WO1995027983A1 - Method and device for ensuring a thermal shield between parts with different temperatures - Google Patents

Method and device for ensuring a thermal shield between parts with different temperatures Download PDF

Info

Publication number
WO1995027983A1
WO1995027983A1 PCT/SE1995/000366 SE9500366W WO9527983A1 WO 1995027983 A1 WO1995027983 A1 WO 1995027983A1 SE 9500366 W SE9500366 W SE 9500366W WO 9527983 A1 WO9527983 A1 WO 9527983A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
inlet pipe
gap
container
medium
Prior art date
Application number
PCT/SE1995/000366
Other languages
English (en)
French (fr)
Inventor
Bo Borrman
Ingemar Greis
Ernö LEGATH
Original Assignee
Abb Atom Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Atom Ab filed Critical Abb Atom Ab
Publication of WO1995027983A1 publication Critical patent/WO1995027983A1/en
Priority to FI963980A priority Critical patent/FI963980A0/sv

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/08Joining pipes to walls or pipes, the joined pipe axis being perpendicular to the plane of the wall or to the axis of another pipe
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • G21C13/032Joints between tubes and vessel walls, e.g. taking into account thermal stresses
    • G21C13/036Joints between tubes and vessel walls, e.g. taking into account thermal stresses the tube passing through the vessel wall, i.e. continuing on both sides of the wall
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a method and a device for introducing a medium via an inlet pipe into a container where the temperature of the inlet pipe and the temperature of that part of the container which surrounds the inlet pipe differ considerably from each other.
  • a secondary flow may be arranged to flow in a secondary-flow gap, between the inlet pipe and that part of the container which surrounds the inlet pipe.
  • the secondary flow consists of a medium from the container which, with the aid of the design of the secondary-flow gap, may be caused to be sucked into this to thermally shield the inlet pipe from the container part and then to join the primary flow.
  • the medium may be in gaseous or liquid phase.
  • the nuclear reactor 1 comprises an outer, substantially cylindri ⁇ cal, vertical container called reactor vessel 2.
  • a substantially cylin ⁇ drical vertical moderator tank 3 is arranged inside the reactor vessel 2 and at its lower part. Between the outer wall of the moderator tank 3 and the inner wall of the reactor vessel 2, a space referred to as downcomer 4 is formed.
  • a so-called feedwater distributor (not shown) is arranged at the inner wall of the reactor vessel 2 on a level with the upper part of the moderator tank 3.
  • the feedwater distributor is provided with a large number of holes through which the feedwater is introduced into the downcomer 4.
  • the reactor vessel 2 is provided with a steam outlet 5 for steam created during boiling of cooling water in a core enclo ⁇ sed in the moderator tank 3.
  • the water starts boiling when it has reached approxi- mately one-fourth up in the core.
  • the steam thus created is separated from the water in steam separators 7 and in the steam dryers 8 which separate the last moisture residues in the steam before it flows out of the reactor vessel 2.
  • the separated water flows down into the downcomer 4 between the moderator tank 3 and the reactor vessel 2, the flow in the downcomer 4 being indicated in the figure by the arrow A.
  • the reactor vessel 2 is supplied with water via the feedwater distributor via an inlet 6.
  • the downcomer 4 contains a mixture of incoming cold feedwater, that is, the primary flow marked by the arrow B in the figure, and hot water which is separated from the steam in the steam separators 7 and the steam dryers 8.
  • the above- mentioned ejector 9 is used (see Figures 2a and 2b) .
  • the ejector 9 is inserted into a connection piece 10 formed in the reactor vessel wall. Between the ejector 9 and the vessel connection piece 10, a secondary-flow gap 11 is arranged.
  • the ejector 9 is provided with a guide means 9a intended to guide the ejector 9 in the vessel connection piece 10 at the inlet 6. Between the guide means 9a and the connection piece 10 there is a certain play for the passage of the secondary flow through the secondary-flow gap 11.
  • the present invention relates to a method and a device for introducing a medium, a primary flow, with a first temperature via an inlet pipe into a container which encloses the same medium with a different temperature, wherein the first and second temperatures considerably differ from each other.
  • the method involves ensuring a thermal shield between the inlet pipe and that part of the container which surrounds the inlet pipe, where the thermal shield consists of a secondary flow which is adapted to flow in a secondary-flow gap between the inlet pipe and the container part. A reliable function of the thermal shield is obtained if the secondary flow is well established and symmetrically distributed in the secondary- flow gap.
  • the pressure-difference dependent suction force which causes the secondary flow to flow in the secondary-flow gap when the pressure increase in the primary flow increases.
  • the thermal shield is ensured when the velocity of the primary flow is increased.
  • the velocity of the primary flow is increa ⁇ sed by reducing the inlet area of the channel.
  • the inlet area of the channel is reduced in such a way that a sufficiently large pressure increase between the inlet and the outlet of the primary flow is achieved in order thus to achieve a suffi ⁇ ciently great pressure difference between the inlet and the outlet of the secondary-flow gap for driving the secondary flow therethrough at all relevant primary flows.
  • Another way of ensuring the secondary flow is to reduce the flow resistance of the secondary-flow gap by allowing part of the secondary flow to join the primary flow before it has passed through the whole secondary-flow gap, that is, only part of the secondary flow passes along the whole secondary- flow gap.
  • the secondary flow may, for example, be allowed to join the primary flow through openings downstream of the inlet of the channel, which are evenly distributed around the inlet pipe for symmetrical distribution of the secondary flow around the inlet pipe.
  • An alternative way of reducing the flow resistance of the secondary-flow gap is to arrange slots in a guide means arranged around the inlet pipe to center this in the container part.
  • the secondary flow in the secondary-flow gap is distributed even better by the arrangement of a flow shield upstream of the inlet of the secondary flow into the secondary-flow gap in order there to reduce the velocity of the medium flowing in the container and thus prevent disturbances such as the for ⁇ mation of eddies or pressure variations.
  • a device for carrying out the method described above comprises a driving nozzle intended to be arranged at the inlet of the primary flow into the inlet pipe to reduce the inflow area of the channel.
  • the driving nozzle may be arranged as a separate sleeve in the inlet pipe or be designed as an integral part thereof.
  • the driving nozzle is arranged in the inlet pipe in such a way that the primary flow is prevented from flowing into the secondary-flow gap and preventing the flow of the secondary flow therein. More particularly, the driving nozzle is designed such that a sealing gap is formed between the driving nozzle and a part of the container which is arranged outside the container part which surrounds the secondary-flow gap, called the connecting container part.
  • the connecting container part has a diameter which is smaller than or equal to the diameter of the channel.
  • a chamber is arranged, into which the sealing gap and the secondary-flow gap open out.
  • the chamber in its turn, opens out into the inlet pipe downstream of the nozzle, and the same pressure prevails in the chamber as downstream of the nozzle.
  • At least part of the secondary flow is sucked to the chamber where it is mixed with primary flow supplied through the sealing gap, whereafter, in mixed form, it joins the primary flow in the inlet pipe via the chamber.
  • a flow shield intended to be arranged in the flow path of the medium flowing in the container has an extent so large as to at least cover the inlet of the secondary flow into the secondary-flow gap.
  • the shield may be designed in many ways; it may, for example, consist of a parallel-truncated cone where the truncated part is connected to the inlet pipe and where the walls of the cone extend towards the walls of the container, with a gap between the base of the cone and the wall of the container formed for passage of a medium to the secondary-flow gap. Openings are arranged in the shield for passage of a medium to the secondary-flow gap. The size and location of the openings are chosen so as to avoid pressure drops and such that flow of medium takes place in one direc ⁇ tion only, that is, in a direction towards the inlet of the secondary-flow gap.
  • the method and the device according to the invention may be applied to already-existing supply channels, which is consi ⁇ dered particularly advantageous.
  • Figure 1 schematically shows a nuclear reactor vessel with internal parts according to the prior art.
  • Figure 2a schematically shows an inlet pipe for supply of a medium to a container according to the prior art.
  • Figure 2b shows an enlargement of a detail from Figure 2a.
  • Figure 3a schematically shows an inlet pipe for supply of a medium to a container according to the invention.
  • Figure 3b shows an enlargement of a detail from Figure 3a.
  • Figure 3c shows an alternative embodiment to that shown in Figure 3b.
  • Figure 4 shows a flow shield according to the invention arranged around an inlet pipe for supply of a medium to a container.
  • Figure 5 shows an alternative embodiment of a flow shield according to the invention.
  • Figures 3a-3c show an inlet pipe 9 (cf. also Figure 1) for the supply of a medium to a container, a nuclear reactor vessel 2.
  • the inlet pipe 9 is arranged in a connection piece 10 mounted in the reactor vessel wall 2a.
  • a primary flow shown by an arrow B, is adapted to flow through the inlet pipe 9 in a direction towards the reactor vessel 2.
  • a secondary-flow gap 11 is formed between the connection piece 10 and the inlet pipe 9, a secondary-flow gap 11 is formed.
  • a secondary flow here shown by an arrow C, is adapted to flow through the secondary-flow gap 11 in a direction opposite to the direction of flow of the primary flow B.
  • the secondary flow C constitutes a thermal shield between the connection piece 10 and the inlet pipe 9, the temperatures of which differ considerably from each other.
  • a driving nozzle 13 is arranged (see also Figure 3b) .
  • the driving nozzle 13 is designed with a cross-section area which decreases in the direction of flow of the primary flow B.
  • a number of slots are arranged around the periphery of the nozzle 13, which slots, together with the wall of the channel 9 facing the nozzle 13, form a chamber 14.
  • the chamber 14 extends in the main direction of the primary flow B and opens out at the inside of the channel 9 downstream of the driving nozzle 13.
  • the secondary-flow gap 11 opens out into the chamber 14.
  • a sealing gap 16 is arranged between the driving nozzle 13 and that part of the reactor vessel 2, shown on the right in Figure 3a, which is connected to the connection piece 10, referred to as the connecting vessel part 10a.
  • the diameter of the connecting vessel part 10a is smaller than or equal to the interior diameter of the channel 9.
  • the sealing gap 16 allows passage of a small part of the primary flow B to the chamber 14.
  • Downstream of the driving nozzle 13, through- holes 17 are arranged in the wall of the channel 9 for passage of part of the secondary flow C into the inlet pipe 9 for joining this with the primary flow B.
  • the driving nozzle 13 is fixed to the wall of the channel 9 by means of cylindrical pins 18 which give the driving nozzle 13 flexibility in a radial direction.
  • Figure 3c shows slots 9b arranged in a guide means 9a and extending in the longitudinal direction of the channel 9.
  • FIG. 4 shows a flow shield 19 arranged upstream of the inlet of the secondary flow C into the secondary-flow gap 11.
  • the flow shield 19 comprises a tubular part 20, a part formed as a parallel-truncated cone 21 with a first and a second limiting surface 21a, 21b.
  • the first limiting surface is fixed to the tubular part 20.
  • the second limiting surface 21b is fixed to a spoke-like portion 22 comprising a plurality of spokes 22a arranged around the outer limiting surface of the channel 9.
  • the spokes 22a are provided with a first and a second end 22b, 22c, the first end 22b being fixed to the second limiting surface 21b.
  • the spokes 22a extend in a direction substan ⁇ tially parallel to the centre axis of the channel 9.
  • the second end 22c of the spokes 22a is bent in a direction towards the centre of the channel 9 and fixed to the inlet pipe 9 by means of, for example, welding.
  • a gap 10b for passage of medium A flowing in the reactor vessel 2 to the inlet of the secondary-flow gap 11.
  • the truncated cone 21 is provided with a number of openings 23 adapted to allow passage of medium A flowing in the vessel to the inlet of the secondary-flow gap 11.
  • the openings 23 are located in that part of the flow shield 19 which the medium, flowing in a downcomer 4 (see Figure 1), first encounters.
  • the material in the tubular part 20 may alternatively be made with a plurality of through-holes (not shown in the figure) .
  • FIG. 5 shows an alternative embodiment of the flow shield 19.
  • the flow shield 19 consists of a parallel-truncated cone
  • the first limiting surface 21a is arranged with the sealing gap 10b against the reactor vessel wall and the second limiting surface 21b, which consists of the truncated part of the cone 21, is arranged around the inlet pipe 9.
  • the truncated cone 21 in Figure 5 may be provided with one or more openings 23.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Mechanical Engineering (AREA)
  • Furnace Details (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
PCT/SE1995/000366 1994-04-06 1995-04-05 Method and device for ensuring a thermal shield between parts with different temperatures WO1995027983A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FI963980A FI963980A0 (sv) 1994-04-06 1996-10-04 En metod och en anläggning för att säkra värmeskyddet mellan delar med olika temperaturer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9401147A SE9401147L (sv) 1994-04-06 1994-04-06 Förfarande och anordning för säkerställande av termisk skärm mellan delar med skild temperatur
SE9401147-5 1994-04-06

Publications (1)

Publication Number Publication Date
WO1995027983A1 true WO1995027983A1 (en) 1995-10-19

Family

ID=20393544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE1995/000366 WO1995027983A1 (en) 1994-04-06 1995-04-05 Method and device for ensuring a thermal shield between parts with different temperatures

Country Status (3)

Country Link
FI (1) FI963980A0 (sv)
SE (1) SE9401147L (sv)
WO (1) WO1995027983A1 (sv)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4168071A (en) * 1978-03-17 1979-09-18 General Electric Company Thermal isolator
DE2819388B2 (de) * 1977-05-16 1980-02-28 Ab Asea-Atom, Vaesteraas (Schweden) Druckgefäß, insbesondere für einen Kernreaktor
US4212594A (en) * 1978-07-24 1980-07-15 General Electric Company Liquid feeding and mixing arrangement including an ejector thermal sleeve
US4247262A (en) * 1978-12-26 1981-01-27 General Electric Company Liquid feeding and mixing arrangement including a flow-shielding ejector thermal sleeve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2819388B2 (de) * 1977-05-16 1980-02-28 Ab Asea-Atom, Vaesteraas (Schweden) Druckgefäß, insbesondere für einen Kernreaktor
US4168071A (en) * 1978-03-17 1979-09-18 General Electric Company Thermal isolator
US4212594A (en) * 1978-07-24 1980-07-15 General Electric Company Liquid feeding and mixing arrangement including an ejector thermal sleeve
US4247262A (en) * 1978-12-26 1981-01-27 General Electric Company Liquid feeding and mixing arrangement including a flow-shielding ejector thermal sleeve

Also Published As

Publication number Publication date
SE9401147L (sv) 1995-10-07
SE9401147D0 (sv) 1994-04-06
FI963980A (sv) 1996-10-04
FI963980A0 (sv) 1996-10-04

Similar Documents

Publication Publication Date Title
US5425415A (en) Vertical heat exchanger
US5000907A (en) Nuclear reactor with emergency cooling water injection device
JP4671454B2 (ja) 改良給水装置を備えた蒸気発生器
CA2643156A1 (en) Heat transfer tube support structure
JPS62250394A (ja) 加圧水型原子炉
EP0183049B1 (en) Perforated flow distribution plate
CN104350548A (zh) 用于液态金属冷却式核反应堆的燃料棒束
US4247262A (en) Liquid feeding and mixing arrangement including a flow-shielding ejector thermal sleeve
US5481578A (en) Perforated tube debris catcher for a nuclear reactor
WO1995027983A1 (en) Method and device for ensuring a thermal shield between parts with different temperatures
US4960561A (en) Nuclear reactor lower internals
US4736713A (en) Foraminous or perforated flow distribution plate
JPH0226078Y2 (sv)
KR20140070456A (ko) 튜브 번들 반응기
US5857006A (en) Chimney for enhancing flow of coolant water in natural circulation boiling water reactor
WO1995027984A1 (en) Method and device for ensuring a thermal shield between surfaces with different temperatures
US4057033A (en) Industrial technique
US4557891A (en) Pressurized water reactor flow arrangement
KR102540974B1 (ko) 혼합 급수 스퍼저 노즐들 및 원자로들에서 이를 사용하는 방법
US7178485B2 (en) Steam generator that includes a feedwater delivery device
JPS591995B2 (ja) 水冷却原子炉
US3713970A (en) Cavity reactor with two stage separation
JPH07243602A (ja) 高温の反応ガスを冷却するために使用される熱交換器
US20220406479A1 (en) Apparatuses for steam separation, and nuclear boiling water reactors including the same
JP2012112590A (ja) 蒸気発生器及び原子力プラント

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): FI JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 963980

Country of ref document: FI

122 Ep: pct application non-entry in european phase