JP2016050575A - Turbine for hydraulic power generation - Google Patents

Turbine for hydraulic power generation Download PDF

Info

Publication number
JP2016050575A
JP2016050575A JP2014188208A JP2014188208A JP2016050575A JP 2016050575 A JP2016050575 A JP 2016050575A JP 2014188208 A JP2014188208 A JP 2014188208A JP 2014188208 A JP2014188208 A JP 2014188208A JP 2016050575 A JP2016050575 A JP 2016050575A
Authority
JP
Japan
Prior art keywords
turbine
power generation
turbine blade
shaft
hydroelectric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014188208A
Other languages
Japanese (ja)
Inventor
誠一 岩澤
Seiichi Iwasawa
誠一 岩澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014188208A priority Critical patent/JP2016050575A/en
Publication of JP2016050575A publication Critical patent/JP2016050575A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly efficient and universal hydraulic power generation turbine considering a marine organism and environment in high generating efficiency and a high durability at a low cost and corresponding to any flow water environment from low to high speeds.SOLUTION: A hydraulic power generation turbine is made to correspond to all flow speed environment by deforming a floating shaft having a buoyance in a transverse rotary shaft itself and variable aspect ratio turbine blades and increasing and decreasing the number of the turbine blades, and to absorb the impact at the collision time of a large-sized migration creature through the three-dimentional shape and universal joint, so that the turbine is highly efficient and low cost even in extremely rigid and simple structure, and is versatile.SELECTED DRAWING: Figure 1

Description

本発明は海流、潮流、波力、河川などのあらゆる水力発電に幅広く利用され、高効率、高出力、高耐久、低コストで海洋生物などにも対応し、且つ低速から高速のあらゆる流水環境にも対応した、万能で高耐久及び高効率な水力発電用タービンに関するものである。  The present invention is widely used for hydroelectric power generation such as ocean currents, tidal currents, wave powers, rivers, etc., and is highly efficient, high power, high durability, low cost, and compatible with marine life, etc. Is a universal, highly durable and highly efficient hydroelectric turbine.

近年、そのポテンシャルの高さから、新エネルギーとして注目されている水力及び海洋発電であるが、研究の課題も多く残されているのが現状である。特に問題なのは、如何に高効率なタービンを作るかと言う事であろう。  In recent years, hydropower and offshore power generation have attracted attention as new energies because of their high potential, but there are still many research issues left. A particular problem is how to make a highly efficient turbine.

現在研究されているタービンの多くはプロペラ型であるが、特殊なものでは、ラグビーボール状の軸にタービン翼が付いたような形状のものや、タービン翼を1枚の鉄板から作る幾何学的なデザインのものなどがある。  Many of the turbines currently being studied are of the propeller type, but some special ones have a shape like a rugby ball-shaped shaft with a turbine blade or a geometric shape that makes a turbine blade from a single steel plate. There are things with a nice design.

しかし、中にはタービン翼の直径が80mと大きすぎたり、低速流域では使用できなかったり、大型海洋生物と衝突した時の強度に不安のあるものや、藻や網の残骸、流木などの漂流物が絡まり易い形状であるなどの問題も見受けられる。  However, some turbine blades are too large in diameter (80m), cannot be used in low-speed basins, are uneasy about the strength when colliding with large marine organisms, drifting algae, remnants of nets, driftwood, etc. There are also problems such as the shape in which objects are easily tangled.

また、船舶航行への影響、環境への配慮、漁業権の問題、その上、安くて高耐久でなければならないといった、数多くの難問を抱えている。  It also has a number of challenges, such as impact on vessel navigation, environmental considerations, fishing rights issues, and it must be cheap and durable.

特開2012−41920号公報JP 2012-41920 A 特開2013−217332号公報JP2013-217332A 特開2013−19387号公報JP 2013-19387 A 特開2014−37805号公報JP 2014-37805 A

本発明が解決しようとする課題は、高い発電効率、高耐久性、海洋生物など環境への配慮、低速から高速のあらゆる流水環境に対応した万能性、安い製造コストである。  The problems to be solved by the present invention are high power generation efficiency, high durability, consideration for the environment such as marine organisms, versatility corresponding to all flowing water environments from low speed to high speed, and low manufacturing costs.

横回転軸の長さ方向にほぼ垂直及び螺旋状に取り付けられた、複数のタービン翼を有する水力発電用タービンに於いて、前記水力発電用タービン全体の重量と、前記横回転軸自体が有する中空構造によって得られる浮力を、前記横回転軸の直径、長さ及び形状の調節で浮力が釣り合い、安定した姿勢を保ちながら、前記横回転軸に有害なストレス荷重がかからず発電出来る高効率な水力発電用タービンである。  In a hydroelectric power generation turbine having a plurality of turbine blades mounted substantially perpendicularly and spirally in the lengthwise direction of the horizontal rotating shaft, the weight of the entire hydroelectric power generating turbine and the hollow included in the horizontal rotating shaft itself The buoyancy obtained by the structure is balanced by adjusting the diameter, length, and shape of the horizontal rotation shaft, and while maintaining a stable posture, it is possible to generate electricity without applying harmful stress load to the horizontal rotation shaft It is a turbine for hydroelectric power generation.

前記タービン翼の形状は、イルカの背びれが湾曲したような形で、流れ進入前期(1a、2a、3a)のタービン翼断面投影面積のアスペクト比は、極めて小さく細長い三日月型で、これによりタービン翼前期の流水抵抗は極めて小さく抑えられ、弱い流水でも確実に回転し起動する。反対に、流れ進入後期(1b、2b、3b)のタービン翼断面投影面積のアスペクト比は、極めて大きく幅が広い。これにより流水抵抗は極めて大きくなり、軸に強力な回転トルクを与える。すなわち、前期の流水抵抗は極めて小さく、後期の流水抵抗は断続的に極めて大きくなる為、遅く弱い流水でも確実に回転し、同時に強い回転トルクを発生させる事が出来る独特の形状を有した、可変アスペクト比タービン翼である。  The shape of the turbine blade is such that the dorsal fin of the dolphin is curved, and the aspect ratio of the turbine blade cross-sectional projected area in the first stage of flow entry (1a, 2a, 3a) is a very small and elongated crescent moon, which makes the turbine blade The running water resistance of the previous period is kept extremely small, and even if it is weak running water, it will rotate and start up reliably. On the other hand, the aspect ratio of the projected area of the turbine blade cross section in the late flow entry period (1b, 2b, 3b) is extremely large and wide. As a result, the flow resistance becomes extremely large, and a strong rotational torque is given to the shaft. In other words, the flow resistance in the first half is extremely small, and the flow resistance in the second half is intermittently extremely large, so that it can rotate reliably even with slow and weak running water, and at the same time has a unique shape that can generate strong rotational torque. It is an aspect ratio turbine blade.

また、前記タービン翼の特長として、高速回転用では細く、低速回転用では広く変形され、タービン翼の枚数も3枚、4枚、5枚と任意に増減する事ができ、あらゆる環境や流速でも、万能で高効率な水力発電用タービンである。  The characteristics of the turbine blades are that they are thin for high-speed rotation and widely deformed for low-speed rotation, and the number of turbine blades can be arbitrarily increased or decreased to 3, 4, or 5, regardless of the environment or flow rate. It is a universal and highly efficient hydroelectric turbine.

前記水力発電用タービンの横回転軸は、前記横回転軸上流側に、自在継ぎ手で接続され自由に可動する物と、発電入力軸と直結し、中空構造がなく浮力がない横回転軸の2種類があり、状況により使い分けられる特長を持つ、水力発電用タービンである。  The horizontal rotating shaft of the hydroelectric power generation turbine is connected to the upstream side of the horizontal rotating shaft by a universal joint and freely movable, and the horizontal rotating shaft that is directly connected to the power generation input shaft and has no hollow structure and no buoyancy. This is a turbine for hydroelectric power generation that has various features and can be used properly depending on the situation.

前記水力発電用タービンの回転時の形態は、三次元的なフラスコ状で突起物が少なく、前記自在継ぎ手により、大型回遊生物が衝突しても衝突時の衝撃を吸収する。また、前記タービン翼内に進入した藻なども絡みにくく、魚なども速やかに排水され傷つきにくい。  The hydroelectric power generation turbine rotates in a three-dimensional flask shape with few protrusions, and the universal joint absorbs the impact at the time of collision even if a large migratory organism collides. In addition, algae entering the turbine blades are less likely to get entangled, and fish are also quickly drained and less likely to be damaged.

前記水力発電用タービンは、とてもシンプルな構造で部品点数も極めて少なく、前記横回転軸の浮体円筒部も、規格鋼管材を使用できるなどコストパホーマンスも高い。  The turbine for hydroelectric power generation has a very simple structure and a very small number of parts, and the floating cylindrical portion of the horizontal rotating shaft can also use standard steel pipes, resulting in high cost performance.

図1は立面図である。FIG. 1 is an elevational view. 図2は正面図及び、A1−A2破断面のタービン翼の断面投影図である。FIG. 2 is a front view and a cross-sectional projection view of a turbine blade having an A1-A2 fracture surface. 図3はタービン翼の展開図である。FIG. 3 is a development view of the turbine blade.

4の浮体に5の自在継ぎ手が取り付けられた横回転軸に、図3の展開図で示された形状のタービン翼を、後半のそりを大きく湾曲させて、螺旋状に配置した水力発電用タービン。  Turbine for hydroelectric power generation in which a turbine blade having the shape shown in the developed view of FIG. 3 is curved in the latter half of the warp and is spirally arranged on a horizontal rotating shaft in which a floating joint of 4 is attached to a floating body of 4 .

4の横回転軸自体が中空で、浮力を持った円筒形の浮体である。4の横回転軸の直径、長さ及び形状は、タービン全体の重さに合わせて、常に浮力が釣り合うように調節し設計される。  The horizontal rotating shaft 4 itself is hollow and is a cylindrical floating body having buoyancy. The diameter, length, and shape of the four horizontal rotation shafts are adjusted and designed so as to always balance buoyancy according to the weight of the entire turbine.

4の横回転軸に5の自在継ぎ手が取り付けられる。また、4の横回転軸が入力側横回転軸と同一の場合、5の自在継ぎ手は取り付けられず、前記入力側横回転軸に1〜3のタービン翼が直接取り付けられる。この時、前記4の横回転軸及び入力側横回転軸は、中空構造ではなく浮力はない。  Five universal joints are attached to the four horizontal rotation shafts. When the 4 horizontal rotation shafts are the same as the input-side horizontal rotation shaft, the 5 universal joint is not attached, and the turbine blades 1 to 3 are directly attached to the input-side horizontal rotation shaft. At this time, the four horizontal rotation shafts and the input side horizontal rotation shaft are not hollow structures and have no buoyancy.

前記タービン翼で、図1のA1−A2破断面Bの投影図は、図2の1a、2a、3aである。また、前記タービン翼で、図1のA1−A2破断面Cの投影図は、図2の1b、2b、3bである。また、BとCの長さは同じである。  In the turbine blade, the projections of the A1-A2 fracture surface B in FIG. 1 are 1a, 2a, and 3a in FIG. Further, in the turbine blade, the projections of the fracture surface C1-A2 in FIG. 1 are 1b, 2b, and 3b in FIG. Moreover, the length of B and C is the same.

1 タービン翼1
2 タービン翼2
3 タービン翼3
4 浮体軸
5 自在継ぎ手用クランプ
A1 破断面
A2 破断面
1a タービン翼1のA1−A2破断面Bの投影図
2a タービン翼2のA1−A2破断面Bの投影図
3a タービン翼3のA1−A2破断面Bの投影図
1b タービン翼1のA1−A2破断面Cの投影図
2b タービン翼2のA1−A2破断面Cの投影図
3b タービン翼3のA1−A2破断面Cの投影図
B 流れ進入前期のタービン翼の長さで、BとCは同じ長さ
C 流れ進入後期のタービン翼の長さで、BとCは同じ長さ
1 Turbine blade 1
2 Turbine blade 2
3 Turbine blade 3
4 Floating shaft 5 Universal joint clamp A1 Fracture surface A2 Fracture surface 1a Projection view of A1-A2 fracture surface B of turbine blade 1 2a Projection view of A1-A2 fracture surface B of turbine blade 2 3a A1-A2 of turbine blade 3 Projection view of fracture surface B 1b Projection view of A1-A2 fracture surface C of turbine blade 1 2b Projection diagram of A1-A2 fracture surface C of turbine blade 2 Projection view B of A1-A2 fracture surface C of turbine blade 3 The length of the turbine blade in the first stage of approach, B and C are the same length C The length of the turbine blade in the second stage of flow approach, and B and C are the same length

Claims (3)

横回転軸と、前記横回転軸の長さ方向にほぼ垂直及び螺旋状に取り付けられた、複数のタービン翼を有する水力発電用タービンに於いて、前記水力発電用タービン全体の重量と、前記横回転軸自体が有する中空構造によって得られる浮力を、前記横回転軸の直径、長さ及び形状の調節で浮力が釣り合い、安定した姿勢を保ちながら、前記横回転軸に有害なストレス荷重がかからず発電出来る高効率な水力発電用タービン。  In a hydroelectric power generation turbine having a horizontal rotating shaft and a plurality of turbine blades mounted substantially vertically and spirally in the longitudinal direction of the horizontal rotating shaft, the weight of the entire hydroelectric power generating turbine, The buoyancy obtained by the hollow structure of the rotary shaft itself is balanced by adjusting the diameter, length and shape of the horizontal rotary shaft, and a harmful stress load is applied to the horizontal rotary shaft while maintaining a stable posture. Turbine for high-efficiency hydroelectric power generation that can generate electricity. 前記水力発電用タービンのタービン翼の形状は、イルカの背びれが湾曲したような形で、流れ進入前期(1a、2a、3a)のタービン翼断面投影面積のアスペクト比は、極めて小さく細長い三日月型で、これによりタービン翼前期の流水抵抗は極めて小さく抑えられ、弱い流水でも確実に回転し起動する。反対に、流れ進入後期(1b、2b、3b)のタービン翼断面投影面積のアスペクト比は、極めて大きく幅が広い。これにより流水抵抗は極めて大きくなり、軸に強力な回転トルクを与える。すなわち、遅く弱い流水でも確実に回転し、且つ強い回転トルクを発生させる事が出来る独特の形状を有した、可変アスペクト比タービン翼である。また、前記タービン翼の形状は、高速回転用では細く、低速回転用では広く変形され、前記タービン翼の枚数も3枚、4枚、5枚と任意に増減する事ができ、あらゆる環境や流速でも万能で高効率な、請求項1に記載の水力発電用タービン。  The shape of the turbine blade of the hydroelectric turbine is such that the dolphin's dorsal fin is curved, and the aspect ratio of the turbine blade cross-sectional projected area in the first stage of flow entry (1a, 2a, 3a) is extremely small and elongated crescent. As a result, the flowing water resistance in the first stage of the turbine blade is suppressed to a very small value, and even if it is weak flowing water, it rotates reliably and starts up. On the other hand, the aspect ratio of the projected area of the turbine blade cross section in the late flow entry period (1b, 2b, 3b) is extremely large and wide. As a result, the flow resistance becomes extremely large, and a strong rotational torque is given to the shaft. That is, it is a variable aspect ratio turbine blade having a unique shape capable of reliably rotating even with slow and weak flowing water and generating a strong rotational torque. Further, the shape of the turbine blade is thin for high-speed rotation and widely deformed for low-speed rotation, and the number of turbine blades can be arbitrarily increased or decreased to 3, 4, or 5 for any environment or flow velocity. However, the turbine for hydroelectric power generation according to claim 1, which is versatile and highly efficient. 前記水力発電用タービンの横回転軸は、前記横回転軸上流側に、自在継ぎ手で接続され自由に可動する物と、発電入力軸と直結し、中空構造がなく浮力がない構造の横回転軸の2種類があり、状況により使い分けられる特長を持つ、請求項1又は請求項2に記載の水力発電用タービン。  The horizontal rotation shaft of the hydroelectric power generation turbine is connected to the power generation input shaft directly connected to the power generation input shaft on the upstream side of the horizontal rotation shaft, and has a hollow structure and no buoyancy. The turbine for hydroelectric power generation according to claim 1, wherein the turbine is characterized in that there are two kinds of
JP2014188208A 2014-08-28 2014-08-28 Turbine for hydraulic power generation Pending JP2016050575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014188208A JP2016050575A (en) 2014-08-28 2014-08-28 Turbine for hydraulic power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014188208A JP2016050575A (en) 2014-08-28 2014-08-28 Turbine for hydraulic power generation

Publications (1)

Publication Number Publication Date
JP2016050575A true JP2016050575A (en) 2016-04-11

Family

ID=55658254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014188208A Pending JP2016050575A (en) 2014-08-28 2014-08-28 Turbine for hydraulic power generation

Country Status (1)

Country Link
JP (1) JP2016050575A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017036708A (en) * 2015-08-10 2017-02-16 治 狩野 Vane wheel
JP2023523390A (en) * 2020-04-10 2023-06-05 ケイロス,マウリシオ fluid energy collection unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206779A (en) * 1981-06-12 1982-12-18 Honda Motor Co Ltd Portable hydroelectric generator
JP2012172590A (en) * 2011-02-22 2012-09-10 Keiko Shiozu Tidal current power generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206779A (en) * 1981-06-12 1982-12-18 Honda Motor Co Ltd Portable hydroelectric generator
JP2012172590A (en) * 2011-02-22 2012-09-10 Keiko Shiozu Tidal current power generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017036708A (en) * 2015-08-10 2017-02-16 治 狩野 Vane wheel
JP2023523390A (en) * 2020-04-10 2023-06-05 ケイロス,マウリシオ fluid energy collection unit
JP7539484B2 (en) 2020-04-10 2024-08-23 ケイロス,マウリシオ Fluid Energy Collection Unit

Similar Documents

Publication Publication Date Title
JP6618920B2 (en) Hydrodynamic energy conversion system and use thereof
TW201024531A (en) Apparatus for generating electricity from flowing fluid using generally prolate turbine
US20130177424A1 (en) Screw turbine and method of power generation
CN106438184B (en) The flexible blade of the automatic variable pitch turbine of hydrodynamic force
JP5346050B2 (en) Tidal current generator
JP2016050575A (en) Turbine for hydraulic power generation
JP2013130110A (en) Fluid machine and fluid plant
CN105464895A (en) Tidal current generating water turbine
TWI644019B (en) One-way conversion device and power system having the same
KR101819620B1 (en) automatic feeding Apparatus
CN109185009A (en) A kind of impeller unit of the round-trip bimodal current of passive self-adaptive
KR101062246B1 (en) Turbine for Hydroelectric Power Plant
KR101723061B1 (en) Runner and tidal current generation apparatus
KR20130016445A (en) S-shaped clearance blade and blade driving method for driving renewable energy generator
JP5976414B2 (en) Water current generator
JP2011169289A (en) Hydraulic power unit and hydraulic power generating unit
WO2016030910A1 (en) Water kinetic energy driven hydro turbine
CN105952577A (en) Power generation device based on reciprocating asymmetric streaming force
JP2020169607A5 (en)
CN205744273U (en) TRT based on the reciprocating asymmetric power of streaming
KR100837999B1 (en) Aberration Pedal for Small Hydro Power Generation
RU155053U1 (en) FISHLINE HYDRO POWER PLANT LINE WITH FLOAT TURBINES TYPE
US11428211B1 (en) Vortical wind turbine/ umbrella wave turbine system
JP2012241702A (en) Underwater power generating device
KR101116408B1 (en) Current Power Generation System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190108