WO1995023920A1 - Procede de conversion d'energie thermique en energie mecanique dans une turbine a gaz et turbine a gaz - Google Patents

Procede de conversion d'energie thermique en energie mecanique dans une turbine a gaz et turbine a gaz Download PDF

Info

Publication number
WO1995023920A1
WO1995023920A1 PCT/RU1994/000041 RU9400041W WO9523920A1 WO 1995023920 A1 WO1995023920 A1 WO 1995023920A1 RU 9400041 W RU9400041 W RU 9400041W WO 9523920 A1 WO9523920 A1 WO 9523920A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
gas
working body
turbine
heated
Prior art date
Application number
PCT/RU1994/000041
Other languages
English (en)
Russian (ru)
Inventor
Anatoly Mikhailovich Rakhmailov
Igor Leonidovich Drozd
Original Assignee
Smeshannoe Tovarischestvo 'germes'
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smeshannoe Tovarischestvo 'germes' filed Critical Smeshannoe Tovarischestvo 'germes'
Priority to PCT/RU1994/000041 priority Critical patent/WO1995023920A1/fr
Publication of WO1995023920A1 publication Critical patent/WO1995023920A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/36Open cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/32Inducing air flow by fluid jet, e.g. ejector action

Definitions

  • the invention is related to energy, and it is known that
  • thermodynamic system In the case of a gas engine in the gas engine, which has a tool and source of heat, it only changes the dynamic mode of operation (91). However, during the change of the thermodynamic system, it is included in the working body, otherwise
  • the aforementioned method is carried out in a gas-powered engine, which contains a turbine and a source of heated working body, and, moreover, it is convenient for mixing. With this method, the PDA is increased. However, a further increase in PDE
  • thermodynamic state Due to the fact that a part of the heated body with a changed thermodynamic state is excluded from the direct part of the engine before the process of heating up
  • the flow of the working body in the tank which is designed to mix with the heated working body, is used to turn on the gas in the
  • thermodynamic device Due to the fact that it’s free from the working part of the tool, it’s easy to use the body with a modified thermodynamic device.
  • Cooling of the heating circuit with a changed thermodynamic system enhances the effective increase of its static pressure from the fresh - 4 - by heating the oxidizer and / or fuel and improves
  • the angle between the objects of the absolute speed of the work flow of the working body and the working body is less than 5, which is positively less than 90 °. With this, the mixing efficiency of the working bodies is increased, which also improves the PDP.
  • the direct part of the gas-turbine engine in the area of mixing heated and discharged working bodies is supplied with a reliable supply.
  • the degree of expansion of the heated body increases in the engine, due to which the compression is increased, and the increase is increased, 15 It is feasible between the first inlet and the outlet of an ejector to process a vortex tube.
  • the outlet of the ejector should be carefully placed in the hot zone of the vortex tube.
  • FIG. 2 provides a gas-powered engine that illustrates a method of converting thermal energy into a gas-powered engine
  • Fig. 5 - cut U-U in Fig. 3 (enlarged) 35 fig. - 5 - Fig. 7 - ⁇ az ⁇ without UP-UP in Fig. 6;
  • the proposed method of converting thermal energy to mechanical energy in a gas engine is the following.
  • the operating unit is removed from the source I of the heated operating unit ( ⁇ ) in installation 2 for expansion and commissioning.
  • THIS DEVICE MAY BE YOU
  • Source I mixes the fuel and the oxidizer with a well-known process that does not have a negative source of ignition, ignites the mixture (it mixes the fuel) Well, heated, working, convenient
  • the heat exchanger can also be used for heating fuel, which is possible from the source I of the heated body (not indicated). With this, the PDA is rising. In addition to this, there is a quick release of pressure to prevent the pressure from being increased, which means that
  • the productive part of the body which is derived from the direct part of the natural gas engine, is mostly supplied by the oxidizer (the fuel is When it comes to
  • the engine does not work optimally. After that, as soon as the ergotus begins to recover, the recovered quantity of the working body is restored, - 7 - More conveniently set the temperature mode, the power supply is inactive and the battery is inactive, it is free of charge Compatible with-
  • FIG. 20 a schematic illustration of a gas-bin engine is provided, in accordance with the present invention.
  • the identical elements are designated by the same positions, as in FIG.
  • the engine has a tubin 5, which in this case is a costly center.
  • the gas turbine engine has an ejection 10, which performs the functions of the device 2 of the expansion and cultivation of the working body and its mixing with the operating unit (1).
  • Eclect 10 the device is more conveniently described below, has a first exit II with a working capacity of 12, which is fully equipped with a - 8 -
  • a heated working body was installed heat exchanger 17 (Fig. 3.4).
  • the exchange of 17 represents the most profitable devices of 18.19.20 and the distribution of 21.22.
  • the hot site 23 of the heat exchanger 17 is connected to the channel 16, and the cold site 24 is connected to the source 4
  • the outlet 15 of the ejector 10 is located in the hot zone of the mouth of the pipe (not indicated, between
  • the cold pipe is not subject to specialization and is subject to a large amount of space, while the other working body has a dry and hot area.
  • FIG. 6 a schematic illustration of a variant of a gas turbine engine with another filling of a turbine without a heat exchanger is provided, without a heat exchanger.
  • - 9 - is used to simplify the description, and where the same parts are identified by the same features, the difference between this engine and the gas is not used;
  • this device 35 for the completion of the work flow of the working body, for example, in the form of a medical device.
  • the device EJECT 10 in this version is similar to the one described above.
  • the 10th heater When installed on the first input of the second power supply, the 10th heater is heated, and the source is ignored, and the
  • Gas engine variant available on - II - Fig. 6-9 works in a similar fashion. The difference lies in the fact that the turbine has a two-sided working wheel, which forms two points 29.30. At the first contact 29, a different body moves with a changed thermodynamic system -
  • the invention may be used in gas turbine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention concerne la production d'énergie, spécifiquement un procédé de conversion d'énergie thermique en énergie mécanique dans une turbine à gaz. L'invention améliore le rendement tout en réduisant les quantités d'émission de gaz. Tout d'abord, on laisse se détendre le fluide moteur chauffé produit lorsque le combustible est mélangé à un oxydant, puis brûlé et acheminé dans la turbine, puis on le force à passer dans un chemin spiralé autour de l'axe longitudinal de la turbine à gaz. On le mélange à un courant de fluide moteur ayant été utilisé dans la turbine, produisant ainsi un courant de fluide moteur chauffé présentant un état thermo-dynamique modifié. On introduit ce fluide dans la turbine afin qu'il se dédente à nouveau et qu'il produise un travail utile. Avant l'introduction du courant de fluide moteur chauffé présentant un état thermo-dynamique modifié, on extrait une portion de celui-ci de la partie d'écoulement traversant de la turbine. Ladite turbine à gaz se compose d'une turbine (5) et d'une source (1) de fluide moteur chauffé, ainsi que d'un éjecteur (10) présentant une première admission (11) communiquant avec la source (1) du fluide moteur chauffé, ainsi qu'une seconde admission (13) communiquant avec la sortie (5) de la turbine, et d'une sortie (14) communiquant avec l'admission de la turbine (5). L'éjecteur (10) présente une seconde sortie (15) communiquant avec l'atmosphère.
PCT/RU1994/000041 1994-03-02 1994-03-02 Procede de conversion d'energie thermique en energie mecanique dans une turbine a gaz et turbine a gaz WO1995023920A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU1994/000041 WO1995023920A1 (fr) 1994-03-02 1994-03-02 Procede de conversion d'energie thermique en energie mecanique dans une turbine a gaz et turbine a gaz

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU1994/000041 WO1995023920A1 (fr) 1994-03-02 1994-03-02 Procede de conversion d'energie thermique en energie mecanique dans une turbine a gaz et turbine a gaz

Publications (1)

Publication Number Publication Date
WO1995023920A1 true WO1995023920A1 (fr) 1995-09-08

Family

ID=20129833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU1994/000041 WO1995023920A1 (fr) 1994-03-02 1994-03-02 Procede de conversion d'energie thermique en energie mecanique dans une turbine a gaz et turbine a gaz

Country Status (1)

Country Link
WO (1) WO1995023920A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB196452A (en) * 1922-03-15 1923-04-26 Henry Andrews Hepburn Improvements in or relating to internal combustion turbine engines
SU7563A1 (ru) * 1926-12-22 1929-01-31 С.В. Иванов Турбина внутреннего горени
SU31190A1 (ru) * 1932-06-03 1933-07-31 П.Ф. Плющев Турбина внутреннего горени
GB412970A (en) * 1933-01-06 1934-07-06 British Thomson Houston Co Ltd Improvements in and relating to gas turbine cycles with interstage reheating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB196452A (en) * 1922-03-15 1923-04-26 Henry Andrews Hepburn Improvements in or relating to internal combustion turbine engines
SU7563A1 (ru) * 1926-12-22 1929-01-31 С.В. Иванов Турбина внутреннего горени
SU31190A1 (ru) * 1932-06-03 1933-07-31 П.Ф. Плющев Турбина внутреннего горени
GB412970A (en) * 1933-01-06 1934-07-06 British Thomson Houston Co Ltd Improvements in and relating to gas turbine cycles with interstage reheating

Similar Documents

Publication Publication Date Title
US2326072A (en) Gas turbine plant
EP0619459A1 (fr) Dispositif à turbine pour le production d'air chaud
CA2356529A1 (fr) Appareil et procede permettant d'augmenter la puissance d'une turbine
US20070068135A1 (en) Engine
US20210190320A1 (en) Turbine engine assembly including a rotating detonation combustor
CN1780975B (zh) 带有一体燃烧室和转子的微型反动式涡轮机
US3680317A (en) Reaction motor including air flow inducing means
US9995216B1 (en) Disc turbine engine
WO1995005063A2 (fr) Procede de conversion d'energie thermique en energie mecanique et son dispositif de mise en ×uvre
RU2199020C2 (ru) Способ работы комбинированной газотурбинной установки системы газораспределения и комбинированная газотурбинная установка для его осуществления
EP0568748A1 (fr) Générateur de poussée à turbine avec récupération de chaleur
EP0811752A1 (fr) Turbine a gaz centrifuge
WO1995023920A1 (fr) Procede de conversion d'energie thermique en energie mecanique dans une turbine a gaz et turbine a gaz
US20010025478A1 (en) Hot air power system with heated multi process expansion
CN106948942B (zh) 一种高效燃气轮机
GB2074249A (en) Power Plant
US3964254A (en) Low velocity gas turbine with exhaust gas recycling
US4578943A (en) Hydro-vapor free turbine engine
CN109869241A (zh) 超重力燃气发动机装置及方法
RU2735880C1 (ru) Способ применения газовоздушного термодинамического цикла для повышения КПД малогабаритного турбодвигателя
RU2031226C1 (ru) Способ преобразования тепловой энергии в механическую в газотурбинном двигателе и газотурбинный двигатель
RU2561772C1 (ru) Воздушно-реактивный двигатель
GB2283064A (en) Internal combustion engine exhaust gas energy recovery
WO1998029656A1 (fr) Moteur utilisant l'energie de la vapeur chauffee d'un combustible
US20220056842A1 (en) Method and apparatus for increasing useful energy/thrust of a gas turbine engine by one or more rotating fluid moving (agitator) pieces due to formation of a defined steam region

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase