WO1996004064A1 - Hydride gas removing method and apparatus - Google Patents

Hydride gas removing method and apparatus Download PDF

Info

Publication number
WO1996004064A1
WO1996004064A1 PCT/JP1995/001553 JP9501553W WO9604064A1 WO 1996004064 A1 WO1996004064 A1 WO 1996004064A1 JP 9501553 W JP9501553 W JP 9501553W WO 9604064 A1 WO9604064 A1 WO 9604064A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
hydride
nickel
hydride gas
fluoride
Prior art date
Application number
PCT/JP1995/001553
Other languages
French (fr)
Japanese (ja)
Inventor
Tadahiro Ohmi
Original Assignee
Tadahiro Ohmi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tadahiro Ohmi filed Critical Tadahiro Ohmi
Priority to JP50640096A priority Critical patent/JP3801201B2/en
Priority to KR1019970700655A priority patent/KR970704501A/en
Publication of WO1996004064A1 publication Critical patent/WO1996004064A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel

Definitions

  • the present invention relates to a method and an apparatus for removing a hydride gas, and more particularly to a method and an apparatus for removing a dangerous and toxic hydride gas used in a semiconductor manufacturing process.
  • Hydride gases such as silane, phosphine, diborane, and arsine, used in the semiconductor manufacturing process are self-combustible and toxic. Therefore, it is necessary to completely remove unreacted gases to make them harmless before discharging them to the atmosphere.
  • gas removal methods include a dry removal method in which gas is removed through a packed column in which a porous carrier and an oxidizing agent are supported (Japanese Patent Laid-Open Publication No. 3-137917), and a liquid removal method.
  • a dry removal method in which gas is removed through a packed column in which a porous carrier and an oxidizing agent are supported
  • a liquid removal method There are known wet removal methods of absorbing by gas-liquid contact, neutralizing and decomposing and removing (JP-A-4-59017 and JP-A-4-310215). You.
  • silane gas is decomposed into a solid powder such as Sio 2 , so that there are many problems in management and maintenance, such as clogging of a packed tower.
  • various methods and devices have been proposed to solve this obstacle, but none of these methods is sufficient, and the devices have been complicated and large.
  • Another problem with the dry removal method is that it is not possible to remove all hydride gases because of its selectivity for removal.
  • the present invention provides a method and an apparatus for removing a hydride gas capable of completely removing a mixed gas containing a plurality of hydride gases and rendering the mixture harmless with a simple configuration without clogging due to powder generation.
  • the purpose is to do.
  • the hydride gas removing method of the present invention comprises removing a hydride gas by bringing a mixed gas containing at least two or more hydride gases into contact with nickel fluoride and nigel to decompose or adsorb the mixed gas. It is characterized by.
  • the hydride gas is a hydride gas of an element belonging to Group IV, IV, or V of the periodic table.
  • the hydride gas is preferably decomposed and removed by heating the nickel fluoride and the nickel, and more preferably the nickel fluoride and the Nigel are heated to different temperatures. ,.
  • the method for removing a hydride gas of the present invention is characterized in that a hydride gas of a Group III element or a Group V element of the periodic table is brought into contact with nickel to decompose and / or adsorb the hydride gas. Is removed. Further, it is preferable that the hydride gas be decomposed and removed by heating the nickel.
  • the hydride gas removing device of the present invention has at least one container having an inlet and an outlet for a mixed gas containing at least two or more hydride gases, and contacts the mixed gas in the container.
  • the nickel fluoride and the nigger are separately arranged so that the nickel fluoride and the nigger are separately arranged, and a heating means for heating the nickel fluoride and the nigger is provided.
  • the heating means is configured to heat the nickel fluoride and the nickel gel to different temperatures.
  • the hydride gas removing apparatus of the present invention includes: a container having an inlet and an outlet for a mixed gas containing a hydride gas of a Group III element or a Group V element of the periodic table; Nickel is provided so as to be in contact with the battery, and a heating means for heating the nickel is provided. Action
  • the present inventor has found that, among various materials, nickel fluoride, in particular, exhibits excellent decomposition characteristics with respect to silane. Silane can be decomposed at a low temperature. As a result, it is possible to remove silane by installing a pipe coated with nickel fluoride on the upstream side of the vacuum pump, preventing powder generation and adhesion inside the pump, and maintaining the entire equipment. It became very easy.
  • a gas such as phosphine, arsine, or diborane is introduced simultaneously with silane in order to control conductivity. All ⁇ ⁇ gaseous gases in these gas mixtures are dangerous and highly toxic, and must be completely removed and exhausted. However, if the treatment of the mixed gas of silane and phosphine is to be removed with the above nickel fluoride, it is necessary to heat to a high temperature of 300 ° C. or more in order to decompose phosphine by 100%.
  • i F 4 ends up occurring in a mixed gas type secondary Kkerufu' to use a product may see that there is a limit ivy o
  • the present inventors have conducted intensive studies to solve this problem, and as a result, the metal Ni has a high adsorption capacity for hydride gas of the group III element and the group V element of the periodic table and decomposes. It has a high accelerating effect.
  • phosphine can be decomposed 100% at a low temperature of about 50 ° C.
  • the present invention has been completed based on these findings, and uses nickel fluoride and Nigel to remove a mixed gas of two or more hydride gases at a low temperature. It becomes possible to do.
  • the amount of hydride gas treatment per nickel fluoride or nickel unit surface area is considered to be the amount by which elements such as Si, P, and B generated by decomposition cover the nickel fluoride and nickel surface. In fact, much more hydride gas can be processed than this amount. The reason for this is not clear at present, but it is presumed that even if Si, P, B, etc. cover the surface, Ni diffuses to the surface and the decomposition ability is maintained.
  • Ni has a high ability to adsorb hydride gases of Group III and V elements of the Periodic Table, and by using this characteristic, Ni can adsorb and remove trace hydride gases in various gases. Thus, the gas can be highly purified.
  • hydride gas removal pipes (1Z 4-inch pipes with a length of lm) having various inner surfaces were heated to a predetermined temperature, silane gas was flown, and the decomposition characteristics were examined.
  • silane gas was flown, and the decomposition characteristics were examined.
  • a specific hydride gas is introduced into the hydride gas removal pipe 1 and processed by adjusting a mass flow controller (MFC) and a valve for various hydride gases. Then, it is sent to the cell 12 of a Fourier transform infrared spectrometer (FTIR), where the silane concentration in the gas is measured. The gas discharged from the cell 12 is sent to the gas chromatography 13 where the H 2 gas concentration is analyzed.
  • FTIR Fourier transform infrared spectrometer
  • FTIR Fourier transform infrared spectrometer
  • FTIR Fourier transform infrared spectrometer
  • the gas discharged from the cell 12 is sent to the gas chromatography 13 where the H 2 gas concentration is analyzed.
  • a heater for heating is arranged around the hydride gas removing pipe 11, whereby the gas removing pipe 11 can be heated to a predetermined temperature.
  • Fig. 1 (b) is an enlarged view of cell 2, where Ar gas is used to protect the window material (KBr).
  • Fig. 2 (a) When 100 scpm of silane gas (Ar gas dilution) is flowed through the hydride gas removal pipe 11 at 5 sccm, the change in silane concentration in the discharged gas with respect to the heating temperature is shown in Fig. 2 (a).
  • N i F 2 tubes pure N i pipe, Hasuteroi electropolished tube, SUS 3 1 6 L electropolished tube, using C r 2 0 3 tube.
  • the Ni F 2 pipe is formed by applying a fluorine gas to the inner surface of the Ni pipe to form a 0.2 ⁇ 111 1 ⁇ 1 F 2 film.
  • C r 2 0 3 tube, H. on the inner surface of the SUS 316 L electropolished tube l 0% is 0 2 50 p pm introducing A r gas containing heating oxidation at 500, that form a C r 2 0 3 unmoving film on the surface.
  • N i F 2 tubes showed the most excellent decomposition properties, C r 2 0 3 tube hardly show any activity of promoting degradation, also decrease the content of N i is a metal It was found that the decomposition characteristics deteriorated as the temperature increased.
  • FIG. 1 (b) the results of the H 2 gas concentration in the exhaust gas was analyzed by Gasuku port Matogurafi 3 having the heat conduction type detector (TCD). Hydrogen 'Minatodo As shown in FIG reached 200 p pm at a temperature range of, silane was found to generate a completely decomposed to equivalents of H n gas. When heated to higher temperatures, the silane concentration in the exhaust gas remained at zero, although the hydrogen gas flow was reduced (the reason is currently unknown). In the case of a N i F 2 tube, FT IR measurement results show that heating to about 220 ° C or more generates S i, and when using Ni F 2 , a temperature of 200 ° C or less Need to be
  • N i tube As is apparent from chart or table, having a decomposition characteristic N i tube is excellent, especially PH. AsH 3 or the like degrades completely PH 3 at a low temperature of 50 ° C for gas, extremely with high decomposition It has been found to have properties. Further, for example, N i F Pho must be heated above 300 ° C and you'll decompose and remove in 2 tube and generating a S i F 4 in this temperature as described above, N i F 2 alone in was found that not suitable for removal of a gas mixture of S i and PH 3.
  • the Ni tube has a higher adsorption capacity for B 2 H 6 and PH 3 gas than other tubes, and can adsorb and remove the gas for a long time. Therefore, it is possible to purify other gases containing a small amount of hydride gas, and this is an extremely useful purification method especially when the gas is thermally unstable.
  • the nickel fluoride used in the present invention is preferably Ni F 0 having a stoichiometric ratio from the viewpoint of the ability to decompose hydride gas, but is not limited thereto.
  • Nigel pure nickel is preferable, but an alloy containing nickel may be used.
  • the piping and the container itself should be used as a method of arranging these Nigel and nickel fluoride in contact with a hydride gas. It is possible to introduce a hydride gas into the inside of the container by arranging it in the container as a tube, mesh, fiber, or pellet having a small diameter.
  • the inner surface of a stainless steel pipe, vessel, or the like may be coated with a nickel fluoride film, or may be coated on a solid surface of another material of the above-mentioned shape.
  • a solid F e, N i, C r, SUS , etc.
  • Various metals, other alloys, A 1 o0 3, AIN, S i C such as a ceramic or the like is preferably used.
  • Examples of a method of coating a fluoride on a nickel or nickel fluoride film with a solid include a plating method, a sputtered film, and vapor deposition.
  • the nickel fluoride one obtained by fluorinating nickel is particularly preferably used.
  • Ni tube or this is subjected to Ni-P (nickel-phosphorus) plating of about 10 / m thickness by an electroless plating method, and fluorine gas is applied to the plating film at 350 ° C.
  • fluorine gas is applied to the plating film at 350 ° C.
  • a NiF 2 film of about 0.2 / zm may be formed.
  • heating temperatures are: hydride type, flow rate, pressure, contact area of nigel and nickel fluoride gas, nickel and nickel fluoride It is appropriately optimized depending on the arrangement and the like, but when nickel and nickel fluoride are arranged at the same place, the temperature is preferably 85 to 200 ° C. It is more preferable to place nickel and nickel fluoride in different places and heat them to their respective optimum temperatures. The preferable temperature at this time is 50 to 300 for nickel. C, nickel fluoride is 85 ⁇ 200 ° C.
  • a method of coating the surface of a pellet-like granular solid with nickel or nickel fluoride, filling the pellets or the like into a packed tower, and subjecting the pellets or the like to the treatment is performed. Is effective.
  • Examples of the hydride gas to which the present invention is applied include a hydride gas of a Group III element such as B 2 H 6 , a hydride gas of a Group V element such as PH 3 and As H 0 , and S i H ⁇ . S i 2 H 6, G e H 4 group IV elements of the hydride gas and mixed gas, etc., such as are exemplified up. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a conceptual diagram showing an experimental apparatus for examining the hydride gas removal ability of the present invention.
  • Figure 2 is a graph showing the effect of temperature on silane decomposition and H 2 gas generation for various materials.
  • Figure 3 is a graph showing the relationship between the decomposition of diborane and the temperature for various materials.
  • Figure 4 is a graph showing the relationship between phosphine decomposition and temperature for various materials.
  • FIG. 5 is a graph showing the phosphine adsorption ability of various materials.
  • FIG. 6 is a graph showing the diborane adsorption capacity of various materials.
  • FIG. 7 is a conceptual diagram illustrating an arrangement of the removing device according to the first embodiment.
  • FIG. 8 is a conceptual diagram illustrating an arrangement of the removing device according to the second embodiment.
  • FIG. 9 is a conceptual diagram illustrating an arrangement of the removing device according to the third embodiment.
  • FIG. 10 is a graph showing the relationship between the decomposition rate of arsine and temperature for various materials.
  • FIG. 7 shows a first embodiment of the present invention.
  • FIG. 7 shows an example in which the removing device is arranged between the reaction chamber of the semiconductor manufacturing apparatus and the vacuum pump.
  • 74 is a turbo-molecular pump
  • 75 is a rotary pump
  • 76 denotes a heater.
  • the hydride gas remover is a 4 mm diameter cylindrical vessel with a diameter of 40 cm in order to facilitate hydride catalytic decomposition and minimize equipment resistance.
  • n + polysilicon (5% S i H 4 1 s 1 m, 0. 5% PH 3 2 s 1 m, A rl O slm) 4 0 0 nm of deposition and PSG (5% S i H 4 (N 2 dilution) 800 sc cm, 5% PH 3 (N 2 dilution) repeatedly performed 1 60 sccm, Oo800 sc cm) deposition of 200 nm, the decomposition of the gas by the detector there between removal device outlet confirmed.
  • the removal device was heated to 90 eC . Even after repeated 30 times the film formation, S i H 4. PH 3 is not detected at all, the removal device of the present real ⁇ has been found to be practical.
  • the hole diameter and length of the honeycomb may be appropriately determined depending on the pressure and flow rate of the hydride gas used, but the hole diameter is usually several mm. It is preferably used.
  • FIG. 8 shows a second embodiment of the present invention.
  • FIG. 9 shows a third embodiment of the present invention.
  • This embodiment is an example in which a removing device is provided on the downstream side of the exhaust system similarly to the conventional exhaust gas treatment device.
  • 91 is a special gas inlet
  • 93 is a heater
  • 94 is a gas detector
  • 95 is a washing tower
  • 96 is a water circulation tank
  • 97 is a water circulation pump.
  • two packed towers are arranged in parallel, and only one of them is used. Attach a gas detector to the gas outlet of the packed tower to monitor the status of the removal equipment during operation. When the capacity of the packed tower is lost, switch to the other packed tower. The discharged gas may be sent to a scrubber for gas discharged from other semiconductor manufacturing equipment.
  • the mixed gas of the hydride gas can be effectively removed, and furthermore, since the gas can be installed on the upstream side of the exhaust pump, maintenance of the exhaust system and the like is remarkably facilitated.
  • the operation rate can be greatly improved.
  • no powder solids are generated, clogging does not occur in pumps, packed towers and other devices, and the removal can be performed extremely stably.

Abstract

Hydride gas removing method and apparatus which are capable of detoxifying a mixed gas by completely removing various hydride gases therefrom by using a simple structure without generating pulverized bodies which would cause the clogging of the apparatus. The method is characterized in that a mixed gas containing at least two kinds of hydride gases is brought into contact with nickel fluoride and nickel to subject the hydride gases to decomposition or/and adsorption, whereby the hydride gases are removed. The method is also characterized in that a gas of a hydride of a group III or V element in the periodic table is removed by bringing the gas into contact with nickel so as to subject the gas to decomposition or/and adsorption, whereby the hydride gas is removed.

Description

明細書 水素化物ガスの除去方法及び除去装置 技術分野  Description Method and apparatus for removing hydride gas
本発明は水素化物ガスの除去方法並び除去装置に係わり、 特に半導体製造工程 で使用する危険、 有毒な水素化物ガスの除去方法並びに除去装置に関する。 背景技術  The present invention relates to a method and an apparatus for removing a hydride gas, and more particularly to a method and an apparatus for removing a dangerous and toxic hydride gas used in a semiconductor manufacturing process. Background art
半導体製造工程で使用されるシラン、 ホスフィン、 ジボラン、 アルシン等の水 素化物ガスは自燃性や毒性があるため、 未反応ガスを完全に除去し無害化してか ら大気に排出する必要がある。  Hydride gases, such as silane, phosphine, diborane, and arsine, used in the semiconductor manufacturing process are self-combustible and toxic. Therefore, it is necessary to completely remove unreacted gases to make them harmless before discharging them to the atmosphere.
これらのガス除去方法としては、 多孔質担体にアル力リ及び酸化剤を担持させ た充填塔にガスを通して除去する乾式除去方法 (特開平 3— 1 3 7 9 1 7号公 報) 、 液体と気液接触させて吸収し、 中和して分解除去する湿式除去方法 (特開 平 4一 5 9 0 1 7号公報及び特開平 4一 3 1 0 2 1 5号公報) 等が知られてい る。  These gas removal methods include a dry removal method in which gas is removed through a packed column in which a porous carrier and an oxidizing agent are supported (Japanese Patent Laid-Open Publication No. 3-137917), and a liquid removal method. There are known wet removal methods of absorbing by gas-liquid contact, neutralizing and decomposing and removing (JP-A-4-59017 and JP-A-4-310215). You.
しかしこれらの方法において、 例えばシランガスは分解により S i o2の如き 固体粉末となるため、 充填塔の目詰まりが起こる等、 管理や維持面で問題が多 い。 また、 この障害を解決するために色々の方法や装置が提案されているが、 い ずれも不充分であり、 また装置の複雑化、 大型化につながつている。 また、 乾式 除去方法では、 除去に選択性があり、 全ての水素化物ガスを除去できないという 問題もある。 However, in these methods, for example, silane gas is decomposed into a solid powder such as Sio 2 , so that there are many problems in management and maintenance, such as clogging of a packed tower. In addition, various methods and devices have been proposed to solve this obstacle, but none of these methods is sufficient, and the devices have been complicated and large. Another problem with the dry removal method is that it is not possible to remove all hydride gases because of its selectivity for removal.
さらに、 これら従来の除去装置は、 真空排気ポンプから排出されるガスを処理 するものであり、 構成上真空内部に配置することは不可能なため、 排気ポンプ上 流の真空系内水素化物ガスの分解等により生じる種々の弊害に対処することは困 難である。 例えば未反応ガスが、 反応チャンバ一と真空ポンプ間で自己分解若し くは反応し、 その反応生成物が配管や真空ポンプ内に付着し、 その結果ポンプの 吸引能力を低下著しくさせてしまう、 さらにはポンプ回転羽根のバランスを崩す 等の問題を生じる。 従って、 定期的にポンプ等を分解掃除する必要があるが、 付 着物自体に依然自燃性、 毒性があるため、 分解掃除作業も非常に危険である。 このような状況の中で、 粉体等の発生による目詰まりがなくメンテナンスが容 易で、 しかも真空系内に設置できる、 簡単な構成の水素化物ガスの除去装置が望 まれている。 Furthermore, these conventional removal devices treat the gas discharged from the vacuum exhaust pump, and cannot be disposed inside the vacuum due to the configuration, so that the hydride gas in the vacuum system upstream of the exhaust pump is removed. It is difficult to deal with various adverse effects caused by decomposition. For example, unreacted gas self-decomposes or reacts between the reaction chamber and the vacuum pump, and the reaction product adheres to the piping or the vacuum pump, resulting in a significant decrease in the suction capacity of the pump. In addition, the balance of the pump rotating blades is lost And so on. Therefore, it is necessary to periodically disassemble and clean the pump, etc., but since the attachment itself is still flammable and toxic, the disassembly and cleaning work is also extremely dangerous. Under such circumstances, there is a demand for a hydride gas removal apparatus having a simple structure that can be easily maintained without clogging due to generation of powders and the like and that can be installed in a vacuum system.
本発明は、 簡単な構成で粉体発生による目詰まりがなく、 複数の水素化物ガス を含む混合ガスを完全に除去して無害化することが可能な水素物ガスの除去方法 及び除去装置を提供することを目的とする。 さらに、 簡単な構成で真空系内に配 置でき、 水素化物ガス使用装置のメンテナンスを容易とする水素化物ガスの除去 方法及び除去装置を提供することを目的とする。 発明の開示  The present invention provides a method and an apparatus for removing a hydride gas capable of completely removing a mixed gas containing a plurality of hydride gases and rendering the mixture harmless with a simple configuration without clogging due to powder generation. The purpose is to do. It is another object of the present invention to provide a method and an apparatus for removing a hydride gas which can be disposed in a vacuum system with a simple configuration and which facilitates maintenance of a hydride gas use apparatus. Disclosure of the invention
本発明の水素化物ガスの除去方法は、 少なくとも 2種以上の水素化物ガスを含 有する混合ガスを二ッケルフッ化物及び二ッゲルと接触させて分解または 及び 吸着させることにより、 水素化物ガスを除去することを特徴とする。  The hydride gas removing method of the present invention comprises removing a hydride gas by bringing a mixed gas containing at least two or more hydride gases into contact with nickel fluoride and nigel to decompose or adsorb the mixed gas. It is characterized by.
また、 前記水素化物ガスは、 周期律表第 Ι Π族、 第 IV族、 または第 V族元素の水 素化物ガスであることを特徴とする。  Further, the hydride gas is a hydride gas of an element belonging to Group IV, IV, or V of the periodic table.
本発明において、 前記ニッケルフッ化物及び前記ニッケルを加熱することによ り、 前記水素化物ガスを分解除去するのが好ましく、 前記ニッケルフッ化物及び 前記二ッゲルを異なる温度に加熱するのがより好まし 、。  In the present invention, the hydride gas is preferably decomposed and removed by heating the nickel fluoride and the nickel, and more preferably the nickel fluoride and the Nigel are heated to different temperatures. ,.
また、 本発明の水素化物ガスの除去方法は、 周期律表第 I I I族元素または第 V族 元素の水素化物ガスをニッケルと接触させて分解または//及び吸着させることに より、 前記水素化物ガスを除去することを特徴とする。 さらに前記ニッケルを加 熱することにより、 前記水素化物ガスを分解除去するのが好ましい。  Further, the method for removing a hydride gas of the present invention is characterized in that a hydride gas of a Group III element or a Group V element of the periodic table is brought into contact with nickel to decompose and / or adsorb the hydride gas. Is removed. Further, it is preferable that the hydride gas be decomposed and removed by heating the nickel.
本発明の水素化物ガスの除去装置は、 少なくとも 2種以上の水素化物ガスを含 有する混合ガスの導入口と排出口とを有する容器を少なくとも 1つ有し、 該容器 内に前記混合ガスと接触するようにニッケルフッ化物とニッゲルとをそれぞれ 別々にある t、は一緒に配置し、 該ニッケルフッ化物及び二ッゲルを加熱するため の加熱手段を設けたことを特徴とする。 前記加熱手段は、 前記二ッケルフッ化物及び二ッゲルをそれぞれ異なる温度に 加熱するものであることを特徴とする。 The hydride gas removing device of the present invention has at least one container having an inlet and an outlet for a mixed gas containing at least two or more hydride gases, and contacts the mixed gas in the container. In this case, the nickel fluoride and the nigger are separately arranged so that the nickel fluoride and the nigger are separately arranged, and a heating means for heating the nickel fluoride and the nigger is provided. The heating means is configured to heat the nickel fluoride and the nickel gel to different temperatures.
さらに、 本発明の水素化物ガスの除去装置は、 周期律表第 I I I族元素または第 V 族元素の水素化物ガスを含有する混合ガスの導入口と排出口とを有する容器内 に、 前記ガスと接触するようにニッケルを配し、 該ニッケルを加熱するための加 熱手段を設けたことを特徴とする。 作用  Further, the hydride gas removing apparatus of the present invention includes: a container having an inlet and an outlet for a mixed gas containing a hydride gas of a Group III element or a Group V element of the periodic table; Nickel is provided so as to be in contact with the battery, and a heating means for heating the nickel is provided. Action
以下に本発明の作用を実験を参照して説明する。  Hereinafter, the operation of the present invention will be described with reference to experiments.
本発明者は、 種々の材料の内、 特にニッケルフッ化物が、 シランに対して優れ た分解特性を示すことを発見し、 これによりニッケルフッ化物をシランに接触さ せ、 1 0 o °c以下の低温でシランを分解させることが可能となった。 その結果、 真空ポンプょり上流側に二ッケルフッ化物で内面被覆した配管を設置することに よりシラン除去力可能となり、 ポンプ内での粉末発生、 付着を防止することが出 来、 装置全体のメンテナンスが非常に容易になった。  The present inventor has found that, among various materials, nickel fluoride, in particular, exhibits excellent decomposition characteristics with respect to silane. Silane can be decomposed at a low temperature. As a result, it is possible to remove silane by installing a pipe coated with nickel fluoride on the upstream side of the vacuum pump, preventing powder generation and adhesion inside the pump, and maintaining the entire equipment. It became very easy.
一方、 半導体製造工程、 例えば半導体膜の成膜工程では、 導電性制御のためシ ランの他にホスフィ ン、 アルシン、 ジボラン等のガスが同時に導入される。 これ らの混合ガス中の ^<素化物ガスはいずれも危険であり、 猛毒であるため、 完全に 除去して排気しなければならない。 しかし、 例えばシラン、 ホスフィ ン混合ガス の処理を上記ニッケルフッ化物で除去しょうとすると、 ホスフィンを 1 0 0 %分 解させるには 3 0 0 °C以上の高温に加熱する必要があるため、 S i F4が発生し てしまい、 混合ガス系で二ッケルフッ化物を用いるのには限界があることが分か つた o On the other hand, in a semiconductor manufacturing process, for example, a film forming process of a semiconductor film, a gas such as phosphine, arsine, or diborane is introduced simultaneously with silane in order to control conductivity. All ^ <gaseous gases in these gas mixtures are dangerous and highly toxic, and must be completely removed and exhausted. However, if the treatment of the mixed gas of silane and phosphine is to be removed with the above nickel fluoride, it is necessary to heat to a high temperature of 300 ° C. or more in order to decompose phosphine by 100%. i F 4 ends up occurring in a mixed gas type secondary Kkerufu' to use a product may see that there is a limit ivy o
そこで、 本発明者はこの問題を解決するために鋭意研究を続けた結果、 金属 N iは周期律表第 I I I族元素及び第 V族元素の水素化物ガスに対し高い吸着能を有 するとともに分解促進効果も高く、 特にホスフィンについては 5 0 °C程度の低温 で 1 0 0 %分解できることが分かった。  Thus, the present inventors have conducted intensive studies to solve this problem, and as a result, the metal Ni has a high adsorption capacity for hydride gas of the group III element and the group V element of the periodic table and decomposes. It has a high accelerating effect. In particular, phosphine can be decomposed 100% at a low temperature of about 50 ° C.
本発明は、 これらの知見に基づき完成したものであり、 ニッケルフッ化物及び 二ッゲルを用いることにより、 低温で 2種以上の水素化物ガスの混合ガスを除去 することを可能となる。 The present invention has been completed based on these findings, and uses nickel fluoride and Nigel to remove a mixed gas of two or more hydride gases at a low temperature. It becomes possible to do.
ニッケルフッ素化物及びニッケルと水素化物系ガスとを接触させると、 水素化 物ガスは当量の水素ガスを発生して分解する。 このため、 従来の如き固体状生成 物に基づく難点、 即ちポンプへの反応生成物の付着、 並びに充填塔の目詰まり等 の問題を未然に防止する事が出来る。 また、 ニッケルフッ化物またはニッケル単 位表面積当たりの水素化物ガス処理量は、 分解して生成した S i , P, B等の元 素がニッケルフッ化物及びニッケル表面を覆ってしまうまでの量と考えられる カ^ 実際にはこの量よりもはるかに多量の水素化物ガスを処理することができ る。 この理由は現在のところ明確ではないが、 S i , P, B等が表面を覆っても N iが表面に拡散して分解能力が維持されるためと推測される。  When nickel fluoride and nickel are brought into contact with a hydride-based gas, the hydride gas generates an equivalent amount of hydrogen gas and is decomposed. For this reason, it is possible to prevent problems such as the conventional problems caused by the solid product, that is, the adhesion of the reaction product to the pump and the clogging of the packed tower. The amount of hydride gas treatment per nickel fluoride or nickel unit surface area is considered to be the amount by which elements such as Si, P, and B generated by decomposition cover the nickel fluoride and nickel surface. In fact, much more hydride gas can be processed than this amount. The reason for this is not clear at present, but it is presumed that even if Si, P, B, etc. cover the surface, Ni diffuses to the surface and the decomposition ability is maintained.
また、 周期律表第 I I I族元素及び第 V族元素は微量でも半導体待性に大きな影響 を及ぼす。 そこで、 上述したように N iは周期律表第 I I I族元素及び第 V族元素の 水素化物ガスの吸着能が高いため、 この特性を利用して種々のガス中の微量水素 化物ガスを吸着除去して、 ガスを高純度化することも可能である。  In addition, even small amounts of Group II and Group V elements in the periodic table have a significant effect on semiconductor quenching. Therefore, as described above, Ni has a high ability to adsorb hydride gases of Group III and V elements of the Periodic Table, and by using this characteristic, Ni can adsorb and remove trace hydride gases in various gases. Thus, the gas can be highly purified.
以下に、 本発明にいたる過程で行った実験を挙げて、 本発明の作用をより詳細 に説明する。  Hereinafter, the operation of the present invention will be described in more detail with reference to experiments performed in the course of the present invention.
(実験例 1 )  (Experimental example 1)
図 1に示す測定系を用い、 種々の材質の内表面を有する水素化物ガス除去管 (長さ l mの 1 Z 4インチ管) を所定の温度に加熱してシランガスを流し、 その 分解特性を調べた。  Using the measurement system shown in Fig. 1, hydride gas removal pipes (1Z 4-inch pipes with a length of lm) having various inner surfaces were heated to a predetermined temperature, silane gas was flown, and the decomposition characteristics were examined. Was.
図 1において、 種々の水素化物ガスについて、 マスフローコントローラー (M F C ) 及びバルブを調整することにより、 特定の水素化物ガスが水素化物ガ ス除去管 1 に導入され処理される。 その後、 フーリエ変換赤外分光器 (F T I R) のセル 1 2に送られ、 ここで、 ガス中のシラン濃度が測定される。 セル 1 2から排出されたガスはガスクロマトグラフィ 1 3に送られ、 H2ガス濃 度の分析が行われる。 図には示していないが、 水素化物ガス除去管 1 1の周囲に は加熱用ヒータが配置されており、 これによりガス除去管 1 1を所定の温度に加 熱することができる。 In FIG. 1, a specific hydride gas is introduced into the hydride gas removal pipe 1 and processed by adjusting a mass flow controller (MFC) and a valve for various hydride gases. Then, it is sent to the cell 12 of a Fourier transform infrared spectrometer (FTIR), where the silane concentration in the gas is measured. The gas discharged from the cell 12 is sent to the gas chromatography 13 where the H 2 gas concentration is analyzed. Although not shown in the figure, a heater for heating is arranged around the hydride gas removing pipe 11, whereby the gas removing pipe 11 can be heated to a predetermined temperature.
図 1 ( b ) はセル 2の拡大図であり、 窓材 (K B r ) 保護のために A rガスが b Fig. 1 (b) is an enlarged view of cell 2, where Ar gas is used to protect the window material (KBr). b
導入される構造となっている。 It is a structure to be introduced.
水素化物ガス除去管 1 1に 1 00 p pmのシランガス (A rガス希釈) を 5 s c cm流した時、 排出されるガス中のシラン濃度の加熱温度に対する変化を 図 2 (a) に示す。 なお、 除去管としては、 N i F2管、 純 N i管、 ハステロィ 電解研磨管、 SUS 3 1 6 L電解研磨管、 C r203管を用いた。 N i F2管は N i管の内表面にフッ素ガスを作用させて 0. 2〃111の1^ 1 F2膜を形成したも のである。 また、 C r203管は、 SUS 316 L電解研磨管の内表面に H。l 0 %, 0250 p pmを含む A rガスを導入し 500でに加熱酸化し、 表面に C r203不動体膜を形成したものである。 When 100 scpm of silane gas (Ar gas dilution) is flowed through the hydride gas removal pipe 11 at 5 sccm, the change in silane concentration in the discharged gas with respect to the heating temperature is shown in Fig. 2 (a). As the removal tubes, N i F 2 tubes, pure N i pipe, Hasuteroi electropolished tube, SUS 3 1 6 L electropolished tube, using C r 2 0 3 tube. The Ni F 2 pipe is formed by applying a fluorine gas to the inner surface of the Ni pipe to form a 0.2 ^ 111 1 ^ 1 F 2 film. Also, C r 2 0 3 tube, H. on the inner surface of the SUS 316 L electropolished tube l 0%, is 0 2 50 p pm introducing A r gas containing heating oxidation at 500, that form a C r 2 0 3 unmoving film on the surface.
図 2 (a) から明らかなように、 N i F2管が最も優れた分解特性を示し、 C r203管は殆ど分解促進作用を示さず、 また金属では N iの含有量が低下する につれて分解特性が低下することが分かった。 As apparent from FIG. 2 (a), N i F 2 tubes showed the most excellent decomposition properties, C r 2 0 3 tube hardly show any activity of promoting degradation, also decrease the content of N i is a metal It was found that the decomposition characteristics deteriorated as the temperature increased.
また、 排出ガス中の H2ガス濃度を熱伝導型検出器 (TCD) を有するガスク 口マトグラフィ 3で分析した結果を図 1 (b) に示す。 図が示すように水素'港度 はある温度範囲で 200 p pmに達し、 シランが完全に分解して当量の Hnガス を発生していることが分かった。 さらに高温度に加熱すると、 水素ガス澳度は低 下するものの (この理由は現在不明であるが) 、 排ガス中のシラン濃度はゼロの ままであった。 し力、し、 N i F2管の場合、 約 220°C以上に加熱すると S i が生成することが FT I Rの測定結果から分かり、 N i F2を用いる場合は 200°C以下の温度にする必要がある。 Also, it is shown in FIG. 1 (b) the results of the H 2 gas concentration in the exhaust gas was analyzed by Gasuku port Matogurafi 3 having the heat conduction type detector (TCD). Hydrogen 'Minatodo As shown in FIG reached 200 p pm at a temperature range of, silane was found to generate a completely decomposed to equivalents of H n gas. When heated to higher temperatures, the silane concentration in the exhaust gas remained at zero, although the hydrogen gas flow was reduced (the reason is currently unknown). In the case of a N i F 2 tube, FT IR measurement results show that heating to about 220 ° C or more generates S i, and when using Ni F 2 , a temperature of 200 ° C or less Need to be
(実験例 2)  (Experimental example 2)
実験例 1と同様にして、 PH3, B2H6及び AsH3ガスに対する各種材質のガ ス除去管の分解特性を調べた結果を図 3、 4及び 10に、 また 100%分解の最 低温度を表 1 に示す。 なお、 表、 図において、 F e203とあるのは、 SUS 315 L電解研磨管に 30 % 02を含む A rガスを導入し 425 °Cで加熱 酸化して、 内表面に F e203膜を 20 nm形成したものである。 S iは SUS 316 L電解研磨管の内表面に S i ガスを流し 480°Cで熱分解して シリコン膜を 30 nm形成し、 続いて H2を流して処理したものである。 S i〇2 は、 前記 S i表面に 02を導入して 600でで表面を酸化したものである。 他は 実験例 1と同様である。 In the same manner as in Experimental Example 1, PH 3, B 2 H 6 and AsH 3 the results of examining the degradation characteristics of the gas removal pipe of various materials to the gas in FIG. 3, 4 and 10, also minimum of 100% degradation Table 1 shows the temperatures. Incidentally, the table, in Fig, F e 2 0 3 phrase is heated oxidized by introducing A r gas containing 30% 0 2 in SUS 315 L electropolished tube 425 ° C, the inner surface F e 2 0 3 film is obtained by 20 nm formed. Si is obtained by flowing Si gas through the inner surface of a SUS 316L electropolishing tube, thermally decomposing it at 480 ° C to form a silicon film of 30 nm, and then flowing H 2 to process it. S I_〇 2 are those wherein the oxidation of the surface at 600 by introducing 0 2 S i surface. Other The same as in Experimental Example 1.
図または表から明らかなように、 N i管が優れた分解特性を有し、 特に PH . AsH3ガスに対しては 50°Cの低温で完全に PH3を分解する等、 極め て高い分解特性を有することが分かった。 また、 例えば N i F2管で PHoを分解 除去しょうとすると 300°C以上に加熱する必要があり、 前述したようにこの温 度では S i F4を生成することから、 N i F2単独では S i と PH3の混合ガス の除去には適しないことが分かった。 As is apparent from chart or table, having a decomposition characteristic N i tube is excellent, especially PH. AsH 3 or the like degrades completely PH 3 at a low temperature of 50 ° C for gas, extremely with high decomposition It has been found to have properties. Further, for example, N i F Pho must be heated above 300 ° C and you'll decompose and remove in 2 tube and generating a S i F 4 in this temperature as described above, N i F 2 alone in was found that not suitable for removal of a gas mixture of S i and PH 3.
(実験例 3)  (Experimental example 3)
図 1の測定系を用い、 室温 (25°C) で B2H6, PH3ガスを各種ガス除去用 管に流し、 その濃度の時間変化を調べた。 B2H6, PH3ガスの濃度変化を図 5、 6に、 また図から計算した吸着分子量を表 1に示す。 Using the measurement system of Figure 1, at room temperature (25 ° C) with B 2 H 6, PH 3 gas is flowed to the pipe for various gas removal was examined a change with time of the concentration. The changes in B 2 H 6 and PH 3 gas concentrations are shown in FIGS. 5 and 6, and the adsorption molecular weight calculated from the figures is shown in Table 1.
図または表が示すように、 N i管は他の管に比べて B2H6、 PH3ガスに対す る吸着能が高く、 長時間ガスを吸着除去できることが分かった。 従って、 水素化 物ガスを微量含む他のガスを精製することが可能となり、 特にそのガスが熱的に 不安定な場合に極めて有用な精製手段となる。 As shown in the figure or table, it was found that the Ni tube has a higher adsorption capacity for B 2 H 6 and PH 3 gas than other tubes, and can adsorb and remove the gas for a long time. Therefore, it is possible to purify other gases containing a small amount of hydride gas, and this is an extremely useful purification method especially when the gas is thermally unstable.
【表 1】  【table 1】
1 ■" 1  1 ■ "1
1 B2H6 1 1 B 2 H 6 1
1 1 1 1 1 1 1 1 1 1
1 SUS Fe2°3 1 Cr2°3 1 Si 1 Si02 1 Ni 1 1 SUS Fe 2 ° 3 1 Cr 2 ° 3 1 Si 1 Si0 2 1 Ni 1
1吸着分子数 1 2.4 3.0 1 3.0 1 0 1 4.2 1 5.41 1 1 (/cm2) 1 xlO14 xlO141 xl014 | 1 xlO14 X1014 | 1 Number of adsorbed molecules 1 2.4 3.0 1 3.0 1 0 1 4.2 1 5.41 1 1 (/ cm 2 ) 1 xlO 14 xlO 14 1 xl0 14 | 1 xlO 14 X10 14 |
1100%力"ス分解 1 250 150 1 240 1 160 1 180 125 11100% power decomposition 1 250 150 1 240 1 160 1 180 125 1
1温度 (。C) 1 temperature (.C)
1 1 1 1  1 1 1 1
1 PH3 1 1 PH 3 1
1 ■' ' 1 1 1 1 1 i 1 SUS I Fe2°3 1 Cr2°3 Si 1 Si02 1 Ni 1 1 ■ '' 1 1 1 1 1 i 1 SUS I Fe 2 ° 3 1 Cr 2 ° 3 Si 1 Si0 2 1 Ni 1
1吸着分子数 0 1 1.8 1 0 0 1 0 1 1.62 11 Number of adsorbed molecules 0 1 1.8 1 0 0 1 0 1 1.62 1
1 (/cm2) 1 xl014 | 1 xlO151 1 (/ cm 2 ) 1 xl0 14 | 1 xlO 15 1
1100%力"ス分解 260 1 210 1 370 490 1 505 1 55 11100% force decomposition 260 1 210 1 370 490 1 505 1 55 1
1温度 (°C) 1 Temperature (° C)
1 1 1 1 1 1 本発明で用いられるニッケルフッ化物は、 水素化物ガスの分解能力の観点か ら、 化学量論比にある N i F0が好ましいが、 これに限ることはない。 また、 二 ッゲルについては、 純ニッケルが好ましいが、 ニッケルを含む合金であっても良 これらニッゲル及びニッケルフッ化物を水素化物ガスを接触させるベく配置す る方法としては、 配管、 容器そのものをこれらの材料で構成したり、 あるいは小 径の管状、 網状、 繊維状、 ペレツト状として容器内に配置して、 容器内部に水素 化物ガスを導入すれば良い。 あるいは、 ステンレス製配管、 容器等の内面をニッ ゲルある t、は二ッケルフッ化物膜で被覆したり、 他の材質の前記形状の固体表面 に被覆しても良い。 この固体としては、 F e, N i, C r, SUS等種々の金 属、 合金の他、 A 1 o03, A I N, S i C等セラミック等が好適に用いられる。 ニッケルまたはニッケルフッ化物膜を固体にフッ素化物を被覆する方法として は、 例えばメツキ、 スパッタ膜、 蒸着等が挙げられる。 ニッケルフッ化物は、 特 にニッケルをフッ化処理したものが好適に用いられる。 1 1 1 1 1 1 The nickel fluoride used in the present invention is preferably Ni F 0 having a stoichiometric ratio from the viewpoint of the ability to decompose hydride gas, but is not limited thereto. For Nigel, pure nickel is preferable, but an alloy containing nickel may be used. As a method of arranging these Nigel and nickel fluoride in contact with a hydride gas, the piping and the container itself should be used. It is possible to introduce a hydride gas into the inside of the container by arranging it in the container as a tube, mesh, fiber, or pellet having a small diameter. Alternatively, the inner surface of a stainless steel pipe, vessel, or the like may be coated with a nickel fluoride film, or may be coated on a solid surface of another material of the above-mentioned shape. As the solid, F e, N i, C r, SUS , etc. Various metals, other alloys, A 1 o0 3, AIN, S i C such as a ceramic or the like is preferably used. Examples of a method of coating a fluoride on a nickel or nickel fluoride film with a solid include a plating method, a sputtered film, and vapor deposition. As the nickel fluoride, one obtained by fluorinating nickel is particularly preferably used.
フッ化処理を行うには、 例えば N i管あるいはこれに無電解メツキ法で約 10 /m厚の N i -P (ニッケル一リン) メツキを施し、 このメツキ膜に 350°Cで フッ素ガスを作用させることにより、 約 0. 2/zm程度の N i F2膜を形成すれ ば良い。 To perform the fluoridation treatment, for example, Ni tube or this is subjected to Ni-P (nickel-phosphorus) plating of about 10 / m thickness by an electroless plating method, and fluorine gas is applied to the plating film at 350 ° C. By acting, a NiF 2 film of about 0.2 / zm may be formed.
本発明において、 水素化物ガスを分解除去する場合、 分解効率の観点から加熱 することが好ましい。 好ましい加熱温度は、 水素化物の種類、 流量、 圧力、 ニッ ゲル及びニッケルフッ化物のガスとの接触面積、 ニッケルとニッケルフッ化物の 配置等により適宜最適化されるが、 ニッケルとニッケルフッ化物を同じ場所に配 置する場合には 8 5〜2 0 0 °Cが好ましい。 また、 ニッケルとニッケルフッ化物 をそれぞれ別の場所に配置してそれぞれの最適な温度に加熱すればより好まし く、 この時の好ましい温度は、 ニッケルが 5 0〜3 0 0。C、 ニッケルフッ化物が 8 5〜2 0 0 °Cである。 In the present invention, when the hydride gas is decomposed and removed, it is preferable to heat from the viewpoint of the decomposition efficiency. Preferred heating temperatures are: hydride type, flow rate, pressure, contact area of nigel and nickel fluoride gas, nickel and nickel fluoride It is appropriately optimized depending on the arrangement and the like, but when nickel and nickel fluoride are arranged at the same place, the temperature is preferably 85 to 200 ° C. It is more preferable to place nickel and nickel fluoride in different places and heat them to their respective optimum temperatures. The preferable temperature at this time is 50 to 300 for nickel. C, nickel fluoride is 85 ~ 200 ° C.
また、 本発明において、 多量の水素化ガスを処理する場合には、 ペレツ ト状ゃ 粒状固体の表面にニッケルあるいはニッケルフッ化物を被覆し、 このペレット等 を充填塔に充填し、 処理に供する方法が効果的である。  In the present invention, when a large amount of hydrogenated gas is treated, a method of coating the surface of a pellet-like granular solid with nickel or nickel fluoride, filling the pellets or the like into a packed tower, and subjecting the pellets or the like to the treatment is performed. Is effective.
本発明が適用される水素化物ガスとしては、 B 2H6等の周期律表第 I I I族元素 の水素化物ガス、 P H3, A s H0等の第 V族元素の水素化物ガス、 及び S i H^. S i 2H6, G e H4等の第 IV族元素の水素化物ガス及びこれらの混合ガス等が挙 げられる。 図面の簡単な説明 Examples of the hydride gas to which the present invention is applied include a hydride gas of a Group III element such as B 2 H 6 , a hydride gas of a Group V element such as PH 3 and As H 0 , and S i H ^. S i 2 H 6, G e H 4 group IV elements of the hydride gas and mixed gas, etc., such as are exemplified up. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の水素化物ガスの除去能力を調べる実験装置を示す概念図であ る。  FIG. 1 is a conceptual diagram showing an experimental apparatus for examining the hydride gas removal ability of the present invention.
図 2は、 各種材料について、 シラン分解及び H 2ガス発生に及ぼす温度の影響 を示したグラフである。 Figure 2 is a graph showing the effect of temperature on silane decomposition and H 2 gas generation for various materials.
図 3は、 各種材料についてジボランの分解と温度の関係を示すグラフである。 図 4は、 各種材料についてホスフィ ンの分解と温度の関係を示すグラフであ る。  Figure 3 is a graph showing the relationship between the decomposition of diborane and the temperature for various materials. Figure 4 is a graph showing the relationship between phosphine decomposition and temperature for various materials.
図 5は、 各種材料のホスフィン吸着能を示すグラフである。  FIG. 5 is a graph showing the phosphine adsorption ability of various materials.
図 6は、 各種材料のジボラン吸着能を示すグラフである。  FIG. 6 is a graph showing the diborane adsorption capacity of various materials.
図 7は、 実施例 1の除去装置の配置を示す概念図である。  FIG. 7 is a conceptual diagram illustrating an arrangement of the removing device according to the first embodiment.
図 8は、 実施例 2の除去装置の配置を示す概念図である。  FIG. 8 is a conceptual diagram illustrating an arrangement of the removing device according to the second embodiment.
図 9は、 実施例 3の除去装置の配置を示す概念図である。  FIG. 9 is a conceptual diagram illustrating an arrangement of the removing device according to the third embodiment.
図 1 0は、 各種材料についてアルシンの分解速度と温度との関係を示すグラフ である。  FIG. 10 is a graph showing the relationship between the decomposition rate of arsine and temperature for various materials.
(符号の説明) 1 1 水素化物ガス除去管、 (Explanation of code) 1 1 Hydride gas removal pipe,
12 FT I R用セル、  12 FT I R cell,
13 ガスクロマトグラフィ、  13 Gas chromatography,
71、 81 反応チャンバ一、  71, 81 Reaction chamber one,
72, 82 配管、  72, 82 piping,
73、 83、 83' 水素化物ガス除去装置、  73, 83, 83 'hydride gas removal equipment,
74. 84 ターボ分子ポンプ、  74.84 Turbo molecular pump,
75, 85 ロータリーポンプ、  75, 85 rotary pump,
76、 86、 86' ヒータ、  76, 86, 86 'heater,
91 水素化物ガス導入口、  91 hydride gas inlet,
92、 92' ニッケル膜またはニッケルフッ素化物で被覆した担体を充填し た充填塔、  92, 92 'Packed tower filled with nickel membrane or carrier coated with nickel fluoride
93 加熱器、  93 heater,
94 ガス検知器、  94 gas detector,
95 水洗塔、  95 washing tower,
96 水循環槽、  96 water circulation tank,
97 水循環ポンプ。 発明を実施するための最良の形態  97 Water circulation pump. BEST MODE FOR CARRYING OUT THE INVENTION
以下に実施例を挙げて本発明をより詳細に説明するが、 本発明がこれら実施例 に限定されることはない。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
(実施例 1 )  (Example 1)
本発明の第 1の実施例を図 7に示す。  FIG. 7 shows a first embodiment of the present invention.
図 7は、 除去装置を半導体製造装置の反応チャンバ一から真空ポンプ間に配置 した例である。 図 7に於いて、 7 1は反応チャンバ一、 72は配管、 73は N i F2を用いたガス除去装置、 74はターボ分子ポンプ、 75はロータリーポ ンプ、 76はヒータを示す。 FIG. 7 shows an example in which the removing device is arranged between the reaction chamber of the semiconductor manufacturing apparatus and the vacuum pump. In FIG 7, 7 1 reaction chamber one, 72 pipe, 73 gas removal apparatus using an N i F 2, 74 is a turbo-molecular pump, 75 is a rotary pump, 76 denotes a heater.
ここで、 水素化物ガス除去装置は水素化物触媒分解を容易にならしめ、 且つ装 置抵抗を最小限に押さえるべく、 直径 40 cmの円筒状の容器に 4 mm径、 60 cmのN i管と表面に N i F2層形成した同形状の管を、 蜂巣構造にして挿 入したものを用いた。 Here, the hydride gas remover is a 4 mm diameter cylindrical vessel with a diameter of 40 cm in order to facilitate hydride catalytic decomposition and minimize equipment resistance. A 60 cm Ni tube and a tube of the same shape having two layers of Ni F formed on the surface, which were inserted into a honeycomb structure, were used.
この装置を用い、 n +ポリ シリコン ( 5 % S i H41 s 1 m, 0. 5 % P H32 s 1 m, A r l O s l m) 4 0 0 n mの成膜及び P S G ( 5 % S i H4 (N2希釈) 800 s c cm, 5%PH3 (N2希釈) 1 60 s c c m, Oo800 s c cm) 200 n mの成膜を繰り返し行い、 その間除去装置出口で 検知器によりガスの分解を確認した。 なお、 除去装置は、 90eCに加熱した。 上記成膜を 30回繰り返した後でも、 S i H4. PH3は全く検出されず、 本実 施例の除去装置が実用的であることが分かった。 Using this device, n + polysilicon (5% S i H 4 1 s 1 m, 0. 5% PH 3 2 s 1 m, A rl O slm) 4 0 0 nm of deposition and PSG (5% S i H 4 (N 2 dilution) 800 sc cm, 5% PH 3 (N 2 dilution) repeatedly performed 1 60 sccm, Oo800 sc cm) deposition of 200 nm, the decomposition of the gas by the detector there between removal device outlet confirmed. The removal device was heated to 90 eC . Even after repeated 30 times the film formation, S i H 4. PH 3 is not detected at all, the removal device of the present real施例has been found to be practical.
本実施例では、 4mm径、 60 c mの管を用いたが、 蜂の巣の穴径及び長さは 使用する水素化物ガスの圧力、 流量により適宜決定すればよいが、 穴径は通常数 mm径が好適に用いられる。  In this example, a 4 mm diameter, 60 cm tube was used.However, the hole diameter and length of the honeycomb may be appropriately determined depending on the pressure and flow rate of the hydride gas used, but the hole diameter is usually several mm. It is preferably used.
(実施例 2)  (Example 2)
本発明の第 2の実施例を図 8に示す。  FIG. 8 shows a second embodiment of the present invention.
本実施例では、 N i F2管と N i管をそれぞれ異なる容器 83、 83' に配 し、 それぞれ 85°C、 1 30°Cに加熱し、 B S G (5%S i (N2希釈)In this embodiment, distribution of N i F 2 tube and N i pipe into a different container 83, 83 ', respectively, and heated to 85 ° C, 1 30 ° C, respectively, BSG (5% S i ( N 2 dilution)
800 s c cm, 5%B。Hハ (N2希釈) 1 60 s c c m, 00800 s c cm) 3 0 0 nmの成膜及び n +ポリシリ コン (5 % S i 1 s 1 m, 0. 5 % A s H32 s 1 m. Ar l O s l m) 400 nmの成膜を行った。 この成膜を 30回繰り返した後でも、 S i H^, AsH3, BgHeは全く検出されなかった。 800 sc cm, 5% B. H c (N 2 dilution) 1 60 sccm, 0 0 800 sc cm) 3 0 0 nm of the film formation and the n + polysilicon Con (5% S i 1 s 1 m, 0. 5% A s H 3 2 s 1 m. Ar I O slm) A film was formed to a thickness of 400 nm. Even after this film formation was repeated 30 times, Si H ^, AsH 3 , and BgHe were not detected at all.
(実施例 3)  (Example 3)
本発明の第 3の実施例を図 9に示す。  FIG. 9 shows a third embodiment of the present invention.
本実施例は、 従来の排ガス処理装置と同様に排気系の下流側に除去装置を設け た例である。  This embodiment is an example in which a removing device is provided on the downstream side of the exhaust system similarly to the conventional exhaust gas treatment device.
図 9に於いて、 9 1は特殊ガス導入口、 92, 92' はフッ素ニッケル膜およ び N i膜で被覆した担体を充填した充填塔、 93は加熱器、 94はガス検知器、 In FIG. 9, 91 is a special gas inlet, 92 and 92 'are packed columns filled with a carrier coated with a fluorine nickel film and a Ni film, 93 is a heater, 94 is a gas detector,
95は水洗塔、 96は水循環糟、 97は水循環ポンプを示す。 95 is a washing tower, 96 is a water circulation tank, and 97 is a water circulation pump.
本実施例の除去装置では、 2本の充填塔を並列に配置し、 、ずれか 1本を使用 する。 充填塔のガス出口にガス検知器を取り付け稼働中の除去装置の状態をモニ ターし、 充填塔の除去能力がなくなったところで他方の充填塔に切り替える。 排出されるガスは、 他の半導体製造装置から排出されたガス用の水洗塔 (スク ラバー) に送り込めば良い。 In the removing apparatus of the present embodiment, two packed towers are arranged in parallel, and only one of them is used. Attach a gas detector to the gas outlet of the packed tower to monitor the status of the removal equipment during operation. When the capacity of the packed tower is lost, switch to the other packed tower. The discharged gas may be sent to a scrubber for gas discharged from other semiconductor manufacturing equipment.
産業上の利用可能性 Industrial applicability
本発明により、 水素化物ガスの混合ガスを効果的に除去することが出来、 しか も排気ポンプ上流側に設置することができるため、 排気系等のメンテナンスが著 しく楽になり、 また半導体製造装置の稼働率を大幅に向上させることができる。 また、 粉末固体が発生しないため、 ポンプ、 充填塔やその他装置において目詰 まりを起こすことがなく、 極めて安定して除去を行うこと力出来る。  According to the present invention, the mixed gas of the hydride gas can be effectively removed, and furthermore, since the gas can be installed on the upstream side of the exhaust pump, maintenance of the exhaust system and the like is remarkably facilitated. The operation rate can be greatly improved. In addition, since no powder solids are generated, clogging does not occur in pumps, packed towers and other devices, and the removal can be performed extremely stably.

Claims

請求の範囲 The scope of the claims
1 . 少なくとも 2種以上の水素化物ガスを含有する混合ガスをニッケルフッ化 物及びニッケルと接触させて分解または/及び吸着させることにより、 水素化物 ガスを除去することを特徴とする水素化物ガスの除去方法。 1. A hydride gas removal method comprising removing a hydride gas by bringing a mixed gas containing at least two or more hydride gases into contact with nickel fluoride and nickel to decompose and / or adsorb the mixed gas. Removal method.
2. 前記水素化物ガスは、 周期律表第 I I I族、 第 IV族または第 V族元素の水素化 物ガスであることを特徴とする請求項 1に記載の水素化物ガスの除去方法。  2. The method for removing a hydride gas according to claim 1, wherein the hydride gas is a hydride gas of an element of Group II, IV or V of the periodic table.
3. 前記二ッケルフッ化物及び前記二ッゲルを加熱することにより、 前記水素 化物ガスを分解除去することを特徴とする請求項 1または 2に記載の水素化物ガ スの除去方法。  3. The method for removing a hydride gas according to claim 1, wherein the hydride gas is decomposed and removed by heating the nickel fluoride and the nickel.
4 . 前記二ッケルフッ化物及び前記二ッゲルを異なる温度に加熱することを特 徴とする請求項 3に記載の水素化物ガスの除去方法。  4. The method for removing a hydride gas according to claim 3, wherein the nickel fluoride and the nickel gel are heated to different temperatures.
5. 周期律表第 I I I族元素または第 V族元素の水素化物ガスをニッケルと接触さ せて分解または/及び吸着させることにより、 前記水素化物ガスを除去すること を特徴とする水素化物ガスの除去方法。  5. A hydride gas of a group III element or a group V element of the periodic table is contacted with nickel to decompose and / or adsorb the hydride gas, thereby removing the hydride gas. Removal method.
6. 前記ニッケルを加熱することにより、 前記水素化物ガスを分解除去するこ とを特徴とする請求項 5に記載の水素化物ガスの除去方法。  6. The method for removing a hydride gas according to claim 5, wherein the hydride gas is decomposed and removed by heating the nickel.
7. 少なくとも 2種以上の水素化物ガスを含有する混合ガスの導入口と排出口 とを有する容器を少なくとも 1つ有し、 該容器内に前記混合ガスと接触するよう にニッケルフッ化物及びニッケルをそれぞれ個別にあるいは一緒に配置し、 該ニ ッケルフッ化物及びニッゲルを加熱するための加熱手段を設けたことを特徴とす る水素化物ガスの除去装置。 '  7. At least one container having an inlet and an outlet for a mixed gas containing at least two or more hydride gases, wherein nickel fluoride and nickel are placed in the container so as to contact the mixed gas. A hydride gas removing device which is arranged individually or together, and provided with a heating means for heating the nickel fluoride and the nigel. '
8. 前記加熱手段は、 前記二ッケルフッ化物及び前記二ッゲルを異なる温度に 加熱するものであることを特徴とする請求項 7に記載の水素化物ガスの除去装 置。  8. The hydride gas removing device according to claim 7, wherein the heating means heats the nickel fluoride and the nickel gel to different temperatures.
9. 周期律表第 I I I族元素または第 V族元素の水素化物ガスの導入口と排出口と を有する容器内に、 前記ガスと接触するようにニッケルを配置し、 該ニッケルを 加熱するための加熱手段を設けたことを特徴とする水素化物ガスの除去装置。  9. Place nickel in a container having an inlet and an outlet for a hydride gas of a group III element or a group V element of the periodic table so as to contact the gas, and heat the nickel. A hydride gas removing device provided with a heating means.
PCT/JP1995/001553 1994-08-05 1995-08-04 Hydride gas removing method and apparatus WO1996004064A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP50640096A JP3801201B2 (en) 1994-08-05 1995-08-04 Method and apparatus for removing hydride gas
KR1019970700655A KR970704501A (en) 1994-08-05 1995-08-04 HYDRIDE GAS REMOVING METHOD AND APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6184951A JPH09239232A (en) 1994-08-05 1994-08-05 Method for removing hydride gas and apparatus therefor
JP6/184951 1994-08-05

Publications (1)

Publication Number Publication Date
WO1996004064A1 true WO1996004064A1 (en) 1996-02-15

Family

ID=16162212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001553 WO1996004064A1 (en) 1994-08-05 1995-08-04 Hydride gas removing method and apparatus

Country Status (3)

Country Link
JP (2) JPH09239232A (en)
KR (1) KR970704501A (en)
WO (1) WO1996004064A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068034A (en) * 1983-09-14 1985-04-18 Nippon Paionikusu Kk Process for removing poisonous component
JPS60125233A (en) * 1983-12-08 1985-07-04 Mitsui Toatsu Chem Inc High degree treatment of exhaust gas
JPH01139536A (en) * 1987-09-24 1989-06-01 Labofina Sa Removal of arsine from light olefin-containing hydrocarbon raw material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068034A (en) * 1983-09-14 1985-04-18 Nippon Paionikusu Kk Process for removing poisonous component
JPS60125233A (en) * 1983-12-08 1985-07-04 Mitsui Toatsu Chem Inc High degree treatment of exhaust gas
JPH01139536A (en) * 1987-09-24 1989-06-01 Labofina Sa Removal of arsine from light olefin-containing hydrocarbon raw material

Also Published As

Publication number Publication date
KR970704501A (en) 1997-09-06
JP3801201B2 (en) 2006-07-26
JPH09239232A (en) 1997-09-16

Similar Documents

Publication Publication Date Title
US7972582B2 (en) Method and apparatus for treating exhaust gas
US6153150A (en) Apparatus and method for controlled decomposition oxidation of gaseous pollutants
US6602480B1 (en) Method for treating waste gas containing fluorochemical
US20060198769A1 (en) Apparatus for abatement of by-products generated from deposition processes and cleaning of deposition chambers
US6845619B2 (en) Integrated system and process for effluent abatement and energy generation
KR101097240B1 (en) Method and apparatus for treating exhaust gas
JP2005187880A (en) Method for cleaning film deposition system
WO1996004064A1 (en) Hydride gas removing method and apparatus
US6764666B2 (en) Process for treating gas containing fluorine-containing compounds and CO
JP4579847B2 (en) Method and apparatus for removing hydride gas
WO2007037353A1 (en) Method of and apparatus for treating discharge gas
JP2018186228A (en) Deposit removing method and deposit removing apparatus
KR20000069619A (en) Device and Method for the Storage, Transportation and Production of Active Fluorine
JP4159004B2 (en) Gas recovery method
JP2010058009A (en) Method of decomposing nitrogen trifluoride and device using this method
JP3520361B2 (en) Hydride decomposition treatment method and treatment device
JPH08257359A (en) Method for processing perfluorocarbon-containinggas flow
US20230274952A1 (en) Gas treatment system and gas treatment method using the same
WO2023199410A1 (en) Method for treating exhaust gas containing nitrogen compound, and apparatus for said method
WO1994029492A1 (en) Member or part of superhigh-purity gas supply system
JP2739538B2 (en) Production method of surface modified metal body with low desorption moisture
JP2009254960A (en) Detoxifying method and detoxifying apparatus for hydrogenated tin
RU2288025C2 (en) Method of treating gas emissions containing fluorine compounds
TWI317387B (en) A plasma method and apparatus to dispose of process waste gases and particles
JP2006212583A (en) Cleaning apparatus and cleaning method of harmful gas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019970700655

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1019970700655

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWW Wipo information: withdrawn in national office

Ref document number: 1019970700655

Country of ref document: KR