WO1995015520A1 - Dispositif pour doser un fluide de maniere controlee - Google Patents

Dispositif pour doser un fluide de maniere controlee Download PDF

Info

Publication number
WO1995015520A1
WO1995015520A1 PCT/FR1994/001408 FR9401408W WO9515520A1 WO 1995015520 A1 WO1995015520 A1 WO 1995015520A1 FR 9401408 W FR9401408 W FR 9401408W WO 9515520 A1 WO9515520 A1 WO 9515520A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
pressure
laminar
pressure drop
reservoir
Prior art date
Application number
PCT/FR1994/001408
Other languages
English (en)
Inventor
Yves Lecoffre
Original Assignee
Helispire
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helispire filed Critical Helispire
Priority to AU11933/95A priority Critical patent/AU1193395A/en
Priority to EP95902826A priority patent/EP0731939A1/fr
Publication of WO1995015520A1 publication Critical patent/WO1995015520A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/02Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes for transferring liquids other than fuel or lubricants
    • B67D7/0238Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes for transferring liquids other than fuel or lubricants utilising compressed air or other gas acting directly or indirectly on liquids in storage containers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0688Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by combined action on throttling means and flow sources

Definitions

  • the present invention relates to a device for dosing fluids from a tank or from pressurized pipes. More specifically, it involves injecting small amounts of fluid in a controlled manner.
  • the fluid to be injected is, in general, contained in a pressurized tank and flows from said tank through a pressure drop. Pressurization can be carried out by the fluid to be metered itself if it is forced into the tank by a compressor, a pump or a high pressure tank or by a second fluid which is easier to handle or can be stored under a level of significant pressure. In the latter case, the fluid can be a liquid or a gas.
  • the present invention essentially consists in placing at one point located on the circuit consisting of the fluid or of all of the fluids one or more laminar pressure drops provided with a differential pressure sensor which makes it possible to measure the volume flow in real time and to give the information necessary for adjusting an actuator intended to vary the pressure in the reservoir of the fluid to be metered.
  • the flow control device is characterized in that it comprises: a reservoir containing the fluid to be dosed and a working fluid which compensates for the loss of liquid and makes it possible to pressurize said reservoir, a means for pressurizing the working fluid, a means for regulating the pressure of the working fluid as a function of the needs for the fluid to be metered, laminar pressure drop means mounted on the line in which one or the other of the fluids circulates for determining the flow rate of fluid passing through the line, and control means of the regulating means for modifying the pressure in the reservoir as a function of the value of the flow rate to be dosed and of the physical characteristics of the fluid passing through the laminar pressure drop means .
  • the flow rate of the fluid to be delivered is directly measured and the flow rate of the working fluid is acted upon to regulate the flow rate delivered.
  • the flow of working fluid is measured and controlled, which makes it possible to control the flow of fluid which will ultimately be delivered. This second mode of implementation is particularly well suited to the case where the fluid to be delivered is a very viscous liquid.
  • FIG. 1 is a view in longitudinal section showing the essential parts d 'a first particular embodiment of an apparatus for generating a low regulated flow rate in which the fluid to be injected is a liquid, the propellant fluid being a gas;
  • FIG. 2 is a longitudinal sectional view of a variant of the first particular embodiment of an apparatus according to the invention in which the pressure drop elements and the control valves are integrated into the tank cover;
  • - Figure 3 gives an embodiment of the laminar pressure drop element
  • - Figure 4 is a longitudinal sectional view of a second embodiment of an apparatus according to the invention, in which the fluid to be injected is contained in a deformable reservoir itself contained in the pressurized reservoir; and
  • FIG. 1 illustrates an embodiment of an apparatus for creating a controlled flow of low flow fluid.
  • the liquid 1 for which the flow is to be controlled is contained in a reservoir 3. It is pressurized by means of a gas 2 initially contained in a high pressure reservoir 4, then expanded through a regulator 5 and a laminar pressure drop 7.
  • the pipes 8 and 9 are connected to the reservoir 3 and make it possible to admit or evacuate the gas by opening the all-or-nothing valves 6 and 11.
  • each of these pipes is provided with a pressure drop 7 and 10 operating in laminar mode.
  • the opening or closing of one or other of the valves 6 and 11 is controlled by the automaton 22 to starting from the knowledge of the flow rate of the liquid to be dosed, the pressure and the temperature of the fluid measured by the pressure 20 and temperature sensors 21.
  • the liquid to be dosed is, for its part, extracted from the reservoir 3 through the piping 12 which supplies three laminar pressure drops 14, 15, 16, arranged in parallel with known characteristics.
  • the fluid lines on which these pressure drops are placed are provided with all-or-nothing valves 17, 18, 19. The fluid is then directed to use through the piping 13.
  • a flow order is given to the controller 22 by an operator or a computer.
  • the automaton measures the temperature of the liquid using the temperature probe 21. It calculates the viscosity of the fluid from this temperature measurement. It deduces therefrom by calculation the pressure drop 14, 15 or 16 to be used and the pressure difference to be created between the tank 3 and the piping 13. If the pressure difference measured by means of the sensor 20 between 3 and 13 is less than this set value, the valve 6 is open, the valve 11 being closed, which has the effect of introducing gas into the tank 3 and therefore increasing the pressure. Otherwise, corresponding to a too large pressure difference, the valve 6 is closed and the valve 11 is opened. The gas then escapes from the tank 3 and the pressure drops.
  • the pressure control is therefore done by intermittent closing and opening of all-or-nothing valves on the gas circuit.
  • a variant of the process not shown in the drawings consists in using a traditional pressure regulation system, but the gas consumption is then much greater.
  • FIG. 2 gives an embodiment of a metering device based on the principle described in the previous figure in which the laminar pressure drops are integrated into the cover of the device.
  • the reservoir 3 the fluids 1 and 2 and the pressurized gas reservoir 4, the gas lines 8 and 9 provided with laminar pressure drops 7 and 10 and all-or-nothing valves 6 and 11.
  • the pressure and temperature sensors 20 and 21 are connected to the automaton 22 which, on the basis of the flow rate setpoint and the properties of the fluid to be metered, chooses one of the lines for discharging the liquid flow rate. through one or the other of the laminar pressure drops 14, 15 or 16 by opening one or the other of the solenoid valves 17, 18 or 19.
  • said automaton 22 controls the pressure in the reservoir 3 by opening or closing the all-or-nothing valves 6 and 11 of the gas lines.
  • the pressure drops consist of shallow spirals engraved in pellets in the form of wafers, an example of which is given in FIG. 3. These engravings, brought into contact with a cylindrical counterbore, constitute a passage of small section through which the fluid passes. It therefore constitutes a long and small diameter element capable of constituting a laminar pressure drop.
  • these wafers are inserted between plates 23, which allows for a compact assembly.
  • the pressure drops 14, 15 and 16 are on a first level of the stack.
  • the pressure drops 7 and 10 on the gas are at a second level.
  • the upper and lower elements of FIG. 2 are respectively a section at the level of the pellets 14, 15 and 16 and a top view showing the arrangement of the on / off valves.
  • the tank 3 has a height of 150 mm and a diameter of 100 mm. It is filled with 1 liter of liquid to be dosed.
  • the pressure drop elements 14, 15 and 16 have hydraulic diameters D of 60, 100 and 170 microns and a length of L of 1 meter.
  • the pressure in the tank is regulated by means of pressure drops 7 and 10 and all-or-nothing valves 6 and 11 in a range between 1 and 10 bar.
  • the nominal dynamic viscosity ⁇ of the liquid to be dosed is 10-3 p a .s.
  • the liquid flow rate is given by the following expression:
  • the range of flow rates therefore goes from 3.2 10 -11 m 3 / s (2.8 cm 3 / d) for the couple (1 bar, 60 ⁇ ) to 2 10 -8 m 3 / s (72 cm 3 / h) for the couple (10 bar, 170 ⁇ ).
  • the flow dynamics are therefore around 1000.
  • FIG. 3 gives a representation in longitudinal section and top view of the spiral laminar pressure drop 7, 10, 14, 15, 16 or 35.
  • the parts 37 and 38 are shown diagrammatically by two cylindrical pellets. The fluid penetrates at 39 through the part 37, feeds the spiral 40 of which only a limited number of turns has been shown, then leaves the groove through the orifice 41.
  • FIG. 4 shows a representation of another embodiment of the invention.
  • the fluid 1 to be dosed is contained in a deformable reservoir 28, itself placed in the reservoir 3.
  • the working fluid 2 is sucked by a pump 24, passes into the reservoir 35 provided with a membrane 26 'allowing to isolate the liquid contained in compartment 27 and the gas contained in compartment 26.
  • This small reservoir makes it possible to filter any pressure pulsations from pump 24.
  • the pressure in this reservoir is regulated by means of valve 25, controlled by the automaton 22.
  • the operation of the system is as follows: the reservoir 3 is pressurized to a predetermined level by calculation, so that the flow rate flowing to the nozzle 33 is suitable for starting the dosing operation.
  • the operator or the robot opens the shutter 32 which allows the fluid 2 to flow through the injection nozzle 33 at the desired flow rate.
  • the two fluids 2 and 1 being incompressible, the flow rate of fluid 2 flowing at the nozzle 33 is the same as that of liquid 1 flowing in the laminar pressure drop 36.
  • the working fluid is oil for substantially incompressible hydraulic circuits.
  • the installation comprises a regulated source A of oil, a set B for measuring the oil flow, a set C for storing and delivering the adhesive and an automaton D for controlling the various sets of the installation.
  • the assembly A comprises an oil storage tank 50 connected to a bladder accumulator 52 by a high pressure oil pump 54 which supplies the accumulator with an almost constant flow rate.
  • a regulating valve 56 constituted by a variable pressure drop makes it possible to modify the pressure in the oil circuit.
  • the output 58 of the accumulator 52 is connected to the flow measurement assembly B.
  • the assembly B essentially consists of two laminar pressure drops 60 and 62 mounted in parallel of the type described above. The pressure drop values are different to allow adaptation to different measurement ranges. Each pressure drop is associated with a valve 64 and 66.
  • a differential pressure sensor 68 measures the pressure across the pressure drops to deduce the flow.
  • the valve 70 makes it possible to decompress the pressure drops.
  • the outlet 72 for pressure drops is connected to the inside of a rigid-walled tank 74, capable of withstanding high pressure. Inside the reservoir 74, there is a capacity 76 with a tight deformable wall which is initially filled with glue by the pipe 80 and the valve 82. The glue is delivered by the outlet pipe 84 provided with the valve 86.
  • the accumulator 52 and the reservoir 74 are provided with a temperature sensor 88 and 90 for measuring the temperatures of the oil in these two chambers.
  • the entire installation is controlled by a PLC D.
  • the PLC selects one of the two pressure drops 60 and 62 and controls the pump. 54 and the regulating valve 56 as a function of the measurement of the flow calculated by the automaton from the measurement supplied by the differential pressure sensor 68.
  • Coil depth 2.5 mm These examples are not limiting of the method which applies to any pressure line comprising a working fluid and a metering fluid, on which is placed a laminar pressure drop provided with a differential pressure sensor making it possible to measure the passing flow in said line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Flow Control (AREA)

Abstract

La présente invention est relative à un dispositif permettant de doser un faible débit de fluide (1) par utilisation d'un second fluide moteur (2) dont la pression est régulée, le débit de l'un ou l'autre desdits fluides étant mesuré par détermination des pertes de charge de canaux de grande longueur fonctionnant en régime laminaire (14, 15, 16, 36) placés sur leur parcours. On peut ainsi réaliser des doseurs quasi universel dont la gamme de débits peut atteindre typiquement 1000. On peut également doser des fluides dangereux ou dont les propriété rhéologiques sont complexes en mesurant les débits du fluide moteur séparé du fluide à doser par une paroi ou une surface libre. Les pertes de charge laminaires peuvent être réalisées au moyen de spirales gravées dans des pastilles, mises en contact avec des parois planes.

Description

DISPOSITIF POUR DOSER UN FLUIDE DE MANIERE CONTROLEE
La présente invention concerne un dispositif de dosage de fluides à partir d'un réservoir ou de conduites sous pression. Plus précisément, il s'agit d'injecter de manière contrôlée de faibles quantités de fluide.
Dans de nombreuses situations, on est amené à injecter de faibles quantités de fluides, par exemple pour effectuer des dépôts, pour administrer des médicaments liquides ou gazeux ou pour réaliser des mélanges. Citons parmi les applications classiques le dépôt des colles et mastics dans l'industrie automobile, le dépôt contrôlé d'encre dans les industries de la gravure ou de l'impression, l'injection contrôlée de réactifs dans un réacteur chimique en ligne. II arrive que les produits à injecter soient chimiquement agressifs, aient un degré de pureté tel qu'ils ne supportent aucun contact avec des mécanismes comportant des joints ou présentant des propriétés rhéologiques complexes.
Lorsque, de plus, les débits à délivrer sont très faibles, il n'existe aucune méthode de mesure disponible susceptible d'être utilisée dans un contrôle-commande en temps réel. Ceci rend très difficile le dosage précis de tels fluides.
Les systèmes existants sont souvent manuels. Cétait, jusqu'à une date récente le cas de l'application des colles dans l'industrie automobile. Ils sont parfois accouplés à un robot, mais le réglage de l'installation se fait à partir de mesures régulières, effectuées manuellement par un opérateur, qui ne donnent qu'une indication du volume injecté pendant une passe.
Dans ce type d'applications, il serait nécessaire non seulement de contrôler le débit moyen mais également de l'adapter à une commande extérieure et donc de réaliser un véritable contrôle- commande des débits injectés en temps quasi réel.
Une telle opération nécessite d'une part un moyen de mesure des débits et d'autre part un moyen d'action sur lesdits débits. La présente invention permet d'éviter la plupart des inconvénients des systèmes actuels. Selon l'invention, le fluide à injecter est, en général, contenu dans un réservoir pressurisé et s'écoule à partir dudit réservoir au travers d'une perte de charge. La pressurisation peut être réalisée par le fluide à doser lui-même s'il est forcé dans le réservoir par un compresseur, une pompe ou un réservoir à haute pression ou par un second fluide plus facile à manipuler ou pouvant être stocké sous un niveau de pression important. Dans ce dernier cas, le fluide peut être un liquide ou un gaz.
La présente invention consiste essentiellement à placer en un point situé sur le circuit constitué du fluide ou de l'ensemble des fluides une ou plusieurs pertes de charges laminaires munies d'un capteur de pression différentiel qui permet de mesurer le débit volume en temps réel et de donner les informations nécessaires au réglage d'un actionneur destiné à faire varier la pression dans le réservoir du fluide à doser.
De façon plus précise, selon l'invention, le dispositif de contrôle du débit se caractérise en ce qu'il comprend : un réservoir contenant le fluide à doser et un fluide moteur qui compense la perte de liquide et permet de pressuriser ledit réservoir, un moyen de pressurisation du fluide moteur, un moyen de régulation de la pression du fluide moteur en fonction des besoins en fluide à doser, des moyens de perte de charge laminaire montés sur la ligne dans laquelle circule l'un ou l'autre des fluides pour déterminer le débit de fluide passant dans la ligne, et des moyens de commande des moyens de régulation pour modifier la pression dans le réservoir en fonction de la valeur du débit à doser et des caractéristiques physiques du fluide passant dans les moyens de perte de charge laminaire.
En utilisant plusieurs pertes de charges de caractéristiques différentes placées en parallèle en un point donné du circuit et ouvertes successivement en fonction des besoins, on peut obtenir une gamme de débits très importante. L'appareil est alors un doseur quasi universel pour de très faibles débits.
Selon un premier mode de mise en oeuvre, on mesure directement le débit du fluide à délivrer et on agit sur le débit de fluide moteur pour réguler le débit délivré. Selon un deuxième mode de mise en oeuvre, on mesure et on contrôle le débit de fluide moteur, ce qui permet de contrôler le débit de fluide qui sera finalement délivré. Ce deuxième mode de mise en oeuvre est particulièrement bien adapté au cas où le fluide à délivrer est un liquide très visqueux.
D'autres caractéristiques et avantages de la présente invention seront mieux compris lors de la description détaillée d'exemples de réalisation qui va suivre, illustrée par les dessins annexés parmi lesquels : - la figure 1 est une vue en coupe longitudinale montrant les pièces essentielles d'un premier mode de réalisation particulier d'un appareil pour engendrer un faible débit régulé dans lequel le fluide à injecter est un liquide, le fluide propulseur étant un gaz ;
- la figure 2 est une vue en coupe longitudinale d'une variante du premier mode particulier de réalisation d'un appareil selon l'invention dans lequel les éléments de perte de charge et les vannes de commande sont intégré au couvercle du réservoir ;
- la figure 3 donne un mode de réalisation de l'élément de perte de charge laminaire ; - la figure 4 est une vue en coupe longitudinale d'un deuxième mode de réalisation d'un appareil selon l'invention, dans lequel le fluide à injecter est contenu dans un réservoir déformable lui-même contenu dans le réservoir pressurisé ; et
- la figure 5 illustre en détails une forme préférée de mise en oeuvre du deuxième mode de réalisation de l'invention.
La figure 1 illustre un mode de réalisation d'un appareil pour créer un écoulement contrôlé de fluide de faible débit. Le liquide 1 dont on veut contrôler le débit est contenu dans un réservoir 3. Il est mis en pression au moyen d'un gaz 2 initialement contenu dans un réservoir à haute pression 4, puis détendu au travers d'un détendeur 5 et d'une perte de charge laminaire 7. Les tuyauteries 8 et 9 sont reliées au réservoir 3 et permettent d'admettre ou d'évacuer le gaz par ouverture des vannes tout ou rien 6 et 11. Afin de réduire le débit de gaz lors de ces opérations, chacune de ces tuyauteries est munie d'une perte de charge 7 et 10 fonctionnant en régime laminaire. L'ouverture ou la fermeture de l'une ou l'autre des vannes 6 et 11 est commandée par l'automate 22 à partir de la connaissance du débit de liquide à doser, de la pression et de la température du fluide mesurées par les capteurs de pression 20 et de température 21. Le liquide à doser est, quant à lui, extrait du réservoir 3 au travers de la tuyauterie 12 qui alimente trois pertes de charge laminaire 14, 15, 16, disposées en parallèle de caractéristiques connues. Les lignes de fluide sur lesquelles sont placées ces pertes de charge sont munies de vannes tout ou rien 17, 18, 19. Le fluide est ensuite dirigé vers l'utilisation au travers de la tuyauterie 13.
Le fonctionnement de l'appareil est le suivant : un ordre de débit est donné à l'automate 22 par un opérateur ou un calculateur. L'automate mesure la température du liquide grâce à la sonde de température 21. Il calcule la viscosité du fluide à partir de cette mesure de température. Il en déduit par le calcul la perte de charge 14, 15 ou 16 à utiliser et la différence de pression à créer entre le réservoir 3 et la tuyauterie 13. Si la différence de pression mesurée au moyen du capteur 20 entre3 et 13 est inférieure à cette valeur de consigne, la vanne 6 est ouverte, la vanne 11 étant fermée, ce qui a pour effet d'introduire du gaz dans le réservoir 3 et donc d'augmenter la pression. Dans le cas contraire, correspondant à une différence de pression trop importante, on ferme la vanne 6 et on ouvre la vanne 11. Le gaz s'échappe alors du réservoir 3 et la pression baisse. Le contrôle de pression se fait donc par fermeture et ouverture intermittentes de vannes tout ou rien sur le circuit de gaz. Une variante du procédé non représentée sur les dessins consiste à utiliser un système de régulation de pression traditionnel, mais la consommation de gaz est alors beaucoup plus importante.
La figure 2 donne un mode de réalisation d'un doseur basé sur le principe décrit sur la figure précédente dans lequel les pertes de charge laminaire sont intégrées au couvercle de l'appareil. On retrouve les éléments décrits ci-dessus, le réservoir 3, les fluides 1 et 2 et le réservoir de gaz sous pression 4, les lignes de gaz 8 et 9 munies des pertes de charge laminaire 7 et 10 et des vannes tout ou rien 6 et 11. Les capteurs de pression et de température 20 et 21 sont connectés à l'automate 22 qui, à partir de la consigne de débit et des propriétés du fluide à doser, choisit l'une des lignes d'évacuation du débit de liquide au travers de l'une ou l'autre des pertes de charge laminaire 14, 15 ou 16 par ouverture de l'une ou l'autre des électrovannes 17, 18 ou 19. D'autre part, ledit automate 22 contrôle la pression dans le réservoir 3 en ouvrant ou fermant les vannes tout ou rien 6 et 11 des lignes de gaz.
Dans ce mode de réalisation, les pertes de charge sont constituées de spirales de faible profondeur gravées dans des pastilles en forme de galettes dont un exemple est donné sur la figure 3. Ces gravures, mises en contact avec un lamage cylindrique, constituent un passage de faible section dans lequel passe le fluide. Il constitue donc un élément long et de faible diamètre susceptible de constituer une perte de charge laminaire. Dans l'exemple de la figure 2, ces galettes sont insérées entre des plaques 23, ce qui permet de réaliser un ensemble compact. Les pertes de charge 14, 15 et 16 sont sur un premier niveau de l'empilage. Les pertes de charge 7 et 10 sur le gaz sont à un second niveau. Les éléments supérieur et inférieur de la figure 2 sont respectivement une coupe au niveau des pastilles 14, 15 et 16 et une vue de dessus montrant la disposition des vannes tout ou rien.
A titre d'exemple, nous donnons quelques indications chiffrées concernant la figure 2. Le réservoir 3 a une hauteur de 150 mm et un diamètre de 100 mm. Il est rempli de 1 litre de liquide à doser. Les éléments de perte de charge 14, 15 et 16 ont des diamètres hydrauliques D de 60, 100 et 170 microns et une longueur de L de 1 mètre. La pression dans le réservoir est régulée au moyen des pertes de charge 7 et 10 et des vannes tout ou rien 6 et 11 dans une gamme comprise entre 1 et 10 bar. La viscosité dynamique nominale μ du liquide à doser est de 10-3 pa.s. Le débit de liquide est donné par l'expression suivante :
ΔpD* υ ~ 40 L
La gamme des débits va donc de 3.2 10-11 m3/s (2.8 cm3/j) pour le couple (1 bar, 60μ) à 2 10-8 m3/s (72 cm3/h) pour le couple (10 bar, 170μ). La dynamique en débit est donc d'environ 1000.
On comprendra qu'il suffit de changer les pastilles 14, 15 et 16 pour modifier la gamme des débits ou l'adapter à un fluide de viscosité différente. La figure 3 donne une représentation en coupe longitudinale et vue de dessus de la perte de charge laminaire spirale 7, 10, 14, 15, 16 ou 35. Afin de faciliter la compréhension, les pièces 37 et 38 sont schématisées par deux pastilles cylindriques. Le fluide pénètre en 39 au travers de la pièce 37, alimente la spirale 40 dont on n'a représenté qu'un nombre limite de spires, puis quitte le sillon au travers de l'orifice 41.
La demande de brevet français No. 90 13553 du 31/10/1990 décrit plus en détails la réalisation d'un tel canal capillaire. La demande de brevet PCT/FR 92/01075 décrit un autre mode de réalisation d'un canal à très faible section de passage par association d'un cylindre et d'un ressort hélicoïdal enroulé sur ledit cylindrique. Un tel dispositif d'écoulement à très faible débit pourrait être substitué à celui qui est représenté sur la figure 3. La figure 4 donne une représentation d'un autre mode de réalisation de l'invention. Dans ce cas, le fluide 1 à doser est contenu dans un réservoir déformable 28, lui-même placé dans le réservoir 3. Le fluide moteur 2 est aspiré par une pompe 24, passe dans le réservoir 35 muni d'une membrane 26' permettant d'isoler le liquide contenu dans le compartiment 27 et le gaz contenu dans le compartiment 26. Ce petit réservoir permet de filtrer les éventuelles pulsations de pression de la pompe 24. La pression dans ce réservoir est régulée au moyen de la vanne 25, pilotée par l'automate 22. Le fonctionnement du système est le suivant : le réservoir 3 est pressurisé à un niveau prédéterminé par calcul, de telle sorte que le débit s'écoulant à la buse 33 soit convenable au démarrage de l'opération de dosage. L'opérateur ou le robot ouvrent la banne 32 qui permet au fluide 2 de s'écouler au travers de la buse d'injection 33 au débit souhaité. Les deux fluides 2 et 1 étant incompressibles, le débit de fluide 2 s'écoulant à la buse 33 est le même que celui de liquide 1 s'écoulant dans la perte de charge laminaire 36. Il suffit donc de mesurer, au moyen du capteur de pression différentielle 20, la différence de pression aux bornes de cet élément de perte de charge pour en déduire le débit de fluide 1 qui passe dans le circuit, égal au débit de fluide 2 injecté. Cette mesure doit être complétée par une mesure de viscosité déduite de la mesure de température 21. Connaissant le débit souhaité, le débit réel, la différence de pression et la température, il est possible de commander la vanne 25 qui agit sur la pression dans le réservoir 3 et donc sur le débit à la buse. Ce procédé permet d'effectuer une mesure de débit en utilisant un fluide 2 différent du fluide à doser 1, ledit fluide 2 ayant, de plus, une fonction de transmission de puissance.
En se référant maintenant à la figure 5, on va décrire plus en détails le dispositif de la figure 4 appliqué à la délivrance d'un débit contrôlé de colle, notamment de colles utilisées dans le domaine automobile. Ces colles sont des produits à rhéologie complexe et très visqueux. Leur viscosité dynamique est de l'ordre du millier de Pa.s.
Dans cette installation, le fluide moteur est de l'huile pour circuits hydrauliques sensiblement incompressible.
L'installation comprend une source régulée A d'huile, un ensemble de mesure B du débit d'huile, un ensemble C de stockage et de délivrance de la colle et un automate D de commande des différents ensembles de l'installation.
L'ensemble A comprend une bâche de stockage d'huile 50 raccordée à un accumulateur à vessie 52 par une pompe à huile 54 haute pression qui fournit à l'accumulateur un débit quasi constant. Une vanne de régulation 56 constituée par une perte de charge variable permet de modifier la pression dans le circuit d'huile. La sortie 58 de l'accumulateur 52 est raccordée à l'ensemble B de mesure de débit. L'ensemble B est essentiellement constitué par deux pertes de charge laminaire 60 et 62 montées en parallèle du type décrit précédemment. Les valeurs de perte de charge sont différentes pour permettre une adaptation à des plages de mesures différentes. Chaque perte de charge est associée à une vanne 64 et 66. Un capteur de pression différentielle 68 mesure la pression aux bornes des pertes de charge pour en déduire le débit. La vanne 70 permet de décompresser les pertes de charge. La sortie 72 des pertes de charge est raccordée à l'intérieur d'un réservoir à paroi rigide 74, capable de supporter une pression élevée. A l'intérieur du réservoir 74, on trouve une capacité 76 à paroi déformable étanche qui est remplie initialement de colle par la conduite 80 et la vanne 82. La colle est délivrée par la conduite de sortie 84 munie de la vanne 86. De plus, l'accumulateur 52 et le réservoir 74 sont munis d'un capteur de température 88 et 90 pour mesurer les températures de l'huile dans ces deux enceintes.
Comme le montre la figure 5, l'ensemble de l'installation est pilote par un automate D. En fonction du débit désiré de colle et de la température, l'automate sélectionne une des deux pertes de charge 60 et 62 et contrôle la pompe 54 et la vanne de régulation 56 en fonction de la mesure du débit calculée par l'automate à partir de la mesure fournie par le capteur de pression différentielle 68.
Le tableau ci-dessous donne les paramètres d'un mode de réalisation préféré de l'installation.
Paramètre Valeur Unité
Débit de colle 0,3 à 3 ml/s
Volume du réservoir déformable 76 1 1
Pression dans le doseur l à 50 bar
Différence de pression aux bornes du circuit 60 ou 62 0,1 à 1 bar
Pression dans le circuit d'huile l à 50 bar
Débit de la pompe haute pression 1 1/mn
Perte de charge 60
Débit 0,3 ml/s
Viscosité de l'huile à 70*C 1,3.10-2 Pa.s
Perte de charge 104 Pa
Longueur de la spire 0,2 m
Profondeur de la spire 1,7 mm
Perte de charge 62
Débit 3 ml/s
Viscosité de l'huile à 30*C 6,6.10-2 Pa.s
Perte de charge 105 Pa
Longueur de la spire 0,2 m
Profondeur de la spire 2,5 mm Ces exemples ne sont pas limitatifs du procédé qui s'applique à toute ligne en pression comportant un fluide moteur et un fluide à doser, sur laquelle est placée une perte de charge laminaire munie d'un capteur de pression différentielle permettant de mesurer le débit passant dans ladite ligne.

Claims

REVENDICATIONS
1. Dispositif pour doser de très faibles débits de fluide, caractérisé en ce qu'il comprend : un réservoir (3) contenant le fluide (1) à doser et un fluide moteur (2) qui compense la perte de liquide (1) et permet de pressuriser ledit réservoir, un moyen (24, 4) de pressurisation du fluide moteur (2), un moyen (6, 7, 11, 10, 25) de régulation de la pression du fluide moteur (2) en fonction des besoins en fluide à doser (1), des moyens de perte de charge laminaire (14, 15, 16, 36) montés sur la ligne dans laquelle circule l'un ou l'autre des fluides pour déterminer le débit de fluide passant dans la ligne, et des moyens (6, 11, 25) de commande des moyens de régulation pour modifier la pression dans le réservoir (3) en fonction de la valeur du débit à doser et des caractéristiques physiques du fluide passant dans les moyens de perte de charge laminaire.
2. Dispositif selon la revendication 1, caractérisé en ce que le fluide à doser (1) est un liquide, en ce que le fluide moteur (2) est un gaz et en ce que les moyens de perte de charge laminaire sont montés sur une conduite de sortie du liquide à doser raccordée audit réservoir et en ce qu'il comprend en outre des moyens de mesure de la différence de pression du liquide de part et d'autre des moyens de perte de charge laminaire, lesdits moyens de commande répondant à ladite mesure de pression différentielle.
3.Dispositif selon la revendication 2, caractérisé en ce que lesdits moyens de perte de charge laminaire comprennent une pluralité de pertes de charge laminaire montées en parallèle sur ladite conduite, chaque perte de charge ayant une valeur différente et des moyens pour raccorder sélectivement une desdites pertes de charge à ladite conduite.
4. Dispositif selon les revendications 1 et 2, caractérisé en ce que ledit gaz moteur est de l'air et en ce que l'alimentation en air (8) et la sortie d'air (7) sont assurées par des circuits comprenant une perte de charge laminaire et une vanne tout ou rien, la fréquence d'ouverture de l'une ou l'autre de ces vannes tout ou rien étant ajustée pour atteindre le niveau de pression souhaité dans le réservoir (3).
5. Dispositif selon la revendication 1, caractérisé en ce que le fluide (1) est contenu dans un réservoir déformable (28) inclus dans le réservoir pressurisé (3), et que le fluide moteur (2) est quasi incompressible, lesdits moyens de perte de charge laminaire étant montés sur la ligne d'alimentation du réservoir (3) en ledit liquide moteur.
6. Dispositif selon la revendication 5, caractérisé en ce que 1 a mesure de débit du fluide moteur se fait au moyen de ladite perte de charge laminaire (36) munie d'un capteur de pression différentielle (20).
7. Dispositif selon la revendication 6, caractérisé en ce qu'il comprend en outre des moyens (21) pour mesurer la température du fluide moteur.
8. Dispositif selon l'une des revendications 1 à 7, caractérisé en ce que les pertes de charge laminaire sont constituées d'un canal (37) résultant de la coopération entre un sillon spiral (38) creusé dans une pastille (39) et une seconde pastille plane (40).
9. Dispositif selon la revendication 7, caractérisé en ce que le système est muni d'un calculateur (22) auquel est donné la consigne de débit et qui, à partir de la mesure de différence de pression (20) et de la température (21) détermine le débit réel et calcule l'action de régulation à faire effectuer par les organes spécialisés (6, 11, 25) pour modifier la pression dans le réservoir (3).
10. Dispositif selon la revendication 5, caractérisé en ce que ledit fluide moteur est de l'huile et en ce que le fluide à doser est de la colle.
PCT/FR1994/001408 1993-12-03 1994-12-02 Dispositif pour doser un fluide de maniere controlee WO1995015520A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU11933/95A AU1193395A (en) 1993-12-03 1994-12-02 Device for the controlled dosing of a fluid
EP95902826A EP0731939A1 (fr) 1993-12-03 1994-12-02 Dispositif pour doser un fluide de maniere controlee

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9313758A FR2713362B1 (fr) 1993-12-03 1993-12-03 Dispositif pour doser un fluide de manière contrôlée.
FR93/13758 1993-12-03

Publications (1)

Publication Number Publication Date
WO1995015520A1 true WO1995015520A1 (fr) 1995-06-08

Family

ID=9452963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1994/001408 WO1995015520A1 (fr) 1993-12-03 1994-12-02 Dispositif pour doser un fluide de maniere controlee

Country Status (4)

Country Link
EP (1) EP0731939A1 (fr)
AU (1) AU1193395A (fr)
FR (1) FR2713362B1 (fr)
WO (1) WO1995015520A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU666827B2 (en) * 1993-07-09 1996-02-22 Microscan, Inc. Precision fluid dispensing apparatus and method
EP0794248A1 (fr) * 1996-03-08 1997-09-10 Gist-Brocades B.V. Dosage de crème de levure
EP1790958A1 (fr) 2005-11-24 2007-05-30 Bayer CropScience AG Procédé et dispositif de dosage volumétrique
TWI767759B (zh) * 2021-06-11 2022-06-11 新煒科技有限公司 膠水回溫裝置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3051376C (fr) 2019-08-06 2020-04-28 Surface Solutions Inc. Appareil et methodes de surveillance et de conversion du methane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4170245A (en) * 1978-03-03 1979-10-09 Fmc Corporation Digital control valve
FR2592306A1 (fr) * 1985-12-30 1987-07-03 Couegnas Jacques Appareil de perfusion a debit reglable ne provoquant pas de modification du liquide perfuse.
WO1988004225A1 (fr) * 1986-12-01 1988-06-16 Hans Willi Meinz Dispositif pour doser dans une chambre de melange au moins deux constituants reactionnels coulants
DE3736701A1 (de) * 1987-10-29 1989-05-11 Inter System Vertrieb Ges Fuer Verfahren und vorrichtung zum dosieren eines gases
EP0351995A2 (fr) * 1988-07-22 1990-01-24 Imperial Chemical Industries Plc Analyse à injection dans un écoulement
US5188258A (en) * 1990-04-07 1993-02-23 Iwashita Engineering, Ltd. Apparatus reponsive to pressure of a medium which effects fluid discharge for controlling the pressure of the medium and the time the medium acts on the fluid
US5199607A (en) * 1990-12-03 1993-04-06 Musashi Engineering, Inc. Liquid dispensing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4170245A (en) * 1978-03-03 1979-10-09 Fmc Corporation Digital control valve
FR2592306A1 (fr) * 1985-12-30 1987-07-03 Couegnas Jacques Appareil de perfusion a debit reglable ne provoquant pas de modification du liquide perfuse.
WO1988004225A1 (fr) * 1986-12-01 1988-06-16 Hans Willi Meinz Dispositif pour doser dans une chambre de melange au moins deux constituants reactionnels coulants
DE3736701A1 (de) * 1987-10-29 1989-05-11 Inter System Vertrieb Ges Fuer Verfahren und vorrichtung zum dosieren eines gases
EP0351995A2 (fr) * 1988-07-22 1990-01-24 Imperial Chemical Industries Plc Analyse à injection dans un écoulement
US5188258A (en) * 1990-04-07 1993-02-23 Iwashita Engineering, Ltd. Apparatus reponsive to pressure of a medium which effects fluid discharge for controlling the pressure of the medium and the time the medium acts on the fluid
US5199607A (en) * 1990-12-03 1993-04-06 Musashi Engineering, Inc. Liquid dispensing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU666827B2 (en) * 1993-07-09 1996-02-22 Microscan, Inc. Precision fluid dispensing apparatus and method
EP0794248A1 (fr) * 1996-03-08 1997-09-10 Gist-Brocades B.V. Dosage de crème de levure
EP1790958A1 (fr) 2005-11-24 2007-05-30 Bayer CropScience AG Procédé et dispositif de dosage volumétrique
TWI767759B (zh) * 2021-06-11 2022-06-11 新煒科技有限公司 膠水回溫裝置

Also Published As

Publication number Publication date
AU1193395A (en) 1995-06-19
FR2713362A1 (fr) 1995-06-09
EP0731939A1 (fr) 1996-09-18
FR2713362B1 (fr) 1996-03-01

Similar Documents

Publication Publication Date Title
FR2519162A1 (fr) Procede et dispositif d'etalonnage pour un appareil de pulverisation de fluide avec regulation de debit
CN1345260A (zh) 从压力容器中提供流体的方法和装置
EP0235017B1 (fr) Procédé et installation pour fournir de l'anhydride carbonique sous haute pression
WO1995015520A1 (fr) Dispositif pour doser un fluide de maniere controlee
EP0660091B1 (fr) Procédé et dispositif de fourniture de gaz sous pression
FR3049215A1 (fr) Debimetre et viscosimetre et leur utilisation dans une imprimante
CA2086297C (fr) Procede d'optimisation d'un dispositif de regulation et d'amortissement d'un ecoulement polyphasique et dispositif obtenu par le procede
EP0779876B1 (fr) Systeme de recuperation de vapeurs d'hydrocarbures a stabilite amelioree
FR2791434A1 (fr) Procede et dispositif d'analyse thermodynamique d'un melange de fluides
WO2018192929A1 (fr) Dispositif comprenant une pompe à pistons axiaux pour l'application d'un produit fluide sur un substrat
FR3004365A1 (fr) Dispositif et procede de depose controlee de cordons de fluides visqueux
US20030113218A1 (en) Metering pump
US20220323982A1 (en) Dosing device and method of dosing liquid media
KR102394013B1 (ko) 기판의 내부면을 코팅하기 위한 방법, 디바이스 및 장치
WO2007031666A1 (fr) Methode pour la fourniture d'un melange de gaz
FR3027999A1 (fr) Station d'approvisionnement en hydrogene gazeux et procede associe permettant de determiner avec une precision donnee le debit massique d'hydrogene gazeux
EP3443947B1 (fr) Dispositif pour préparer une dose de quantité de matière
FR2540090A1 (fr) Distributeur a tiroir, notamment pour une machine de remplissage
EP0574279B1 (fr) Procédé de mesure et de contrÔle d'un débit instantané d'un additif liquide délivré par une pompe
JPH08131910A (ja) 吐出流量管理機
WO2022073716A1 (fr) Procédé d'alimentation en fluide cryogénique d'un poste utilisateur, notamment d'une machine d'usinage
FR2490311A1 (fr) Detendeur
RU2366638C2 (ru) Способ дозированной подачи жидкости и устройство для его реализации
EP4292717A1 (fr) Installation d'application de produit de revêtement et procédé de commande d'une telle installation
WO2015036707A1 (fr) Procédé de calcul de la pression statique lors du transfert d'un gaz entre une source de pression ou de dépression et au moins un réservoir

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD SZ AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995902826

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995902826

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1995902826

Country of ref document: EP