WO1996000350A1 - Horizontal scroll compressor - Google Patents

Horizontal scroll compressor Download PDF

Info

Publication number
WO1996000350A1
WO1996000350A1 PCT/JP1995/001233 JP9501233W WO9600350A1 WO 1996000350 A1 WO1996000350 A1 WO 1996000350A1 JP 9501233 W JP9501233 W JP 9501233W WO 9600350 A1 WO9600350 A1 WO 9600350A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction
scroll
compression
housing
compression element
Prior art date
Application number
PCT/JP1995/001233
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeki Hagiwara
Takekazu Obitani
Hiromichi Ueno
Shuichi Jomura
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to KR1019950705767A priority Critical patent/KR100338267B1/en
Priority to AU27527/95A priority patent/AU690288B2/en
Priority to DE69524367T priority patent/DE69524367T2/en
Priority to US08/591,652 priority patent/US5683237A/en
Priority to EP95922725A priority patent/EP0716231B1/en
Publication of WO1996000350A1 publication Critical patent/WO1996000350A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/603Shafts with internal channels for fluid distribution, e.g. hollow shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/101Geometry of the inlet or outlet of the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/50Inlet or outlet
    • F05B2250/501Inlet

Definitions

  • the present invention relates to a horizontal scroll compressor, and more particularly, to a compressor in which a fixed scroll and a movable scroll each having a head plate and a spiral body are combined.
  • this scroll-type compressor has a horizontal hermetic casing (C) with a compression element (E) on one side and a machine (M) on the other side, which is housed in the UK. ing.
  • the above dffi reduction element (E) includes a fixed scroll (FS) and a movable scroll (OS) each having a scroll formed on the front surface of the end plate, and the fixed scroll (FS) and the movable scroll (OS) are provided. ) Spirals are interlocked.
  • the machine (M) is connected to the end plate of the movable scroll (OS) via the drive shaft (S).
  • One end of the drive shaft (S) on the side of the compression element (E) is supported by a closed casing (C) via a first bearing housing (H), and the other end is a second bearing (not shown). It is supported by a closed casing (C) via a housing.
  • a suction pipe (J) that opens into the internal space (A) between the compression element (E) and the machine (M) is connected to the closed casing (C).
  • the first housing (H) has a partition made of a flexible material such as rubber.
  • the member (B) is provided to partition the suction side of the force compression element (E) and the internal space (A). Further, a suction A3 ⁇ 41 ⁇ 2 (D) force is formed in the upper part of the first $ receiving housing (H) so that the internal space (A) is on the suction side of the compression element (E).
  • a partition wall (F) for forming a discharge chamber (G) is provided on the back side of the fixed scroll (FS).
  • a discharge port ( ⁇ ) formed in the end plate of the fixed scroll (FS) is opened to the discharge chamber (G), and a discharge pipe ( ⁇ ) force is communicated with the discharge chamber (G).
  • the orbiting scroll (OS) performs only the driving without rotating on the fixed scroll (FS). Then, for example, the evaporator power of the refrigeration system, et back iSE gas refrigerant suction pipe into the interior space (A) of the closed Ke one single from (J) (C) " ⁇ » 0
  • the gas refrigerant passes through the internal space (A) and the suction path (D) to form a compression element ( ⁇ ), which is compressed by the compression element ( ⁇ ). Thereafter, the high-pressure gas refrigerant flows into the discharge chamber (G) through the compression element ( ⁇ ), the discharge port ( ⁇ ), and is supplied to the condenser through the discharge pipe ( ⁇ ).
  • each suction port is positioned at an intermediate portion in the vertical direction of the closed casing (C).
  • the height of the suction port located at the lower portion can be located at the intermediate portion.
  • the liquid refrigerant that has passed through the suction force, the force, and the suction ⁇ 5 (D) is directly sucked into each suction port of the suction passage (D). Therefore, there is a problem that liquid compression cannot be sufficiently solved.
  • the present invention has been made in view of the above point, and prevents liquid compression even if there is a stagnation of a liquid refrigerant or a large amount of liquid return, causing a start failure due to liquid compression, breakage of a spiral body, etc.
  • the purpose of the present invention is to solve the above problem with a simple configuration.
  • the means according to the first aspect of the present invention includes a horizontal closed casing (1) in which a compression element (E) is provided on one side and a reciter ( M) Power ⁇ That's what was delivered to the UR.
  • the above-mentioned compression element (E) is a fixed scroll (2) formed by a spiral body (2b, 3b) force ⁇ formed on the front surface of the head plate (2a, 3a), respectively!
  • the scrolls (3) are constructed by combining the spiral bodies (2b, 3b) of the moving scroll (3), and a pair of compression chambers (RA, RB) are formed between the scrolls (2, 3).
  • the machine (M) is connected to the movable scroll (3) so as to revolve the movable scroll (3). Further, it is assumed that the horizontal scroll compressor has an intake pipe (11) opening between the compression element (E) and the compressor (M) in the internal space (12) of the closed casing (1).
  • the end of the spiral body (2b) in the fixed scroll (2) is connected to the movable scroll (3) so as to be close to the suction ports (22, 23) of the paired compression chambers (RA, RB).
  • the two scrolls (2, 3) are extended so as to extend toward the end of the spiral of the spiral body (3b) and to be located at the upper part of the suction casing (1). .
  • the internal space (12) has a housing (4) that partitions the internal space (12) into a compression element chamber (12A) and a machine room (12B).
  • the suction pipe (11) is open to the force (12B).
  • a suction ⁇ path (24) force is formed at the suction part (24, 23) that opens to the suction port (22, 23).
  • An oil return passage (25) communicating with the element chamber (12A) and the 3 ⁇ 43 ⁇ 4am (12B) and having a predetermined il resistance is provided.
  • the invention according to claim 2 ⁇ means taken in the invention of claim 1 The opening position of the pipe (11) to (12B) is shifted in the circumferential direction with respect to the suction AS passage (24) at the top of the housing).
  • the means according to the third aspect of the present invention is the invention according to the first or second aspect, wherein the suction ⁇ channel (24) is connected to the suction ports (22, 23) of the paired compression chambers (RA, RB). ) Is formed at a position shifted in the circumferential direction with respect to.
  • the suction passage (24) is arranged such that the suction passage (24) is located in front of the suction port (22, 23) in the revolving direction of the movable scroll (3). It is formed at a position shifted to the side.
  • the end of the spiral body (2b) of the fixed scroll (2) is extended, and the spiral body (2b) and the spiral body of the movable scroll (3) are extended.
  • (3b) is asymmetric ⁇ .
  • the suction ports (22, 23) of the paired compression chambers (RA, RB) are brought close to each other, and these suction ports (22, 28) are arranged at the upper part of the closed casing (1).
  • the housing (4) separates the compression element chamber (12A) from which the suction ports (22, 23) open, and the suction pipe (11), which opens (12B), and the upper part of the housing (4).
  • An oil return path (25) is provided in the housing (4), while an oil absorption path (24) is provided in the housing (4).
  • the suction pipe (11) returns to the liquid casing and the liquid casing (1), and returns to the liquid casing. May enter the compression element chamber (12A).
  • the solution of the lubricating oil and the refrigerant may be homed, and bubbles of the solution may enter the compression element chamber (12A) from the ⁇ path (24) due to the homing.
  • the suction ports (22, 23) of each compression chamber (RA, RB) are located at the top, the liquid refrigerant / dissolved liquid flows from the suction ports (22, 23) to the compression chambers (RA, RB). There is no suction and liquid compression is suppressed.
  • the scrolls (2, 8) of the scrolls (2, 8) are made asymmetric, the outer diameter of the scroll (outer diameter of the end plate) can be suppressed, so that the liquid can be prevented from being compressed while reducing the size. , Improves reliability.
  • the opening position of the suction pipe (11) is shifted in the circumferential direction with respect to the suction ⁇ channel (24), a case where a large amount of liquid refrigerant returns from the suction pipe (11). However, this liquid refrigerant is not sucked directly from the suction pipe (11) into the ⁇ 3 ⁇ 4 path (24). As a result, the problem of liquid compression can be solved more reliably, and higher reliability can be obtained.
  • the suction pipe (11) force and many other liquid refrigerants return to the closed casing (1), and the liquid refrigerant May enter the compression element chamber (12A).
  • the solution of the lubricating oil and the refrigerant may be homed, and bubbles of the solution may flow from the suction passage (24) to the compression element chamber (12A) due to the homing.
  • the suction ports (22, 23) of the compression chambers (RA, RB) are located at the upper part, the bubbles and the liquid refrigerant are compressed by the suction ports (22, 23).
  • RA, RB can be reliably prevented from being sucked into, and compression can be reliably prevented. Further, since the oil return passage (25) is provided in the housing (4), the force of the compression element chamber (12A) and the oil return force to the 3 ⁇ 43 ⁇ 4 ⁇ (12B) can be ensured. In addition, oil can be reliably prevented from being generated by the orbiting scroll (3).
  • the spiral body (2b) of the fixed scroll (2) and the spiral body (3b) of the orbiting scroll (3) are asymmetrical, the outer diameter of the scroll (outer diameter of the end plate) can be suppressed, so that a small In addition, it is possible to prevent thigh contraction when it is possible to increase the power;
  • the opening position of the suction pipe (11) is shifted in the circumferential direction with respect to the suction passage (24), a large amount of liquid refrigerant returns from the suction pipe (11). Even in this case, it is possible to prevent the liquid refrigerant from being sucked directly from the suction pipe (11) into the suction passage (24).
  • the problem of liquid compression can be more reliably solved, and the ability to obtain higher reliability can be achieved.
  • the suction passage (24) is shifted in the circumferential direction with respect to the suction ports (22, 23), when the liquid refrigerant enters the suction passage (24), This can prevent the liquid refrigerant from scattering and being directly sucked into the suction ports (22, 23).
  • the suction ⁇ path (24) is shifted to the front side in the revolving direction of the orbiting scroll (3) with respect to the suction force (24) with respect to the suction port (22, 23).
  • the mouths (22, 23) are located on the back side of the end of the scroll in the scroll (3b) of the orbiting scroll (3).
  • FIG. 1 shows an embodiment of the present invention, and is a cross-sectional view of a fixed scroll and a scroll of a moving scroll, in which a part of a spiral body is cut away and a housing is viewed.
  • FIG. 2 is a longitudinal sectional view of the horizontal scroll compressor in which one part is omitted.
  • FIG. 3 is a right side view showing only the housing.
  • FIG. 4 is a cross-sectional view of a main part of a horizontal scroll compressor showing another embodiment.
  • FIG. 5 is a vertical cross-sectional view of a conventional horizontal scroll compressor shown with one part omitted.
  • this horizontal scroll compressor is provided in the refrigerant circuit of the refrigeration system, and is compressed on one side of a horizontally long sealed casing (1).
  • the compression element (E) is composed of a fixed scroll (2) formed by a spiral body (2b) on the front surface of the head plate (2a) and a spiral body (3b) force formed on the front surface of the head plate (3a). It consists of a movable scroll (3), and the spiral body (2b) of the fixed scroll (2) and the spiral body (3b) of the movable scroll (3) are engaged with each other.
  • the dedicated shaft (5) is strongly connected to the electric motor (M), and is connected to the movable scroll (3) so as to revolve the dedicated shaft (5) ⁇ the movable scroll (3).
  • One end of the drive shaft (5) is supported via a bearing (6a) on a housing (4) which is close to the compression element (E) and is fixed to the closed casing (1). Although not shown, it is supported by a closed casing (1) via a bearing housing.
  • An eccentric shaft (7) force is formed at one end of the driving mechanism (5), and the eccentric fisting mechanism (7) protrudes from the rear side of the end plate (3a) in the movable scroll (3). It is inserted into a cylindrical shaft member (8) as a bearing (6b).
  • An Oldham ring (9) for preventing rotation is provided between the end plate (3a) of the orbiting scroll (3) and the housing (4).
  • the motor (M) is driven to rotate the drive motor (5), the movable scroll (3) performs only a revolving motion without rotating on the fixed scroll (2).
  • a first compression chamber (RA) and a second compression chamber (RB) are formed between the spiral bodies (2b, 3b).
  • the refrigerant is compressed by the volume shrinkage of the compression chambers (RA, RB), and the refrigerant is discharged from a discharge port (10) formed at the center of the end plate (2a) of the fixed scroll (2).
  • a suction pipe (11) for introducing refrigerant is opened between the compression element (E) and the electric motor (M) in the internal space (12) of the closed casing (1).
  • a partition plate (13) fixed to the closed casing (1) On the back of the end plate (2a) of the fixed scroll (2), a partition plate (13) fixed to the closed casing (1) is provided.
  • the partition plate (13) defines a discharge chamber (14) behind the end plate (2a) of the fixed scroll (2).
  • a discharge port (10) is opened to the discharge chamber (14) via a discharge valve device (15) provided on a partition plate (13), and the discharge pipe (16) has a force ⁇ communication. .
  • the partition plate (13) is provided with a demister (17) for collecting lubricating oil, while the lubricating oil in the discharge chamber (U) is electrically driven by a capillar (18). Will be recovered.
  • the partition plate (13) is provided on a gas shielding portion (19) body, and a capillary guide (20) is provided at an end of the capillary (18) while the sealing casing is provided.
  • the ring (1) is supported on the installation surface (GL) in an oblique manner by the mounting legs (21).
  • the feature of the present invention resides first in the spiral body (2b) of the fixed scroll (2) as shown in FIG. That is, the winding end of the spiral body (2b) in the fixed scroll (2) is approximately 180 ° from the winding end to the part of the scroll (3W) in the movable scroll (3) that faces the winding end. It has been extended.
  • suction ports (22, 23) of the two compression chambers (RA, RB) formed between the scrolls (2, 3) by extending the spiral body (3b) are brought close to each other. Further, as shown in FIG. 1, both scrolls (2, 3) are arranged so as to be located at the upper part of the suction casing (1).
  • the housing (4) provided between the compression element (E) and the machine (M) is provided with a suction element (12, 23), a compression element chamber (12A) that opens strongly, and a suction pipe (11).
  • the inner space (12) is divided into the power ( ⁇ B) and the opening (22, 23) at the suction part of the compression element chamber (12A).
  • a suction passage (24) communicating with the suction part of the compression element chamber (12A) is formed, and in the housing (4), the compression element chamber (12A) and the electric ( 12B) and a predetermined oil resistance in the oil return passage (25).
  • the inner wall surface of the extension of the fixed scroll (2) which extends the end of the scroll (2b) to the end of the scroll (3b) of the orbiting scroll (3), has another portion. Are formed in the same symbolic curve or an approximate curve thereof.
  • the first compression formed by the inner wall surface of the spiral body (2b) of the fixed scroll (2) and the outer wall surface of the spiral body (3b) of the movable scroll (3) is determined by the second compression chamber (RB) formed by the outer wall of the scroll (2b) of the fixed scroll (2) and the inner wall of the scroll (3b) of the movable scroll (3). ) Suction volume.
  • the compression ratio of the first compression chamber (RA) and the compression ratio of the second compression chamber (B) are different. Therefore, the discharge start angle of the first compression chamber (RA) is set to the second compression chamber (RB) at the winding start end of the spiral body (2b, 3b) of the movable scroll (3) or the fixed scroll (2). Adjustment to make the compression ratio of both compression chambers (RA, RB) the same earlier than the discharge start angle of Notch is formed.
  • the housing (4) is formed with a circular outer peripheral surface facing the inner peripheral surface of the closed casing (1), and the upper portion of the housing (4) is cut out over a predetermined range. Absorption ⁇ path (24) Force ⁇ formed.
  • the outer peripheral surface of the housing (4) is formed so as to have a small gap (a) force between the outer peripheral surface and the inner peripheral surface of the closed casing (1).
  • the slight clearance (a) is set to 2_Rei ⁇ 111 ⁇ 30 / £ / 1 11, the oil return passageway (25) force between the housing (4) and closed casing (1) ⁇ been formed .
  • the housing (4) has an outer diameter slightly smaller than the inner diameter of the closed casing (1), and is loosely fitted to the closed casing (1).
  • a plurality of welding pins (26) are embedded in the outer periphery of the housing (4), while a portion facing the welding pin (26) is welded to the closed casing (1).
  • a hole is formed.
  • the housing (4) is fixed by welding with a small gap (a) in the closed casing (1), and the oil return passage (25) is formed by the small gap).
  • the oil return passage (25) is a thrust bearing that supports the oil supply passage (27) formed in the exclusive service (5), the bearing (6a, 6b) and the end plate (3a) of the movable scroll (3).
  • the housing (4) has a recess (28) in which the shaft member (8) is located, and the oil return passage (25) has a recess (28). This is a passage for returning lubricating oil to (i2B).
  • the oil return passage (25) prevents the oil reservoir (29) formed at the bottom of the (12B) from flowing back into the lubricating oil or the liquid refrigerant, and at the same time, the lubricating oil flows into the recess (28). Prevents the accumulation of force ⁇ oil II ⁇ force ⁇ due to the movable scroll (3).
  • the oil return passage (25) is formed by a small gap (a) between the closed casing (1) and the housing (4), the housing (4) is sealed by welding using a welding pin (26). Since it can be fixed to the casing (1), it can easily center the drive fist (5). Therefore, it is advantageous in that the oil return passage (25) can be formed and the drive vehicle (5) can be easily centered.
  • the oil return passage (25) may be constituted by a communication small hole (b), and although not shown, it may be formed by a notch. Further, the above-mentioned small gap (a) and the communication small hole (b) may be used in combination.
  • the suction passage (24) may be provided in the upper part of the closed casing (1) in accordance with the opening position of the suction ports (22, 23) arranged in the upper part of the closed casing (1). I prefer to shift it, In particular, as shown in FIG. 1, the movable scroll (3) closes the intake ports (22, 23) in the revolving direction, ie, the intake ports (22, 23). ) Is preferable.
  • the suction pipe (11) is opened at the upper part of the electric motor (12B), and the position of this opening is preferably less than the force of shifting the suction passage (24) in the circumferential direction.
  • the movable scroll (3) performs only public vehicle movement without rotating on the fixed scroll (2).
  • the refrigerant returning from the cold evaporator flows into the closed casing (1) (12B) from the suction pipe (11).
  • This refrigerant flows from (1 2 B) through the suction ⁇ channel (24), flows into the compression element chamber (1 2 A), and enters each compression chamber (RA, RB) from the suction port (22, 23). Compressed.
  • the high-pressure refrigerant flows out of each compression chamber (RA, RB) through the discharge port (11) to the discharge chamber (14), and is supplied to the condenser through the discharge pipe (16).
  • the refrigerant flows into the compression chambers (RA, B) from the suction ports (22, 23).
  • the scrolls (2b, 3b) of the fixed scroll (2) and the moving scroll (3) are asymmetric, the two suction ports (22, 23) are brought close to each other, and the closed casing (1) is used. )
  • both the inlets (22, 23) are closed casing U). Since it is located at the upper part, the bubbles of the dissolved liquid and the liquid refrigerant are prevented from being sucked from the inlets (22, 23).
  • the position of the opening of the suction pipe (11) to the motor chamber (1 2b) is shifted in the circumferential direction with respect to the suction passage (24), and the suction passage (24) is further connected to the suction ports (22, 23). ) In the circumferential direction. For this reason, as shown by the dotted arrows in FIG.
  • the refrigerant including the liquid refrigerant that has been turned into electric power (12B) from the suction pipe (11) first becomes dense in the machine room (12B). It flows circumferentially along the inner peripheral surface of the closed casing (1). After that, the refrigerant enters the compression element chamber (12 A) as shown by the solid arrow in the Ail path (24), and then changes the flow direction to the direction of the suction ports (22, 23). Will flow to
  • the liquid refrigerant is separated from the refrigerant in the process of flowing into the suction ports (22, 23) through the suction pipe (11) and the suction ⁇ path (24), and the fiber refrigerant is directly The force of being sucked into the suction ports (22, 23) is prevented. As a result, the gasified refrigerant is filled in the suction ports (22, 23), and therefore, the liquid compression due to the suction of the liquid refrigerant can be reliably prevented. Further, the lubricating oil supplied to the bearings (6a, 6b) and the thrust receiving surface returns to the electric motor (1 2B) through the oil return passage (25), and thus lubricates the concave portion (28) of the housing (4). Oil accumulation is prevented. As a result, oil agitation by the orbiting scroll (3) can be prevented, and the amount of rising oil can be reduced. Further, it is possible to prevent the liquid refrigerant and the lubricating oil from flowing backward from the oil reservoir (29).
  • the rigidity can be improved, and the force applied to the housing (4) can reduce the distortion on the thrust receiving surface. Can be improved.
  • the horizontal scroll compressor according to the present invention is useful as a compressor such as a refrigerating device, and is particularly suitable for a device that may tear with liquid fluid power.

Abstract

A horizontal scroll compressor wherein a tail end of a spiral body (2b) of a fixed scroll (2) is connected to a tail and side of a spiral body (3b) of a movable scroll (3) for extension, wherein suction ports (22, 23) of respective compression chambers (RA, RB) are located closer to each other by the extension of the spiral body (2b), while the suction ports (22, 23) are positioned at an upper portion of a sealed casing (1), wherein a suction passageway (24) is formed at an upper portion of a housing (4) dividing a compressing element chamber (12A) from a motor chamber (12b), whrein a position where a suction tube (11) is open deviates in a circumferential direction relative to the suction passageway (24), wherein the suction passageway (24) deviates in a circumferential direction relative to the suction ports (22, 23) of the compression chambers (RA, RB) and wherein the suction passageway (24) deviates forwardly of the movable scroll (3) in its revolving direction relative to the suction ports (22, 23).

Description

明 細 横形スク ロ——ノレ圧縮機  Bright Horizontal Compressor
C技術分野 ] C technical field]
本発明は、横形スクロール圧縮機に関し、詳しくは、 それぞれ鏡板と渦巻体とを 有する固定スクロールと可動スクロールとを唾み合わせて成る圧縮機に係るものであ o  The present invention relates to a horizontal scroll compressor, and more particularly, to a compressor in which a fixed scroll and a movable scroll each having a head plate and a spiral body are combined.
[背景技術 3 [Background technology 3
従来、 冷凍装置等に用いられる横形スクロール圧縮機には、 特開平 6-6627 4号公報に開示されているものがある。  2. Description of the Related Art Conventionally, as a horizontal scroll compressor used for a refrigerating apparatus or the like, there is one disclosed in Japanese Patent Application Laid-Open No. 6-62674.
このスクローノレ圧縮機は、 図 5に示すように、 横形の密閉ケーシング(C) の一 側部に圧縮要素 (E)が、他側部に 機 (M) がそれぞ†UK納されて構成されてい る。 そして、上言 dffi縮要素 (E) は、 それぞれ鏡板の前面に渦巻体が形成されて成る 固定スクロール (FS) と可動スクロール (OS) とを備え、該固定スクロール (FS) と 可動スクロール (OS) の渦巻体が嚙み合わされている。  As shown in Fig. 5, this scroll-type compressor has a horizontal hermetic casing (C) with a compression element (E) on one side and a machine (M) on the other side, which is housed in the UK. ing. The above dffi reduction element (E) includes a fixed scroll (FS) and a movable scroll (OS) each having a scroll formed on the front surface of the end plate, and the fixed scroll (FS) and the movable scroll (OS) are provided. ) Spirals are interlocked.
上記 機 (M) は、駆動軸 (S) を介して可動スクロール (OS) の鏡板に連結 されている。 該駆動軸 (S) の圧縮要素 (E)側の一端部は、第 1軸受ハウジング (H) を介して密閉ケーシング (C) に支持され、 他端部は、 図示しないが、第 2軸 受ハウジングを介して密閉ケ一シング(C) に支持されている。  The machine (M) is connected to the end plate of the movable scroll (OS) via the drive shaft (S). One end of the drive shaft (S) on the side of the compression element (E) is supported by a closed casing (C) via a first bearing housing (H), and the other end is a second bearing (not shown). It is supported by a closed casing (C) via a housing.
——方、上記密閉ケ シング(C) には、圧縮要素 (E) と 機 (M) との間の 内部空間 (A) に開口する吸入管 (J) 力接铳されている。 —On the other hand, a suction pipe (J) that opens into the internal space (A) between the compression element (E) and the machine (M) is connected to the closed casing (C).
また、上記第 1$由受ハウジング(H) には、 ゴムなどの可撓性材料から成る仕切 部材 (B)力圧縮要素 (E)の吸入側と内部空間 (A) とを仕切って設けられている。 更に、上記第 1$由受ハウジング (H)の上部には、 内部空間 (A)を圧縮要素 (E) の吸入側に する吸 A¾½ (D)力《形成されている。 The first housing (H) has a partition made of a flexible material such as rubber. The member (B) is provided to partition the suction side of the force compression element (E) and the internal space (A). Further, a suction A¾½ (D) force is formed in the upper part of the first $ receiving housing (H) so that the internal space (A) is on the suction side of the compression element (E).
尚、 上記固定スクロール (FS) の背面側には、 吐出室 (G) を形成する隔壁 (F) 力《設けられている。 該吐出室 (G) には、 固定スクロール (FS)の鏡板に形成された 吐出ポート (Ρ)力開口すると共に、 吐出管 (Κ)力 <連通されている。 上記スクロール圧縮機の圧縮動作は、 次の通りである。  In addition, on the back side of the fixed scroll (FS), a partition wall (F) for forming a discharge chamber (G) is provided. A discharge port (Ρ) formed in the end plate of the fixed scroll (FS) is opened to the discharge chamber (G), and a discharge pipe (<) force is communicated with the discharge chamber (G). The compression operation of the scroll compressor is as follows.
先ず、 機 (Μ) を駆動すると、可動スクロール (OS) は固定スクロール (FS) に対して自転することなく公 動のみを行う。 そして、 例えば、 冷凍装置の蒸発器 力、ら戻る iSEのガス冷媒は、 吸入管 (J)から密閉ケ一シング (C)の内部空間 (A) に流入 " <»0 First, when the machine (Μ) is driven, the orbiting scroll (OS) performs only the driving without rotating on the fixed scroll (FS). Then, for example, the evaporator power of the refrigeration system, et back iSE gas refrigerant suction pipe into the interior space (A) of the closed Ke one single from (J) (C) "< » 0
このガス冷媒は、 内部空間 (A)力、ら吸 路 (D)を通り、圧縮要素 (Ε) に し、該圧縮要素 (Ε) によって圧縮される。 その後、高圧のガス冷媒は、圧縮要 素 (Ε)力、ら吐出ポート (Ρ)を経て吐出室 (G) に流出し、吐出管 (Κ) より凝縮 器に供給される。  The gas refrigerant passes through the internal space (A) and the suction path (D) to form a compression element (Ε), which is compressed by the compression element (Ε). Thereafter, the high-pressure gas refrigerant flows into the discharge chamber (G) through the compression element (Ε), the discharge port (Ρ), and is supplied to the condenser through the discharge pipe (Κ).
_解決課題-_ Solution issues-
±έΕした従来の横形スクロ—ノレ圧縮機においては、 固定スクロール (FS)の渦巻 体の巻終り端と、可動スクロール (OS)の渦巻体の巻終り端との間に、 180度の位 相ずれがある。 このために、両スクロール (FS, OS) の渦巻体の間に形成される 2つ の圧縮室の吸入口も 180度の位相ずれがあつた。 In a conventional horizontal scroll compressor with ± έΕ, a 180-degree phase is set between the end of the spiral of the fixed scroll (FS) and the end of the spiral of the movable scroll (OS). There is a gap. For this reason, the suction ports of the two compression chambers formed between the scrolls of both scrolls (FS, OS) were also out of phase by 180 degrees.
した力つて、従来の横形スクローノレ圧縮機においては、一方の圧縮室の ロを 横形の密閉ケーシング(C)の上部に位置させると、 他方の圧縮室の吸込口が密閉ケ 一シング (C)の下部に位置することになる。 一方、上記横形スクロール圧縮機を備えた冷凍装置において、 吐出ガス冷媒を蒸 発器に供給して逆サイクルのデフロスト運転を行った場合や、 その後に再び、通常運 転に切り換え、 吐出ガス冷媒を凝縮器に流した場合、蒸発器から密閉ケーシング (C ) に多くの液冷媒が戻る場合がある。 As a result, in the conventional horizontal scurnole compressor, when the b of one compression chamber is positioned above the horizontal closed casing (C), the suction port of the other compression chamber is closed by the closed casing (C). It will be located at the bottom. On the other hand, in the refrigerating apparatus equipped with the horizontal scroll compressor, when the discharge gas refrigerant is supplied to the evaporator to perform the reverse cycle defrost operation, or after that, the operation is switched to the normal operation again, and the discharge gas refrigerant is changed to the normal operation. When flowing into the condenser, a large amount of liquid refrigerant may return from the evaporator to the closed casing (C).
その際、 したように、 1つの吸込口が密閉ケーシング (C ) の下部に位置し ているので、 液冷媒が吸 Λ 路 ( D ) を通過すると、 この液冷媒を吸入口から圧縮室 に吸込むことになる。 この結果、 ¾Η縮が生じ、渦巻体の破損等の圧縮機不良を起こ すという問題があった。  At this time, as described above, since one suction port is located at the lower part of the closed casing (C), when the liquid refrigerant passes through the suction passage (D), the liquid refrigerant is sucked from the suction port into the compression chamber. Will be. As a result, there is a problem that shrinkage occurs and a compressor failure such as breakage of the spiral body occurs.
また、 長時間の停止状態から起動する場合、 密閉ケーシング(C ) の底部の油溜 め (Q ) に ¾!^んだ液冷媒によって潤滑油と冷媒との溶解液がホーミングを起こす場 合がある。 このホーミングにより溶解液の気泡が吸 路 ( D ) を通過すると、 この 気泡を圧縮室が吸込むことになる。 この結果、潤滑油と冷媒との溶解液によって液圧 縮が生ずるという 題があつた。 そこで、上記各吸入口を密閉ケ一シング(C ) の上下方向の中間部位に位置させ ること力《考えられる。 これによつて、下部に位置していた吸入口の高さを中間部位に 位置させることができる。  Also, when starting up from a prolonged stop state, the liquid coolant lubricated into the oil reservoir (Q) at the bottom of the closed casing (C) may cause homing of the dissolved liquid of the lubricating oil and the refrigerant. is there. When bubbles of the solution pass through the suction path (D) due to the homing, the bubbles are sucked into the compression chamber. As a result, there is a problem that a liquid pressure is caused by a solution of the lubricating oil and the refrigerant. Therefore, it is conceivable that each suction port is positioned at an intermediate portion in the vertical direction of the closed casing (C). Thus, the height of the suction port located at the lower portion can be located at the intermediate portion.
上記の手段によって、多少の 縮を防止することはできる。 し力、しな力ら、吸 λ¾5¾ ( D ) を舰した液冷媒は、 この吸 Λϋ路 ( D ) 力、ら各吸入口に直接吸込まれ ることになる。 したがって、 然として液圧縮を十分に解決することカ《できないとい う問題がある。 本発明は、斯かる点に鑑みてなされたもので、液冷媒の寝込みがあったり、 多量 の液戻りがあっても、液圧縮を防止し、 液圧縮による起動不良や、渦巻体の破損など の問題を簡単な構成で解消することを目的とするものである。 c発明の開示 ] Some shrinkage can be prevented by the above means. The liquid refrigerant that has passed through the suction force, the force, and the suction λ5 (D) is directly sucked into each suction port of the suction passage (D). Therefore, there is a problem that liquid compression cannot be sufficiently solved. The present invention has been made in view of the above point, and prevents liquid compression even if there is a stagnation of a liquid refrigerant or a large amount of liquid return, causing a start failure due to liquid compression, breakage of a spiral body, etc. The purpose of the present invention is to solve the above problem with a simple configuration. c Disclosure of the Invention]
以上の目的を達成するため、 請求項 1に係る発明カ壩じた手段は、先ず、 横形の 密閉ケーシング (1) 内の一側部に圧縮要素 (E)が、他側部に誦機(M)力《それ そ' UR納されたものである。  In order to achieve the above object, the means according to the first aspect of the present invention includes a horizontal closed casing (1) in which a compression element (E) is provided on one side and a reciter ( M) Power << That's what was delivered to the UR.
上記圧縮要素 (E) は、 それぞれ鏡板 (2a, 3a)の前面に渦巻体 (2b, 3b)力《形 成されて成る固定スクロール (2)及ひ^!動スクロール (3)の各渦巻体(2b, 3b) を嚙み合わせて構成され、両スクロール (2, 3) の間にペア状の複数の圧縮室 (RA, RB)力形成されている。  The above-mentioned compression element (E) is a fixed scroll (2) formed by a spiral body (2b, 3b) force << formed on the front surface of the head plate (2a, 3a), respectively! The scrolls (3) are constructed by combining the spiral bodies (2b, 3b) of the moving scroll (3), and a pair of compression chambers (RA, RB) are formed between the scrolls (2, 3).
—方、上記 機 (M) は、可動スクロール (3) を公転させるように該可動ス クロール (3) に連結されている。 そして、上記密閉ケーシング (1)の内部空間 (12) における圧縮要素 (E) と ¾¾機 (M) との間に吸入管 (11)カ<開口している 横形スクロール圧縮機を前提としている。  On the other hand, the machine (M) is connected to the movable scroll (3) so as to revolve the movable scroll (3). Further, it is assumed that the horizontal scroll compressor has an intake pipe (11) opening between the compression element (E) and the compressor (M) in the internal space (12) of the closed casing (1).
上記固定スクロール (2) における渦巻体 (2b)の巻終り端は、上記ペアとなる 両圧縮室 (RA, RB)の吸入口 (22, 23)力近接するように可動スクロール (3) にお ける'渦巻体 (3b)の巻終り端側に延長され、上記吸入口 (22, 23)力密閉ケーシング (1)の上部に位置するように両スクロール (2, 3)力く配置されている。  The end of the spiral body (2b) in the fixed scroll (2) is connected to the movable scroll (3) so as to be close to the suction ports (22, 23) of the paired compression chambers (RA, RB). The two scrolls (2, 3) are extended so as to extend toward the end of the spiral of the spiral body (3b) and to be located at the upper part of the suction casing (1). .
更に、上記内部空間 (12) には、 内部空間 (12) を圧縮要素室 (12A) と 機 室 (12B) とに仕切るハウジング (4)力圧縮要素 (E) と漏機 (M) との間に設 けられ、上記吸入管 (11)力 (12B) に開口されている。  Further, the internal space (12) has a housing (4) that partitions the internal space (12) into a compression element chamber (12A) and a machine room (12B). The suction pipe (11) is open to the force (12B).
加えて、上記ハウジング (4)の上部には、 吸入口 (22, 23)力開口する吸入部 に ¾ϋする吸 λ¾路 (24)力《形成されると共に、上記ハウジング (4) には、圧縮要 素室 (12A) と ¾¾am (12 B) とに連通し且つ所定の il抵抗を有する油戻し通路 (25)が設けられている。 - また、請求項 2に係る発明力《講じた手段は、上記請求項 1の発明において、 吸入 管 (11)の (12B)への開口位置が、 ハウジング ) の上部の吸 AS路 (24) に対して周方向にずれた構成としている。 また、請求項 3に係る発明カ墉じた手段は、上記請求項 1又は 2の発明において、 吸 λ¾路 (24)が、 ペアとなる圧縮室 (RA, RB) の吸入口 (22, 23) に対して周方向 にずれた位置に形成されたものである。 また、請求項 4に係る発明カ墉じた手段は、上記請求項 3の発明において、 吸入 通路 (24)が、吸入口 (22, 23) に対して可動スクロール (3) の公転方向の前方側 にずれた位置に形成されたものである。 In addition, at the upper part of the housing (4), a suction λ path (24) force is formed at the suction part (24, 23) that opens to the suction port (22, 23). An oil return passage (25) communicating with the element chamber (12A) and the ¾¾am (12B) and having a predetermined il resistance is provided. -In addition, the invention according to claim 2 <means taken in the invention of claim 1 The opening position of the pipe (11) to (12B) is shifted in the circumferential direction with respect to the suction AS passage (24) at the top of the housing). Further, the means according to the third aspect of the present invention is the invention according to the first or second aspect, wherein the suction λ channel (24) is connected to the suction ports (22, 23) of the paired compression chambers (RA, RB). ) Is formed at a position shifted in the circumferential direction with respect to. According to a fourth aspect of the present invention, in the third aspect of the present invention, the suction passage (24) is arranged such that the suction passage (24) is located in front of the suction port (22, 23) in the revolving direction of the movable scroll (3). It is formed at a position shifted to the side.
—作用- 上記の構成により、請求項 1に係る発明では、 固定スクロール (2)の渦巻体 (2b) の巻終り端を延長し、 この渦巻体 (2b) と可動スクロール (3)の渦巻体 (3b) とを非対称狀としている。 そして、 ペアとなる圧縮室 (RA, RB)の吸入口 (22, 23) を近接させると共に、 これらの吸入口 (22, 28)を密閉ケーシング (1)の上部に配 置している。更に、上記吸入口 (22, 23)が開口する圧縮要素室 (12A) と、 吸入管 (11)力《開口する (12B) とをハウジング (4) によって仕切り、該ハウジ ング (4)の上部に吸 λϋ路 (24)を設けると共に、該ハウジング (4) に油戻し通 路 (25) を設けている。 —Operation— With the above configuration, in the invention according to claim 1, the end of the spiral body (2b) of the fixed scroll (2) is extended, and the spiral body (2b) and the spiral body of the movable scroll (3) are extended. (3b) is asymmetric 狀. Then, the suction ports (22, 23) of the paired compression chambers (RA, RB) are brought close to each other, and these suction ports (22, 28) are arranged at the upper part of the closed casing (1). Further, the housing (4) separates the compression element chamber (12A) from which the suction ports (22, 23) open, and the suction pipe (11), which opens (12B), and the upper part of the housing (4). An oil return path (25) is provided in the housing (4), while an oil absorption path (24) is provided in the housing (4).
そして、例えば、冷凍装置において、逆サイクルデフロスト運転を行った場合や、 その後に通常運転に戻った際、 吸入管 (11)力、ら多くの液冷媒カ密閉ケーシング (1) に戻り、 液冷媒が圧縮要素室 (12A) に侵入する場合がある。 また、起動時において、 潤滑油と冷媒との溶解液がホーミングして、 このホーミングにより溶解液の気泡が吸 λ¾路 (24)から圧縮要素室 (12A) に侵入する場合がある。 この場合、 各圧縮室 (RA, RB) の吸入口 (22, 23) が上部に位置しているので、 液冷媒ゃ溶解液が吸入口 (22, 23) から圧縮室 (RA, RB) に吸い込まれることがなく、 液圧縮が抑制される。 Then, for example, when the reverse cycle defrost operation is performed in the refrigeration apparatus or when the operation returns to the normal operation thereafter, the suction pipe (11) returns to the liquid casing and the liquid casing (1), and returns to the liquid casing. May enter the compression element chamber (12A). Also, at the time of startup, the solution of the lubricating oil and the refrigerant may be homed, and bubbles of the solution may enter the compression element chamber (12A) from the λ path (24) due to the homing. In this case, since the suction ports (22, 23) of each compression chamber (RA, RB) are located at the top, the liquid refrigerant / dissolved liquid flows from the suction ports (22, 23) to the compression chambers (RA, RB). There is no suction and liquid compression is suppressed.
また、上言 Sff縮要素室 (1 2 A) 力、ら誦醒 (1 2 B) への油戻りも確実に行われ るので、可動スクロール (3 ) による油携拌が抑制される。  In addition, since the oil is returned to the Sff compression element chamber (12 A) power and the recitation (12 B) reliably, the oil entrainment by the orbiting scroll (3) is suppressed.
更に、上記各スクロール (2, 8) の渦巻体 (2b, 8b) を非対称としたことにより、 スクロール外径 (鏡板外径) 力抑えられるので、 小形化を図りつつ、 液圧縮が防止さ れ、 信頼性が向上する。 また、請求項 2に係る発明では、上記吸入管 (11) の開口位置が吸 λϋ路 (24) に対して周方向にずれているので、 吸入管 (11) から多くの液冷媒が戻る場合でも、 この液冷媒が吸入管 (11) から吸 λ¾路 (24) に直接吸い込まれることがない。 この 結果、液圧縮の問題をより確実に解消でき、 より高い信頼性が得られる。 また、請求項 3に係る発明では、上記吸 Λϋ路 (24) 力《吸入口 (22, 23) に対し て周方向にずれているので、液冷媒が吸 Λϋ路 (24) に侵入した際、 この液冷媒が飛 散して吸入口 (22, 23) に直接吸い込まれることがない。 この結果、上記吸 Λϋ路 Further, since the scrolls (2, 8) of the scrolls (2, 8) are made asymmetric, the outer diameter of the scroll (outer diameter of the end plate) can be suppressed, so that the liquid can be prevented from being compressed while reducing the size. , Improves reliability. Further, in the invention according to claim 2, since the opening position of the suction pipe (11) is shifted in the circumferential direction with respect to the suction λ channel (24), a case where a large amount of liquid refrigerant returns from the suction pipe (11). However, this liquid refrigerant is not sucked directly from the suction pipe (11) into the λ¾ path (24). As a result, the problem of liquid compression can be solved more reliably, and higher reliability can be obtained. Further, in the invention according to claim 3, since the suction path (24) is displaced in the circumferential direction with respect to the suction port (22, 23), when the liquid refrigerant enters the suction path (24), However, the liquid refrigerant does not scatter and is directly sucked into the suction ports (22, 23). As a result, the suction
(24) 力、ら^:する液冷媒が吸入口 (22, 23) に吸い込まれて生ずる ¾flE縮が防止さ れ、 腿縮の問題を更に確実に解消することができる。 また、請求項 4に係る発明では、上記吸 λ¾路 (24) が吸入口 (22, 23) に対し て可動スクロール (3 ) の公転方向の前方側にずれており、 つまり、渦巻体 (3b) の 巻終り端部の背面側にずれている。 このため、上記吸入通路 (24).から して圧縮 要素室 (1 2 A) に した液冷媒が吸入口 (22, 23) に吸い込まれる場合、上記渦巻 体 (3W の巻終り端部を迂回する必 がある。 この結果、 その吸い込み力 に効果的 に防止され、 液圧縮の防止がより一層向上する。 ""効果- した力《つて、請求項 1に係る発明によれば、 固定スクロール (2)の渦巻体 (2b) の巻終り端を延長し、 各圧縮室 (RA, B)の吸入口 (22, 23) を近接させ、且つ密閉 ケ一シング (1)の上部に配置する一方、 吸入口 (22, 23)力《開口する圧縮要素室 (12A) と吸入管 (11)が開口する ¾®Ι^ (12B) とを仕切るハウジング(4)の 上部に吸 λϋ路 (24)を設けたために、 ffi縮を確実に防止することができる。 (24) Forces, etc .: The 冷媒 flE shrinkage that occurs when the liquid refrigerant is sucked into the suction ports (22, 23) is prevented, and the problem of thigh shrinkage can be solved more reliably. Further, in the invention according to claim 4, the suction λ channel (24) is shifted forward with respect to the suction port (22, 23) in the revolving direction of the movable scroll (3), that is, the spiral body (3b ) Is shifted to the back of the end of the winding. For this reason, when the liquid refrigerant drawn into the compression element chamber (12 A) from the suction passage (24) is sucked into the suction ports (22, 23), the spiral body (bypassing the winding end of the 3W) is bypassed. As a result, the suction force is effective And the prevention of liquid compression is further improved. According to the invention of claim 1, the end of the spiral body (2b) of the fixed scroll (2) is extended, and the suction port (RA, B) of each compression chamber (RA, B) is extended. 22, 23) are placed close to and above the closed casing (1), while the suction port (22, 23) has a force << the open compression element chamber (12A) and the suction pipe (11) open. ® The λ channel (24) is provided in the upper part of the housing (4) that separates from the Ι ^ (12B), so that ffi-compression can be reliably prevented.
つまり、例えば、冷凍装置において、逆サイクルデフロスト運転を行った場合や、 その後に通常運転に戻った際、吸入管 (11)力、ら多くの液冷媒が密閉ケーシング (1) に戻り、 液冷媒が圧縮要素室 (12A) に侵入する場合がある。 また、 起動時において、 潤滑油と冷媒との溶解液がホーミングして、 このホーミングにより溶解液の気泡が吸 路 (24)から圧縮要素室 (12A) に する場合がある。 この場合、 各圧縮室 (RA, RB) の吸入口 (22, 23)力《上部に位置しているので、 この気泡や上記液冷媒が 吸入口 (22, 23)力、ら各圧縮室 (RA, RB) に吸い込まれることを確実に防止すること 力《でき、 ¾Ε縮を確実に防止することができる。 また、上記ハウジング(4) に油戻し通路 (25)を設けたために、圧縮要素室 (12A)力、ら¾¾^ (12B)への油戻り力《確実に行われるようにすることができる ので、 可動スクロール (3) による油 ϋίίを確実に防止することができる。  That is, for example, when the reverse cycle defrost operation is performed in the refrigerating apparatus, or when the operation returns to the normal operation thereafter, the suction pipe (11) force and many other liquid refrigerants return to the closed casing (1), and the liquid refrigerant May enter the compression element chamber (12A). Also, at the time of startup, the solution of the lubricating oil and the refrigerant may be homed, and bubbles of the solution may flow from the suction passage (24) to the compression element chamber (12A) due to the homing. In this case, since the suction ports (22, 23) of the compression chambers (RA, RB) are located at the upper part, the bubbles and the liquid refrigerant are compressed by the suction ports (22, 23). RA, RB) can be reliably prevented from being sucked into, and compression can be reliably prevented. Further, since the oil return passage (25) is provided in the housing (4), the force of the compression element chamber (12A) and the oil return force to the ¾¾ ^ (12B) can be ensured. In addition, oil can be reliably prevented from being generated by the orbiting scroll (3).
また、上記固定スクロール (2)の渦巻体 (2b) と可動スクロール (3) の渦巻 体 (3b) とを非対称にしたために、 スクロール外径 (鏡板外径) を抑えること力でき るので、 小形化を図るこ ができる^時に、腿縮を防止すること;^ eきること力、 ら、信頼性の向上を図ることができる。 また、 請求項 2に係る発明によれば、 吸入管 (11) の開口位置を吸入通路 (24) に対して周方向にずらすようにしたために、 吸入管 (11) から多くの液冷媒が戻る場 合でも、 この液冷媒が吸入管 (11) から吸入通路 (24) に直接吸い込まれることを防 止すること力 <できる。 この結果、 液圧縮の問題をより確実に解消することができ、 よ り高い信頼性を得ること力 <できる。 また、 請求項 3に係る発明によれば、 吸入通路 (24) を吸入口 (22, 23) に対し て周方向にずらすようにしたために、 液冷媒が吸入通路 (24) に侵入した際、 この液 冷媒が飛散して吸入口 (22, 23) に直接吸い込まれることを防止すること力《できる。 この結果、 上記吸 λϋ路 (24) から飛散する液冷媒が吸入口 (22, 23) に吸い込まれ て生ずる ¾Ε縮を防止することができるので、 液圧縮の問題を更に確実に解消するこ とができる。 また、 請求項 4に係る発明によれば、 吸 λ¾路 (24) 力《吸入口 (22, 23) に対し て可動スクロール (3 ) の公転方向の前方側にずらすようにしたために、 上記吸入口 (22, 23) を可動スクロール (3 ) の渦巻体 (3b) における巻終り端部の背面側に位 置することになる。 このため、 上記吸 Ail路 (24) 力、ら して圧縮要素室 (1 2 A) に侵入した液冷媒が吸入口 (22, 23) に吸い込まれる場合、 該液冷媒が渦巻体 (3b) の巻終り端部を迂回させるようにすることができる。 この結果、 その吸い込みを更に 効果的に防止することができ、 液圧縮の防止をより一層向上させることができる。 In addition, since the spiral body (2b) of the fixed scroll (2) and the spiral body (3b) of the orbiting scroll (3) are asymmetrical, the outer diameter of the scroll (outer diameter of the end plate) can be suppressed, so that a small In addition, it is possible to prevent thigh contraction when it is possible to increase the power; According to the second aspect of the present invention, since the opening position of the suction pipe (11) is shifted in the circumferential direction with respect to the suction passage (24), a large amount of liquid refrigerant returns from the suction pipe (11). Even in this case, it is possible to prevent the liquid refrigerant from being sucked directly from the suction pipe (11) into the suction passage (24). As a result, the problem of liquid compression can be more reliably solved, and the ability to obtain higher reliability can be achieved. According to the third aspect of the present invention, since the suction passage (24) is shifted in the circumferential direction with respect to the suction ports (22, 23), when the liquid refrigerant enters the suction passage (24), This can prevent the liquid refrigerant from scattering and being directly sucked into the suction ports (22, 23). As a result, it is possible to prevent the liquid refrigerant scattered from the suction λ channel (24) from being sucked into the suction ports (22, 23) and to prevent the compression from occurring, so that the problem of the liquid compression can be solved more reliably. Can be. According to the fourth aspect of the present invention, the suction λ path (24) is shifted to the front side in the revolving direction of the orbiting scroll (3) with respect to the suction force (24) with respect to the suction port (22, 23). The mouths (22, 23) are located on the back side of the end of the scroll in the scroll (3b) of the orbiting scroll (3). For this reason, when the liquid refrigerant which has entered the compression element chamber (12 A) due to the force of the suction Ail passage (24) is drawn into the suction ports (22, 23), the liquid refrigerant is swirled (3b) Can be bypassed. As a result, the suction can be more effectively prevented, and the prevention of liquid compression can be further improved.
[図面の簡単な説明 ] [Brief description of drawings]
—図 1は、本発明の一実施例を示すもので、 固定スクローノレ及 C 動スクロールの 渦巻体を一部切除してハウジングをみた断面図である。  -Fig. 1 shows an embodiment of the present invention, and is a cross-sectional view of a fixed scroll and a scroll of a moving scroll, in which a part of a spiral body is cut away and a housing is viewed.
図 2は、 1部を省略した横形スクロール圧縮機の縱断面図である。 図 3は、 ハウジングのみを示す右側面図である。 FIG. 2 is a longitudinal sectional view of the horizontal scroll compressor in which one part is omitted. FIG. 3 is a right side view showing only the housing.
図 4は、 別の実施例を示す横形スクロール圧縮機の要部の断面図である。  FIG. 4 is a cross-sectional view of a main part of a horizontal scroll compressor showing another embodiment.
図 5は、 1部を省略して示す従来の横形スクロール圧縮機の縦断面図である。  FIG. 5 is a vertical cross-sectional view of a conventional horizontal scroll compressor shown with one part omitted.
[発明を実施するための最良の形態 ] [Best Mode for Carrying Out the Invention]
以下、 本発明の実施例を図面に基づいて詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
-圧縮機の構成 - 図 2に示すように、 この横形スクロール圧縮機は、 冷凍装置の冷媒回路に設けら れるものであって、 横長に設置された密閉ケーシング (1) の一側部に圧縮要素 (E) 力《収納されると共に、 他側部に ¾¾機 (M)力 <収納されて構成されている。  -Structure of the compressor-As shown in Fig. 2, this horizontal scroll compressor is provided in the refrigerant circuit of the refrigeration system, and is compressed on one side of a horizontally long sealed casing (1). Element (E) force <stored, and on the other side, machine (M) force <stored.
上記圧縮要素 (E) は、 鏡板 (2a) の前面に渦巻体 (2b)力形成されて成る固定 スクロール (2) と、 鏡板 (3a) の前面に渦巻体 (3b)力《形成されて成る可動スクロ —ル (3) とより構成され、 固定スクロール (2)の渦巻体 (2b) と可動スクロール (3) の渦巻体 (3b) とが唾み合わされている。  The compression element (E) is composed of a fixed scroll (2) formed by a spiral body (2b) on the front surface of the head plate (2a) and a spiral body (3b) force formed on the front surface of the head plate (3a). It consists of a movable scroll (3), and the spiral body (2b) of the fixed scroll (2) and the spiral body (3b) of the movable scroll (3) are engaged with each other.
上記電動機 (M) には專隨軸 (5)力く連結され、 該專隨軸 (5)力《可動スクロー ル (3) を公転させるように該可動スクロール (3) に連結されている。 上記駆動軸 (5) の一端部は、 圧縮要素 (E) に近接し且つ密閉ケーシング (1) に固定されたハウジング (4) に軸受 (6a)を介して支持され、 他端部は、 図示しな いが、 軸受ハウジングを介して密閉ケ一シング (1) に支持されている。  The dedicated shaft (5) is strongly connected to the electric motor (M), and is connected to the movable scroll (3) so as to revolve the dedicated shaft (5) <the movable scroll (3). One end of the drive shaft (5) is supported via a bearing (6a) on a housing (4) which is close to the compression element (E) and is fixed to the closed casing (1). Although not shown, it is supported by a closed casing (1) via a bearing housing.
上記駆動牵由 (5)の一端部には、 偏心軸部 (7)力《形成され、 該偏心拳由部 (7) は、 可動スクロール (3) における鏡板 (3a) の背面側から突出する筒状の軸部材 (8) に軸受 (6b) して揷入されている。  An eccentric shaft (7) force is formed at one end of the driving mechanism (5), and the eccentric fisting mechanism (7) protrudes from the rear side of the end plate (3a) in the movable scroll (3). It is inserted into a cylindrical shaft member (8) as a bearing (6b).
また、 上記可動スクロール (3)の鏡板 (3a) とハウジング (4) との間には、 自転防止用のオルダムリング (9)が設けられている。 そして、 上記電動機 ( M ) を駆動して駆動幸由 (5 ) が回転すると、 可動スクロ一 ル (3 ) が固定スクロール (2 ) に対して自転することなく公転運動のみを行うこと になる。 この公転運動により、 各渦巻体 (2b, 3b) の間に第 1圧縮室 (RA) と第 2圧 縮室 (RB) とが形成される。 この両圧縮室 (RA, RB) の容積収縮によって冷媒を圧縮 し、 この冷媒は、 上記固定スクロール (2 ) の鏡板 (2a) の中心部に形成された吐出 ポート (10) から吐出する。 An Oldham ring (9) for preventing rotation is provided between the end plate (3a) of the orbiting scroll (3) and the housing (4). When the motor (M) is driven to rotate the drive motor (5), the movable scroll (3) performs only a revolving motion without rotating on the fixed scroll (2). By this orbital motion, a first compression chamber (RA) and a second compression chamber (RB) are formed between the spiral bodies (2b, 3b). The refrigerant is compressed by the volume shrinkage of the compression chambers (RA, RB), and the refrigerant is discharged from a discharge port (10) formed at the center of the end plate (2a) of the fixed scroll (2).
—方、 上記密閉ケーシング (1 ) の内部空間 (12) における圧縮要素 (E ) と電 動機 (M ) との間には、 冷媒を導く吸入管 (11) が開口されている。 On the other hand, a suction pipe (11) for introducing refrigerant is opened between the compression element (E) and the electric motor (M) in the internal space (12) of the closed casing (1).
また、 上記固定スクロール (2 ) の鏡板 (2a) の背面には、 密閉ケ一シング (1 ) に固定された仕切板 (13) 力設けられている。 該仕切板 (13) は、 固定スクロール ( 2 ) の鏡板 (2a) の背面側に吐出室 (14) を区画形成している。 そして、 該吐出室 (14) には、 仕切板 (13) に設けられた吐出弁装置 (15) を介して吐出ポート (10) が開口すると共に、 吐出管 (16) 力 <連通されている。  On the back of the end plate (2a) of the fixed scroll (2), a partition plate (13) fixed to the closed casing (1) is provided. The partition plate (13) defines a discharge chamber (14) behind the end plate (2a) of the fixed scroll (2). A discharge port (10) is opened to the discharge chamber (14) via a discharge valve device (15) provided on a partition plate (13), and the discharge pipe (16) has a force <communication. .
また、 上記仕切板 (13) には、 潤滑油を捕集するデミスタ (17) 力設けられる一 方、 上記吐出室 (U) の潤滑油は、 キヤビラリ (18) によって電動^ (1 2 B) に回 収される。  The partition plate (13) is provided with a demister (17) for collecting lubricating oil, while the lubricating oil in the discharge chamber (U) is electrically driven by a capillar (18). Will be recovered.
更に、 上記仕切板 (13) には、 ガス遮蔽部 (19) カ 体に設けられ、 上記キヤピ ラリ (18) の端部にはキヤビラリガイド扳 (20) 力《設けられる一方、 上記密閉ケ一シ ング (1 ) は、 取付脚 (21) によって設置面 (GL) に惧斜状に支持されている。 した横形スクロール圧縮機において、 本発明の特徴は、 図 1に示すように、 先ず、 固定スクロール (2 ) の渦巻体 (2b) にある。 つまり、 該固定スクロール (2 ) における渦巻体 (2b) の巻終り端は、 この巻終り端から可動スクロール (3 ) におけ る渦巻体 (3W の巻終り端に対向する部位までほぼ 1 8 0度延長されている。 そして、上記渦巻体 (3b) の延長によって両スクロール (2, 3)の間に形成され る 2つの圧縮室 (RA, RB) の吸入口 (22, 23) を近接させている。 更に、 図 1に示す ように、 これらの吸入口 (22, 23)力密閉ケーシング (1) の上部に位置するように 両スクロール (2, 3)力《配置されている。 Further, the partition plate (13) is provided on a gas shielding portion (19) body, and a capillary guide (20) is provided at an end of the capillary (18) while the sealing casing is provided. The ring (1) is supported on the installation surface (GL) in an oblique manner by the mounting legs (21). In the horizontal scroll compressor described above, the feature of the present invention resides first in the spiral body (2b) of the fixed scroll (2) as shown in FIG. That is, the winding end of the spiral body (2b) in the fixed scroll (2) is approximately 180 ° from the winding end to the part of the scroll (3W) in the movable scroll (3) that faces the winding end. It has been extended. The suction ports (22, 23) of the two compression chambers (RA, RB) formed between the scrolls (2, 3) by extending the spiral body (3b) are brought close to each other. Further, as shown in FIG. 1, both scrolls (2, 3) are arranged so as to be located at the upper part of the suction casing (1).
—方、 上記圧縮要素 (E) と職機 (M) との間に設けられたハウジング (4) は、 吸入口 (22, 23)力く開口する圧縮要素室 (12A) と吸入管 (11)力《開口する電動 ¾ (12 B) とに内部空間 (12) を区画し、 該圧縮要素室 (12A) の吸入部に吸入口 (22, 23)力《開口している。 上記ハウジング (4) の上部には、圧縮要素室 (12A) の吸入部に連通する吸入通路 (24)力形成されると共に、上記ハウジング (4) には、 圧縮要素室 (12A) と電動 (12B) とに連通し、 且つ所定の ¾抵抗を有する油 戻し通路 (25)力 <設けられている。 更に詳記すると、上記固定スクロール (2) における渦巻体 (2b)の巻終り端を 可動スクロール (3)の渦巻体 (3b) の巻終り端まで延長する延長部分の内側壁面は、 他の部分と同じィンボリユート曲線又はその近似曲線に形成されている。 On the other hand, the housing (4) provided between the compression element (E) and the machine (M) is provided with a suction element (12, 23), a compression element chamber (12A) that opens strongly, and a suction pipe (11). ) The inner space (12) is divided into the power (《B) and the opening (22, 23) at the suction part of the compression element chamber (12A). In the upper part of the housing (4), a suction passage (24) communicating with the suction part of the compression element chamber (12A) is formed, and in the housing (4), the compression element chamber (12A) and the electric ( 12B) and a predetermined oil resistance in the oil return passage (25). More specifically, the inner wall surface of the extension of the fixed scroll (2), which extends the end of the scroll (2b) to the end of the scroll (3b) of the orbiting scroll (3), has another portion. Are formed in the same symbolic curve or an approximate curve thereof.
また、上記渦巻体 (2b) の延長により、 固定スクロール (2) の渦巻体 (2b)の 内壁面と可動スクロール (3)の渦巻体 (3b)の外壁面とによって形成される第 1圧 縮室 (RA) の吸入体積は、 固定スクロール (2) の渦巻体 (2b)の外壁面と可動スク ロール (3) の渦巻体 (3b) の内壁面とによって形成される第 2圧縮室 (RB) の吸込 体積より増加する。  Further, by extending the spiral body (2b), the first compression formed by the inner wall surface of the spiral body (2b) of the fixed scroll (2) and the outer wall surface of the spiral body (3b) of the movable scroll (3). The suction volume of the chamber (RA) is determined by the second compression chamber (RB) formed by the outer wall of the scroll (2b) of the fixed scroll (2) and the inner wall of the scroll (3b) of the movable scroll (3). ) Suction volume.
したがって、 上記第 1圧縮室 (RA) の圧縮比と第 2圧縮室 ( B)の圧縮比とが異 なることになる。 このため、上記可動スクロール (3)又は固定スクロール (2) の 渦巻体 (2b, 3b) の巻始め端部には、第 1圧縮室 (RA) の吐出開始角度を第 2圧縮室 (RB) の吐出開始角度より早めて両圧縮室 (RA, RB) の圧縮比を同じに調節する調節 用切欠きが形成されている。 また、 上記ハウジング ( 4 ) は、 図 1に示すように、 密閉ケーシング ( 1 ) の内 周面に対向する円形の外周面が形成され、 ハウジング (4) の上部を所定範囲にわた つて切欠いて上記吸 λϋ路 (24)力《形成されている。 更に、 上記ハウジング (4) の 外周面は、 密閉ケーシング (1) の内周面との間に僅少隙間 (a)力《存するように形 成されている。 例えば、 上記僅少隙間 (a)が2〇 ^111〜30/£/111に設定され、 上記 ハウジング (4) と密閉ケーシング (1) との間に油戻し通路 (25)力 <形成されてい 。 Therefore, the compression ratio of the first compression chamber (RA) and the compression ratio of the second compression chamber (B) are different. Therefore, the discharge start angle of the first compression chamber (RA) is set to the second compression chamber (RB) at the winding start end of the spiral body (2b, 3b) of the movable scroll (3) or the fixed scroll (2). Adjustment to make the compression ratio of both compression chambers (RA, RB) the same earlier than the discharge start angle of Notch is formed. As shown in FIG. 1, the housing (4) is formed with a circular outer peripheral surface facing the inner peripheral surface of the closed casing (1), and the upper portion of the housing (4) is cut out over a predetermined range. Absorption λϋ path (24) Force << formed. Further, the outer peripheral surface of the housing (4) is formed so as to have a small gap (a) force between the outer peripheral surface and the inner peripheral surface of the closed casing (1). For example, the slight clearance (a) is set to 2_Rei ^ 111~30 / £ / 1 11, the oil return passageway (25) force between the housing (4) and closed casing (1) <been formed .
すなわち、 上記ハウジング (4) は、 外径を密閉ケ一シング (1)の内径よりや や小径にし、 密閉ケ一シング (1) に遊嵌合されている。 そして、 ハウジング (4) の外周部には、 図 3に示すように、 複数の溶接ピン (26)が埋め込まれる一方、 密閉 ケーシング (1) には、 溶接ピン (26) に対向する部位に溶接穴が形成されている。 そして、 上記密閉ケーシング (1) に僅少隙間 (a) を存してハウジング (4) を溶 接によって固定し、 この僅少隙間 ) により上記油戻し通路 (25)力形成されてい 。 この油戻し通路 (25) は、 專隨奉由 (5) に形成された給油通路 (27)力、ら軸受 (6a, 6b)や可動スクロール (3) の鏡板 (3a)を支持するスラスト受面に供給され る潤滑油を圧縮要素室 (12A)から (12B) に戻すための狭い通路である。 具体的に、 上記ハウジング (4) には、 軸部材 (8)が位置する凹部 (28)が形成さ れ、 上記油戻し通路 (25) は、 凹部 (28)
Figure imgf000014_0001
(i2B) に潤滑油を戻すため の通路である。
That is, the housing (4) has an outer diameter slightly smaller than the inner diameter of the closed casing (1), and is loosely fitted to the closed casing (1). As shown in FIG. 3, a plurality of welding pins (26) are embedded in the outer periphery of the housing (4), while a portion facing the welding pin (26) is welded to the closed casing (1). A hole is formed. The housing (4) is fixed by welding with a small gap (a) in the closed casing (1), and the oil return passage (25) is formed by the small gap). The oil return passage (25) is a thrust bearing that supports the oil supply passage (27) formed in the exclusive service (5), the bearing (6a, 6b) and the end plate (3a) of the movable scroll (3). This is a narrow passage for returning the lubricating oil supplied to the surface from the compression element chamber (12A) to (12B). Specifically, the housing (4) has a recess (28) in which the shaft member (8) is located, and the oil return passage (25) has a recess (28).
Figure imgf000014_0001
This is a passage for returning lubricating oil to (i2B).
そして、 上記油戻し通路 (25) は、 (12B)の底部に形成される油溜め (29)カヽら潤滑油や液冷媒カ逆流入するのを防止すると同時に、 凹部 (28) に潤滑油 力《溜って可動スクロール (3) による油 II ^力 <生ずることを防止している。 上記油戻し通路 (25) は、 密閉ケーシング (1) とハウジング (4) との間の僅 少隙間 (a) によって形成する場合、 溶接ピン (26) を用いて溶接によりハウジング (4) を密閉ケーシング (1) に固定することカ《できるので、 駆動拳由 (5) の芯出し を容易に行うこと力できる。 したがって、 上記油戻し通路 (25) を形成できながら駆 動車由 (5) の芯出しも容易にできる点で有利である。 The oil return passage (25) prevents the oil reservoir (29) formed at the bottom of the (12B) from flowing back into the lubricating oil or the liquid refrigerant, and at the same time, the lubricating oil flows into the recess (28). Prevents the accumulation of force << oil II ^ force <due to the movable scroll (3). When the oil return passage (25) is formed by a small gap (a) between the closed casing (1) and the housing (4), the housing (4) is sealed by welding using a welding pin (26). Since it can be fixed to the casing (1), it can easily center the drive fist (5). Therefore, it is advantageous in that the oil return passage (25) can be formed and the drive vehicle (5) can be easily centered.
上記油戻し通路 (25) の他の実施例としては、 図 4に示すように、 連通小穴 (b) によって構成してもよく、 また、 図示しないが、 切欠きにより形成してもよく、 更に また、 上記僮少隙間 (a) と連通小穴 (b) とを併用して構成してもよい。 また、 上記吸入通路 (24) は、 密閉ケーシング (1) の上部に配置する吸入口 (22, 23) の開口位置に合わせて密閉ケーシング (1) の上部に設けてもよいが、 周 方向にずらせることが好まい、。 特に、 図 1に示すように、 上記吸入口 (22, 23) に 対して、 これら吸入口 (22, 23) を閉じる可動スクロール (3) の公転方向の前方、 つまり、 吸入口 (22, 23) の背面側にずらせることカ《好ましい。  As another embodiment of the oil return passage (25), as shown in FIG. 4, it may be constituted by a communication small hole (b), and although not shown, it may be formed by a notch. Further, the above-mentioned small gap (a) and the communication small hole (b) may be used in combination. The suction passage (24) may be provided in the upper part of the closed casing (1) in accordance with the opening position of the suction ports (22, 23) arranged in the upper part of the closed casing (1). I prefer to shift it, In particular, as shown in FIG. 1, the movable scroll (3) closes the intake ports (22, 23) in the revolving direction, ie, the intake ports (22, 23). ) Is preferable.
また、 上記吸入管 (11) は、 電動 (12B) の上部に開口させているが、 この 開口位置は、 吸入通路 (24) に対して周方向にずらせること力 <好ましい。  Further, the suction pipe (11) is opened at the upper part of the electric motor (12B), and the position of this opening is preferably less than the force of shifting the suction passage (24) in the circumferential direction.
—横形スクロール圧縮機の動作一 —Operation of horizontal scroll compressor
次に、 上記横形スクロール圧縮機の動作について説明する。  Next, the operation of the horizontal scroll compressor will be described.
先ず、 m (M) を專隨すると、 可動スクロール (3) は固定スクロール (2) に対して自転することなく公車 動のみを行う。 そして、 冷 置の蒸発器から戻る の冷媒は、 吸入管 (11) から密閉ケーシング (1) の (12B) に流入す る。 この冷媒は、 (1 2 B) から吸 λϋ路 (24) を通り、 圧縮要素室 (1 2 A) に流入し、 吸入口 (22, 23) から各圧縮室 (RA, RB) に入り、 圧縮される。 その後、 高圧の冷媒は、 各圧縮室 (RA, RB) から吐出ポー卜 (11) を経て吐出室 (14) に流出 し、 吐出管 (16) より凝縮器に供給される。 上述したように、 冷媒は、 吸入口 (22, 23) から各圧縮室 (RA, B) に流入する。 その際、 固定スクロール (2 ) 及ひ * ^動スクロール (3 ) の渦巻体 (2b, 3b) を非対 称とし、 両吸入口 (22, 23) を近接させ、 且つ密閉ケ一シング (1 ) の上部に配置し ているので、 非対称の渦巻形式の利点の一つである小形化を図りつつ、 液冷媒が吸入 口 (22, 23) から吸込まれることを抑制することができる。 すなわち、 起動時において、 停止中に寝込んだ液冷媒によって電動機室 (1 2 B) の潤滑油と冷媒との溶解液がホーミングする場合がある。 また、 逆サイクルのデフ口 スト運転を行った場合に多くの液冷媒カ《戻る場合がある。 更に、 その後、 通常運転に 復帰した際、 デフロスト運転時にガス冷媒を供給した蒸発器から多くの液冷媒が吸入 管 (11) を介して (1 2 B) に戻る場合がある。 First, if m (M) is used exclusively, the movable scroll (3) performs only public vehicle movement without rotating on the fixed scroll (2). Then, the refrigerant returning from the cold evaporator flows into the closed casing (1) (12B) from the suction pipe (11). This refrigerant flows from (1 2 B) through the suction λ channel (24), flows into the compression element chamber (1 2 A), and enters each compression chamber (RA, RB) from the suction port (22, 23). Compressed. Thereafter, the high-pressure refrigerant flows out of each compression chamber (RA, RB) through the discharge port (11) to the discharge chamber (14), and is supplied to the condenser through the discharge pipe (16). As described above, the refrigerant flows into the compression chambers (RA, B) from the suction ports (22, 23). At this time, the scrolls (2b, 3b) of the fixed scroll (2) and the moving scroll (3) are asymmetric, the two suction ports (22, 23) are brought close to each other, and the closed casing (1) is used. ), It is possible to suppress the liquid refrigerant from being drawn in from the inlets (22, 23) while miniaturizing, which is one of the advantages of the asymmetric swirl type. That is, at the time of start-up, there may be a case where the liquid refrigerant that has stagnated during the stoppage causes the dissolved liquid of the lubricating oil and the refrigerant in the motor chamber (12B) to home. In addition, when the reverse cycle differential operation is performed, a large amount of liquid refrigerant may return. Furthermore, when the operation returns to the normal operation thereafter, a large amount of the liquid refrigerant may return to (12B) via the suction pipe (11) from the evaporator that supplied the gas refrigerant during the defrost operation.
この場合、 溶解液の気泡や液冷媒が吸入口 (22, 23) から 5 ^まれることになる が、図 1に示すように、 両吸入口 (22, 23) が何れも密閉ケーシング U ) の上部に 位置しているので、 溶解液の気泡や液冷媒がが吸入口 (22, 23) から吸込まれること が抑制される。 また、 上記吸入管 (11) の電動機室 (1 2 b) への開口位置を吸入通路 (24) に対 して周方向にずらせ、 その上、 吸入通路 (24) を吸入口 (22, 23) に対して周方向に ずらせている。 このため、 上記吸入管 (11) から電動 (1 2 B) に ^ した液冷媒 を含む冷媒は、 図 1に点線矢印で示すように、 先ず、 機室 (1 2 B) において、 密 閉ケ一シング (1 ) の内周面に沿って周方向に流れる。 その後、 上記冷媒は、 吸 Ail 路 (24) 力、ら実線矢印で示すように、 圧縮要素室 (1 2 A) に入った後、 流れの向きを 変えて吸入口 (22, 23) の方向に流れることになる。 In this case, bubbles and liquid refrigerant of the dissolved liquid are discharged from the inlets (22, 23) 5 times, but as shown in Fig. 1, both the inlets (22, 23) are closed casing U). Since it is located at the upper part, the bubbles of the dissolved liquid and the liquid refrigerant are prevented from being sucked from the inlets (22, 23). In addition, the position of the opening of the suction pipe (11) to the motor chamber (1 2b) is shifted in the circumferential direction with respect to the suction passage (24), and the suction passage (24) is further connected to the suction ports (22, 23). ) In the circumferential direction. For this reason, as shown by the dotted arrows in FIG. 1, the refrigerant including the liquid refrigerant that has been turned into electric power (12B) from the suction pipe (11) first becomes dense in the machine room (12B). It flows circumferentially along the inner peripheral surface of the closed casing (1). After that, the refrigerant enters the compression element chamber (12 A) as shown by the solid arrow in the Ail path (24), and then changes the flow direction to the direction of the suction ports (22, 23). Will flow to
した力 <つて、 上記冷媒は、 吸入管 (11) 力、ら吸 λ¾路 (24) を経て吸入口 (22, 23) に流れる過程で液冷媒が分離され、 また、 纖した液冷媒が直接吸入口 (22, 23) に吸込まれること力防止される。 この結果、 上記吸入口 (22, 23) にはガス化した冷 媒が ¾ ^まれ、 よって、 液冷媒が吸込まれることによる液圧縮を確実に防止すること 力できる。 また、 上記軸受 (6a, 6b) 及びスラスト受面に給油される潤滑油は、 油戻し通路 (25) を経て電動 (1 2 B) に戻るので、 ハウジング (4 ) の凹部 (28) に潤滑油 力溜ることが防止される。 この結果、 可動スクロール (3 ) による油撹拌が生ずるこ とを防止することカできると共に、 油上り量の低'减も図ることができる。 更に、 油溜 め (29) から液冷媒や、 潤滑油が逆流することも防止することができる。  The liquid refrigerant is separated from the refrigerant in the process of flowing into the suction ports (22, 23) through the suction pipe (11) and the suction λ path (24), and the fiber refrigerant is directly The force of being sucked into the suction ports (22, 23) is prevented. As a result, the gasified refrigerant is filled in the suction ports (22, 23), and therefore, the liquid compression due to the suction of the liquid refrigerant can be reliably prevented. Further, the lubricating oil supplied to the bearings (6a, 6b) and the thrust receiving surface returns to the electric motor (1 2B) through the oil return passage (25), and thus lubricates the concave portion (28) of the housing (4). Oil accumulation is prevented. As a result, oil agitation by the orbiting scroll (3) can be prevented, and the amount of rising oil can be reduced. Further, it is possible to prevent the liquid refrigerant and the lubricating oil from flowing backward from the oil reservoir (29).
また、 上記ハウジング (4 ) には吸 λ¾路 (24) を設けるだけであるから、 その 剛性を向上でき、 した力つて、 スラスト受面での歪を小さくすること力でき、 圧縮機 の信頼性を向上させることができる。 一その他の変形例—  Also, since only the housing (4) is provided with the absorption λ path (24), the rigidity can be improved, and the force applied to the housing (4) can reduce the distortion on the thrust receiving surface. Can be improved. One other modification—
± ^した HJ®例においては、 両スクロール (2, 3) の間に 2つの圧縮室 (RA, RB) を形成するようにした力、 2組以上のペアとなる複数の圧縮室を形成するようにして もよい。 要するに、 本発明は、 形成される各圧縮室の吸入ロカ上部に位置しておれば よいものである。 また、 上記実施例は、 冷凍装置に適用した場合について説明したが、 本発明は、 冷凍装置以外の各種の装置に適用することができることは勿論である。 In the case of the HJ® with ± ^, a force that forms two compression chambers (RA, RB) between the two scrolls (2, 3), forms two or more pairs of compression chambers You may do so. In short, the present invention only needs to be located above the suction rocker of each compression chamber to be formed. In the above embodiment, the case where the present invention is applied to a refrigeration apparatus has been described. Of course, it can be applied to various devices other than the refrigeration device.
[産業上の利用分野 ] [Industrial applications]
以上のように、 本発明による横形スクロール圧縮機は、 冷凍装置などの圧縮機と して有用であり、 特に、 液流体力涙る可能性のある装置に適している。  As described above, the horizontal scroll compressor according to the present invention is useful as a compressor such as a refrigerating device, and is particularly suitable for a device that may tear with liquid fluid power.
6 一 6 one

Claims

請 求 の 範 囲 The scope of the claims
1. 横形の密閉ケ一シング (1) 内の一側部に圧縮要素 (E)が、 他側部に電 動機(M)がそれぞ R納され、 1. The horizontal sealed casing (1) has a compression element (E) on one side and a motor (M) on the other side.
上記圧縮要素 (E) は、 それぞれ鏡板 (2a, 3a) の前面に渦巻体 (2b, 3b)力く形 成されて成る固定スクロール (2)及び可動スクロール (3)の各渦巻体 (2b, 3b) を嚙み合わせて構成され、両スクロール (2, 3) の間にペア状の複数の圧縮室 (RA, RB)力《形成される一方、  The above-mentioned compression element (E) is composed of a fixed scroll (2) and a movable scroll (3), each of which is formed by a spiral body (2b, 3b) and a movable scroll (3) on the front surface of the head plate (2a, 3a). 3b), and a pair of compression chambers (RA, RB) forces are formed between the two scrolls (2, 3).
上記電動機 (M) は、可動スクロール (3)を公転させるように該可動スクロ一 ル ( 3 ) に連結され、  The electric motor (M) is connected to the orbiting scroll (3) so as to revolve the orbiting scroll (3),
上記密閉ケーシング (1)の内部空間 (12) における圧縮要素 (E) と電動機 (M) との間に吸入管 (11)カ《開口している横形スクロール圧縮機において、  In the horizontal scroll compressor, the suction pipe (11) is open between the compression element (E) and the electric motor (M) in the internal space (12) of the closed casing (1).
上記固定スクロール (2) における渦巻体 (2b) の巻終り端が、上記ペアとなる 圧縮室 (RA, RB)の吸入口 (22, 23)力く近接するように可動スクロール (3) におけ る渦巻体 (3b)の巻終り端側に延長され、  In the movable scroll (3), the end of the spiral body (2b) in the fixed scroll (2) is close to the suction ports (22, 23) of the paired compression chambers (RA, RB). To the end of the spiral of the spiral body (3b),
上記吸入口 (22, 23)力密閉ケ一シング (1)の上部に位置するように両スクロ ール (2, 3)力配置される一方、  While the two scrolls (2, 3) are arranged so as to be located above the suction port (22, 23) force sealing casing (1),
上記内部空間 (12) には、 内部空間 (12) を圧縮要素室 (12A) と電動機室 (12 B) とに仕切るハウジング(4)力《圧縮要素 (E) と電動機 (M) との間に設けられ、 上記吸入管 (11)力電動醒 (12B) に開口され、  In the internal space (12), a housing (4) that partitions the internal space (12) into a compression element chamber (12A) and a motor chamber (12B) (between the compression element (E) and the motor (M)). The suction pipe (11) is opened to the power electric wake (12B),
上記ハウジング (4)の上部には、 吸入口 (22, 23)力開口する吸入部に連通す る吸入通路 (24)力《形成されると共に、  In the upper part of the housing (4), a suction passage (24) communicating with a suction portion having a suction port (22, 23) is formed.
上記ハウジング U) には、圧縮要素室 (12A) と電動^ M (12B) とに連通し 且つ所定の ul抵抗を有する油戻し通路 (25)力《設けられている  The housing U) is provided with an oil return passage (25) that communicates with the compression element chamber (12A) and the electric motor M (12B) and has a predetermined ul resistance.
ことを特徴とする横形スクロール圧縮 Horizontal scroll compression characterized by the following:
2. 請求項 1記載の横形スクロール圧縮機において、 2. The horizontal scroll compressor according to claim 1,
吸入管 (11) の電動^ (1 2 B) への開口位置は、 ハウジング (4 ) の上部の吸 Ail路 (24) に対して周方向にずれている  The opening position of the suction pipe (11) to the motorized (1 2 B) is shifted in the circumferential direction with respect to the suction air passage (24) at the upper part of the housing (4).
ことを特徴とする横形スクロ一ル圧縮 Horizontal scroll compression characterized by the following:
3. 請求項 1又は 2記載の横形スクロール圧縮機において、 3. The horizontal scroll compressor according to claim 1 or 2,
吸入通路 (24) は、 2つの圧縮室 (RA, RB) の吸入口 (22, 23) に対して周方向 にずれた位置に形成されている  The suction passage (24) is formed at a position circumferentially displaced from the suction ports (22, 23) of the two compression chambers (RA, RB).
ことを特徴とする横形スクロール圧縮機。 A horizontal scroll compressor, characterized in that:
4. 請求項 3記載の横形スクロール圧縮機において、 4. The horizontal scroll compressor according to claim 3,
吸入通路 (24) は、 吸入口 (22, 23) に対して可動スクロール (3 ) の公転方向 の前方側にずれた位置に形成されている  The suction passage (24) is formed at a position displaced from the suction port (22, 23) forward of the orbiting direction of the orbiting scroll (3).
ことを特徴とする横形スクロール圧縮 Horizontal scroll compression characterized by the following:
8 8
PCT/JP1995/001233 1994-06-24 1995-06-21 Horizontal scroll compressor WO1996000350A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1019950705767A KR100338267B1 (en) 1994-06-24 1995-06-21 Horizontal Scroll Compressor
AU27527/95A AU690288B2 (en) 1994-06-24 1995-06-21 Horizontal scroll compressor
DE69524367T DE69524367T2 (en) 1994-06-24 1995-06-21 HORIZONTAL SPIRAL COMPRESSOR
US08/591,652 US5683237A (en) 1994-06-24 1995-06-21 Horizontal type scroll compressor having inlet ports at an upper level of the casing
EP95922725A EP0716231B1 (en) 1994-06-24 1995-06-21 Horizontal scroll compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6/143434 1994-06-24
JP14343494A JP3884778B2 (en) 1994-06-24 1994-06-24 Horizontal scroll compressor

Publications (1)

Publication Number Publication Date
WO1996000350A1 true WO1996000350A1 (en) 1996-01-04

Family

ID=15338626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001233 WO1996000350A1 (en) 1994-06-24 1995-06-21 Horizontal scroll compressor

Country Status (10)

Country Link
US (1) US5683237A (en)
EP (1) EP0716231B1 (en)
JP (1) JP3884778B2 (en)
KR (1) KR100338267B1 (en)
CN (1) CN1079139C (en)
AU (1) AU690288B2 (en)
DE (1) DE69524367T2 (en)
ES (1) ES2169136T3 (en)
TW (1) TW289073B (en)
WO (1) WO1996000350A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1046790C (en) * 1995-11-17 1999-11-24 倪诗茂 Positive displacement type vortex fluid compression device with sliding plane thrust bearing
JPH11294332A (en) 1998-04-08 1999-10-26 Matsushita Electric Ind Co Ltd Compressor of refrigeration cycle
US6086343A (en) * 1998-06-29 2000-07-11 Scroll Technologies Sealed compressor mounted between horizontal and vertical
US6478556B2 (en) * 1999-12-24 2002-11-12 Lg Electronics Inc. Asymmetric scroll compressor
US7063523B2 (en) 2002-09-23 2006-06-20 Tecumseh Products Company Compressor discharge assembly
US7186095B2 (en) * 2002-09-23 2007-03-06 Tecumseh Products Company Compressor mounting bracket and method of making
US7018184B2 (en) 2002-09-23 2006-03-28 Tecumseh Products Company Compressor assembly having baffle
US7018183B2 (en) * 2002-09-23 2006-03-28 Tecumseh Products Company Compressor having discharge valve
US6896496B2 (en) * 2002-09-23 2005-05-24 Tecumseh Products Company Compressor assembly having crankcase
US7163383B2 (en) 2002-09-23 2007-01-16 Tecumseh Products Company Compressor having alignment bushings and assembly method
US6887050B2 (en) * 2002-09-23 2005-05-03 Tecumseh Products Company Compressor having bearing support
US7094043B2 (en) * 2002-09-23 2006-08-22 Tecumseh Products Company Compressor having counterweight shield
JP4747775B2 (en) * 2005-01-11 2011-08-17 株式会社豊田自動織機 Scroll compressor
CN100464075C (en) * 2005-01-11 2009-02-25 株式会社丰田自动织机 Scroll compressor
US7186099B2 (en) * 2005-01-28 2007-03-06 Emerson Climate Technologies, Inc. Inclined scroll machine having a special oil sump
US7862312B2 (en) * 2005-05-02 2011-01-04 Tecumseh Products Company Suction baffle for scroll compressors
US7566210B2 (en) 2005-10-20 2009-07-28 Emerson Climate Technologies, Inc. Horizontal scroll compressor
WO2007097188A1 (en) * 2006-02-23 2007-08-30 Matsushita Electric Industrial Co., Ltd. Scroll expansion machine and refrigeration cycle apparatus
US8747088B2 (en) 2007-11-27 2014-06-10 Emerson Climate Technologies, Inc. Open drive scroll compressor with lubrication system
CN102678573B (en) * 2011-03-11 2015-10-28 上海日立电器有限公司 A kind of exhaust structure of horizontal type rolling rotor formula compressor
JP5966289B2 (en) * 2011-09-16 2016-08-10 富士通株式会社 Semiconductor substrate manufacturing method and semiconductor device manufacturing method
US11655820B2 (en) * 2020-02-04 2023-05-23 Aspen Compressor, Llc Horizontal rotary compressor with enhanced tiltability during operation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196488A (en) * 1987-10-08 1989-04-14 Daikin Ind Ltd Horizontal scroll type compressor
JPH0326889A (en) * 1989-06-21 1991-02-05 Hitachi Ltd Scroll compressor
JPH05231356A (en) * 1992-02-21 1993-09-07 Toyota Autom Loom Works Ltd Scroll type compressor
JPH0666274A (en) * 1992-08-19 1994-03-08 Daikin Ind Ltd Hermetic horizontal scroll compressor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231356A (en) * 1975-09-03 1977-03-09 Matsushita Electric Ind Co Ltd Constant voltage circuit
JPS648382A (en) * 1987-06-29 1989-01-12 Toshiba Corp Horizontal type scroll compressor
JP2618501B2 (en) * 1989-10-30 1997-06-11 株式会社日立製作所 Low-temperature scroll type refrigerator
JPH04129801A (en) * 1990-09-21 1992-04-30 Sumitomo Rubber Ind Ltd Pneumatic tire
JP3106656B2 (en) * 1992-02-13 2000-11-06 ダイキン工業株式会社 Horizontal scroll fluid machine
JP2994860B2 (en) * 1992-07-14 1999-12-27 三菱重工業株式会社 Horizontal hermetic compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196488A (en) * 1987-10-08 1989-04-14 Daikin Ind Ltd Horizontal scroll type compressor
JPH0326889A (en) * 1989-06-21 1991-02-05 Hitachi Ltd Scroll compressor
JPH05231356A (en) * 1992-02-21 1993-09-07 Toyota Autom Loom Works Ltd Scroll type compressor
JPH0666274A (en) * 1992-08-19 1994-03-08 Daikin Ind Ltd Hermetic horizontal scroll compressor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Microfilm of the specification and drawimgs annexed to the written application of Japanese Utility Model Application No. 45241/1991 (Laid-open No. 129801/1992), (Mitsubishi Heavy Industries, Ltd.), 27 November 1992 (27.11.92), lines 12 to 16, page 5, Figure 1 oil exhaust hole 62. *
See also references of EP0716231A4 *

Also Published As

Publication number Publication date
CN1079139C (en) 2002-02-13
EP0716231A4 (en) 1998-01-14
KR100338267B1 (en) 2002-11-23
JPH0814171A (en) 1996-01-16
US5683237A (en) 1997-11-04
ES2169136T3 (en) 2002-07-01
TW289073B (en) 1996-10-21
AU2752795A (en) 1996-01-19
DE69524367T2 (en) 2002-05-23
JP3884778B2 (en) 2007-02-21
AU690288B2 (en) 1998-04-23
DE69524367D1 (en) 2002-01-17
EP0716231A1 (en) 1996-06-12
EP0716231B1 (en) 2001-12-05
CN1129967A (en) 1996-08-28
KR960703200A (en) 1996-06-19

Similar Documents

Publication Publication Date Title
WO1996000350A1 (en) Horizontal scroll compressor
KR100780382B1 (en) A scroll compressor improved in function of oil circulation and back pressure control
JPH0665880B2 (en) Fluid compression scroll machine
EP0903499A2 (en) Scroll compressor
JP2000080995A (en) Compressor
JP2001295767A (en) Compressor
EP0698736B1 (en) Scroll compressor capable of effectively separating oil from the compressor gas
JP2001165069A (en) Scroll-type compressor
US20110146215A1 (en) Oil separator
US6755632B1 (en) Scroll-type compressor having an oil communication path in the fixed scroll
JPH0135196B2 (en)
KR100937919B1 (en) A scroll compressor improved in function of oil circulation and back pressure control
JP2007085297A (en) Scroll compressor
US20030152473A1 (en) Scroll-type compressors
JPH05306689A (en) Scroll type fluid machine
JP2001248577A (en) Scroll type fluid machine
JP2009127440A (en) Scroll compressor
JPH11101187A (en) Scroll compressor
JP3422744B2 (en) Scroll compressor
JP7468428B2 (en) Scroll Compressor
JP3337610B2 (en) Compressor
CN114941625B (en) Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a
JP2002213380A (en) Lubrication structure of compressor
JP2002039067A (en) Lubrication structure for compressor
JP2001304152A (en) Scroll compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95190561.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1019950705767

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995922725

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08591652

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995922725

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995922725

Country of ref document: EP