WO1996002036A1 - Assistant numerique personnel de petite taille - Google Patents

Assistant numerique personnel de petite taille Download PDF

Info

Publication number
WO1996002036A1
WO1996002036A1 PCT/US1995/008603 US9508603W WO9602036A1 WO 1996002036 A1 WO1996002036 A1 WO 1996002036A1 US 9508603 W US9508603 W US 9508603W WO 9602036 A1 WO9602036 A1 WO 9602036A1
Authority
WO
WIPO (PCT)
Prior art keywords
μpda
host
bus
interface
personal digital
Prior art date
Application number
PCT/US1995/008603
Other languages
English (en)
Inventor
Dan Kikinis
Pascal Dornier
William J. Seiler
Original Assignee
Elonex Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elonex Technologies, Inc. filed Critical Elonex Technologies, Inc.
Publication of WO1996002036A1 publication Critical patent/WO1996002036A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1632External expansion units, e.g. docking stations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/78Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure storage of data
    • G06F21/79Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure storage of data in semiconductor storage media, e.g. directly-addressable memories
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/82Protecting input, output or interconnection devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/725Cordless telephones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/42314Systems providing special services or facilities to subscribers in private branch exchanges
    • H04M3/42323PBX's with CTI arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0008Connection or combination of a still picture apparatus with another apparatus
    • H04N2201/0034Details of the connection, e.g. connector, interface
    • H04N2201/0048Type of connection
    • H04N2201/0049By wire, cable or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0008Connection or combination of a still picture apparatus with another apparatus
    • H04N2201/0034Details of the connection, e.g. connector, interface
    • H04N2201/0048Type of connection
    • H04N2201/0051Card-type connector, e.g. PCMCIA card interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0008Connection or combination of a still picture apparatus with another apparatus
    • H04N2201/0034Details of the connection, e.g. connector, interface
    • H04N2201/0048Type of connection
    • H04N2201/0053Optical, e.g. using an infrared link

Definitions

  • This invention is in the area of portable computers and pertains more specifically to small portable computing devices known in the art as personal digital assistants.
  • PDA Personal Digital Assistant
  • a big drawback of the PDA systems being offered is the way they transfer data between a user's desktop unit, or other host, and the PDA.
  • Known communication is by modem, by infrared communication, and by serial connection. These all require manipulation by a user, modulation on one or both ends of the communication path, and the like, which can be time-consuming, error-prone, and hardware extensive (expensive).
  • Presently the Newton offers a modem and/or LED communication as an option, adding to the overall cost.
  • a PDA unit of this sort is the subject of the present invention, and is termed by the inventors a micro-PDA, or ⁇ PDA.
  • a very important feature of the ⁇ PDA in an aspect of the present invention is a direct parallel bus interface with a connector allowing the unit to be docked by plugging it into a docking bay in a host unit. Moreover, when the ⁇ PDA is docked in the host, there needs to be a means to effectively disable the CPU in the ⁇ PDA and to provide direct access to both the ⁇ PDA software and data storage by the host CPU. This direct access would provide immediate ability to communicate in the fastest available fashion between the ⁇ PDA and the host, and would also facilitate additional important features to be described below.
  • the ⁇ PDA also needs to have an optional compressed bus interface, including a connector separate from the host interface, so add-on devices may be utilized, such as a FAX modem, cellular communication, printer, and so on.
  • add-on devices such as a FAX modem, cellular communication, printer, and so on.
  • An additional feature that could be optionally provided in another aspect of the invention is an interface at the host to allow a user to select pre-arranged software mixes for loading to the ⁇ PDA.
  • This feature comprises a set of control routines operating in conjunction with the host's display and input means, to allow the user to quickly select applications and perhaps data as well to be loaded to the ⁇ PDA satellite, to configure the smaller, more portable unit for specific itineraries and purposes.
  • Another desirable feature is an ability to automatically update data files.
  • data on the host if carrying a later date and/or time stamp than the data on the ⁇ PDA, would be automatically updated on the ⁇ PDA and vice-versa.
  • the host gains access, determines the location of the latest files, and accomplishes the update.
  • This feature needs to have some built-in user prompting to be most effective. It makes the ⁇ PDA a true satellite system.
  • a personal digital assistant module comprising an enclosure for enclosing and supporting internal elements, a microcontroller within the enclosure for performing digital operations to manage functions of the personal digital assistant module, and a memory means connected to the microcontroller by a memory bus structure for storing data and executable routines.
  • a power supply means within the enclosure for supplying power to functional elements of the personal digital assistant module, a display means operable by the microcontroller and implemented on a surface of the enclosure, and input means connected to the microcontroller for providing commands and data to the personal digital assistant module.
  • a host interface - 5 - means comprising a host interface bus structure, which may be configured as a PCMCIA bus interface, is connected to the microcontroller and to a first portion of a host interface connector at a surface of the enclosure, and the host interface means is configured to directly connect the microcontroller to a compatible bus structure of a host computer.
  • the personal digital assistant module has an expansion bus interface comprising an expansion bus structure connected to the microcontroller and to a first portion of an expansion bus connector for connecting the microcontroller to a peripheral device.
  • an expansion bus interface comprising an expansion bus structure connected to the microcontroller and to a first portion of an expansion bus connector for connecting the microcontroller to a peripheral device.
  • the personal digital assistant module also has a nonvolatile storage device, such as an EEPROM connected to the microcontroller and containing one or more codes unique to the personal digital assistant, for uniquely identifying the personal digital assistant to digital devices connected on the host interface.
  • a nonvolatile storage device such as an EEPROM connected to the microcontroller and containing one or more codes unique to the personal digital assistant, for uniquely identifying the personal digital assistant to digital devices connected on the host interface.
  • the display and input means for the personal digital assistant are configured as an overlaid touch screen and LCD display on a surface of the outer case of the personal digital assistant.
  • a pointer device implemented as a thumbwheel in one embodiment and as a pressure sensitive pad in another is provided as part of the input capability.
  • the personal digital assistant module forms a unique combination with a general-purpose computer host having the personal digital assistant as a satellite unit.
  • the host in this instance has a docking bay especially configured to dock the personal digital assistant, making a direct bus connection between the local CPU of the personal digital assistant and the CPU of the host.
  • the host may be a desktop unit, a notebook computer, or a smaller portable like a palmtop computer. This combination provides power and convenience not before available.
  • Many other digital devices are also provided according to various aspects of the invention, such as modems, scanners, data acquisition peripherals, cellular phones, and a software vending machine, and all of these devices may be appended to the personal digital assistant by the expansion bus interface or, in many cases, by the host interface.
  • the personal digital assistant provided according to embodiments of the present invention is a unit more compact than conventional PDAs. It represents a new dimension in computer application and applicability, in a form promising to be eminently usable by and useful to almost everyone; and at a price easily affordable. It solves the communication problem intrinsic to personal digital assistants relative to larger and more powerful computers, with a unit that fits into a user's breast pocket, and at a very low price.
  • Fig. 1 A is an isometric view of a ⁇ PDA according to an embodiment of the present invention.
  • Fig. IB is a plan view of the ⁇ PDA of Fig. 1A.
  • Fig. 2 is a cross-sectional view of the ⁇ PDA of Figs. 1A and IB.
  • Fig. 3 is a block diagram of the ⁇ PDA of Fig. 1A and some peripheral elements.
  • Fig. 4 is a more detailed plan view of the ⁇ PDA of Fig. 1A showing in particular an LCD display and touch screen user interface in an aspect of the present invention.
  • Fig. 5 is an isometric view of a ⁇ PDA and a host notebook computer in an aspect of the present invention, with the ⁇ PDA about to be docked in a docking bay of the notebook computer.
  • Fig. 6 is a block diagram of a ⁇ PDA docked in a docking bay of a host computer according to an embodiment of the present invention.
  • Fig.7 is a logic flow diagram of the steps in docking a ⁇ PDA in a host computer according to an embodiment of the present invention.
  • Fig. 8 is an isometric illustration of a ⁇ PDA software vending machine in an aspect of the present invention.
  • Fig. 9 is a top plan view of a ⁇ PDA enhanced user interface according to an embodiment of the present invention.
  • Fig. 10 is a top plan view of a ⁇ PDA with a microphone in an embodiment of the present invention.
  • Fig. 11 is an isometric drawing of a ⁇ PDA docked in a dedicated cellular or cordless telephone according to an embodiment of the present invention.
  • Fig. 12 is a plan view of a ⁇ PDA with a speaker and pager interface according to an embodiment of the present invention.
  • Fig. 13 is a plan view of a ⁇ PDA with an infrared communication interface according to an embodiment of the present invention.
  • Fig. 14 is a plan view of a ⁇ PDA with a scanner attachment according to an embodiment of the present invention.
  • Fig. 15 is a plan view of a ⁇ PDA with a fax-modem attached according to an embodiment of the present invention.
  • Fig. 16 is a plan view of a ⁇ PDA with a printer adapter interface according to an embodiment of the present invention.
  • Fig. 17 is an isometric drawing of a ⁇ PDA docked in a barcode reader providing a data acquisition peripheral according to an embodiment of the present invention.
  • Fig. 18 is an isometric view of a ⁇ PDA with a solar charger according to an embodiment of the present invention.
  • Fig. 19 is a plan view of four ⁇ PDAs interfaced to a dedicated network console providing inter-PDA communication according to an embodiment of the present invention.
  • Fig. 20 is an isometric view of a ⁇ PDA according to the invention connected by the expansion port to a standard-sized keyboard.
  • Fig. 21 is a block diagram illustrating a computer architecture according to one embodiment of the invention.
  • Fig. 22 is a block diagram illustrating a computer architecture as shown in Fig. 21, comprising also an optional interface and cache system.
  • Fig. 23 is a pin-out listing of the optimized bus structure of the invention in a preferred embodiment.
  • Fig. 24A illustrates a memory mapping scheme for a general- purpose computer according to an embodiment of the present invention.
  • Fig. 24B illustrates a bus controller incorporating an IRQ controller and a shadow DMA controller according to an embodiment of the invention.
  • Fig. 25 is a timing diagram showing the states of the Clock, HCl Bus Address/Data, Address Strobe, Device Decode, Ready, and Read/Write lines during back-to-back read operations in an embodiment of the invention.
  • Fig. 26 is a timing diagram showing the bus states for a burst- mode read operation, also called a HCl master-mode read, in an embodiment of the present invention.
  • Fig. 27 is a timing diagram showing the HCl bus states for back-to-back write cycles in an embodiment of the invention.
  • Fig. 28 is a timing diagram showing the HCl bus states for a burst-mode write transfer in an embodiment of the present invention. Description of the Preferred Embodiments
  • Fig. 1 A is an isometric view of a ⁇ PDA 10 according to an embodiment of the present invention.
  • the unit is modeled on the PCMCIA standard Type II form factor, having a height Dl of about 5mm.
  • Body 12 is described in further detail below, and has a female portion 14 of a connector recessed at one end for engaging a mating male portion of the connector in a host computer, connecting the ⁇ PDA internal circuitry directly with a host internal bus.
  • the host unit may be a notebook computer having a docking bay for the ⁇ PDA. Docking bays may be provided in desktop and other types of computers, and even in other kinds of digital equipment, several examples of which are described below.
  • a combination I/O interface 16 implemented on one side of the ⁇ PDA, comprising a display overlaid with a touch-sensitive planar structure providing softkey operation in conjunction with interactive control routines operable on the ⁇ PDA in a stand-alone mode.
  • Fig. 1A there may also be guides implemented along the sides of the case of the device for guiding the module in and out of a docking bay in a host computer unit. There may also be one or more mechanical features facilitating engagement and disengagement of the module in a docking bay.
  • Fig. IB is a top plan view of the ⁇ PDA of Fig. 1A, showing a thumbwheel 18 implemented in one corner of the ⁇ PDA.
  • the thumbwheel in this embodiment is an input device capable of providing input with both amplitude and directional characteristics, and in some cases rate characteristics as well.
  • the thumbwheel has many uses in combination with the ⁇ PDA and I/O interface 16. One such use is controlled scrolling of icons, characters, menus, and the like on the display of the device.
  • the thumbwheel provides many of the functions of a pointer device.
  • a second external connector portion 20 is provided. This connector portion is for engaging peripheral devices as part of an expansion bus interface.
  • Fig. 2 is a simplified cross-sectional view of a means for constructing a ⁇ PDA according to the present invention in a Type II PCMCIA, or other relatively small package.
  • ICs 34 are encapsulated in a conformal material 36, and interconnection is accomplished by traces on a flexible polymer film 32 shown as overlaying the encapsulated structure.
  • the ICs are not packaged in the conventional manner having solder leads for assembly to a printed circuit board. Rather, connections are made directly between the solder pads on the chip and the traces on the Kapton film.
  • ICs indicated by element No. 34 with specific functional ICs in a ⁇ PDA. This cross-section is illustrative of a method of construction only.
  • LCD display 25 is implemented on one side of the ⁇ PDA, and touch-sensitive interface 27 is provided overlaying at least a portion of the LCD display.
  • a metal casing 38 or other suitable material or combinations of material, surrounds the internal components and conforms to Type II PCMCIA form factors. This simplified cross-section illustrates some of the principles of construction that can allow the needed components to be inexpensively fitted into the small form factor needed.
  • the ⁇ PDA is implemented in the form factor of a type III (10 mm thick) PCMCIA unit, using relatively conventional technology, such as PCB technology, rather than the encapsulated construction described immediately above.
  • Various other constructions, form factors, and combinations are possible, as well.
  • Fig. 3 is a simplified electrical block diagram of the ⁇ PDA of Figs. 1A, IB and 2.
  • a unique microcontroller 11 acts as the CPU of the ⁇ PDA in the stand-alone mode, that is, when the ⁇ PDA is not docked in a host unit.
  • microcontroller 11 acts as a slave unit, granting bus control to the
  • the CPU of the host In docked mode, the CPU of the host thus gains control of the memory contents of the ⁇ PDA, subject in most cases to security procedures which are described below.
  • the host computer can transfer data and software into and out of a docked ⁇ PDA memory.
  • many other cooperative operating modes may be accomplished between the two CPUs and accessible memory devices.
  • Memory 13 is preferably a nonvolatile device from 1 to 2 megabytes in this embodiment, and both control routines for applications and data files are stored in this memory.
  • Memory 13 may be flash memory, CMOS ROM, CMOS RAM with battery, or a combination, with the software stored in ROM and the data in the flash memory.
  • the memory device is interfaced to microcontroller 11 via a dedicated bus structure 17, and microprocessor 11 is configured to drive memory bus 17.
  • a battery 15 is the power source in the stand-alone mode, and may be recharged in one or more of several ways.
  • the power traces are not shown in Fig. 3, but extend to all of the powered devices in the ⁇ PDA module.
  • the host power source may be connected to pins through the host interface to recharge the battery.
  • an attached means such as a solar panel may be configured to charge the battery and/or provide power to the ⁇ PDA.
  • a solar panel for power is described elsewhere in this disclosure. Also the battery may be easily removed for periodic replacement.
  • Host bus connector 14 is a part of a host interface which comprises a bus structure 26 for providing connection to the host in docked mode, as described above.
  • the host interface is according to PCMCIA Type II, Rev. 3 standard, which is capable of communication either in PCMCIA mode or in a mode similar to PCI mode.
  • PCI mode refers to a high-speed intermediate bus protocol being developed by Intel corporation, expected to become a standard bus architecture and protocol in the industry.
  • the physical interface at the host in this embodiment is a slot-like docking bay, as is typical of know docking bays for PCMCIA devices. This docking bay may be implemented as a docking box, a built-in unit like a floppy-drive unit, or it may take some other form.
  • Connector portion 20 is a part of the expansion bus interface described above, comprising a dedicated bus structure 40 connected to microcontroller 11.
  • This interface can be implemented in a number of different ways.
  • the purpose of the optional expansion bus interface is to connect to optional peripheral devices, such as a printer, a FAX modem, a host cellular phone, and others.
  • the expansion bus interface is not an essential feature in a minimum embodiment of the present invention, but provides vastly enhanced functionality in many embodiments.
  • the expansion interface can take any one of several forms.
  • a preferred form is an extended enhanced parallel port and protocol based on an invention by the present inventors disclosed in a copending patent application.
  • Another form is an indexed I/O port having 8-bit address and 8-bit data capability.
  • the requirement of the expansion port is that the connection and communication protocol be compatible with expansion devices, such as telephone modems, fax modems, scanners, and the like. Many other configurations are possible.
  • Optional equipment such as devices listed in box 19 may be connected for use with the ⁇ PDA through the expansion bus. Selected ones of such devices may also be built in to the ⁇ PDA in various embodiments, providing variations of applicability. In the former case, connection is through path 21 and the expansion bus interface via connector portion 20. In the built-in case, connection is in the interconnection traces of the ⁇ PDA as indicated by path 23.
  • I/O interface 16 (also Fig. IB) is for viewing ⁇ PDA application-related data and for touch-sensitive input via softkeys.
  • softkeys is meant assignment by software of various functions to specific touch sensitive screen areas, which act as input keys.
  • Labels in I/O interface 16 identify functionality of the touch-sensitive areas in various operating modes according to installed machine control routines. LCD display 25 and the touch-sensitive area 27 together form the combination I/O interface 16 described also above.
  • data and program security comprising an Electrically Erasable
  • EEPROM Electrically Programmable Read Only Memory
  • ⁇ PDA 31 holds one or more codes installed at the point of manufacturing to provide security for information transfer between a host and a ⁇ PDA.
  • the purpose is to control access by a host to the memory contents of a ⁇ PDA, so each ⁇ PDA may be configured to an individual.
  • docking and bus mastering machine control routines are initiated at the point of docking, and this security process is described in more detail below.
  • security codes may be provided by a Read Only Memory (ROM) chip or other permanent or semi-permanent memory source.
  • ROM Read Only Memory
  • Fig. 4 is a plan view similar to Fig. IB, of a ⁇ PDA, showing in particular I/O interface 16.
  • I/O interface 16 may vary, but in general occupies a major portion of one of the sides of the module.
  • I/O interface 16 comprises an LCD display with a resolution of 256 by 144 pixels in a screen size that displays 32 by 12 characters. Each character in this embodiment is displayed in an area eight pixels wide and twelve pixels high. In another embodiment, the pixel resolution is 320 by 200, which corresponds to 40 by 16 characters.
  • the touch-sensitive areas of the touch-sensitive screen correspond to the character areas of the display. By touching an area with a finger or stylus, data can be entered quite quickly and with minimal CPU demand.
  • thumbwheel 18 provides a two-directional means of controlling the configuration of the display according to installed control routines.
  • a menu 70 is configured at one side to represent the current status of any application in progress and to provide appropriate user menu selections.
  • input from thumbwheel 18 is used for scrolling through menu 70, and active areas may be indicated by a cursor.
  • a user makes a menu selection by pressing the appropriate touch-sensitive area.
  • a specific input may be provided to cause the menu area to be displayed on either side of the display according to a user's preference.
  • thumbwheel 18 may be configured to allow for scrolling and panning.
  • a document window 72 is provided in this embodiment at the top or bottom of I/O interface 16.
  • a cursor locates the active position within the document for editing purposes.
  • Menu 70 provides selection of available fonts, and input by thumbwheel 18 controls cursor movement over the document.
  • rotating thumbwheel 18 in one direction may display horizontal strips of a document, while rotating the thumbwheel in the opposite direction moves the window vertically strips of the same document.
  • a soft key or optional hard key may be configured to switch between the document and keyboard window, and the same or another key may be configured to switch between scrolling left or right, up or down, document or keyboard.
  • a switch key may be used to change the thumbwheel mode of operation.
  • a switch key may also be used in combination with a floating pointer to select characters and menu items. In this embodiment, the user can keep his or her hands relatively stationary on just the thumbwheel and the switch key, making all possible selections. Use of a a switch key in combination with a floating pointer facilitates the use of small fonts.
  • a switch key may also be incorporated as an additional hard key in a convenient location on the case 12.
  • a further embodiment of the present invention provides an I/O set-up application wherein a user may completely customize features of I/O area displays.
  • the four-way force-sensitive mouse button can provide menu scrolling of a cursor and panning and/or indexing of keyboard and document windows, while the selector button is used to select and edit according to position of a cursor. This configuration minimizes hand movement and keeps the I/O area clear for viewing.
  • thumbwheels including the translation of mechanical motion and pressure to electrical signals and provision of such signals to a microcontroller. For this reason, details of such interfaces are not provided in this disclosure. Combinations of such inputs with displays and input areas may, however, be considered as inventive.
  • Fig. 5 is an isometric drawing of a ⁇ PDA 10 in position to be docked in a notebook computer 172 via a Type II PCMCIA docking port 105 according to an embodiment of the present invention.
  • the ⁇ PDA is activated and a procedure is initiated with the host computer to manage communication and verify memory access rights (security).
  • Access rights are considered important by the inventors for a number of reasons. Firstly, through the expedient of one or more specific codes, unique to each ⁇ PDA, a user may protect files stored in his module from access by unauthorized persons.
  • the code can be used both to control access to data and files via I/O interface 16, and also through the host bus interface, so data and files may be secure from access by an unauthorized host system.
  • an application routine can query the user for an access code to be entered at I/O interface 16 Fig. 4). If the code is not entered properly, access is denied, and power goes off.
  • Codes for the purpose are stored in EEPROM 31 (Fig. 3), or in whatever ROM device may be devoted to the purpose. In some embodiments, the code may by mask- programmed at manufacture, so it is not alterable. In others, the code may be accessible and changeable by special procedures in the field.
  • a portable or desktop computer may have a docking port physically configured to receive a ⁇ PDA, yet not be configured to communicate with the ⁇ PDA. This certainly might be the case where the ⁇ PDA is in the PCMCIA form.
  • this specification terms such a unit a generic host. If the unit is configured to communicate with a ⁇ PDA it is an enabled host. If a host is configured for full access to a particular ⁇ PDA, it is a dedicated host. If a docking unit is a generic host, there will be no communication unless the person presenting the ⁇ PDA provides the control routines to the host.
  • the communication software may be resident in memory 13 (Fig. 3) of a docked ⁇ PDA, transferrable to the host to facilitate further communication.
  • the docking unit is in fact an enabled host, or is configured after docking to be an enabled host, the stored code or codes in
  • EEPROM 31 may be used to verify authorization for data and program transfer between the host and a ⁇ PDA.
  • this procedure is in the following order: First, when one docks a ⁇ PDA in a compatible docking port, certain pin connections convey to both the ⁇ PDA microcontroller and to the host CPU that the module is docked. Assuming an enabled host, the fact of docking commences an initialization protocol on both systems. In most embodiments, if the docking unit is a non-host, that is, it is not capable of communication with the docked module, nothing happens, and the user may simply eject the docked module.
  • an application is started to configure host access to the ⁇ PDA's data files through the ⁇ PDA microcontroller.
  • a user interface is displayed on the host monitor 104 (Fig. 5).
  • the host interface menu as well as other application menus, may be formatted in part as a display of the ⁇ PDA I/O interface 16 as seen in Fig. 4 and described in accompanying text.
  • the docked ⁇ PDA can be operated in situ by manipulating the input areas of the ⁇ PDA displayed on the host's screen.
  • a visitor protocol is initiated.
  • a visitor menu is displayed on host display 104 for further input, such as password queries for selections of limited data access areas in the docked module.
  • a user may gain full access to the docked module's memory registers by entering the proper password(s).
  • full access may be immediately granted to the host to access memory contents of the docked module, including program areas; and both data and programs may be exchanged.
  • the on-board module microcontroller again gains full control of the internal ⁇ PDA bus structures.
  • Fig. 6 is a simplified block diagram of a ⁇ PDA docked in a host computer
  • Fig. 7 is a basic logic flow diagram of the steps involved in docking a ⁇ PDA in a host computer 66 according to an embodiment of the present invention.
  • Host computer 66 is represented in a mostly generic form, having a host CPU 24, and input device 60, such as a keyboard, a mass storage device 28, such as a hard disk drive, and system RAM 62. It will be apparent to those with skill in the art that many hosts may have a much more sophisticated architecture, and the architecture shown is meant to be illustrative.
  • connector 14' in Fig. 6 comprises portion 14 shown in Figs. IB and 3 and a mating connector portion for engaging portion 14 in port 105 (Fig. 5).
  • the engagement of the separate portions of the connector cause bus 26 in the ⁇ PDA and bus 26' in the host to become directly connected. There is then a direct bus path between microcontroller 11 and host CPU 24 (Fig. 6).
  • step 42 represents insertion of a ⁇ PDA module into the docking port.
  • step 44 the signalling pin configuration signifies physical docking is accomplished.
  • host interface bus 26 is activated, including the mated host bus 26' in the host.
  • microcontroller 11 in the ⁇ PDA starts a preprogrammed POST procedure.
  • Microcontroller 11 in this embodiment has a page of RAM 68 implemented on the microcontroller chip. In other embodiments RAM may be used at other locations.
  • the POST routine loads a bootstrap program to RAM 68, which includes a code or codes for security matching. This code or codes comprise, for example, a serial number.
  • the bootstrap program begins to execute in microcontroller 11, and at step 56 the microcontroller looks for a password from the host on host interface bus 26 (Fig. 6).
  • the fact of docking assuming an enabled or dedicated host, also causes a communication routine, which may be accessed from, for example, mass storage device 28 at the host, to display a user interface on monitor screen 104 of the host unit, as partly described above. It is this communication program that makes a generic host an enabled host.
  • microcontroller 11 will allow full access to memory 31 at function 52, Fig. 7, for the host CPU, or limited access at some level at function 58, defined by received codes (or no matching code at all).
  • the access protocols and procedures allowing partial or direct access to ⁇ PDA memory 13 are relatively well known procedures in the art, such as bus mastering techniques, and need not be reproduced in detail here.
  • bus mastering techniques In addition to simple comparison of codes, there are other techniques that may be incorporated to improve the integrity of security in the communication between a ⁇ PDA and a host.
  • executable code might also be uploaded to onboard RAM 68, or code keys to be used with executable code from other sources, or relatively simple maps re-allocating memory positions and the like, so each ⁇ PDA may be a truly unique device.
  • executable code might also be uploaded to onboard RAM 68, or code keys to be used with executable code from other sources, or relatively simple maps re-allocating memory positions and the like, so each ⁇ PDA may be a truly unique device.
  • Auto-updating has various options, such as auto-updating by clock signature only, flagging new files before transfer, and an editing means that allows the user to review both older and newer versions of files before discarding the older in favor of the newer.
  • This automatic or semiautomatic updating of files between the satellite and the host addresses a long-standing problem.
  • the updating routines may also incorporate a backup option to save older files.
  • Another useful feature in host/ ⁇ PDA communication is a means for a user to select and compose a mix of executable program files for downloading to a ⁇ PDA, either replacing or supplementing those executable routines already resident.
  • a user can have several different program lists for downloading as a batch, conveniently configuring the applicability of a ⁇ PDA among a wide variety of expected work environments.
  • Such applications as databases, spreadsheets, documents, travel files such as currency converters, faxing and other communications programs, time clocks, address and telephone records, and the like, may comprise customized lists of user-preferred applications.
  • an undocked ⁇ PDA can transfer data via the optional expansion bus 40 (Fig. 3) directly to a host.
  • a ⁇ PDA user without access to a PCMCIA interface on his host (notebook or desk-top) computer, he or she can connect to a host via an auxiliary port on the host, such as a serial port, via the expansion bus interface.
  • the ⁇ PDA still requests password(s) from the host, and controls access to its on-board memory according to the password(s) received.
  • the optional expansion interface may also be used in some embodiments while a ⁇ PDA is mastered by a host, wherein the host may effectively send data through the bus structures of the ⁇ PDA.
  • Machine with a very large electronic storage capacity wherein a ⁇ PDA user may dock a module and purchase and download software routines compatible with the ⁇ PDA environment.
  • Fig. 8 is an isometric view of such a vending machine 61 having a docking bay 63 for a ⁇ PDA, a credit card slot 65, and a paper money slot 67.
  • a display 69 provides a user interface for reviewing and purchasing software from the vending machine, along with selector buttons such as button 71 along the sides of the display.
  • the display may also have a touch screen, and may, in some embodiments, emulate the ⁇ PDA I/O area on a larger scale.
  • a user may, in this embodiment, review software for sale simply by docking his ⁇ PDA unit in the vending machine and selecting from a menu on display 69.
  • the menu may allow the user to browse all available applications, or list new applications since entered dates. The user can select certain applications, try them out, at least in simulation, and then select applications to purchase.
  • the vending machine once all the requirements are met, such as proper identification and payment, copies the selected application s) to the memory of the ⁇ PDA, or, alternatively, to a floppy disk provided by either the user or the vending machine.
  • a floppy disk drive 73 in the vending machine and a port 75 for dispensing formatted floppies for a customer to use in the disk drive. This mode is useful for the instances where a user's ⁇ PDA is loaded beyond capacity to receive the desired software, or the user simply wishes to configure the software mix himself from his or her own host computer.
  • each user's ⁇ PDA includes an EEPROM or other storage uniquely identifying the ⁇ PDA by a serial number or other code(s), so the vending machine may be configured in this embodiment to provide the software in one of several modes.
  • a user may buy for a very nominal price a demo copy of an application, which does not provide full capability of the application, but will give the user an opportunity to test and become familiar with an application before purchase.
  • the user may buy a version of the same application, configured to the ID key of the ⁇ PDA to which it is loaded, and operable only on that ⁇ PDA.
  • the software is transferable between a family of keyed ⁇ PDAs, or has the ability to "unlock" only a limited number of times. In these cases, the applications would be sold at a lesser price than an unlocked version.
  • the unlocked version works on any ⁇ -PDA and/or host/ ⁇ PDA system. The higher price for the unlocked version compensates for the likelihood of unauthorized sharing of the vended applications.
  • the vending machine could also offer a keyed version, customized to operate only on the ⁇ PDA docked in the software vending machine, or upon a family of ⁇ PDAs.
  • This keyed version is possible because of the individual and unique nature of each ⁇ PDA, which has, at a minimum, a unique serial number, and may also have other security programming, as described above, which allows a vending machine to prepare and download a customized copy of an application that will operate only on the particular module for which it is purchased.
  • a standard version stored in the memory facility of a vending machine might be recompiled, for example, on downloading, using a unique code from the docked or identified ⁇ PDA as a key in the compilation, so only the specific ⁇ PDA may run the program by using the same unique key to sequence the instructions while running.
  • the key for scrambling or otherwise customizing an application might also comprise other codes and/or executable code sequences stored uniquely in a ⁇ PDA.
  • printer outlet 77 which prints a hardcopy manual for the user. It is, of course, not necessary that the software vended be specific to the
  • M-PDA M-PDA.
  • Applications may also be vended for other kinds of machines, and transported in the memory of the ⁇ PDA, or by floppy disk, etc.
  • a non- ⁇ PDA user can acquire a wide assortment of software.
  • the software vending machine may also serve as an optional informational display center in such locations as airports, train stations, convention centers, and hotels.
  • a user may interface directly and upload current information including, but not limited to. local, national, and world news; stock quotes and financial reports; weather; transportation schedules; road maps; language translators; currency exchange applications; E-mail and other direct on-line services.
  • a customized vending machine could be tailored to business travelers and allow fast access to pertinent information, allowing the user to download files to send via E-mail.
  • the vending machines are linked to each other allowing users to send messages to associates travelling through locations of associated vending machines.
  • Such dedicated ⁇ PDA E-mail is immediately downloaded to a specific ⁇ PDA as it is docked.
  • the sender may have the associate's ⁇ PDA unique encoded key as identification, or some other dedicated identifying means for E-mail.
  • each business associate may prompt the custom vending machine in that location via an optional installed infrared interface (not shown) in their ⁇ PDA.
  • the custom vending machine also equipped for infrared communication, receives the signal and sends/or receives any messages that are waiting.
  • Fig. 9 is a plan view of an enhanced I/O interface unit 79 according to an aspect of the present invention.
  • Interface unit 79 with about a 5 -inch diagonal measurement, comprises a combination
  • LCD display at least partially overlaid by a touch-sensitive input screen, providing an I/O area 80 in much the same manner as in a ⁇ PDA.
  • docking bays 81, 83, 85, and 87 are provided in the left and right edges of interface unit 79 in this embodiment, and are configured for PCMCIA type II modules.
  • One of these bays may be used for docking a ⁇ PDA according to the present invention, and the other three to provide a larger CPU, additional memory, battery power, peripheral devices such as modems, and the like by docking functional PCMCIA modules.
  • Interface unit 79 is a framework for assembling a specialty computer through docking PCMCIA units, including a ⁇ PDA according to the present invention. In other embodiments where the ⁇ PDA assumes other form factors, the docking bays may be configured accordingly.
  • a docked ⁇ PDA in this embodiment is configured to produce its I/O display on I/O area 80.
  • the thumbwheel on the M-PDA is accessible while docked and acts as described above in the stand-alone mode in this case.
  • the enhanced display has a re-configured output that enables the user to manipulate the data from the touch-screen alone and/or additional hardware selector buttons and/or a standard keyboard attached to the enhanced display via a dedicated bus port, or even through the expansion port of a docked ⁇ PDA.
  • the enhanced display has a dedicated mouse port and/or a dedicated thumbwheel.
  • interface unit 79 has an inexpensive, conventional, replaceable battery and/or a rechargeable battery. Also, in another aspect, interface unit 79 may dock two or more individual ⁇ PDAs and cross-reference data files between them according to control routines that can manipulate mutually unlocked files. Further still, interface unit 79 may be placed and structurally supported for easy viewing on a dedicated standard or smaller-sized keyboard, connecting to the keyboard as an input device. The keyboard would then automatically serve as the input device.
  • Interface unit 79 for a ⁇ PDA is small and compact enough to slip into a pocket book or briefcase, providing a very portable, yet very powerful, computer.
  • Fig. 10 is a plan view of a ⁇ PDA 110 with an I/O interface - 27 -
  • ⁇ PDA 110 has all the features previously described and additionally a microphone 88.
  • control routines in the ⁇ PDA use a linear pedictive coding (LPC) approach to convert analog input from the microphone to a digital voice recording.
  • LPC linear pedictive coding
  • a two-step integrator may be used in order to separate the analog signal and synthesize a closer digital representation.
  • a user's voice notes can be recorded and later uploaded to a host for processing.
  • the digital signals may be converted to text or sent as voicemail on a network.
  • the microphone is integrated with a speaker for editing purposes.
  • Fig. 11 is an isometric view of a ⁇ PDA 10 docked in a dedicated cellular telephone 45 according to an embodiment of the present invention.
  • Telephone 45 has a docking port 49 for a ⁇ PDA according to the invention.
  • port 49 is on one side of telephone 45, and there is a window 51 to provide access to I/O interface 16 of the ⁇ PDA after it is docked.
  • I/O interface 16 the software and memory of the ⁇ PDA is available to the telephone and a user may operate the phone by I/O interface 16.
  • unique control routines and display configurations are provided to enhance use of the cellular phone. For example, all of the user's collection of phone numbers, associated credit card numbers, access codes, etc. are readily available and may be quickly and conveniently accessed and used.
  • a simple input displays alphabet letters to select, and once a letter is selected, a partial list of parties that might be called is displayed. One may scroll through the list by touch input or by use of the thumbwheel of the ⁇ PDA and select a highlighted entry. It is not required that the telephone numbers be displayed.
  • the ⁇ PDA dials the call, including necessary credit card information stored in the memory of the ⁇ PDA for this purpose.
  • the calls are timed and time-stamped and a comprehensive log, with areas for notes during and after, is recorded.
  • conversations are digitally recorded and filed for processing later.
  • a future embodiment may include a voice compression program at a host or within cellular phone 45.
  • Compressed voice files such as, for example, messages to be distributed in a voicemail system, may be downloaded into the ⁇ PDA or carried in a larger memory format inside the cellular telephone.
  • the ⁇ PDA can then send the files via a host or dedicated modem attached at connector portion 20 to the optional expansion bus 40 (Fig.
  • the cellular telephone may, in this particular embodiment, have a bus port for digital transmission.
  • the compression algorithm along with voice system control routines are also established at the receiving end of the transmission to uncompress the signal and distribute individual messages.
  • voice messages may be sent in a wireless format from the cellular telephone in uncompressed digital synthesized form, distributing them automatically to dedicated receiving hosts, or semi-automatically by manually prompting individual voicemail systems before each individual message.
  • a microphone/voicenote ⁇ PDA as in Fig. 10 may send previously stored voicenotes after docking in a cellular telephone interface.
  • a phone system In Europe and Asia a phone system is in use known as CT2, operating on a digital standard and comprising local substations where a party with a compatible cellular phone may access the station simply by being within the active area of the substation.
  • a CT2 telephone is provided with a docking bay for a ⁇ PDA, and configured to work with the ⁇ PDA.
  • a compression utility as disclosed above is provided to digitally compress messages before transmission on the CT2 telephone system.
  • control routines are provided to enable the microphone/voicenote ⁇ PDA as illustrated in Fig. 10 to carry digital voicenotes, either compressed or uncompressed.
  • the ⁇ PDA in this embodiment can transmit the digital voicenotes in compressed form.
  • Fig. 12 is a plan view of a ⁇ PDA 210 with a microphone/speaker area 90 and a pager interface 92 according to an embodiment of the present invention.
  • This ⁇ PDA has the ability to act as a standard pager, picking up pager signals with installed pager interface 92 and alerting a user through microphone/speaker 90. Once the signals are received, ⁇ PDA 210 can be docked in a compatible cellular telephone as illustrated in Fig. 11 and the ⁇ PDA will automatically dial the caller's telephone number. All other aspects are as described in the docked mode in the cellular telephone.
  • the speaker/pager ⁇ PDA can be prompted to generate DTMF tones.
  • the DTMF tones are generated from a caller's telephone number.
  • the speaker/pager ⁇ PDA can store pager requests in its onboard memory. It can also display all pager requests including time and date stamps, identification of the caller, if known, and other related information, on I/O interface 216.
  • a user can receive a page, respond immediately in digital voicenotes on the ⁇ PDA via speaker/microphone 90, and then send the response from a dedicated ⁇ PDA-compatible cellular telephone or conventional telephone.
  • Fig. 13 is a plan view of a ⁇ PDA 310 with an IR interface 94 according to an embodiment of the present invention.
  • the ⁇ PDA may communicate with an array of conventional appliances in the home or office for providing remote control.
  • Unique signals for the appliances are programmed into the ⁇ PDA in a learning/receive mode, and filed with user password protection.
  • an icon-based menu is displayed on I/O area 316 in a user-friendly format.
  • a master routine first queries a user for which device to access. For example, in a residential application, icons are displayed for such things as overhead garage doors, security systems, automatic gates, VCRs, television, and stereos.
  • a receiving station such as a host computer or peripheral interface has IR capabilities to communicate data directly from a nearby ⁇ PDA with an infrared interface.
  • the ⁇ PDA may interface in a cellular network and act as a wireless modem.
  • a ⁇ PDA may serve as the platform for various peripheral attachments via expansion port 20 (Fig. IB and others).
  • a dedicated pin or pins within expansion port 20 signal microcontroller 11 , and a peripheral boot-strap application is executed.
  • Interfacing control routines which may reside in the peripheral or in the memory of the ⁇ PDA, are then executed, and the ⁇ PDA I/O interface displays the related menu-driven options after the linking is complete.
  • Fig. 14 is a plan view of a ⁇ PDA 10 with a scanner attachment 55 according to an embodiment of the present invention.
  • the scanner attachment is assembled to the ⁇ PDA, making electrical connection via expansion port 20.
  • the physical interface of the scanner is shaped to securely attach to the ⁇ PDA.
  • Scanner attachment 55 has a roller wheel 57 or other translation sensor, which interfaces with wheel 18 of the ⁇ PDA, providing translation sensing in operation for the resulting hand-held scanner.
  • scanner attachment 55 has a translation device which transmits the proper signal through expansion port 20.
  • the scanner bar is on the underside, and one or more batteries 59 are provided within the scanner attachment to provide the extra power needed for light generation.
  • scanner attachments 55 of different width D2 may be provided for different purposes.
  • the bar may be no wider than the ⁇ PDA, or may be eight inches or more in width to scan the full width of U.S. letter size documents, or documents on international A4 paper.
  • Unique control routines display operating information on the ⁇ PDA's I/O area 16 for scanning, providing a user interface for setup of various options, such as the width of the scanner bar, and providing identification for files created in the ⁇ PDA memory as a result of scan passes. Scanned data stored in the ⁇ PDA memory may be quickly transferred to the host via host interface 14 when the ⁇ PDA is docked.
  • Unique routines may be provided to automate the process, so the user does not have to search for files and initiate all of the transfer processes.
  • Fig. 15 is a plan view of a ⁇ PDA with a fax-modem module 89 attached according to an embodiment of the present invention.
  • a fax and telecommunication capability is provided via conventional telephone lines to the ⁇ PDA by fax-modem 89 interfacing to expansion bus interface 20.
  • the fax-modem has internal circuitry for translating from the bus states of the expansion bus to the fax protocol, and a phone plug interface 91.
  • the ⁇ PDA can be docked in a host and be used in combination with fax-modem
  • fax-modem routines are displayed on the host monitor.
  • Fig. 16 is a plan view of a ⁇ PDA with a Centronics adapter interface according to an embodiment of the present invention.
  • a printer connector 93 engages expansion interface 20 by a connector 95 through a cable 97.
  • Translation capability resides in circuitry in connector 93, which is configured physically as a Centronics connector to engage a standard port on a printer.
  • Fig. 17 is an isometric view of a ⁇ PDA 10 docked in a barcode reader and acquisition peripheral 100 according to an embodiment of the present invention.
  • ⁇ PDA 10 is docked in docking bay 149.
  • I/O interface 16 displays information through opening 147 according to specialized data acquisition applications.
  • peripheral 100 has an IR interface 94, a microphone 103, a scanner port 101 (not shown), battery pack 105, and a numeric keypad pad 96 implemented as a touch-sensitive array.
  • Application routines enable the data acquisition peripheral to operate as, for example, a mobile inventory management device.
  • the user may scan barcode labels with scanner 101 and enter information, such as counts, on keypad 96 or by voice input via microphone 103. Since applications of peripheral 100 are very specialized, only a limited voice recognition system is needed. The voice recognition system may prompt other command routines within the master applications as well.
  • the database may be displayed and also manipulated directly via I/O area 16 in open bay 147, or information may be downloaded at a prompt to a nearby host via IR interface 94.
  • data may be stored or an auxiliary option memory location in peripheral 100.
  • the data acquisition peripheral may be interfaced to the analog output of a monitoring device, such as a strip chart recorder, and may digitize and store the incoming analog signals.
  • a monitoring device such as a strip chart recorder
  • Fig. 18 is an isometric view of the side of a ⁇ PDA 10 opposite the I/O interface with a solar charger panel 98 according to an embodiment of the present invention.
  • Panel 98 is positioned so that when ⁇ PDA 10 is in strong light, such as sunlight, the solar charger absorbs the solar energy and converts it to electricity to recharger battery 15 inside the ⁇ PDA.
  • Solar charger 98 may be permanently wired to the circuitry of the ⁇ PDA or attached by other means and connected to a dedicated electrical port or the expansion port. The solar charger is placed so that the ⁇ PDA can be fully docked in a docking port with the panel in place.
  • a detachable solar charger may be unplugged before docking the ⁇ PDA, and the detachable charger may then be of a larger surface area.
  • Fig. 19. is a largely diagrammatic representation of a Games
  • Center unit 33 for connecting several ⁇ PDA units (37, 39, 41, and 43) together to allow competitive and interactive games by more than one ⁇ PDA user. Games Center unit 33 is controlled by an 80486 CPU in this particular embodiment.
  • ⁇ PDAs may be connected to the central unit by cable connection via the expansion bus or the host interface of each ⁇ PDA, through a connector such as connector 35.
  • the drawing shows four connectors, but there could be as few as two, and any convenient number greater than two.
  • the gaming center may serve as a conference center where a number of ⁇ PDAs may exchange information.
  • a manager may update a number of salespeoples' ⁇ PDAs, including but not limited to merchandise databases, spreadsheets, price sheets, work assignments, customer profiles, address books, telephone books, travel itineraries, and other related business information while in conference.
  • Fig. 20 is an isometric view of a keyboard 151 connected by a cord and connector 153 to a ⁇ PDA 10 via the expansion port 20.
  • the keyboard is a mechanical keyboard having a full-size standard key array and an on-board controller and interface for communicating with the ⁇ PDA.
  • the keyboard may take many other forms, including a two-layer, flexible, roll-up keyboard as taught in U.S. Patent 5,220,521.
  • keyboards In addition to keyboards, other input devices, such as writing tablets and the like may also be interfaced to a ⁇ PDA via expansion port 20.
  • an IR- equipped ⁇ PDA attached to scanner 55 may transfer large graphic files in near real time to a host computer. If the files were of text, the host may further process the files automatically through an optical character recognition (OCR) application and send the greatly reduced
  • HCl bus for High-Speed CPU Interconnect
  • Fig. 21 is a block diagram of a computer architecture 211 according to the present invention.
  • Paths 213 and 215 together represent an optimized High-Speed CPU Interconnect Bus called the HCl Bus by the inventors.
  • the computer architecture based on the HCl bus is hereinafter the HCl architecture. It can be applied to PCs, Macs, workstations, as well as other types of computers, and is especially useful for portable computers such as notebook and palmtop computers.
  • Path 213 has 32 traces, and represents a multiplexed, address- and-data combination bus capable of conveying both 32 bit addresses and 32 bit data words.
  • Path 215 has 10 traces for control signals further detailed below.
  • the two paths together comprise the HCl Bus 240, a total of 42 traces, a considerably smaller number than most conventional bus structures, even multiplexed bus structures.
  • the reduction in the number of traces results in a reduction in layout congestion, with a consequent reduction in the length of the traces.
  • the shortened traces in turn reduce signal delays, so that the computer's performance is increased.
  • Peripheral I/O or expansion devices for the HCl computer architecture are represented by devices 217, 219, 221, and 223. They are shown coupled to HCl bus 240, preferably through expansion slots or connectors (not shown).
  • VGA and Graphics processor card 217 includes high-speed video memory, and is responsible for displaying information on a connected monitor.
  • SCSI and Ethernet interface card 219 provides coupling to various SCSI equipment, such as CD-ROM drives and tape backups, and to Ethernet local area networks.
  • Multi- I/O card 221 is an interface for hard disks, floppy drives, fax modems, keyboards, etc.
  • Multi-media processor/DSP (digital signal processor) card 223 is a high-speed I/O and processor for audio and video signals, and can typically drive external speakers or audio amplifiers.
  • Many other types of peripheral devices can be connected to HCl bus 240. Similar devices are widely available for most existing computer architectures. Suitable and relatively simple modifications can be made to make them compatible with the HCl Bus. The reduced number of traces in the HCl Bus in turn allow a reduction in the number of traces and connection contact pads on the peripheral devices.
  • a system control chip 225 controls the bus, and contains the system clock (not shown).
  • System memory 227 is high-speed, low-power, dynamic random access memory (DRAM). It communicates with the system controller through multiplexed addressing (MA) of standard rows address signals (RAS) and column address signals (CAS). 64-bit memory is used for better performance, although 32-bit memory can also be used.
  • Data buffer 229 is the only buffer required in the system, because the bus can be driven by low power CMOS (complimentary metal-oxide semiconductor) outputs.
  • the conventional ISA bus is designed to support a TTL definition that is over a decade old. It requires a driving current of 24 ma multiplied by about 80 active signals, which amounts to about 1.6 amps, as described above.
  • This large load requires, in most implementations, as many as twenty small buffer chips, or four or five large ones.
  • the overhead incurred in terms of bus length, heat, RFI, complexity, and so forth, is enormous.
  • the HCl architecture has virtually no DC loading and operates at about 10 milliamps per trace, multiplied by about 42 active traces switching at the same speed as most CPUs, or 16 to 33 MHz. As a result, only a single buffer is required in the HCl bus.
  • a CPU 231 Computation in the HCl architecture, as in others, is handled by a CPU 231.
  • the CPU is coupled to system controller 225 by a short 32-bit address bus 233, and to data buffer 229 by a short 32-bit data bus 235. Data is transferred between buffer 229 and DRAM 227 through short but separate address and data buses. Each of these buses has 36 signal paths, 32 of which are for address or data, and 4 are for control.
  • HCl architecture may be configured to support a large number of CPUs. Multiplexed buses have been designed in the past, such as the DEC TurboChannel, but these designs are compatible with only a single type of CPU or a single class of CPUs made by a particular manufacturer. In the HCl architecture, the CPU can be virtually any of the many available high- end microprocessors, such as the Intel 80486 and Pentium, DEC Alpha, Motorola 680x0, Sun SPARCs, and many others.
  • system controller 225 This important advantage of multi-CPU compatibility, or CPU independence, is provided by system controller 225.
  • This chip has a programmable state machine for translating between the state dynamics of a variety of supported CPUs and the state dynamics of the HCl Bus.
  • the programming can be done in a variety of ways, including EPROM, mask, RAM, etc. Even auto-programming can be achieved.
  • the system controller will automatically recognize the CPU by reading the state, either pull-up or pull-down, of the CPU's output lines. The pattern of these outputs is compared to a database of the patterns of known CPUs until a match is found. The system controller will then use the proper protocols to translate between the CPU and the HCl bus architecture.
  • CMOS complementary metal-oxide-semiconductor
  • HCl architecture will be designed to work with a single type of CPU, so that it is not necessary to change the setting. In these cases, mask programming is most cost effective.
  • HCl architecture Another feature of the HCl architecture is support for a high ⁇ speed master mode, programmed at the system controller chip.
  • Each type of processor has its own algorithm for burst data transmission.
  • the system controller's master mode is set to be initiated and operated by the burst algorithm of the processor used.
  • Data transfer mechanisms of the architecture are CPU write to HCl, CPU read from HCl, HCl write to main memory, and HCl read from main memory.
  • Fig. 22 shows an alternative embodiment of the HCl architecture, comprising the architecture of Fig. 21 with additional, optional components.
  • high-speed cache memory 237 can be coupled to the address and data buses from the CPU. It is controlled by the system controller.
  • the cache need not be specifically designed to be compatible with HCl state dynamics, because it couples to the CPU bus instead of the HCl Bus.
  • bus interface 239 for coupling the HCl bus to other bus structures, such as ISA, EISA, MicroChannel, etc.
  • the bus interface comprises an IC designed to convert between the state dynamics of the HCl bus and the dynamics of the bus to which the HCl bus is to be coupled. For example, when a device on an ISA bus issues an interrupt, the devices on the HCl bus will not answer. In this case, bus interface 39 will become the default device which answers the interrupt.
  • Fig. 23 is a listing of the signals for the 42 lines of the HCl bus in the present embodiment.
  • the pin numbers 0-41 in the left column are for reference only, and do not imply that the signals could not be in another order.
  • the pins are used as follows:
  • DataO.,31 are multiplexed with address2..31 & BE0..1
  • BE2..3 are remaining byte enables.
  • ADS Address strobe This is used to start a cycle, and to indicate the burst length. ADS is low for one cycle for single word transfers. For burst transfers, it will remain low until the ready before the last word.
  • LDEV# Device decode This is used to indicate that a device is claiming a cycle. If no device pulls this line, the cycle will go to the default device, such as ISA bus interface 39. This signal is necessary for zero wait-state write support.
  • BREQ# Bus request A bus-mastering peripheral pulls low to request bus ownership. It is specific to each device.
  • An interrupt controller IC reads the IRQ signals, then triggers an interrupt in the CPU. This is a significant source of layout congestion in such architectures.
  • IRQs are mapped into high memory, as shown for example in the memory map in Fig. 24A.
  • bus-mastering peripherals will first take control of the bus, then make master-mode memory writes to a predetermined block of addresses set aside for interrupts.
  • Each interrupt for example, from IRQO to IRQ 15, is assigned a particular address.
  • an interrupt controller 41 is built into system controller 225. The IRQ controller monitors the address space to trigger the appropriate interrupts. As a result, many paths and pins are saved.
  • I/O instead of communicating I/O on a dedicated path, it is also mapped into high memory.
  • a small space such as the 64K block from FFFE ' 0000 to FFFE ' FFFF, is set aside for I/O cycles.
  • the mapping of I/O to high memory saves an additional one pin.
  • the Intel CPU architecture has a separate I/O address space that can be accessed only by special instruction, such as IN, OUT, INS, and OUTS. This mapping will allow HCI-compatible devices to be used with other CPUs that do not have a separate I/O space.
  • Direct memory access is not supported in the HCl bus.
  • a "shadow" DMA controller 242 can be implemented by using just registers in the system controller to mimic an actual DMA controller.
  • HCl bus The calculated performance of the HCl bus is as follows: Maximum burst rate is 132 MBytes/sec at 33 MHz, if the memory system supports one cycle per word burst.
  • HCl master write is accomplished in a minimum of 2 cycles.
  • HCl master read is accomplished in a minimum of 3 cycles (or 4 cycles back-to-back).
  • CPU write is a minimum 2 cycles (or 3 cycles back-to-back).
  • CPU read is a minimum 3 cycles (or 4 cycles back-to-back).
  • Fig. 25 is a timing diagram showing the states of the Clock, HCl Bus Address/Data, Address Strobe, Device Decode, Ready, and Read/Write lines during back-to-back read operations.
  • the first read operation is initiated when Address and Byte Enable bits (BEO, BE1, A2 .... A31 from lines 0 to 31 in Fig. 23) are enabled onto the bus after clock transition 241, simultaneously as the Address Strobe line is also enabled. These signal transitions are slightly delayed behind the clock transition that switches them (shown here as a quarter-cycle delay).
  • the Read/Write line remains high throughout to indicate this is a read operation.
  • the Address and Address Strobe signals remain asserted for one clock cycle and are disabled following clock transition 243.
  • the one cycle Address Strobe indicates a single word transfer.
  • the Device Decode line is asserted to indicate that a device is claiming the cycle.
  • Data from the decoded address is enabled onto the bus following clock transition 245, while Ready is also enabled to indicate that valid data is on the bus.
  • Ready and Data remain enabled for one clock cycle until they are disabled following clock transition 247. Dead cycles after clock transitions 243 and 247 prevent bus contention.
  • An identical read cycle is initiated after clock transition 249.
  • Dead cycles, or wait-states are required in the first cycle of a read, and in an address cycle following a read to prevent bus contention. Change of bus ownership also requires a wait-state to avoid contention. Other operations, such as write cycles or following cycles in a burst, do not require wait-states.
  • Fig. 26 is a timing diagram showing the bus states for a burst- mode read operation, also called a HCl master-mode read.
  • a burst- mode transfer is one in which a block of data is transferred in consecutive data cycles, but the address is transmitted only once at the beginning of the operation. Elimination of address cycles between each data cycle results in substantial throughput gains for bursts of even a few data words.
  • Fig. 26 shows only two data cycles in a burst transfer.
  • the different CPUs that can be used with the HCl Bus will differ in their burst transfer characteristics. In particular, they differ in the number of data words that can be transferred in a single burst, and in the counting sequence.
  • the Intel 80486 supports bursts of up to 4 words.
  • System controller 225 will be suitably programmed to accommodate these differences.
  • a burst-mode read operation begins following clock transition 241 with a bus state similar to the single- word read operation shown in Figure 5.
  • the Address Strobe is enabled to start the Address cycle.
  • Device Decode is enabled after the Address cycle to indicate address decoding is in progress.
  • the Address Strobe will remain enabled after the Address cycle until the ready before the last word, following clock transition 249 in this case, to maintain a burst.
  • Ready is driven low to indicate that valid data is on the bus.
  • FIG. 27 is a timing diagram showing the HCl bus states for back-to-back write cycles.
  • the Address Strobe is enabled for one cycle following clock transition 41, while an Address is also enabled onto the Address/Data lines.
  • the Read/Write line is enabled following clock transition 241 to signal a write operation.
  • data is enabled onto the bus, while Device Decode is enabled to indicate that address decoding is in progress.
  • Ready is driven low concurrently with the data cycle to indicate that valid data is on the bus.
  • the write operation ends following clock transition 245, when the Address Strobe, Decode, Ready, and Read/Write lines are all returned to a high state.
  • Fig. 28 is a timing diagram showing the HCl bus states for a burst-mode write transfer. These states are similar to the states for a burst-mode read transfer, as shown in Fig. 26, for all lines except the Read Write line, which is asserted following clock transition 241 to signal a write. Although wait-states are shown, they are not required.
  • the first write data can come immediately after the address, as in Fig. 27.
  • HCl bus described above is described with reference to various embodiments.
  • One embodiment is as a host interface for a ⁇ PDA, as depicted in Fig. 6, item 26, in which case the interconnecting bus 26' for the host computer must be a compatible bus to the HCl bus described herein.

Abstract

Un module (10) d'assistant numérique personnel constitué d'une unité centrale (UC) locale (11), d'une mémoire (13) et d'une interface d'entrée/sortie (16) comprend une interface hôte (14) dotée d'un bus (26) connecté à l'unité centrale locale (11) et d'un dispositif de connexion situé sur une surface de l'assistant numérique personnel prévu pour assurer la liaison avec un dispositif de connexion du bus d'un ordinateur hôte polyvalent, ceci assurant la communication directe par bus entre l'assistant numérique personnel (10) et l'ordinateur hôte polyvalent. Dans une forme de réalisation, l'assistant numérique personnel comprend également un dispositif de stockage du code de sécurité. L'assistant numérique personnel de cette invention (10) forme une combinaison ordinateur hôte/satellite comprenant un ordinateur hôte équipé d'un logement de connexion (63), tel que, lors d'une connexion un protocole de connexion commande l'accès de l'ordinateur hôte à la mémoire (13) de l'assistant numérique personnel (10) en fonction d'un ou de plusieurs mots de passe fournis à l'ordinateur hôte par l'utilisateur. Dans une autre forme de réalisation, l'assistant numérique personnel (10) comprend également un port d'extension (20) connecté à l'unité centrale locale (11) et des dispositifs périphériques d'extension peuvent être connectés et mis en ÷uvre grâce audit port d'extension (20).
PCT/US1995/008603 1994-07-07 1995-07-07 Assistant numerique personnel de petite taille WO1996002036A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27300194A 1994-07-07 1994-07-07
US08/273,001 1994-07-07

Publications (1)

Publication Number Publication Date
WO1996002036A1 true WO1996002036A1 (fr) 1996-01-25

Family

ID=23042135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/008603 WO1996002036A1 (fr) 1994-07-07 1995-07-07 Assistant numerique personnel de petite taille

Country Status (1)

Country Link
WO (1) WO1996002036A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046947A1 (fr) * 1996-06-03 1997-12-11 Croker Geoffrey A Ordinateur personnel a base dos, capable d'executer des applications a base unix en concurrence avec des applications a base dos
WO1999034631A1 (fr) * 1997-12-29 1999-07-08 Telefonaktiebolaget Lm Ericsson Systeme de gestion d'informations personnelles
FR2784761A1 (fr) * 1998-10-16 2000-04-21 Siemens Nixdorf Information Sy Systeme de terminal portable en communication avec le systeme d'information d'une entreprise
EP2101244A1 (fr) * 2008-02-29 2009-09-16 Giga-Byte Technology Co., Ltd. Appareil multimédia séparable
USRE44577E1 (en) 1996-02-01 2013-11-05 Qualcomm Incorporated Method and apparatus for providing a private communication system in a public switched telephone network

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4159516A (en) * 1976-03-23 1979-06-26 Texas Instruments Incorporated Input/output controller having selectable timing and maskable interrupt generation
US5040111A (en) * 1988-04-11 1991-08-13 At&T Bell Laboratories Personal computer based non-interactive monitoring of communication links
US5109493A (en) * 1989-06-30 1992-04-28 Poget Computer Corp. Structure and method for tying down an unused multi-user bus
US5212800A (en) * 1989-06-20 1993-05-18 Mensch Jr William D Method and apparatus for sensing trinary logic states in a microcomputer using bus holding circuits
US5218686A (en) * 1989-11-03 1993-06-08 Compaq Computer Corporation Combined synchronous and asynchronous memory controller
US5237692A (en) * 1990-11-09 1993-08-17 Ast Research Inc. Internal interrupt controller for a peripheral controller
US5247685A (en) * 1989-11-03 1993-09-21 Compaq Computer Corp. Interrupt handling in an asymmetric multiprocessor computer system
US5265255A (en) * 1990-09-24 1993-11-23 International Business Machines Corp. Personal computer system with interrupt controller
US5280621A (en) * 1989-12-29 1994-01-18 Zenith Data Systems Corporation Personal computer having dedicated processors for peripheral devices interconnected to the CPU by way of a system control processor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4159516A (en) * 1976-03-23 1979-06-26 Texas Instruments Incorporated Input/output controller having selectable timing and maskable interrupt generation
US5040111A (en) * 1988-04-11 1991-08-13 At&T Bell Laboratories Personal computer based non-interactive monitoring of communication links
US5212800A (en) * 1989-06-20 1993-05-18 Mensch Jr William D Method and apparatus for sensing trinary logic states in a microcomputer using bus holding circuits
US5109493A (en) * 1989-06-30 1992-04-28 Poget Computer Corp. Structure and method for tying down an unused multi-user bus
US5218686A (en) * 1989-11-03 1993-06-08 Compaq Computer Corporation Combined synchronous and asynchronous memory controller
US5247685A (en) * 1989-11-03 1993-09-21 Compaq Computer Corp. Interrupt handling in an asymmetric multiprocessor computer system
US5280621A (en) * 1989-12-29 1994-01-18 Zenith Data Systems Corporation Personal computer having dedicated processors for peripheral devices interconnected to the CPU by way of a system control processor
US5265255A (en) * 1990-09-24 1993-11-23 International Business Machines Corp. Personal computer system with interrupt controller
US5237692A (en) * 1990-11-09 1993-08-17 Ast Research Inc. Internal interrupt controller for a peripheral controller

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE44577E1 (en) 1996-02-01 2013-11-05 Qualcomm Incorporated Method and apparatus for providing a private communication system in a public switched telephone network
WO1997046947A1 (fr) * 1996-06-03 1997-12-11 Croker Geoffrey A Ordinateur personnel a base dos, capable d'executer des applications a base unix en concurrence avec des applications a base dos
WO1999034631A1 (fr) * 1997-12-29 1999-07-08 Telefonaktiebolaget Lm Ericsson Systeme de gestion d'informations personnelles
US6334046B1 (en) 1997-12-29 2001-12-25 Telefonaktiebolaget Lm Ericsson (Publ) Information management system
KR100791672B1 (ko) * 1997-12-29 2008-01-03 텔레폰악티에볼라겟 엘엠 에릭슨(펍) 개인 정보 관리 시스템
FR2784761A1 (fr) * 1998-10-16 2000-04-21 Siemens Nixdorf Information Sy Systeme de terminal portable en communication avec le systeme d'information d'une entreprise
EP2101244A1 (fr) * 2008-02-29 2009-09-16 Giga-Byte Technology Co., Ltd. Appareil multimédia séparable

Similar Documents

Publication Publication Date Title
US5579489A (en) Hand-held portable computer having capability for external expansion of an internal bus
US5692199A (en) Personal digital assistant module having a host interconnect bus without an interrupt line and which handles interrupts as addresses associated with specific interrupts in memory
US5835732A (en) Miniature digital assistant having enhanced host communication
US6523079B2 (en) Micropersonal digital assistant
US5600800A (en) Personal computer system having a docking bay and a hand-held portable computer adapted to dock in the docking bay by a full-service parallel bus
US5812870A (en) Personal organizer with interface for recording digital voice files
US5721837A (en) Micro-personal digital assistant including a temperature managed CPU
US5537343A (en) Digital assistant system having a host computer with a docking bay and a moveable heat sink for cooling a docked module
US5708840A (en) Micro personal digital assistant
US5522089A (en) Personal digital assistant module adapted for initiating telephone communications through DTMF dialing
US5689654A (en) Digital assistant system including a host computer with a docking bay for the digital assistant wherein a heat sink is moved into contact with a docked digital assistant for cooling the digital assistant
US5615393A (en) Computer system having a cordless keyboard and an induction coil in a plug-in electronic card module
US5822230A (en) Personal digital assistant module having a broadcast pointer device
US5628031A (en) Personal digital assistant module implemented as a low-profile printed circuit assembly having a rigid substrate wherein IC devices are mounted within openings wholly between opposite plane surfaces of the rigid substrate
US5799068A (en) Smart phone integration with computer systems
US5799067A (en) Smart phone integration with computer systems
WO1996002879A1 (fr) Assistant numerique personnel de format tenant dans la main
US5793957A (en) Satellite digital assistant and host/satellite computer system wherein coupling the host and the satellite by a host interface communication system results in digital communication and synchronization of files
US20020070883A1 (en) Internet terminal and keyboard for the internet terminal
JPH0394390A (ja) 携帯形マイクロコンピュータ
US5590382A (en) Personal digital assistant module having a multi-portion keyboard with inductive coupling
WO1996002036A1 (fr) Assistant numerique personnel de petite taille
JP3999056B2 (ja) コンピュータシステムと統合されたスマートフォン
WO1996014615A1 (fr) Micro-assistant numerique personnel a interface integree entre l'unite centrale et la memoire systeme
WO1996004600A1 (fr) Micro-assistant personnel numerique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase