying of the liquid tank.
  • Figure 7b gives a separate sectional view of the various components of the device, the lower technical device containing the engine, the tank, the cover and the cellulose wadding.
  • FIG. 8 is also a device for diffusing liquid from a bottle, the cap of which is provided with an air inlet and a dip tube provided at its base with a bulge making it possible to compensate for the thermal effects of the same way as above.
  • the operation is identical to that of the previous device, except that the air extracted from the box 24 is introduced into the bottle 33 through the cap 34 via the capillary flexible pipe 35.
  • the advantage of this arrangement is that it is possible to diffuse liquids contained in containers made of any material and, in particular, crystal or glass for cosmetic or medical applications.
  • FIG. 9 gives another embodiment of the device according to the invention.
  • the motor 1 pushes a flexible pocket containing the liquid to be dispersed.
  • said flexible tank consists of a flexible membrane 37 welded to a plate 38
  • This plate is itself linked to a plate 39 cooperating provided on the one hand with a plug 40 in the wall of which is formed a groove 41 of small diameter and on the other hand of a spiral also of small diameter which, in contact with the plate 38 creates a channel drainage for drainage.
  • the role of these small channels is to prevent air from returning to the reservoir under the effect of a contraction of the deformable chamber resulting from a drop in temperature.
  • the surface tension of the liquid makes it possible to create a pressure difference sufficient for the tank to retract under its own weight without sucking in air. This is another form of thermal compensation.
  • these capillaries make it possible to prevent the liquid from being drained under the effect of accelerations of the container support. It is thus possible to place such a container in a vehicle in order to deodorize it or to perfume it without fear of seeing its contents overturn under the effect of gravity.
  • the envelope comprising the plate 39 is provided with orifices 31 allowing the diffusion of the liquids deposited on the wadding 32.
  • FIG. 10 gives yet another application of the invention which differs from the previous one in that the movable wall no longer pushes one, but two pockets, both welded to the plate 38.
  • the first pocket 36 discharges the fluid which it contains through a capillary tube 43, while the interior pocket 42 discharges its liquid in the same manner as in the previous case by moistening a cotton wool 32, which re-diffuses by evaporating through orifices 31.
  • FIG 11 gives an application of this double pocket device to the treatment of toilets.
  • the bag 37 evacuates the fluid which it contains under in the form of drops 46 in the toilet bowl 44 in order to descale and disinfect it.
  • the pocket 42 for its part, evacuates the fluid which it contains, a room fragrance, on a cotton wool which diffuses the odors in the rooms.
  • the device is hung outside the toilet bowl by means of a bent piece 45 which includes the capillary 43.
  • FIGS. 12a and 12b show an application of the invention in which the reservoir of fluid to be diffused is comprised between the rigid wall 21 welded to the distributor block 1 and the membrane 4.
  • FIG. 12a shows this device filled with liquid
  • FIG. 12b the same device emptied of its fluid.
  • the membrane follows the shape of the container.
  • the temperature compensation is carried out by placing in the tank when it contains a liquid, a small very flexible membrane bag 47 which shrinks when the temperature of the air in the deformable chamber of the engine increases and on the contrary sucks atmospheric air when said air in the deformable chamber shrinks.
  • liquid outlet circuit passes through a small section tube formed in the part 60 which makes it possible to create a difference in static pressure under the effect of the surface tension, similar to the bleeding. 41 and to the spiral of FIG. 9.
  • the length of the tube is equal to at least ten times its hydraulic diameter.
  • Figure 13 is an application of the invention for injecting a drug initially contained in a flexible bag 48 as regularly as possible.
  • the motor 1 driven by a spring which allows the movable plate 3 to be moved slowly.
  • the pocket 48 is provided with a catheter 49, itself linked to a needle 50. This arrangement makes it possible to produce ambulatory perfusion devices with a quasi-constant flow rate.
  • FIG. 14 shows a mode of arming the engine by evacuating the deformable chamber 13.
  • a vacuum pump 51 is connected to the air inlet 11 of the engine by means of a pipe 52.
  • the air contained in the deformable chamber 13 first tends to pass into the capillary 9. Then, as the vacuum is high, we tend to take off the seal 6 which sinks into the pins 20. Therefore, said seal is takes off from plate 8, leaving an important passage which lets air pass quickly.
  • the deformable chamber then forces the spring to be crushed in the direction of the arrows FI, while the membrane contracts in the direction of the arrows F2. The process stops when the spring is completely flattened. It then suffices to place a plug in the orifice 11 to maintain the device in this armed state. By removing said plug, the engine is automatically started.
  • FIG. 15 finally, also gives an embodiment of the motor in which the spring 5 expels the fluid contained in the flexible pocket 36 which is sealed, except for an orifice 12 in the plate 7 carrying the pins .
  • Said fluid contained in said flexible pocket 36 passes into the clearance existing between the pins 20 and the seal 6, then into the spiral 9, and is expelled through the orifice 11 towards the outside, for example in a capillary intended for transfer air to expel a liquid contained in a tank.
  • the movable plate 3 is provided with a click device enabling the spring to be held in the banded position. before the device is started.
  • the bag can be filled with fluid in a similar manner to the previous case illustrated in FIG. 14 by injecting said fluid under pressure through the orifice 11.
  • FIG. 16 an embodiment of the invention has been represented. with temperature compensation in which a flexible gas pocket 114 is compressed by a spring 115, which has the effect of increasing the pressure of the gas it contains. It is connected to a second flexible bag 116 contained in a rigid tank 117 by means of a distributor block 118 of the type described in FIG. 6 which includes a laminar pressure drop. A pocket 119 of liquid 140 is also enclosed in the tank 117. Under the effect of the increase in volume of the pocket 116, the liquid flows outside through the laminar loss distributor block 120. The together therefore constitutes a liquid generator with controlled flow rate in a predefined temperature range as soon as the pressure drops 118 and 120 are dimensioned according to the procedure described above.
  • FIG. 17 gives another embodiment of the invention with thermal compensation in which a pocket of flexible gas 121 is placed under vacuum by the plate 150 under the action of the springs 122 and 122 '.
  • the air 2 coming from the atmosphere 123 passes into the distributor block 124 with a laminar pressure drop and enters the flexible bag 121 consisting of the walls of the rigid container 125 and a membrane 126.
  • This bag 121 is in contact with a flexible bag 127 filled with liquid 140 which is connected to the outside through a laminar pressure drop block 128 through which the liquid passes.
  • the operation of the assembly is then as follows. Air 2 from the atmosphere 123 feeds the flexible pocket 121 through the distributor block 124.
  • the flexible pocket 121 pushes the flexible pocket 127 filled with liquid 140, said liquid flowing outside through the distributor block 128, from a catheter 129 and a needle 130 in the form of drops 7.
  • There is also an all-or-nothing valve 131 on the air supply which can be controlled manually to ensure the on-off function of the metering device or automatically according to a predefined rate to allow regulation of the liquid flow rate.
  • the average flow of liquid will indeed be proportional to the flow of the device when the valve is open multiplied by the ratio of the sum of the opening times to the total time.
  • This all-or-nothing mode of regulation is particularly simple and effective.
  • the distributor blocks 124 and 128 are calculated to compensate for the effects of temperature variations on the delivered flow.
  • two all-or-nothing valves are used, one on the liquid the other on the gas. When they are simultaneously closed, the liquid flow is immediately stopped, which may be of interest in certain applications. In other applications, only the valve located on the liquid outlet will be closed. At least one of these valves can be opened automatically, for example from an electronic and electromechanical device.
  • FIG. 18 gives another preferred embodiment of the invention for which no spring is used, but where the power source is compressed gas 2 in the bottle 337.
  • the gas After percussion of said bottle allowing the start-up, the gas passes through the tube 338 and enters the chamber 339. It then passes into the constant pressure chamber through the clearance provided between the valve 334 and the seat 335 of the flow regulator 341 consisting of the bellows 333, the spring 332 and of the vent 336.
  • the arrangement of this pressure regulator allows gas from the bottle 337 to be admitted into the chamber 301 as soon as the pressure becomes less than a certain value depending on the spring and its tension, and of the dimensions of the bellows 333 and the shutter 334.
  • the gas coming from the chamber 301 passes into the laminar loss 324, then into the chamber 321 limited by the flexible wall 326 and the solid wall 325.
  • This chamber being indefor fluid, the liquid 340 contained in the pocket 327, itself contained in the pocket 321 is discharged from said pocket 327 through the laminar pressure drop block 328, then from the catheter 329 and the needle 330.
  • a drop 307 which escapes from said needle.
  • the two laminar pressure drops 324 and 328 are calculated to compensate for the effects of temperature variations.
  • the supply of compressed gas to the reservoir 337 is done using a manual pump, for example a syringe provided with a suitable nozzle.
  • a manual pump for example a syringe provided with a suitable nozzle.
  • Special provisions can be added to the device, including the installation of a valve, not shown, manually controlled, which connects the chamber 301 and the chamber 321 and which allows a part of the liquid to be evacuated to start the system.
  • FIG. 19 illustrates another embodiment of the diffuser using the motorization device in which the compensation of the thermal effects on the liquid flow rate is carried out using a long capillary tube mounted on the outlet of the liquid.
  • the motorization device is constituted by the rigid wall 200, 202 and by the flexible envelope 204 containing the liquid to be diffused which defines an air chamber 206 having a flexible wall.
  • a movable plate 208 In the chamber is mounted a movable plate 208 on which the spring 210 acts.
  • the maximum stroke of the spring 210 and the equivalent diameter of the plate 208 satisfy the conditions set out above.
  • the air entry into the chamber 206 is controlled by a block 212 forming a laminar pressure drop of the type shown in FIG. 6.
  • the air enters at 214 in the channel of the control block and enters the chamber 216.
  • the liquid contained in the flexible bag 204 exits through the tubing element 218 under the effect of the plate 208 and of the spring and of the air intake in the chamber 206.
  • the tubing element 218 is connected to a long capillary tube which, in the example described is constituted by the spiral tube 220 itself connected to the helical tube 222.
  • This arrangement makes it possible to reduce the bulk while obtaining a great length of tubing.
  • the outlet of the tube 222 constitutes the outlet of the liquid to be diffused.
  • a porous piece 226, for example of cotton wool, allows the diffusion of the liquid leaving the tube 222.
  • the tubes 220 and 22 define a capillary tube of diameter of the order of 1 to 2 mm and of great length, for example 50 to 100 cm. This defines a volume for the relatively large liquid of the order of 1 cm 3 in which the liquid is subjected to the effects of capillarity. This volume of liquid makes it possible to ensure a regular flow thereof despite the effects of temperature variations on the air contained in chamber 206.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

La présente invention est relative à un dispositif de motorisation très lente permettant de déplacer une paroi limitant un volume. Il comporte une chambre déformable pouvant contenir un fluide, un milieu extérieur à ladite chambre déformable contenant le même fluide, des moyens (5) permettant de faire varier la pression de ladite chambre par rapport à celle dudit milieu extérieur, au moins un canal (9) de grande longueur de section inférieure à 1 mm2 joignant ladite chambre et ledit milieu extérieur permettant de faire passer ledit fluide au travers d'une perte de charge laminaire, cette opération ayant pour conséquence de faire varier le volume de la chambre et de faire se déplacer une plaque (12) des parois qui la limitent.

Description

DISPOSITIF DE MOTORISATION POUR PRODUIRE DE TRES FAIBLES
DEPLACEMENTS
L'invention est relative à un dispositif de motorisation permettant de faire varier très lentement le volume d'une enceinte fermée et, en particulier, permettant de déplacer l'une des parois la constituant. L'invention concerne également l'utilisation du dispositif de motorisation pour la réalisation d'un dispositif de délivrance de très faibles quantités de fluides à partir de réservoirs souples ou durs, une autre application est la réalisation de déplacements très lents, une autre application est la délivrance de médicaments par perfusion.
En ce qui concerne la délivrance de très faibles quantités de fluides, des parfums d'ambiances ou des insecticides, par exemple, les procédés existants, par exemple les mèches textiles ou les corps poreux imbibés ont des débits difficilement contrôlables. Les procédés qui permettent d'obtenir un débit contant utilisent les écoulements gravitaires et sont, de ce fait, difficiles à emporter, par exemple dans un véhicule. De plus, le débit qu'ils délivrent est fonction de l'altitude du point d'injection par rapport à celle du réservoir. On ne peut donc pas injecter de liquide à une altitude supérieure à celle de la surface libre du réservoir.
Il est apparu intéressant de disposer un appareillage permettant le contrôle de la variation de volume d'une chambre deformable utilisant une source d'énergie mécanique autre que la gravité, énergie pneumatique ou énergie stockée dans un ressort en déséquilibre. La variation de volume est alors contrôlée par la quantité de fluide admis dans ladite chambre deformable. En mettant en place un canal long et étroit à l'entrée de cette chambre, on peut réaliser des variations de volume très lentes, par exemple de 100 ml par mois. A l'inverse, en vidangeant la chambre, on peut bien entendu diminuer son volume par le même mécanisme.
On peut utiliser cette variation de volume pour engendrer un écoulement de fluide ou pour faire se déplacer une paroi soutenant un objet. Les applications envisagées concernent le contrôle des débits de fluide et le contrôle de position d'objets. En ce qui concerne le contrôle de faibles débits e fluides appliqué à la cosmétique, le dispositif sera de préférence d'un coût réduit.
Pour atteindre ces buts, le dispositif de motorisation très lente permettant de déplacer au moins une plaque se caractérise en ce qu'il comporte: une chambre deformable pouvant contenir un fluide, ladite plaque constituant une partie de la paroi de ladite chambre, ladite chambre comportant en outre une paroi souple. un milieu, extérieur à ladite chambre deformable, contenant le même fluide. - des moyens permettant de faire varier la pression de ladite chambre par rapport à celle dudit milieu extérieur,
- au moins un canal de grande longueur de section inférieure à lmm^ joignant ladite chambre et ledit milieu extérieur permettant de faire passer ledit fluide au travers d'une perte de charge laminaire, cette opération ayant pour conséquence de faire varier le volume de ladite chambre et de faire se déplacer au moins l'une des parois qui la limitent. On comprend ainsi qu'en admettant ou en retirant du fluide d'une chambre deformable, on puisse en faire varier le volume et constituer ainsi un moteur déplaçant la plaque. On appelle écoulement laminaire dans une tuyauterie un écoulement dont le nombre de Reynolds est inférieur à 2000, ledit nombre de Reynolds étant défini par: VD
Re - v formule dans laquelle V est la vitesse moyenne de l'écoulement dans la tuyauterie, D son diamètre hydraulique et V la viscosité cinématique du liquide qui la parcourt.
Selon un premier mode de réalisation, la pression dans la chambre deformable est imposée par un corps élastique précontraint, un ressort ou des bandes de matériaux analogues à du caoutchouc par exemple. selon un deuxième mode de réalisation la pression dans la chambre deformable est imposée par une charge mécanique, la pression dans le milieu extérieur à cette chambre étant réalisée par un appareil de régulation de pression.
Selon un mode de réalisation, le milieu extérieur est l'atmosphère et le fluide transféré est de l'air. Le capillaire est alors raccordé au milieu ambiant d'un côté et à la chambre deformable de l'autre. Selon un mode de réalisation préféré de l'invention, la perte de charge est constituée du canal de grande longueur formé du passage laissé libre entre une plaque plane gravée d'un canal en forme de spirale et une contreplaque plane. Cette contreplaque peut être un joint plat qui sera maintenu en place sur sa face opposée par des picots équirépartis qui permettent d'assurer une pression uniforme sur la face dudit joint en contact avec la spirale. Selon un mode de l'invention , le moteur deformable est placé dans une boîte rigide fermée. Il délivre au travers d'un orifice percé dans cette boîte un débit de fluide contrôlé par la variation de volume dudit moteur.
Selon encore un autre mode de l'invention, le fluide s'échappant de la boîte est de l'air qui est admis au travers d'une tuyauterie vers un récipient contenant un liquide muni d'un tube plongeur. La mise en pression dudit réservoir par le gaz provoque la libération du liquide au même rythme que la variation de volume du moteur.
Selon un autre mode de l'invention, le déplacement du moteur provoque la déformation d'au moins une poche souple qui délivre un débit de fluide contrôlé.
Selon encore un mode de l'invention, ladite poche souple contient un médicament injectable.
Selon encore un autre mode de l'invention, la poche deformable est souple et est comprimée par un ressort. Le fluide qu'elle contient s'échappe au travers de la perte de charge laminaire et est utilisé dans le milieu extérieur. Si ledit fluide est de l'air, il sera par exemple utilisé pour vider un liquide contenu dans une bouteille ou un flacon. Dans le cas d'un dispositif de délivrance d'un fluide qui utilise un dispositif moteur du type défini ci-dessus et qui, de plus, comporte une perte de charge laminaire sur la sortie du fluide délivré il est intéressant de prévoir des dispositions spécifiques visant à s'affranchir de l'effet des variations de température sur le débit de fluide délivré.
On sait que, dans un tel écoulement laminaire, le débit de gaz traversant un capillaire est fonction de la viscosité dudit gaz qui dépend elle-même de la température. Bien que la viscosité des gaz dépende peu de leur température dans la gamme des températures ordinaires, cet effet est suffisant pour induire des variations de débit inacceptables dans certaines applications, par exemple l'injection de médicaments dans les veines des patients.
Pour résoudre ce problème, l'invention consiste à répartir la perte de charge entre le gaz et le liquide. Les deux pertes de charges ont un fonctionnement en série et la différence de pression totale entre les deux pressions extrêmes du circuit ainsi constitué est égale à la somme des deux différences de pression sur chacun des fluides.
La viscosité d'un liquide, l'eau par exemple, diminue avec la température alors que la viscosité du gaz augmente avec celle-ci. La viscosité d'un liquide diminue relativement plus rapidement que celle du gaz n'augmente. Pour que ces deux effets se compensent, il suffit que la perte de charge sur le liquide soit plus faible que celle de l'écoulement gazeux. Pour obtenir le même débit de lOOml/h à 40'C et 20*C, il suffit de mettre en oeuvre deux capillaires, par exemple un capillaire de 1 m de longueur et de 217 micromètres de diamètre sur l'air et un capillaire de lm de longueur et de 565 micromètres de diamètre sur la sortie d'eau. La viscosité de l'eau à 20*C est de 10"3 Pa.s. Elle est de 0.656 10"3 Pa.s à 40*C. La détermination de ces valeurs se fait en utilisant une théorie exacte dont on rappelle brièvement les principales étapes. Pour simplifier le calcul, on suppose que le gaz est de l'air et qu'il est incompressible et isotherme. Mais dans sa généralité, ce calcul peut se faire également exactement en tenant compte de la compressibilité du gaz et de sa variation de masse volumique et de température au travers de la première perte de charge.
On écrit que la variation de pression entre le réservoir d'air à pression constante et la sortie de liquide est constante et égale à Δp. La perte de charge d'un tube capillaire quelconque de longueur L, de diamètre D, parcouru par un débit Q d'un fluide de viscosité μ.
128 μ LQ Δp - π D4 On affecte les indices respectifs 1, 2, l' et 2' au gaz à la température T, au liquide à la température T, au gaz à la température T' et au liquide à la température T'. On écrit alors le système d'équations suivant, qui exprime que la perte de charge totale est la somme de la perte de charge dans le capillaire véhiculant l'air et dans le capillaire véhiculant le liquide et que le débit est le même aux deux températures considérées. Ces équations sont familières aux spécialistes de mécaniques des fluides. A la température T:
128μ1L1Q 128^21^20
Δp
Figure imgf000008_0001
A la température T' :
128μ'1L1Q 128^2^20
Δp π D 1 π D42 Ce système d'équations s'écrit de manière simplifiée sous la forme suivante:
Figure imgf000009_0001
Δp - Aμ ' i + Bμ ' 2
On en déduit les valeurs de A et B:
μ2 - μ ' 2 A = Δp
1*21*1 " ** ' iμ ' 2
μi - μ ' i
B = Δp_
Figure imgf000009_0002
Quelques calculs supplémentaires permettent d'en déduire les caractéristiques géométriques des tubes capillaires à utiliser. C'est ainsi qu'en application de cette théorie, on trouve que pour obtenir le même débit d'eau Q de 100 ml/h à 40'C et à 20*C, on doit mettre en oeuvre un capillaire dédié à l'air de lm de longueur et de 217 micromètres de diamètre et un capillaire dédié à l'eau de 1 m de longueur et de 565 micromètres de diamètre. L'équation peut donner d'autres solutions équivalentes avec des capillaires de longueurs différentes.
Les calculs exposés précédemment correspondent au cas où les débits Q doivent être les mêmes pour les deux températures de référence T et T' . Cependant, on ne sortirait pas de l'invention si on prédéterminait pour ces deux températures deux débits différents. Dans ce cas, le débit ne serait plus constant dans cette gamme de température, mais varierait selon une loi quasi linéaire en fonction de la température.
Le procédé selon l'invention n'implique pas que la pression soit décroissante lorsqu'on passe du premier réservoir vers le second, puis vers le troisième. La chute de pression totale est la somme algébrique des deux chutes de pression successives. Ceci fait que dans certaines dispositions, la pression puisse être la même dans le réservoir amont et à la sortie du liquide. On résout alors le système d'équations ci-dessus en considérant les valeurs absolues des chutes de pression entre le premier et le second réservoir, puis entre le second réservoir et la sortie Δp est alors la somme des valeurs absolues de ces chutes de pression. On conçoit que cet aspect de l'invention apporte beaucoup de souplesse dans l'utilisation d'appareils de dosage de liquide à partir de réservoirs d'air sous pression. En particulier, une application de ce dispositif concerne le dosage de médicaments en médecine ambulatoire, opération qui nécessite une grande constance des débits de liquide injecté. Une autre application concerne l'injection de parfums ou de produits antiseptiques dans une automobile dont l'habitacle constitue un milieu soumis à de très grandes variations de température. On peut aussi envisager l'obtention de lois de débit non constante, mais calculables en fonction de la température par application de cette même théorie. En diminuant relativement la perte de charge sur le liquide, on tend à diminuer le débit lorsque la température augmente. Au contraire, pour augmenter le débit lorsque la température augmente, on augmentera la part relative de perte de charge du liquide. D'autres caractéristiques et avantages de 1'invention apparaîtront mieux à la lecture de la description qui suit de plusieurs modes de réalisation de l'invention donnés à titre d'exemples non limitatifs. La description se réfère aux figures annexées sur lesquelles:
- les figures la et lb donnent une représentation du dispositif de motorisation dans ses deux positions selon un premier mode de réalisation; - les figures 2a et 2b donnent un deuxième mode de réalisation du dispositif de motorisation; la figure 3 donne un troisième mode de réalisation d'un dispositif de motorisation; la figure 4 donne un quatrième mode de réalisation du dispositif de motorisation; la figure 5 donne un cinquième mode de réalisation du dispositif de motorisation; la figure 6 donne un exemple préféré de réalisation de la perte de charge laminaire; - la figure 7 donne un mode de réalisation d'un diffuseur de faible débit de liquide;
- la figure 8 donne un autre mode de réalisation d'un diffuseur de faible débit de liquide; la figure 9 sonne un troisième mode de réalisation d'un diffuseur; la figure 10 donne un quatrième mode de réalisation d'un diffuseur;
- la figure 11 donne un exemple d'application du système précédent aux cuvettes de toilettes; - les figures 12a et 12b donnent un cinquième mode de réalisation de diffuseur;
- la figure 13 donne une application du système à la perfusion des patients en médecine; - la figure 14 donne un mode préféré de mise en service de l'appareil dans le cas d'un capillaire de type joint souple;
- la figure 15 donne un mode de réalisation de l'invention consistant à engendrer un très faible débit de fluide par mise en pression d'un réservoir souple; la figure 16 montre un premier mode de réalisation d'un diffuseur avec compensation de l'effet se température par utilisation de deux pertes de charge laminaire; la figure 17 montre un deuxième mode de réalisation du diffuseur du type de la figure 16; la figure 18 montre un troisième mode de réalisation du diffuseur du type de la figure 16; et, - la figure 19 montre un mode de réalisation d'un diffuseur comportant un tube capillaire sur la sortie de liquide.
En se référant aux figures annexées 1 à 5, on va décrire différents modes de réalisation du dispositif de motorisation.
La figure la montre un moteur 1 en position fermée du bloc distributeur de fluide 2 et de la plaque mobile 3 reliés entre eux par la membrane deformable 4 et par le ressort 5 qui tend, sur cette figure, à écarter les ensembles 2 et 3. Le bloc distributeur 2 est constitué d'un joint souple 6 appuyant grâce à une plaque 7 munie de picots 20 sur une plaque 8 gravée d'un sillon 9, de telle sorte que l'on forme entre le joint et la plaque gravée un canal de grande longueur et de faible section. Ce canal constitue une perte de charge laminaire qui limite le débit du fluide qui le traverse. Le figure 6 montre plus en détail cette disposition. Le fluide provenant de l'extérieur 10 pénètre en 11 selon la flèche FO dans le bloc distributeur, passe dans ledit canal et entre en 12 dans la chambre à parois déformables 13 constituée de la membrane, du bloc distributeur et de la plaque mobile. Sous l'action du ressort, la pression dans la chambre deformable est inférieure à celle régnant dans le milieu extérieur 10. Le fluide pénètre donc dans ladite chambre ce qui entraîne l'augmentation de son volume et en particulier le déplacement de la plaque mobile 3. La figure lb montre l'allure de la chambre deformable, souple à la fin du cycle de remplissage. Le ressort 5 est détendu, la membrane étirée, le volume de la chambre 13 est maximum et la plaque mobile 3 est éloignée au maximum de l'ensemble distributeur de fluide 2. A titre d'exemple, on considère un moteur ayant une plaque mobile de 50 mm de diamètre tendue par un ressort exerçant une force de 50 N. La pression dans la chambre deformable sera donc de 0,25 bar. Si le fluide admis dans la chambre est de l'air, on pourra obtenir un débit de 50 ml par mois en utilisant une spirale de 10 m de longueur et d'un diamètre hydraulique de 86 microns. Si la spire est usinée en forme de triangle équilatéral, sa profondeur sera de 110 microns pour atteindre ces conditions. Plus généralement, la section du canal est inférieure à lmm^ et de préférence inférieure à 0,2 mm^.
Les figures 2a et 2b donnent un autre mode de réalisation du moteur dans lequel le ressort est rentré dans le bloc distributeur, ce qui permet d'obtenir un ensemble un peu plus compact que dans le cas précédent. Sur la figure 3, les ressorts sont au nombre de 4 et sont situés en dehors de la chambre deformable. On obtient ainsi un moteur très plat lorsqu'il est au repos. Sur la figure 4, on a mis en place des bandes élastiques 14 au lieu des ressorts leur mode d'action est comparable, le choix entre les deux systèmes faisant intervenir des critères de mise en oeuvre, de qualité et de prix. Les bandes 14 sont solidaires de la plaque 3 et d'un support rigide 14.
Selon une caractéristique intéressante de l'invention, la section droite de la chambre motrice a un diamètre équivalent relativement important par rapport à la longueur du ressort en fin de course, c'est-à-dire lorsque la chambre a atteint son volume maximum. Cette disposition permet de contrôler le déplacement d'une plaque ayant une surface relativement importante tout en limitant la course du ressort. La limitation de la course du ressort est importante car c'est dans cette zone de fonctionnement que la relation entre la force appliquée au ressort et l'allongement de celui-ci est la plus linéaire. On comprend par ailleurs que, plus la surface de la plaque est importante plus le "moteur" a d'efficacité. De préférence, le rapport entre le diamètre équivalent de la plaque et la course totale du ressort est supérieur à 1 et de préférence encore supérieur à 1,5.
Sur la figure 5, le fluide permettant la déformation de la chambre provient d'un réservoir pressurisé externe 15 relié au moteur par une tuyauterie 19 comportant une perte de charge laminaire 16. La membrane souple, est, dans cet exemple, remplacée par un soufflet 17 en acier. La pression dans ce soufflet est contrôlée par le ressort 18 qui tend, dans cet exemple, à refermer le soufflet. Le dispositif représenté sur cette figure permet de contrôler très précisément les déplacements de la plaque mobile 3, l'ensemble pouvant constituer un actionneur linéaire selon la direction de la flèche FI de grande précision. Par exemple, si la pression dans le réservoir 15 est de 2 bar, si la pression dans le réservoir deformable est de 1 bar, si la fluide de travail est de l'eau, et la section de la chambre deformable de 5 cm2, on aura, avec une perte de charge laminaire de 100 microns de diamètre et de 10 m de longueur un débit de fluide entrant dans le soufflet de 2.5 10""11 m3/s et par conséquent un déplacement de la plaque mobile 3 s'effectuant à une vitesse de 50 nanomètres par seconde. Avec une perte de charge de 10 m de longueur et de 200 microns de diamètre, la vitesse serait dans les mêmes conditions 16 fois plus grande. Avec une perte de charge de 400 microns de diamètre, elle serait 256 fois plus importante et avec 800 microns de diamètre 4096 fois plus importante, soit 0.2 mm/s. On conçoit donc que cet appareillage particulièrement simple à mettre en oeuvre constitue un actuateur d'une extrême précision dont la course peut être de plusieurs centimètres avec une résolution de l'ordre du nanomètre. C'est donc une application particulièrement intéressante du dispositif. En associant, qui plus est, plusieurs dispositifs de ce type, on peut facilement réaliser des mouvements complexes dans l'espace, allant jusqu'à positionner un corps selon les six composantes du torseur de déplacement.
La figure 6 représente une disposition de montage d'un joint souple plan 16 permettant de le plaquer parfaitement sur une surface plane ou légèrement déformée. Cette technique est utilisée dans les différents blocs de perte de charge présentés dans les figures illustrant ce texte. Une des faces du joint 6 est appliquée contre la spirale 9 gravée dans la plaque plane supérieure 8. L'autre face est en contact avec les picots 20 de la plaque inférieure, ceux-ci étant légèrement enfoncés dans le joint de telle sorte qu'ils appliquent une force sous forme de pressions très localisées. De cette manière, le joint est libre de se déformer et la pression qu'il exerce sur la plaque supérieure 9 est bien répartie, mais assez faible, de telle sorte que ledit joint n'a pas tendance à obturer les canaux de la spirale. A titre d'exemple, on peut envisager pour un joint de 6 mm d'épaisseur et de 55 mm de diamètre la mise en oeuvre de 80 picots équirépartis sur la surface, le joint étant enfoncé de 0,8 mm en moyenne dans les picots. On obtient ainsi une excellente étanchéité du joint et de la plaque 8 sans pour autant rentrer profondément dans la spirale ni avoir à exercer une trop grande force pour comprimer le joint.
En se référant aux figures annexées 7 à 14, on va décrire plusieurs applications du dispositif de motorisation décrit précédemment pour délivrer de façon contrôlée un fluide.
Les figures 7a et 7b représentent un montage permettant de diffuser lentement un fluide, par exemple un parfum d'ambiance. Le dispositif est constitué de trois ensembles, une pièce inférieure, une pièce intermédiaire et une pièce supérieure formant couvercle. La pièce inférieure comporte le moteur à parois déformables décrit sur les figures 2a et 2b sur lequel est fixée de manière étanche par soudure une boîte d21 munie d'un orifice de sortie 22 sur lequel est fixé un tube 23. Un réservoir 24 dans lequel se trouve le liquide à disperser est mis en place sur l'ensemble motorisé précédent. Le tube 25 s'enfonce sur le tube 23 et l'assemblage de ces tubes est étanche. Le réservoir est muni d'un tube plongeur 27 permettant d'évacuer le liquide à partir du fond du réservoir dans lequel un point bas 28 aura été ménagé. Ce tube 27 est prolongé dans sa partie inférieure par un renflement 29 qui permet de compenser d'éventuelles variations de température et les dilatations résultantes de l'air contenu dans la chambre deformable et la partie supérieure du réservoir. Enfin, le réservoir est surmonté d'un capot portant un tube plongeur 26 qui s'introduit dans le tube 27 afin d'éviter que le liquide se renverse en cas de chute de l'ensemble. On comprend qu'après débouchage de l'orifice 11? l'air pénètre dans la chambre deformable 13 qui gonfle en déplaçant la plaque 3, ce qui a pour effet d'expulser de l'air de la chambre 21 vers le sommet du réservoir 24. L'air pousse alors le liquide contenu dans ledit réservoir au travers du jeu ménagé entre les tubes 26 et 27 et l'expulse à l'extérieur. Ledit liquide peut alors se répandre sur la ouate de cellulose 32 et diffuser dans l'atmosphère au travers des orifices 31 du couvercle. Le renflement 29 de la tuyauterie 27 permet un stockage de l'air réaspiré par la tuyauterie 27 pouvant résulter du refroidissement de l'air contenu dans la chambre deformable et la partie supérieure du réservoir. Si on imagine en effet un échauffement de l'air en cours de fonctionnement de l'appareil, sa dilatation produira une pointe de débit de liquide. Lorsque cet air se refroidit à nouveau, il se rétracte et tend à réaspirer de l'air atmosphérique au travers du tuyau 27. Si le tuyau 27 était un capillaire, l'air ainsi aspiré irait immédiatement dans le ciel du réservoir. Un échauffement subséquent conduirait donc immédiatement à expulser du liquide. Au contraire, avec la disposition proposée, l'air aspiré est stocké dans la tuyauterie 27 et dans son renflement. Un échauffement intempestif après in refroidissement de l'appareil ne fera que remplacer cette quantité d'air par le liquide. Le débit total de liquide ne sera donc pas perturbé en cas de variations cycliques de température grâce à cette réserve tampon d'air qui évite une vidange alternative trop rapide du réservoir liquide.
La figure 7b donne une vue en coupe séparée des différents éléments constitutifs du dispositif, le dispositif technique inférieur contenant le moteur, le réservoir, le capot et la ouate de cellulose.
La figure 8 est encore un dispositif de diffusion de liquide à partir d'une bouteille dont le bouchon est muni d'une entrée d'air et d'un tube plongeur muni à sa base d'un renflement permettant de compenser les effets thermiques de la même manière que ci-dessus. Le fonctionnement est identique à celui du dispositif précédent, à ceci près que l'air extrait de la boîte 24 est introduit dans la bouteille 33 au travers du bouchon 34 par l'intermédiaire du tuyau souple capillaire 35. L'intérêt de cette disposition est qu'il est possible de diffuser des liquides contenus dans des conteneurs réalisés en matériaux quelconques et, en particulier, en cristal ou en verre pour les applications cosmétiques ou médicales.
La figure 9 donne un autre mode de réalisation du dispositif selon l'invention. Dans ce cas le moteur 1 pousse une poche souple contenant le liquide à disperser. On comprend que le déplacement de la plaque mobile 3 sous l'effet de la variation de volume de la chambre deformable écrase le réservoir souple 36. Dans cette réalisation particulière, ledit réservoir souple est constitué d'une membrane souple 37 soudée à une plaque 38. Cette plaque est elle-même liée à une plaque 39 coopérante munie d'une part d'un bouchon 40 dans la paroi duquel est pratiquée une saignée 41 de faible diamètre et d'autre part d'une spirale également de petit diamètre qui, en contact avec la plaque 38 crée un canal d'évacuation pour l'écoulement. Le rôle de ces petits canaux est d'éviter que de l'air puisse revenir dans le réservoir sous l'effet d'une contraction de la chambre deformable résultant d'une baisse de température. La tension superficielle du liquide permet de créer une différence de pression suffisante pour que le réservoir se rétracte sous son propre poids sans aspirer d'air. Ceci constitue une autre forme de compensation thermique. De plus, ces capillaires permettent d'éviter que le liquide se vidange sous l'effet d'accélérations du support de conteneur. On peut ainsi placer un tel conteneur dans un véhicule afin de le désodoriser ou de le parfumer sans crainte de voir son contenu se renverser sous l'effet de la gravité. L'enveloppe comprenant la plaque 39 est munie d'orifices 31 permettant la diffusion des liquides déposés sur la ouate 32.
La figure 10 donne encore une autre application de 1'invention qui diffère de la précédente en ce que la paroi mobile pousse non plus une, mais deux poches soudées toutes deux sur la plaque 38. Dans cet exemple, la première poche 36 évacue le fluide qu'elle contient au travers d'un tube capillaire 43, tandis que la poche intérieure 42 évacue son liquide de la même manière que dans le cas précédent en venant humecter une ouate 32, qui rediffuse en s'évaporant au travers des orifices 31.
La figure 11 donne une application de ce dispositif à double poche au traitement des toilettes. La poche 37 évacue le fluide qu'elle contient sous forme de gouttes 46 dans la cuvette des toilettes 44 afin de la détartrer et de la désinfecter. La poche 42 évacue quant à elle le fluide qu'elle contient, un parfum d'ambiance, sur une ouate qui rediffuse les odeurs dans la pièces. L'appareil est accroché à l'extérieur de la cuvette de toilettes au moyen d'une pièce coudée 45 qui inclut le capillaire 43.
Les figures 12a et 12b montrent une application de 1*invention dans laquelle le réservoir de fluide à diffuser est compris entre la paroi rigide 21 soudée au bloc distributeur 1 et la membrane 4. La figure 12a montre ce dispositif rempli de liquide et la figure 12b le même dispositif vidé de son fluide. Dans cette dernière position, la membrane épouse la forme du conteneur. La compensation en température s'effectue en mettant en place dans le réservoir lorsqu'il contient un liquide, un petit sac membranaire 47 très souple qui se rétracte lorsque la température de l'air dans la chambre deformable du moteur augmente et au contraire aspire de l'air atmosphérique lorsque ledit air de la chambre deformable se rétracte. Pour que ce système fonctionne, il est impératif que le circuit de sortie du liquide passe par un tube de faible section ménagé dans la pièce 60 qui permet de créer une différence de pression statique sous l'effet de la tension superficielle, analogue à la saignée 41 et à la spirale de la figure 9. La longueur du tube est égale à au moins dix fois son diamètre hydraulique.
La figure 13 est une application de l'invention destinées à injecter un médicament initialement contenu dans une poche souple 48 de manière la plus régulière possible. On retrouve le moteur 1 mû par un ressort qui permet de déplacer lentement la plaque mobile 3. La poche 48 est munie d'un cathéter 49, lui-même lié à une aiguille 50. Cette disposition permet de réaliser des appareils de perfusion ambulatoires à débit à débit quasi-constan .
La figure 14 montre un mode d'armement du moteur par mise sous vide de la chambre deformable 13. On branche une pompe à vide 51 sur l'entrée d'air 11 du moteur au moyen d'une tuyauterie 52. L'air contenu dans la chambre deformable 13 a d'abord tendance à passer dans le capillaire 9. Puis, à mesure que le vide est important, on tend à décoller le joint 6 qui s'enfonce dans les picots 20. De ce fait, ledit joint se décolle de la plaque 8, laissant un passage important qui laisse passer rapidement l'air. La chambre deformable oblige alors le ressort à s'écraser dans la direction des flèches FI, tandis que la membrane se contracte dans la direction des flèches F2. Le processus s'arrête lorsque le ressort est complètement écrasé. Il suffit alors de placer un bouchon dans l'orifice 11 pour maintenir le dispositif dans cet état armé. En enlevant ledit bouchon, le moteur est automatiquement mis en fonction.
La figure 15, enfin, donne encore un mode réalisation du moteur dans lequel le ressort 5 expulse le fluide contenu dans la poche souple 36 qui est soudée de manière étanche, à l'exception d'un orifice 12 à la plaque 7 portant les picots. Ledit fluide contenu dans ladite poche souple 36 passe dans le jeu existant entre les picots 20 et le joint 6, puis dans la spirale 9, et est expulsé au travers de l'orifice 11 vers l'extérieur, par exemple dans un capillaire destiné à transférer de l'air pour expulser un liquide contenu dans un réservoir. Dans cet exemple, la plaque 3 mobile est munie d'un dispositif de cliquage permettant de maintenir le ressort en position bandée avant la mise en route du dispositif. Le remplissage en fluide de la poche peut se faire de manière analogue au cas précédent illustré par la figure 14 en injectant ledit fluide sous pression au travers de l'orifice 11. Sur la figure 16 on a représenté un mode de réalisation de l'invention avec compensation de température dans lequel une poche de gaz souple 114 est comprimée par un ressort 115, ce qui a pour effet d'augmenter la pression du gaz qu'elle contient. Elle est reliée à une seconde poche souple 116 contenue dans un réservoir rigide 117 par l'intermédiaire d'un bloc distributeur 118 du type décrit à la figure 6 qui comporte une perte de charge laminaire. Une poche 119 de liquide 140 est également enfermée dans le réservoir 117. Sous l'effet de l'augmentation de volume de la poche 116, le liquide s'écoule à l'extérieur au travers du bloc distributeur à perte laminaire 120. L'ensemble constitue donc un générateur de liquide à débit contrôlé dans une gamme de température prédéfinie dès lors que les pertes de charge 118 et 120 sont dimensionnées selon la procédure décrite ci-dessus
La figure 17 donne un autre mode de réalisation de 1'invention avec compensation thermique dans lequel une poche de gaz souple 121 est mise en dépression par la plaque 150 sous l'action des ressorts 122 et 122'. L'air 2 provenant de l'atmosphère 123 passe dans le bloc distributeur 124 à perte de charge laminaire et pénètre dans la poche souple 121 constituée des parois du conteneur rigide 125 et d'une membrane 126. Cette poche 121 est en contact avec une poche souple 127 remplie de liquide 140 qui est reliée à l'extérieur au travers d'un bloc de perte de charge laminaire 128 dans lequel passe le liquide. Le fonctionnement de l'ensemble est alors le suivant. L'air 2 provenant de l'atmosphère 123 alimente la poche souple 121 au travers du bloc distributeur 124. La poche souple 121 pousse la poche souple 127 remplie de liquide 140, ledit liquide s'écoulant à l'extérieur au travers du bloc distributeur 128, d'un cathéter 129 et d'une aiguille 130 sous forme de gouttes 7. On a p, par ailleurs figuré une vanne tout ou rien 131 sur l'arrivée d'air qui peut être commandée manuellement pour assurer la fonction de marche-arrêt du doseur ou automatiquement selon une cadence prédéfinie pour permettre une régulation du débit de liquide. Le débit moyen de liquide sera en effet proportionnel au débit de l'appareil lorsque la vanne est ouverte multiplié par le rapport de la somme des temps d'ouverture au temps total. Ce mode de régulation par tout ou rien est particulièrement simple et efficace. En outre, les blocs distributeurs 124 et 128 sont calculés pour assurer la compensation des effets de variations de température sur le débit délivré. Parmi les avantages de cette disposition, l'homme de l'art constatera que le débit de liquide n'est pas immédiatement arrêté lorsqu'on ferme la vanne 130 ou ne s'inverse pas lorsque l'ensemble du dispositif est soumis brutalement à une baisse de température en raison du volume de la poche 121. Le système présente donc un temps de réponse particulièrement intéressant pour certaines applications, et tout particulièrement l'injection de médicaments, car il possède une sécurité intrinsèque. Enfin, dans cette dernière application, et en cas de rupture de la membrane 126 et de la poche 127, le volume de liquide contenu dans la poche 126 ne se vide pas instantanément, mais selon un débit contrôlé par le bloc de perte de charge 128. Ceci constitue également un élément de sécurité intrinsèque du système.
Dans un autre mode d'application non représenté, on met en oeuvre deux vannes tout ou rien, l'une sur le liquide l'autre sur le gaz. Lors de leur fermeture simultanée, le débit liquide est immédiatement stoppé, ce qui peut représenter un intérêt dans certaines applications. Dans d'autres applications, seule sera fermée la vanne située sur la sortie de liquide. L'une au moins de ces vannes peut être ouverte automatiquement, par exemple à partir d'un dispositif électronique et électromécanique.
La figure 18 donne un autre mode préféré de l'invention pour lequel aucun ressort n'est mis en oeuvre, mais où la source de puissance est du gaz comprimé 2 dans la bouteille 337. Après percussion de ladite bouteille permettant la mise en route, le gaz passe dans le tube 338 et pénètre dans la chambre 339. IL passe ensuite dans la chambre à pression constante au travers du jeu ménagé entre le clapet 334 et le siège 335 du régulateur de débit 341 constitué du soufflet 333, du ressort 332 et de la mise à l'air 336. La disposition de ce régulateur de pression permet d'admettre du gaz provenant de la bouteille 337 dans la chambre 301 dès lors que la pression devient inférieure à une certaine valeur fonction du ressort et de sa tension, et des dimensions du soufflet 333 et de l'obturateur 334. Le gaz provenant de la chambre 301 passe dans la perte laminaire 324, puis dans la chambre 321 limitée par la paroi souple 326 et la paroi solide 325. Cette chambre étant indéformable, le liquide 340 contenu dans la poche 327, elle-même contenue dans la poche 321 est évacué de ladite poche 327 au travers du bloc de perte de charge laminaire 328, puis du cathéter 329 et l'aiguille 330. Sur la figure est représentée une goutte 307 qui s'échappe de ladite aiguille.
Les deux pertes de charge laminaire 324 et 328 sont calculées pour assurer la compensation des effets des variations de température.
Dans un mode de réalisation, l'alimentation en gaz comprimé du réservoir 337 se fait en utilisant une pompe manuelle, par exemple une seringue munie d'un embout adapté. Des dispositions particulières peuvent être ajoutées au dispositif, parmi lesquelles la mise en place d'un clapet, non représenté, commandé manuellement, qui lie la chambre 301 et la chambre 321 et qui permet de faire évacuer une partie du liquide pour amorcer le système.
La figure 19 illustre un autre mode réalisation du diffuseur utilisant le dispositif de motorisation dans lequel la compensation des effets thermiques sur le débit de liquide est réalisée à l'aide d'un long tube capillaire monté sur la sortie du liquide. Le dispositif de motorisation est constitué par la paroi rigide 200, 202 et par l'enveloppe souple 204 contenant le liquide à diffuser ce qui définit une chambre à air 206 ayant une paroi souple. Dans la chambre est montée une plaque mobile 208 sur laquelle agit le ressort 210. La course maximale du ressort 210 et le diamètre équivalent de la plaque 208 satisfont aux conditions énoncées précédemment. L'entrée d'air dans la chambre 206 est contrôlée par un bloc 212 formant perte de charge laminaire du type représenté sur la figure 6. L'air entre en 214 dans le canal du bloc de contrôle et pénètre dans la chambre 216. Le liquide contenu dans la poche souple 204 sort par l'élément de tubulure 218 sous l'effet de la plaque 208 et du ressort et de 1'entrée d'air dans la chambre 206.
L'élément de tubulure 218 est raccordé à un long tube capillaire qui, dans l'exemple décrit est constitué par le tube en spirale 220 raccordé lui-même au tube en hélice 222. Cette disposition permet de réduire l'encombrement tout en obtenant une grande longueur de tubulure. La sortie du tube 222 constitue la sortie du liquide à diffuser. De préférence, une pièce poreuse 226, par exemple en ouate, permet la diffusion du liquide sortant du tube 222.
Les tubes 220 et 22 définissent un tube capillaire de diamètre de l'ordre de 1 à 2 mm et de grande longueur, par exemple 50 à 100 cm. On définit ainsi un volume pour le liquide relativement important de l'ordre de 1cm3 dans lequel le liquide est soumis aux effets de la capillarité. Ce volume de liquide permet d'assurer un débit régulier de celui-ci malgré les effets de variations de température sur l'air contenu dans chambre 206.
Tous ces dispositifs et exemples d'application sont donnés à titre d'illustration de l'invention et ne sauraient être considérés comme exhaustifs, des dispositions variantes pouvant être développées par 1'homme de l'art.

Claims

REVENDICATIONS
1. Dispositif de motorisation très lente permettant de déplacer une plaque, caractérisé en ce qu'il comprend : une chambre deformable pouvant contenir un fluide, ladite plaque constituant une partie de la paroi de ladite chambre, ladite chambre comportant en outre une paroi souple; un milieu extérieur contenant ledit fluide ; des moyens pour faire varier la pression de ladite chambre par rapport à celle du milieu extérieur ; et au moins un canal de grande longueur et de section inférieure à 1 mm2 créant une perte de charge laminaire, ledit canal ayant une première extrémité raccordée à ladite chambre et une deuxième extrémité raccordée au milieu externe, par quoi le volume de ladite chambre varie en provoquant le déplacement contrôlé de ladite plaque.
2. Dispositif selon la revendication 1, caractérisé en ce que la perte de charge est constituée du canal formé entre une paroi plane lisse et une spirale gravée dans une paroi plane maintenue de façon étanche en regard de la première paroi.
3. Dispositif selon la revendication 2, caractérisé en ce que la paroi plane lisse est un joint deformable qui est pressé uniformément sur la paroi portant la spirale gravée au moyen de picots équirépartis appuyant sur la face du joint opposée à ladite spirale, cette solution permettant d'assurer l'étanchéité entre le joint et la paroi portant la spirale.
4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit canal présente un nombre de Reynolds inférieur à 2000.
5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la paroi souple est un soufflet.
6. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la paroi souple est constituée d'une membrane souple.
7. Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le milieu extérieur est un réservoir dont la pression est ajustable.
8. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le fluide de remplissage est un liquide.
9. Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le milieu extérieur est de dimensions très supérieures à celles de la chambre deformable.
10. Dispositif selon la revendication 9, caractérisé en ce que le milieu extérieur est l'atmosphère et le fluide transféré de l'air.
11. Dispositif selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la différence de pression de ladite chambre deformable est réalisée au moyen d'un système élastique visant à créer un effort entre ladite plaque et une paroi de ladite chambre.
12. Dispositif selon la revendication 11, caractérisé en ce que ledit système élastique est constitué d'au moins un ressort métallique.
13. Dispositif selon l'une quelconque des revendications 11 à 12, caractérisé en ce que ledit système élastique constitué d'au moins un ressort est situé à l'intérieur de la chambre deformable.
14. Dispositif selon l'une quelconque des revendications 11 à 12, caractérisé en ce que ledit système élastique constitué d'au moins un ressort est situé à l'extérieur de la chambre deformable.
15. Dispositif selon l'une quelconque des revendications 12 à 14, caractérisé en ce que le rapport entre le diamètre équivalent de ladite plaque et la course du ressort est au moins égal à 1.
16. Dispositif selon la revendication 11, caractérisé en ce que ledit système élastique est constitué d'au moins une bande de matériau élastique tel le caoutchouc naturel.
17. Dispositif pour délivrer un fluide utilisant un dispositif de motorisation selon l'une quelconque des revendications 1 à 16, caractérisé en ce qu'il comprend en outre un récipient contenant le fluide à délivrer et présentant une sortie et en ce que le déplacement de la plaque dudit dispositif de motorisation provoque la sortie hors du récipient dudit fluide à extraire.
18. Dispositif selon la revendication 17, caractérisé en ce qu'il comprend, en outre, un récipient intermédiaire dont une paroi mobile est constituée par ladite plaque, ledit récipient intermédiaire contenant un gaz et étant raccordé audit récipient, par quoi le déplacement de ladite plaque provoque le passage dudit gaz dans ledit récipient en provoquant la sortie dudit fluide à délivrer.
19. Dispositif selon la revendication 17, caractérisé en ce que le fluide à extraire est un liquide contenu dans ledit récipient qui est soumis à la gravité et alimenté en gaz à sa partie supérieure par ledit récipient intermédiaire alors que l'extraction dudit liquide se fait au moyen d'une tuyauterie dont l'extrémité inférieure est placée au fond dudit second récipient.
20. Dispositif selon la revendication 18, caractérisé en ce que la partie inférieure de la tuyauterie d'extraction de liquide est munie d'un renflement destiné à compenser l'apparition de débits fluctuants excessifs résultant d'éventuelles variations de température.
21. Dispositif selon la revendication 17, caractérisé en ce que ledit récipient est une poche deformable contenant le fluide à délivrer, une partie de ladite poche étant au contact de ladite plaque, ladite poche étant munie d'un orifice de sortie, par quoi le déplacement de ladite plaque provoque la délivrance dudit fluide.
22. Dispositif selon l'une quelconque des revendications 17 à 21, caractérisé en ce que ledit orifice de sortie dudit fluide contenu dans ladite au moins une poche deformable est constitué d'un capillaire dont la longueur est au moins à 10 fois son diamètre hydraulique.
23. Dispositif selon l'une quelconque des revendications 17 à 21, caractérisé en ce que ledit orifice de sortie du fluide à délivrer est constitué d'un deuxième canal d'une grande longueur et d'une faible section constituant une perte de charge laminaire.
24. Dispositif selon la revendication 23, caractérisé en ce que lesdites première et deuxième pertes de charge laminaire sont ajustées de telle sorte que, en raison des variations de viscosité du fluide moteur et du fluide délivré, les débits de fluide délivré soient prédéterminés pour deux températures de référence, la variation du débit de fluide délivré dans la plage de température considérée se faisant selon une loi quasi-linéaire.
25. Dispositif selon la revendication 24, caractérisé en ce que le fluide moteur est de l'air et en ce que ledit fluide délivré est un liquide.
26. Dispositif selon la revendication 25, caractérisé en ce que l'air est contenu dans un réservoir pressurisé.
27. Dispositif selon la revendication 25, caractérisé en ce que l'air est l'air atmosphérique.
28. Dispositif selon l'une quelconque des revendications 24 à 27, caractérisé en ce que les débits de fluide délivré aux deux températures de référence sont égaux.
PCT/FR1995/001123 1994-08-25 1995-08-25 Dispositif de motorisation pour produire de tres faibles deplacements WO1996005876A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU32610/95A AU3261095A (en) 1994-08-25 1995-08-25 Motorisation device for producing very short displacements

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR94/10451 1994-08-25
FR9410451A FR2723851A1 (fr) 1994-08-25 1994-08-25 Dispositif pour delivrer de tres faibles debits de fluides
FR9501637A FR2730325A1 (fr) 1995-02-08 1995-02-08 Dispositif pour delivrer de tres faibles debits de fluides de maniere controlee
FR95/01637 1995-02-08

Publications (1)

Publication Number Publication Date
WO1996005876A1 true WO1996005876A1 (fr) 1996-02-29

Family

ID=26231382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1995/001123 WO1996005876A1 (fr) 1994-08-25 1995-08-25 Dispositif de motorisation pour produire de tres faibles deplacements

Country Status (2)

Country Link
AU (1) AU3261095A (fr)
WO (1) WO1996005876A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951147A (en) * 1975-04-07 1976-04-20 Metal Bellows Company Implantable infusate pump
DE2849518A1 (de) * 1978-11-15 1980-05-29 Horst Dr Med Kief Medizinisches geraet zum durchfuehren von infusionen und transfusionen
US4443218A (en) * 1982-09-09 1984-04-17 Infusaid Corporation Programmable implantable infusate pump
DE3634725A1 (de) * 1986-10-11 1988-04-14 Holzer Walter Dosierpumpe z.b. fuer insulin
US4744786A (en) * 1986-06-17 1988-05-17 Cordis Corporation Infusion pump
DE4222470A1 (de) * 1991-07-08 1993-01-14 Baxter Int Geraet zur infusion von fluid in einen patienten
WO1994017850A1 (fr) * 1993-02-03 1994-08-18 Flora Inc. Procede et ensemble electrochimique de distribution regulee

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951147A (en) * 1975-04-07 1976-04-20 Metal Bellows Company Implantable infusate pump
DE2849518A1 (de) * 1978-11-15 1980-05-29 Horst Dr Med Kief Medizinisches geraet zum durchfuehren von infusionen und transfusionen
US4443218A (en) * 1982-09-09 1984-04-17 Infusaid Corporation Programmable implantable infusate pump
US4744786A (en) * 1986-06-17 1988-05-17 Cordis Corporation Infusion pump
DE3634725A1 (de) * 1986-10-11 1988-04-14 Holzer Walter Dosierpumpe z.b. fuer insulin
DE4222470A1 (de) * 1991-07-08 1993-01-14 Baxter Int Geraet zur infusion von fluid in einen patienten
WO1994017850A1 (fr) * 1993-02-03 1994-08-18 Flora Inc. Procede et ensemble electrochimique de distribution regulee

Also Published As

Publication number Publication date
AU3261095A (en) 1996-03-14

Similar Documents

Publication Publication Date Title
CA2159682C (fr) Pompe a fluide sans volume mort
EP0329784B1 (fr) Dispositif et procede pour l'administration de medicaments fluides, notamment pour la perfusion
FR2795967A1 (fr) Systeme de protection d'un dispositif implantable d'administration de medicament vis-a-vis d'un remplissage excessif
FR2768215A1 (fr) Systeme de lubrification d'un mecanisme, notamment d'un palier tournant dans un engin spatial
FR2881046A1 (fr) Procede de fabrication d'un reservoir contenant une substance active diffusant a travers le reservoir et installation pour sa mise en oeuvre
EP3986486A1 (fr) Ensemble amovible pour un appareil diffuseur
FR3003245A1 (fr) Reception, vidage et transfert sous pression d'une grande quantite de fluide biopharmaceutique en vue d'un traitement ulterieur.
FR2655874A1 (fr) Cellule de dissolution pour solides et appareil d'etude de la cinetique de dissolution la comportant.
WO1994020390A1 (fr) Dispositif pour delivrer de tres faibles debits de fluide contenu dans un reservoir
EP2005273B1 (fr) Composant pneumatique pour la micro-diffusion contrôlée de gaz
EP0434478A1 (fr) Dispositif de compression et d'accumulation d'air
FR2547363A1 (fr) Pompe debitrice, adaptee a un remplissage sous pression
FR3064920A1 (fr) Dispositif d'injection automatique de produit fluide.
WO1996005876A1 (fr) Dispositif de motorisation pour produire de tres faibles deplacements
FR2723851A1 (fr) Dispositif pour delivrer de tres faibles debits de fluides
FR2884737A1 (fr) Pompe a mousse rechargeable
FR2678837A1 (fr) Dispositif d'injection de precision.
WO2007006929A1 (fr) Dispositif d'injection d'additif liquide dans le circuit d'alimentation en carburant d'un moteur a combustion interne de vehicule automobile.
FR2610302A1 (fr) Distributeur de mousse
WO1997025662A1 (fr) Procede et appareils pour doser et evaporer des liquides et les disperser dans de grands volumes de fluides
FR2730325A1 (fr) Dispositif pour delivrer de tres faibles debits de fluides de maniere controlee
FR2634825A1 (fr) Pompe a precompression pour la diffusion d'un liquide
FR2743553A1 (fr) Procedes et appareils pour doser et evaporer des liquides et les disperser dans de grands volumes de fluides
FR2776741A1 (fr) Valve doseuse amelioree
FR2702465A1 (fr) Procédés et appareils pour le contrôle de faibles débits de fluides à partir de réservoirs autonomes.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995929139

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1995929139

Country of ref document: EP

122 Ep: pct application non-entry in european phase