WO1995028565A1 - System, mechanism or machine tranforming the gravity effect (gravitational energy) into rotational kinetic energy (torque) in the output axis - Google Patents
System, mechanism or machine tranforming the gravity effect (gravitational energy) into rotational kinetic energy (torque) in the output axis Download PDFInfo
- Publication number
- WO1995028565A1 WO1995028565A1 PCT/ES1995/000030 ES9500030W WO9528565A1 WO 1995028565 A1 WO1995028565 A1 WO 1995028565A1 ES 9500030 W ES9500030 W ES 9500030W WO 9528565 A1 WO9528565 A1 WO 9528565A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drum
- axis
- torque
- arms
- machine according
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/10—Alleged perpetua mobilia
Definitions
- the present invention relates to a system, mechanism or machine that transforms the effect of gravity (gravitational energy) into kinetic energy of rotation (torsor moment) on the output shaft, conceived so that the effect of gravity varies the kinetic energy of rotation due to the movement of a system or set of bodies that move along a closed curved path (in the plane or curve warped in space) cyclically and continuously in time.
- gravity gravitational energy
- kinetic energy of rotation torsor moment
- the machine of the invention can be applied in different sectors, such as agriculture, automotive, shipbuilding, production of electrical energy, machinery and mechanical or other equipment, etc. It must be borne in mind that using the same system you can build macromachines, machines for domestic or industrial use, and micromachines for different uses.
- the object of the present invention is to develop a machine for the exposed purpose, by means of which a variable kinetic energy of rotation (torque) variable from zero to a maximum value can be arranged on the output shaft. It is based on different fundamental equations or principles having as a cause magnitude the effect of the gravitational field.
- the point O is formed by the intersection of the X axis (PH) and the Y axis (PV).
- the material point of mass M describes a closed Tr path around point O.
- said trajectory we have at least four points that have a maximum value on the X and Y axes. In our specific case, said points they are: point A (Y max. positive), point B (X max. positive), point C (Y max. negative) and point D (X max. negative).
- the intersection of the curved path with the + Y, + X, -Y and -X axes form points A, B, C and D.
- There are only two points on the path Tr (points A and C) in which the material point of mass M does not perform any torsor moment Mo with respect to the point O. If we consider positive the torsor moment in a clockwise sense and negative the one made in the anti-clockwise direction, so that a material point of mass M located in A (figure 2), perform a complete cycle and also move indefinitely, cycle after cycle, it must be fulfilled that the torsor moment Mo R ⁇ F in the ABC curve is greater than the torsor moment in the cur ⁇ goes CDA.
- the magnitude R will have to be variable along the Tr curve path, and its value will have to be greater in the ABC curve than in the CDA curve.
- the torque that Mt will provide will be the summary of the torsoing moments of each one. This being so, the initial position of the material points is of no importance since, at all times, they would be providing torque to the axis. That is, the axis would continue to move indefinitely.
- the trajectory Tr of Figure 2 is symmetrical with respect to the X axis (maximum torque). If we consider the fixed X and Y coordinate axes, and take into account that all PP parallel to each other can rotate with respect to the axis so that all paths are symmetrical with respect to the Y axis (point A of the axis of symmetry And would occupy the position of point B on the X axis, rotation of 902 of the PP planes) we will have that the torsor moment that the different material points would provide in the new position of the different paths Tr, would be equal to zero.
- PP containing the trajectories in which the material points move (considering point A on the X axis) if we rotate the PP counterclockwise we would create positive torso moments, but turning the PP clockwise we would create negative torrent moments. This would allow us to cancel the positive torso moments created. That is, stop the system or set of material points that are in motion. That is, the present invention shows us a mechanism by which we have a kinetic energy of rotation (torsor moment) variable from zero to a maximum value.
- Figure 1 shows a graph or general diagram referring to the movement of a material point of mass M on a curved path Tr contained in the PP plane or a curved path warped in space, around point O of the axis (intersecting axis of the PV and PH planes). Said figure 1 has been sufficiently developed previously.
- Figure 2 shows a graph or diagram similar to figure 1. Said figure 2 has been developed previously.
- Figure 3 shows a possible embodiment of the invention. It shows the elevation views (cut-CD) and plan (cut-AB) of the mechanism.
- the base element or part on which all other parts will be mounted is a housing or frame 1.
- the shape of said housing 1 can be of tubular section of a given length.
- the drum 3 is located inside the housing 1.
- the outer shape of its section may be circular (similar to the inner shape of the housing 1) and the inner shape of its section will have a shape similar to the trajectory. guide 4 in which the end 10 of the arm 6 will move.
- the front and rear bases of the housing 1 and the drum 3 are joined by the bearings 7, in which the drum 3 rotates with respect to the housing 1 fixed
- the ends of the shaft 2 are guided in the bearings 8 of the drum 3. That is, the drum 3 can rotate in the bearings 7 with respect to the fixed housing 1, and the shaft 2 rotates in the bearings 8 with respect to the drum 3.
- the guide path 4 it can be similar to that shown in figure 2.
- the path Tr of the closed curve ABCDA is formed by the semicircle ABC with center in the axis, and the semielipse CDA with center in the same axis, and whose semi-axis greater is equal to the radius of the semicircle.
- the ends 9 of the arms 6 slide radially in the bearings or guides of the axis 2.
- axis 2 would not rotate.
- the guide paths 4 of the drum 3 would have to be symmetrical with respect to the PV plane. That is, the drum 3 is rotated clockwise S until point A is in the 902 position.
- the torque provided by the different bodies of mass M clockwise would be equal to that provided in the clockwise direction. counterclockwise T.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Toys (AREA)
Abstract
The present invention relates to a system, mechanism or machine which transforms the gravity effect (gravitational energy) into rotational kinetic energy (torque) in the output axis wherein the gravity effect varies the rotational kinetic energy due to the motion of a system or assembly of mass bodies M moving in a closed curved trajectory (in the plane or twisted curve in the space) cyclically and continuously time wise. In order to have Mt = R F as a variable magnitude (the force is considered constant), the magnitude R will have to be variable throughout the closed curved trajectory and additionally its value will have to be higher in the gravity direction than in the direction contrary to the gravitational field G.
Description
SISTEMA, MECANISMO O MAQUINA QUE TRANSFORMA EL EFECTO DE LA GRAVEDAD (ENERGÍA GRAVITATORIA) EN ENERGÍA CINÉTICA DE ROTACIÓN (MOMENTO TORSOR) EN EL EJE DE SALIDA. La presente invención se refiere a un sistema, mecanismo o máquina que transforma el efecto de la gravedad (energía gravitatoria) en energía cinética de rotación (momento torsor) en el eje de salida, con¬ cebida de modo que el efecto de la gravedad varía la energía cinética de rotación debida al movimiento de un sistema o conjunto de cuerpos que se mueven según una trayectoria curva cerrada (en el plano o curva ala¬ beada en el espacio) de forma cíclica y continua en el tiempo. La máquina de la invención puede ser aplicada en distintos sectores, tales como la agricultura, automo- ción, construcción naval, producción de energía eléc¬ trica, maquinaria y equipo mecánico o de otro tipo, etc. Se ha de tener en cuenta que utilizando el mismo sistema se pueden construir macromáquinas , máquinas de uso do¬ méstico o industrial, y micromáquinas para distintos usos. SYSTEM, MECHANISM OR MACHINE THAT TRANSFORMS THE EFFECT OF GRAVITY (GRAVITATORY ENERGY) IN KINETIC ENERGY OF ROTATION (TORSOR MOMENT) IN THE OUTPUT AXIS. The present invention relates to a system, mechanism or machine that transforms the effect of gravity (gravitational energy) into kinetic energy of rotation (torsor moment) on the output shaft, conceived so that the effect of gravity varies the kinetic energy of rotation due to the movement of a system or set of bodies that move along a closed curved path (in the plane or curve warped in space) cyclically and continuously in time. The machine of the invention can be applied in different sectors, such as agriculture, automotive, shipbuilding, production of electrical energy, machinery and mechanical or other equipment, etc. It must be borne in mind that using the same system you can build macromachines, machines for domestic or industrial use, and micromachines for different uses.
Hasta .la fecha, no se conoce ningún sistema que proporcione energía como consecuencia o efecto del cam- po o fuerza gravitatoria, a excepción de las centrales hidroeléctricas (aprovechan la energía cinética desarro¬ llada por una masa de agua situada a cierta altura al precipitarse, de forma continua, sobre la rueda hidráu¬ lica rotativa de la turbina) o centrales maremotrices (que aprovechan el desnivel producido por las mareas) que sea utilizada a nivel de uso doméstico, industrial o de otra índole. Up. As of the date, there is no known system that provides energy as a consequence or effect of the field or gravitational force, with the exception of hydroelectric power plants (they take advantage of the kinetic energy developed by a body of water located at a certain height when precipitating, from continuously, on the rotary hydraulic wheel of the turbine) or tidal power plants (which take advantage of the unevenness caused by the tides) that is used at the level of domestic, industrial or other use.
Por otra parte, los distintos mecanismos (motores, generadores, etc.) que se fabrican y comercializan ac- tualmente necesitan de un aporte de enegia distinta a
la energía gravitatoria para producir un trabajo.On the other hand, the different mechanisms (engines, generators, etc.) that are currently manufactured and marketed need a contribution of enegia other than gravitational energy to produce a job.
Este sistema proporciona energía limpia y eco¬ lógica (no crea residuos directos, ni siquiera indi¬ rectos) en el tiempo. El objeto de la presente invención es desarro¬ llar una máquina para el fin expuesto, mediante la cual se pueda disponer en el eje de salida de una ener¬ gía cinética de rotación (momento torsor) variable des¬ de cero hasta un valor máximo. Esta basada en distintas ecuaciones o principios fundamentales teniendo como magnitud causa, el efecto del campo gravitatorio.This system provides clean and ecological energy (it does not create direct, even indirect waste) over time. The object of the present invention is to develop a machine for the exposed purpose, by means of which a variable kinetic energy of rotation (torque) variable from zero to a maximum value can be arranged on the output shaft. It is based on different fundamental equations or principles having as a cause magnitude the effect of the gravitational field.
Para una mejor comprensión, en un principio se analizarán algunos aspectos teóricos para más adelante exponer detalladamente un ejemplo concreto.For a better understanding, at first some theoretical aspects will be analyzed in order to explain in detail a specific example.
Para ello, consideremos un triedro intrínseco for- - mado por los planos horizontal ( PH) , vertical (PV) y de perfil (PP) que se cortan perpendicularmente entre sí, situado en el espacio. Dicho triedro esta orientado de tal forma que la dirección del campo gravitatorio G es perpendicular al plano PH del triedro. Se entiende que el triedro se puede orientar en infinitas posicio¬ nes manteniendo la condición de perpendicularidad entre el PH y la dirección del campo gravitatorio. Consideremos el eje que resulta de la intersec¬ ción de los planos PH y PV, y un punto material de ma¬ sa M cuyo vector fuerza es F = MG, siendo M la masa del punto material y G la atracción del campo gravitatorio. Tomemos un punto O cualesquiera del eje. El producto vectorial del vector R con origen en el punto O y extre¬ mo en el punto de aplicación de F por dicha fuerza pro¬ ducirá un momento torsor en el eje igual a Mt = R ΛF.For this, consider an intrinsic trihedron formed by the horizontal (PH), vertical (PV) and profile (PP) planes that are cut perpendicularly to each other, located in space. Said trihedron is oriented such that the direction of the gravitational field G is perpendicular to the plane PH of the trihedron. It is understood that the trihedron can be oriented in infinite positions while maintaining the condition of perpendicularity between the PH and the direction of the gravitational field. Consider the axis that results from the intersection of the PH and PV planes, and a material point of mass M whose force vector is F = MG, with M being the mass of the material point and G the attraction of the gravitational field. Let's take any point OR of the axis. The vector product of the vector R originating at the point O and extreme at the point of application of F by said force will produce a torque on the axis equal to Mt = R ΛF.
Lo que se quiere conseguir es que la fuerza F (con¬ secuencia de la masa M de un punto material dentro de un campo gravitatorio) mueva a dicho punto material alrede-
dor del eje indefinidamente.What we want to achieve is that the force F (sequence of the mass M of a material point within a gravitational field) moves to that material point around dor of the shaft indefinitely.
Consideremos la trayectoria Tr del punto mate¬ rial contenida en el plano PP o un plano paralelo al PP, o una trayectoria Tr curva alabeada en el espacio (figura 1), con la única condición de que dicha curva sea cerrada, por lo que después de un recorrido, el punto material vuelve a la posición inicial.Consider the trajectory Tr of the material point contained in the PP plane or a plane parallel to the PP, or a curved Tr trajectory warped in space (Figure 1), with the only condition that said curve be closed, so that afterwards of a route, the material point returns to the initial position.
Concretemos más la cuestión, o sea, la trayecto¬ ria Tr del punto material estará contenida en el plano PP y dicho punto girará alrededor del punto O del eje que también estará contenida en el plano PP (figura 1).Let us concretize the question further, that is, the path Tr of the material point will be contained in the PP plane and that point will revolve around the point O of the axis that will also be contained in the PP plane (Figure 1).
Tal y como muestra la figura 1, el punto O es el formado por la intersección del eje X ( PH ) y el eje Y (PV). El punto material de masa M describe una trayec- toria Tr cerrada alrededor del punto O. En dicha tra¬ yectoria tenemos , al menos , cuatro puntos que tienen valor máximo en los ejes X e Y. En nuestro caso concre¬ to, dichos puntos son: punto A (Y máx. positivo), pun¬ to B (X máx. positivo), punto C (Y máx. negativo) y punto D (X máx. negativo).As Figure 1 shows, the point O is formed by the intersection of the X axis (PH) and the Y axis (PV). The material point of mass M describes a closed Tr path around point O. In said trajectory we have at least four points that have a maximum value on the X and Y axes. In our specific case, said points they are: point A (Y max. positive), point B (X max. positive), point C (Y max. negative) and point D (X max. negative).
Consideremos que el sentido de movimiento del punto material es horario, por lo que si en un princi¬ pio el punto material se encuentra en A, el ciclo que describiría sería el siguiente: ABCDA. Consideremos la figura 2 similar a la figura 1, pero que nos facilitará la explicación. En ella, la tra¬ yectoria Tr de la curva cerrada ABCDA esta formada por la semicircunferencia ABC con centro en el punto O, y la semielipse CDA con centro en el punto O, y cuyo se- mieje mayor es igual al radio de la semicircunferencia. Además, la dirección del campo gravitatorio es perpen¬ dicular al eje X y su sentido de +Y a -Y. Por otra par¬ te, la intersección de la trayectoria curva con los ejes +Y, +X, -Y y -X forman los puntos A, B, C y D. So- lo hay dos puntos en la trayectoria Tr (puntos A y C)
en los que el punto material de masa M no realiza ningún momento torsor Mo con respecto al punto O. Si consideramos positivo el momento torsor en senti¬ do horario y negativo el realizado en sentido anti- horario, para que un punto material de masa M situa¬ do en A (figura 2) realice un ciclo completo y ade¬ más se mueva indefinidamente, ciclo tras ciclo, se tiene que cumplir que el momento torsor Mo = R Λ F en la curva ABC sea mayor al momento torsor en la cur¬ va CDA. Para ello, ya que la magnitud fuerza la vamos a considerar una constante, la magnitud R tendrá que ser variable a lo largo de la trayectoria curva Tr, y su valor tendrá que ser mayor en la curva ABC que en la curva CDA. Si colocamos distintos puntos materiales desfa¬ sados angularmente entre sí y en trayectorias seme¬ jantes a Tr, y girando alrededor del eje (intersec¬ ción de los planos PH y PV) en PP paralelos entre sí, el momento torsor Mt que proporcionarán será el suraa- torio de los momentos torsores de cada uno. Siendo esto así, no tiene importancia la posición inicial de los puntos materiales ya que, en todo momento, es¬ tarían proporcionando momento torsor al eje. Esto es, el eje seguiría moviéndose indefinidamente. Ahora, si tenemos en cuenta la posibilidad de que los PP pue¬ dan girarse con respecto al eje, podremos conseguir que en un principio y en cualquier otro momento del tiempo el momento torsor sea cero.Let us consider that the direction of movement of the material point is hourly, so if at first the material point is in A, the cycle I would describe would be the following: ABCDA. Consider Figure 2 similar to Figure 1, but that will facilitate the explanation. In it, the trajectory Tr of the closed curve ABCDA is formed by the semicircle ABC with center at the point O, and the semiplip CDA with center at the point O, and whose major resemblance is equal to the radius of the semicircle . In addition, the direction of the gravitational field is perpendicular to the X axis and its direction from + Y to -Y. On the other hand, the intersection of the curved path with the + Y, + X, -Y and -X axes form points A, B, C and D. There are only two points on the path Tr (points A and C) in which the material point of mass M does not perform any torsor moment Mo with respect to the point O. If we consider positive the torsor moment in a clockwise sense and negative the one made in the anti-clockwise direction, so that a material point of mass M located in A (figure 2), perform a complete cycle and also move indefinitely, cycle after cycle, it must be fulfilled that the torsor moment Mo = R Λ F in the ABC curve is greater than the torsor moment in the cur ¬ goes CDA. For this, since the force magnitude is going to be considered a constant, the magnitude R will have to be variable along the Tr curve path, and its value will have to be greater in the ABC curve than in the CDA curve. If we place different material points angularly offset from each other and on paths similar to Tr, and rotating around the axis (intersection of the PH and PV planes) in PP parallel to each other, the torque that Mt will provide will be the summary of the torsoing moments of each one. This being so, the initial position of the material points is of no importance since, at all times, they would be providing torque to the axis. That is, the axis would continue to move indefinitely. Now, if we take into account the possibility that the PP can rotate with respect to the axis, we can achieve that at the beginning and at any other time in time the torque is zero.
La trayectoria Tr de la figura 2 es simétrica con respecto al eje X (momento torsor máximo). Si consideramos los ejes coordenados X e Y fijos, y te¬ nemos en cuenta que todos los PP paralelos entre sí puedan girar con respecto al eje de tal forma que to¬ das las trayectorias sean simétricas con respecto al eje Y (el punto A del eje de simetría Y ocuparía la
posición del punto B en el eje X, giro de 902 de los planos PP) tendremos que el momento torsor que propor¬ cionarían los distintos puntos materiales en la nueva posición de las distintas trayectorias Tr, sería igual a cero.The trajectory Tr of Figure 2 is symmetrical with respect to the X axis (maximum torque). If we consider the fixed X and Y coordinate axes, and take into account that all PP parallel to each other can rotate with respect to the axis so that all paths are symmetrical with respect to the Y axis (point A of the axis of symmetry And would occupy the position of point B on the X axis, rotation of 902 of the PP planes) we will have that the torsor moment that the different material points would provide in the new position of the different paths Tr, would be equal to zero.
Ya que es posible girar los planos: PP que contie¬ nen las trayectorias en los cuales se mueven los puntos materiales (considerando el punto A en el eje X) si gi¬ ramos los PP en sentido antihorario crearíamos momentos torsores positivos, pero girando los PP en sentido hora¬ rio crearíamos momentos torsores negativos. Esto nos permitiría anular los momentos torsores positivos crea¬ dos. Esto es, frenar el sistema o conjunto de puntos materiales que se encuentran en movimiento. O sea, la presente invención nos muestra un meca¬ nismo mediante la cual disponemos en el eje de salida de una energía cinética de rotación (momento torsor) variable desde cero hasta un valor máximo.Since it is possible to rotate the planes: PP containing the trajectories in which the material points move (considering point A on the X axis) if we rotate the PP counterclockwise we would create positive torso moments, but turning the PP clockwise we would create negative torrent moments. This would allow us to cancel the positive torso moments created. That is, stop the system or set of material points that are in motion. That is, the present invention shows us a mechanism by which we have a kinetic energy of rotation (torsor moment) variable from zero to a maximum value.
A lo largo del análisis se ha utilizado el conc°p- to de "La energía gravitatoria se transforma en unergía cinética de rotación". Creo necesario aclarar esta cuestión.Throughout the analysis, the concept of "Gravitational energy is transformed into a kinetic rotation synergy" has been used. I think it is necessary to clarify this issue.
El primer Principio de la Termodinámica diu.e: "La energía, ni se crea ni. se destruye, si no solo se trasforma" .The first Principle of Thermodynamics diu.e: "Energy is neither created nor destroyed, if not only transformed."
Sabemos que un punto material de masa M, p*_r la posición que ocupa en un campo de fuerzas posee una ener¬ gía potencial igual a Ep = MGH. H es la altura del pun¬ to material respecto de un determinado nivel de referen- cia. En nuestro caso, después de un ciclo, dichos pun¬ tos materiales ocupan la misma posición, por lo que su energía potencial permanece constante.We know that a material point of mass M, p * _r the position it occupies in a force field has a potential energy equal to Ep = MGH. H is the height of the material point with respect to a certain reference level. In our case, after one cycle, these material points occupy the same position, so that their potential energy remains constant.
Además, un punto material debido a su movimientoIn addition, a material point due to its movement
2 tiene una energía cinética de Ec = (1/2)MV , siendo V la velocidad de dicho punto material a lo largo de la
trayectoria. Si en un principio, dicho punto material se encuentra en reposo, y consecuencia del campo gra¬ vitatorio se mueve, entiendo que hay una energía co¬ mo efecto del campo gravitatorio en el punto material (energía gravitatoria) que se transforma en energía cinética de rotación. Y querría añadir más: "Un punto material sometido a un campo gravitatorio G puede mo¬ verse en el tiempo a lo largo de una curva cerrada y alrededor de un eje previamente definidos". Todas las características expuestas se comprende¬ rán más fácilmente con la siguiente descripción, hecha con referencia a los dibujos adjuntos, donde se muestra una posible forma de realización, dada a título de ejem¬ plo no limitativo. La figura 1 muestra un gráfico o diagrama general referente al movimiento de un punto material de masa M sobre una trayectoria curva Tr contenida en el plano PP o una trayectoria curva alabeada en el espacio, alrede¬ dor del punto O del eje (eje intersección de los planos PV y PH) . Dicha figura 1 ha sido suficientemente desa¬ rrollada anteriormente.2 has a kinetic energy of Ec = (1/2) MV, where V is the velocity of said material point along the trajectory. If at first, said material point is at rest, and as a consequence of the gravitational field moves, I understand that there is an energy as a result of the gravitational field at the material point (gravitational energy) that is transformed into kinetic energy of rotation. And I would like to add more: "A material point subject to a gravitational field G can be moved in time along a closed curve and around a previously defined axis." All the exposed characteristics will be more easily understood with the following description, made with reference to the attached drawings, where a possible embodiment is shown, given by way of non-limiting example. Figure 1 shows a graph or general diagram referring to the movement of a material point of mass M on a curved path Tr contained in the PP plane or a curved path warped in space, around point O of the axis (intersecting axis of the PV and PH planes). Said figure 1 has been sufficiently developed previously.
La figura 2 muestra un gráfico o diagrama similar a la figura 1. Dicha figura 2 ha sido desarrollada ante¬ riormente. La figura 3 muestra una posible forma de realiza¬ ción de la invención. En ella se muestran las vistas de alzado (corte-CD) y planta (corte-AB) del mecanismo.Figure 2 shows a graph or diagram similar to figure 1. Said figure 2 has been developed previously. Figure 3 shows a possible embodiment of the invention. It shows the elevation views (cut-CD) and plan (cut-AB) of the mechanism.
Antes de nada, se ha de tener muy claro que con el mismo sistema se pueden construir macromáquinas , má- quinas de uso doméstico o industrial, y micromáquinas , en los cuales puede diferir una posible forma de reali¬ zación, aunque no difiera en absoluto la idea base. Por ello, el análisis será más bien general. Se analizarán los elementos principales que componen el mecanismo, los distintos movimientos entre ellos y las posibles aplica-
ciones industriales.First of all, it must be very clear that with the same system you can build macromachines, machines for domestic or industrial use, and micromachines, in which a possible form of realization can differ, although it does not differ at all The base idea. Therefore, the analysis will be rather general. The main elements that make up the mechanism, the different movements between them and the possible applications will be analyzed. industrial relations.
El elemento o pieza base sobre la cual irán mon¬ tadas todas las demás piezas es una carcasa o bastidor 1. La forma de dicha carcasa 1 puede ser de sección tubular de una longitud dada. El tambor 3 va situado en el inte¬ rior de la carcasa 1. La forma exterior de su sección puede ser circular (semejante a la forma interior de la carcasa 1) y la forma interior de su sección tendrá una forma semejante a la trayectoria-guía 4 en la cual se mo- verá el extremo 10 del brazo 6. Las bases anterior y pos¬ terior de la carcasa 1 y el tambor 3 se unen mediante los cojinetes 7, en los cuales gira el tambor 3 con respecto a la carcasa 1 fija. Los extremos del eje 2 están guiados en los cojinetes 8 del tambor 3. Esto es, el tambor 3 pue- de girar en los cojinetes 7 con respecto a la carcasa 1 fija, y el eje 2 gira en los cojinetes 8 con respecto al tambor 3. El tambor 3, en secciones perpendiculares a su eje pero paralelos entre sí (en la parte interior del tam¬ bor) tiene una serie de guías 4 en los cuales se moverán los extremos 10 de los brazos 6. La trayectoria-guía 4 puede ser similar a la mostrada en la figura 2. En ella, la trayectoria Tr de la curva cerrada ABCDA esta formada por la semicircunferencia ABC con centro en el eje, y la semielipse CDA con centro en el mismo eje, y cuyo semi- eje mayor es igual al radio de la semicircunferencia. Los extremos 9 de los brazos 6 se deslizan radialmente en los cojinetes o guías del eje 2. Estas guías o cojine¬ tes del eje 2 por donde se desplazan los brazos 6 pueden estar desfasados angularmente entre sí (en la figura 3 tenemos 7 brazos repartidos en un ciclo, o sea, en 3602 por lo que el desfase angular de dichos brazos 6 es de aprox. 512). Los brazos 6 se deslizan por cojinetes o guías situados a lo largo del eje 2. Excepto en casos excepcionales, el número de cojinetes-guía en el eje 2 y el número de trayectorias-guía 4 en el tambor será si-
milar. A lo largo de los brazos 6 se pueden colocar cuerpos de masa M (independientemente de la masa de los propios brazos 6 y sus respectivos cojinetes- guía 10) con el fin de aumentar el momento torsor en el eje 2.The base element or part on which all other parts will be mounted is a housing or frame 1. The shape of said housing 1 can be of tubular section of a given length. The drum 3 is located inside the housing 1. The outer shape of its section may be circular (similar to the inner shape of the housing 1) and the inner shape of its section will have a shape similar to the trajectory. guide 4 in which the end 10 of the arm 6 will move. The front and rear bases of the housing 1 and the drum 3 are joined by the bearings 7, in which the drum 3 rotates with respect to the housing 1 fixed The ends of the shaft 2 are guided in the bearings 8 of the drum 3. That is, the drum 3 can rotate in the bearings 7 with respect to the fixed housing 1, and the shaft 2 rotates in the bearings 8 with respect to the drum 3. The drum 3, in sections perpendicular to its axis but parallel to each other (on the inside of the drum) has a series of guides 4 in which the ends 10 of the arms will move 6. The guide path 4 it can be similar to that shown in figure 2. In it, the path Tr of the closed curve ABCDA is formed by the semicircle ABC with center in the axis, and the semielipse CDA with center in the same axis, and whose semi-axis greater is equal to the radius of the semicircle. The ends 9 of the arms 6 slide radially in the bearings or guides of the axis 2. These guides or bearings of the axis 2 where the arms 6 move can be angularly offset with each other (in figure 3 we have 7 arms distributed in a cycle, that is, in 3602 so the angular offset of said arms 6 is approx. 512). The arms 6 slide along bearings or guides located along axis 2. Except in exceptional cases, the number of guide bearings on axis 2 and the number of guide paths 4 on the drum will be milar Along the arms 6, bodies of mass M (regardless of the mass of the arms 6 and their respective bearings-guide 10) can be placed in order to increase the torque at axis 2.
El funcionamiento del mecanismo podría ser el siguiente: a) En un principio, el eje 2 no giraría. Para ello, las trayectorias-guía 4 del tambor 3 tendrían que ser simétricas con respecto al plano PV. Esto es, el tambor 3 se gira en el sentido horario S hasta que el punto A se encuentre en la posición de 902. El mo¬ mento torsor proporcionado por los distintos cuerpos de masa M en sentido horario sería igual al proporcio- nado en sentido antihorario T. b) El eje 2 se encuentra en reposo. Si giramos el tambor 3 en sentido horario S tendríamos un momen¬ to torsor igual a Mt = RΛ F, y su sentido seria anti¬ horario. De la misma forma, girando el tambor 3 en sen- tido antihorario T el sentido del momento torsor obte¬ nido sería horario. c) El momento torsor será máximo en la posición del tambor 3 en la cual las trayectorias-guía 4 de di¬ cho tambor 3 fueran simétricas al plano PH. d) Girando el tambor 3 en sentido S o T según convenga, variamos el momento torsor del eje 2 de sali¬ da en valor y en sentido, desde cero hasta un valor mᬠximo.
The operation of the mechanism could be as follows: a) Initially, axis 2 would not rotate. For this, the guide paths 4 of the drum 3 would have to be symmetrical with respect to the PV plane. That is, the drum 3 is rotated clockwise S until point A is in the 902 position. The torque provided by the different bodies of mass M clockwise would be equal to that provided in the clockwise direction. counterclockwise T. b) Axis 2 is at rest. If we rotate drum 3 clockwise S we would have a torque equal to Mt = RΛ F, and its direction would be counter clockwise. In the same way, turning the drum 3 counterclockwise T the direction of the torque obtained would be hourly. c) The torque will be maximum at the position of the drum 3 in which the guide paths 4 of said drum 3 were symmetrical to the plane PH. d) By rotating the drum 3 in an S or T direction as appropriate, we vary the torque of the output shaft 2 in value and in direction, from zero to a maximum value.
Claims
1.- Sistema, mecanismo o máquina que transforma el efecto de la gravedad (energía gravitatoria) en ener¬ gía cinética de rotación (momento torsor) variable desde cero hasta un valor máximo en el eje de salida, concebi¬ da de modo que el efecto de la gravedad varía la ener¬ gía cinética de rotación debida al movimiento de un sis¬ tema o conjunto de puntos materiales o cuerpos de masa M que se mueven según una trayectoria curva cerrada (en el plano o una curva alabeada en el espacio) y alrededor de un punto o un eje previamente definidos, de forma cí¬ clica y continua en el tiempo.1.- System, mechanism or machine that transforms the effect of gravity (gravitational energy) into rotational kinetic energy (torque) varying from zero to a maximum value on the output axis, conceived so that the The effect of gravity varies the kinetic energy of rotation due to the movement of a system or set of material points or bodies of mass M that move along a closed curved path (in the plane or a warped curve in space) and around a previously defined point or axis, cyclically and continuously over time.
2.- Sistema, mecanismo o máquina según la reivin¬ dicación 1, caracterizada porque esta basada en distin- tas ecuaciones o principios fundamentales teniendo como magnitud causa, el efecto del campo gravitatorio.2.- System, mechanism or machine according to claim 1, characterized in that it is based on different fundamental equations or principles having the effect of the gravitational field as cause magnitude.
3.- Sistema, mecanismo o máquina según las reivin¬ dicaciones 1 y 2, caracterizada porque para que la mag¬ nitud momento torsor Mt = RAF sea variable (la fuerza F la podemos considerar constante) la magnitud R (vec¬ tor de posición) tendrá que ser variable a lo largo de la trayectoria curva cerrada, y además su valor tendrá que ser mayor en el sentido del campo gravitatorio que en el sentido contrario al campo gravitatorio G. 3.- System, mechanism or machine according to claims 1 and 2, characterized in that for the torsor moment magnitude Mt = RAF to be variable (the force F can be considered constant) the magnitude R (position neighbor) ) will have to be variable along the closed curve path, and in addition its value will have to be greater in the direction of the gravitational field than in the opposite direction to the gravitational field G.
4.- Sistema, mecanismo o máquina según las reivin¬ dicaciones 1, 2 y 3, caracterizada porque según la fi¬ gura 2, la trayectoria curva cerrada puede estar forma¬ da por la curva cerrada ABCDA formada a su vez por la semicircunferencia ABC con centro en el eje, y la semi- elipse CDA con centro en el mismo eje; y cuyo semieje mayor es igual al radio de la semicircunferencia.4.- System, mechanism or machine according to claims 1, 2 and 3, characterized in that according to Figure 2, the closed curved path may be formed by the ABCDA closed curve formed in turn by the semicircle ABC with center in the axis, and the semi-ellipse CDA with center in the same axis; and whose semi-major axis is equal to the radius of the semicircle.
5.- Sistema, mecanismo o máquina según las reivin¬ dicaciones 1, 2, 3 y 4, caracterizada porque si coloca¬ mos distintos puntos materiales o cuerpos desfasados an- gularmente entre sí y en trayectorias semejantes girando alrededor del eje en planos de la misma orientación al campo gravitatorio y paralelos entre si, el momento torsor que proporcionarán será el sumatorio de los mo¬ mentos torsores de cada cuerpo con respecto al eje. 5.- System, mechanism or machine according to claims 1, 2, 3 and 4, characterized in that if we place different material points or angularly offset bodies with each other and on similar paths turning around the axis in planes of the same orientation to the gravitational field and parallel to each other, the torque they will provide will be the sum of the torso moments of each body with respect to the axis.
6.- Sistema, mecanismo o máquina según las reivin¬ dicaciones 1, 2, 3, 4 y 5, caracterizada porque una posi¬ ble forma de realización de la invención según la figura 3, puede constar de los siguientes elementos principales y los distintos movimientos entre ellos. El elemento o pieza base sobre la cual irán montadas todas las demás piezas podría ser una carcasa o bastidor 1. La forma de dicha carcasa 1 podría ser de sección tubular de una lon¬ gitud dada. El tambor 3 iría situado en el interior de la carcasa 1. La forma exterior de su sección podría ser circular (semejante a la forma interior de la carcasa 1) y la forma interior de su sección tendría una forma seme¬ jante a la trayectoria-guía 4 en la cual se movería el extremo 10 del brazo 6. Las bases anterior y posterior de la carcasa 1 y el tambor 3 se unirían mediante los cojinetes 7, en los cuales giraría el tambor 3 con res¬ pecto a la carcasa 1 fija. Los extremos del eje 2 esta¬ rían guiados en los cojinetes 8 del tambor 3. O sea, el tambor 3 podría girar en los cojinetes 7 con respecto a la carcasa 1 fija, y el eje 2 podría girar en los coji- netes 8 con respecto al tambor 3. El tambor 3, en sec¬ ciones perpendiculares a su eje pero paralelos entre sí (en la parte interior del tambor) podría tener una serie de guías 4 en los cuales se moverían los extremos 10 de los brazos 6. La trayectoria-guía 4 podría ser similar a la mostrada en la figura 2 y expuesta en la reivindi¬ cación 4. Los extremos 9 de los brazos 6 podrían desli¬ zarse radialmente en los cojinetes o guias del eje 2. Estos cojinetes o guías del eje 2 por donde se despla¬ zan los brazos 6 podrían estar desfasados angularmente entre sí (en la figura 3 tenemos 7 brazos repartidos en un ciclo, o sea, en 3602, por lo que el desfase angu¬ lar de dichos brazos 6 sería de aprox. 512). Los bra¬ zos 6 se deslizarían por los cojinetes o guías situa¬ dos a lo largo del eje 2. A lo largo de los brazos 6 se podrían colocar cuerpos de masa M (independientemente de la masa de los propios brazos 6 y sus respectivos coji¬ netes guía 10) con el fin de aumentar el momento torsor en el eje 2.6.- System, mechanism or machine according to claims 1, 2, 3, 4 and 5, characterized in that a possible embodiment of the invention according to Figure 3, may consist of the following main elements and the various movements between them. The base element or part on which all other parts will be mounted could be a housing or frame 1. The shape of said housing 1 could be of tubular section of a given length. The drum 3 would be located inside the housing 1. The outer shape of its section could be circular (similar to the inner shape of the housing 1) and the inner shape of its section would have a shape similar to the trajectory. guide 4 in which the end 10 of the arm 6 would move. The front and rear bases of the housing 1 and the drum 3 would be joined by the bearings 7, in which the drum 3 would rotate with respect to the fixed housing 1 . The ends of the shaft 2 would be guided in the bearings 8 of the drum 3. That is, the drum 3 could rotate in the bearings 7 with respect to the fixed housing 1, and the shaft 2 could rotate in the bearings 8 with with respect to the drum 3. The drum 3, in sections perpendicular to its axis but parallel to each other (inside the drum) could have a series of guides 4 in which the ends 10 of the arms 6 would move. guide path 4 could be similar to that shown in figure 2 and set forth in claim 4. The ends 9 of the arms 6 could slide radially in the bearings or guides of the shaft 2. These bearings or guides of the shaft 2 where the arms 6 move could be angularly offset with each other (in figure 3 we have 7 arms distributed in a cycle, that is, in 3602, so that the angular offset of said arms 6 would be approx. 512). The arms 6 would slide along the bearings or guides located along the axis 2. Along the arms 6 bodies of mass M could be placed (regardless of the mass of the arms 6 themselves and their respective cushions ¬ net guide 10) in order to increase the torque on axis 2.
7.- Sistema, mecanismo o máquina según las reivin- dicaciones 1 a 6, caracterizada porque el funcionamiento del mecanismo podría ser el siguientes: a) En un principio, el eje 2 no giraría. Para ello, las trayectorias-guía 4 del tambor 3 serían simétricas con respecto al plano vertical (plano vertical conteni- do en la orientación del campo gravitatorio). Para ello, el tambor 3 se podría girar en el sentido horario S has¬ ta que el punto A (figura 3) se encontrase en la posi¬ ción de 902. b) Estando el eje 2 en reposo, si se girara el tam- bor 3 en sentido horario proporcionaría un momento tor¬ sor igual a Mt = RΛ F, y su sentido sería antihorario.7.- System, mechanism or machine according to claims 1 to 6, characterized in that the operation of the mechanism could be as follows: a) Initially, axis 2 would not rotate. For this, the guide paths 4 of the drum 3 would be symmetrical with respect to the vertical plane (vertical plane contained in the orientation of the gravitational field). To do this, the drum 3 could be turned clockwise S until point A (figure 3) was in the position of 902. b) The axis 2 being at rest, if the drum was rotated bor 3 clockwise would provide a torrent moment equal to Mt = RΛ F, and its sense would be counterclockwise.
De la misma forma, girando el tambor 3 en sentido anti¬ horario T ei sentido del momento torsor obtenido sería horario. c) El momento torsor sería máximo en la posición del tambor 3 en la cual las trayectorias-guía 4 de di¬ cho tambor 3 fueran simétricas al plano horizontal (plano horizontal perpendicular a la orientación del campo gravitatorio). d) Si se girara el tambor 3 en sentido S o T se¬ gún convenga, variaría el momento torsor del eje 2 de salida en valor y sentido, desde cero hasta un valor máximo.In the same way, turning the drum 3 counterclockwise T ei sense of the torque obtained would be time. c) The torque would be maximum at the position of the drum 3 in which the guide paths 4 of said drum 3 were symmetrical to the horizontal plane (horizontal plane perpendicular to the orientation of the gravitational field). d) If drum 3 were turned S or T as appropriate, the torque of the output shaft 2 would vary in value and direction, from zero to a maximum value.
8.- Sistema, mecanismo o máquina según las reivin- dicaciones 1 a 7, caracterizada porque dicho mecanismo proporcionaría energía limpia y ecológica (no crearía residuos directos, ni indirectos siquiera) en el tiem¬ po.8.- System, mechanism or machine according to claims 1 to 7, characterized in that said mechanism it would provide clean and ecological energy (it would not create direct or even indirect waste) in time.
9.- Sistema, mecanismo o máquina según las reivin- dicaciones 1 a 7, caracterizada porque se pueden cons¬ truir macromáquinas , máquinas de uso deméstico e indus¬ trial, y micromáquinas en los cuales puede diferir una posible forma de realización, aunque no diferiría en absoluto la idea base. 9.- System, mechanism or machine according to claims 1 to 7, characterized in that macromachines, machines for industrial and industrial use, and micromachines in which a possible embodiment can differ, although not, can be constructed the base idea would differ at all.
10.- Sistema, mecanismo o máquina según las reivin¬ dicaciones 1 a 7, caracterizada porque la invención pue¬ de ser aplicada en distintos sectores, tales como la agricultura, automoción, construcción naval, producción de energía eléctrica, maquinaria y equipo mecánico o de otro tipo, etc. 10.- System, mechanism or machine according to claims 1 to 7, characterized in that the invention can be applied in different sectors, such as agriculture, automotive, shipbuilding, electrical energy production, machinery and mechanical equipment or of another type, etc.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU20738/95A AU2073895A (en) | 1994-04-14 | 1995-03-23 | System, mechanism or machine tranforming the gravity effect (gravitational energy) into rotational kinetic energy (torque) in the output axis |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ESP9400773 | 1994-04-14 | ||
ES9400773 | 1994-04-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1995028565A1 true WO1995028565A1 (en) | 1995-10-26 |
Family
ID=8285870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES1995/000030 WO1995028565A1 (en) | 1994-04-14 | 1995-03-23 | System, mechanism or machine tranforming the gravity effect (gravitational energy) into rotational kinetic energy (torque) in the output axis |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU2073895A (en) |
WO (1) | WO1995028565A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997016642A1 (en) * | 1995-11-02 | 1997-05-09 | Bolado Ortiz Andres | Movement of levers by gravity |
WO1997045639A1 (en) * | 1996-05-24 | 1997-12-04 | Jury Bronislavovich Ekhin | Method for converting the rotation of a solid body into linear traction force according to a directional unbalance process, and devices for realising the same |
WO2005015014A1 (en) * | 2003-08-08 | 2005-02-17 | Nikolay Iosifovich Zhigan | Inertia engine |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2423653A1 (en) * | 1978-03-09 | 1979-11-16 | Laurent Olivier | Power generating machine worked by gravity - has linked pairs of masses running on profiled ramp to give net turning moment |
JPS60173371A (en) * | 1984-02-18 | 1985-09-06 | Sadao Monma | Gravity-type motor |
DE3733366A1 (en) * | 1987-04-10 | 1988-10-27 | Hans Werner Bierganns | Gravity motor |
FR2651279A1 (en) * | 1989-08-30 | 1991-03-01 | Lafforgue Jean Claude | Isolated systems which are automatically propelled by inertia forces |
DE9109269U1 (en) * | 1991-07-26 | 1991-09-19 | Lin, Jiunn-Horng, Wu Chieh Hsiang, Ilan | Rotary type kinetic energy generator |
US5221868A (en) * | 1992-03-20 | 1993-06-22 | Arman Walter C | Electrically assisted gravity powered motor |
JPH05256249A (en) * | 1992-03-13 | 1993-10-05 | Koji Chiaki | Self-actuated power generating machine cooperated with weight |
-
1995
- 1995-03-23 AU AU20738/95A patent/AU2073895A/en not_active Abandoned
- 1995-03-23 WO PCT/ES1995/000030 patent/WO1995028565A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2423653A1 (en) * | 1978-03-09 | 1979-11-16 | Laurent Olivier | Power generating machine worked by gravity - has linked pairs of masses running on profiled ramp to give net turning moment |
JPS60173371A (en) * | 1984-02-18 | 1985-09-06 | Sadao Monma | Gravity-type motor |
DE3733366A1 (en) * | 1987-04-10 | 1988-10-27 | Hans Werner Bierganns | Gravity motor |
FR2651279A1 (en) * | 1989-08-30 | 1991-03-01 | Lafforgue Jean Claude | Isolated systems which are automatically propelled by inertia forces |
DE9109269U1 (en) * | 1991-07-26 | 1991-09-19 | Lin, Jiunn-Horng, Wu Chieh Hsiang, Ilan | Rotary type kinetic energy generator |
JPH05256249A (en) * | 1992-03-13 | 1993-10-05 | Koji Chiaki | Self-actuated power generating machine cooperated with weight |
US5221868A (en) * | 1992-03-20 | 1993-06-22 | Arman Walter C | Electrically assisted gravity powered motor |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 010, no. 010 (M - 446) 16 January 1986 (1986-01-16) * |
PATENT ABSTRACTS OF JAPAN vol. 018, no. 016 (M - 1540) 12 January 1994 (1994-01-12) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997016642A1 (en) * | 1995-11-02 | 1997-05-09 | Bolado Ortiz Andres | Movement of levers by gravity |
ES2127669A1 (en) * | 1995-11-02 | 1999-04-16 | Bolado Ortiz Andres | Movement of levers by gravity |
WO1997045639A1 (en) * | 1996-05-24 | 1997-12-04 | Jury Bronislavovich Ekhin | Method for converting the rotation of a solid body into linear traction force according to a directional unbalance process, and devices for realising the same |
WO2005015014A1 (en) * | 2003-08-08 | 2005-02-17 | Nikolay Iosifovich Zhigan | Inertia engine |
Also Published As
Publication number | Publication date |
---|---|
AU2073895A (en) | 1995-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5098264A (en) | Yin-Yang fluid power machine | |
KR100792179B1 (en) | Water mill operating by hydraulic power | |
KR101460063B1 (en) | Hydraulic turbine for power generation | |
WO2015009175A1 (en) | Psp wind-powered generator comprising blades at dihedral angles | |
WO1995028565A1 (en) | System, mechanism or machine tranforming the gravity effect (gravitational energy) into rotational kinetic energy (torque) in the output axis | |
WO2012023866A1 (en) | Marine wind turbine with extendable blades | |
JP5439429B2 (en) | Power transmission mechanism and robot using this power transmission mechanism | |
JP5425854B2 (en) | Natural energy-based power generator | |
CN101818655B (en) | Planetary gear differential power plant | |
JP2024524151A (en) | Horizontal axis torque generating device having rotor blades that rotate and revolve | |
ES2727004B2 (en) | GRAVITATIONAL GENERATOR | |
KR20120029540A (en) | A producing system for rotary power using eccentricity power | |
KR102421509B1 (en) | Bidirectional variable aberration for tidal power generation | |
JP2016050575A (en) | Turbine for hydraulic power generation | |
US1199183A (en) | Figure toy. | |
KR101645526B1 (en) | Waterwheel using imbalance | |
JP7134419B2 (en) | Power generation system using fluid | |
BRPI0803997A2 (en) | mechanical device power generator | |
WO2016153375A1 (en) | Gravitational-spiral driving turbine with movable disks on the rotationally sliding carriers using the initial electric energy | |
BRPI0803995A2 (en) | improvement in mechanical power generator | |
WO2012041961A1 (en) | High-efficiency oscillating-blade wind turbine | |
US10473087B2 (en) | Multi axes turntable, wind turbine, and tower fan | |
US1057710A (en) | Mechanical movement. | |
US20050022620A1 (en) | Propulsion device employing conversion of rotary motion into a unidirectional linear force | |
BR102018069029A2 (en) | ROTARY LEVER FOR POWER GENERATION. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AM AU BB BG BR BY CA CN CZ EE FI GE HU JP KG KP KR KZ LK LR LT LV MD MG MN MX NO NZ PL RO RU SI SK TJ TT UA US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |