WO1995014961A1 - Verfahren und anordnung zum steuern einer vielzhal von spritzwerkzeugen für die oberflächenbeschichtung von fahrzeugen oder deren teile - Google Patents

Verfahren und anordnung zum steuern einer vielzhal von spritzwerkzeugen für die oberflächenbeschichtung von fahrzeugen oder deren teile Download PDF

Info

Publication number
WO1995014961A1
WO1995014961A1 PCT/EP1994/003844 EP9403844W WO9514961A1 WO 1995014961 A1 WO1995014961 A1 WO 1995014961A1 EP 9403844 W EP9403844 W EP 9403844W WO 9514961 A1 WO9514961 A1 WO 9514961A1
Authority
WO
WIPO (PCT)
Prior art keywords
path points
path
interpolation
setpoints
controller
Prior art date
Application number
PCT/EP1994/003844
Other languages
English (en)
French (fr)
Inventor
Hans Hissen
Hans Schumacher
Original Assignee
Licentia Patent-Verwaltungs-Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Licentia Patent-Verwaltungs-Gmbh filed Critical Licentia Patent-Verwaltungs-Gmbh
Priority to ES95901403T priority Critical patent/ES2138179T3/es
Priority to DE59408595T priority patent/DE59408595D1/de
Priority to EP95901403A priority patent/EP0730759B1/de
Priority to US08/648,161 priority patent/US5876803A/en
Publication of WO1995014961A1 publication Critical patent/WO1995014961A1/de

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • G05B19/4103Digital interpolation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33214Bus between different axis controllers and cpu
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33337For each axis a processor, microprocessor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34157Synchronize interpolation of different axis boards, simultaneous start
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34167Coarse fine, macro microinterpolation, preprocessor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34208Motion controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42074Position feedback and speed feedback, speed measured with tacho
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45013Spraying, coating, painting

Definitions

  • the invention relates to a method and an arrangement for controlling a multiplicity of spraying tools for the surface coating of vehicles or their parts.
  • Pneumatic or electrostatic painting processes can be used for surface coating.
  • the paint material is atomized in spray guns.
  • electrostatic spraying processes an electrostatic field with a high direct voltage is generated between the spraying tool and the object to be painted.
  • top surfaces and the side surfaces differ in geometry.
  • the top and side surfaces different inclinations to the horizontal or vertical.
  • the spraying tools must therefore be moved at different speeds and guided along different paths.
  • Other parameters, e.g. B. the paint consumption per unit of time, can vary from injection mold to injection mold.
  • the spraying tools have to be positioned at optimal distances and angular positions in relation to the surface part to be coated in order to achieve a uniform application of paint. It is therefore necessary to position or move at least some of the spraying tools independently of one another in terms of their length and angle in space.
  • the injection molds are e.g. B. aligned perpendicular to the surface to be coated at constant intervals.
  • the controls for the injection molds and their drives contain data for coating patterns that are assigned to differently shaped surfaces. These data relate to the settings of the injection molds and the paths to be traversed by them during the relative movements between the injection molds and the surfaces to be coated.
  • the programming of the controls is done e.g. B. on site or in a separate painting station using the "teach-in” process. "Off-line” programming is also possible, at least for the acquisition of coarse railway data, which then B. can be corrected in the "Teach-In" procedure.
  • the invention is based on the object of developing a method and an arrangement for controlling a multiplicity of spraying tools for the surface coating of vehicles or their parts, the effort for the control despite the simultaneous operation of several spraying tools and precise positioning of the spraying tools during the coating is low.
  • the object is achieved for the method in that with a programmable logic control central for the large number of Injection molds the single-digit sizes that determine the paint flow of each spraying tool are output to actuators for the spraying tools and that path points to be approached by the spraying tools, which are stored with coarse division or obtained by coarse interpolation from stored path points, as setpoints for each of the movement axes position controllers provided by the injection molds are transmitted, of which path points are determined by fine interpolation between the transmitted path points and are processed as setpoints in the position controller with actual position values.
  • the setpoint generation for the position controller or slave controller is generated digitally centrally in a rough form, for which a programmable logic controller is sufficient, which in particular contains a microprocessor.
  • the generation of coarse target values reduces the computing effort at a central point.
  • the position controllers carry out the fine interpolation themselves.
  • the position or foam controllers are equipped with their own microprocessors.
  • the fine interpolation can be carried out in a desired dense sequence of the path points.
  • the roughly interpolated path and speed data relating to these path points are preferably transmitted to the individual position controllers in which the roughly interpolated path data and speed data are temporarily stored.
  • the central programmable logic controller and the processors in the slave controllers can work without time interruptions, so that the control components are optimally used.
  • the movement of injection molds with web speeds of 2 to 4 m / min according to the above-described method is particularly favorable. These are expediently electrostatically operating injection molds. At these speeds, the path data stored or roughly interpolated in the form of a list are preferably output to a bus controller at intervals of 100 to 200 msec. A transmission of new path points can expediently take place at the respective position of the regiment at intervals of approximately 10 msec. It has been shown that when working in the areas described above with minimal control effort, a high quality electrostatic coating with low material consumption will be achieved. It is particularly advantageous if existing motion programs for the webs to be traversed are used for objects to be coated which essentially differ only in their contours.
  • the roughly specified path points to be approached by the respective injection mold are stored in at least one direction in which the objects have the same shape as a function of the object length, while the coordinates in the other direction are adapted to the different dimensions of the objects. It is not necessary to set up a separate movement program for each object.
  • symmetry properties of the objects can be exploited to the extent that, for. B. for the right and left side surfaces adapted to the symmetrical path data.
  • the computing effort in the central programmable logic controller can be significantly reduced.
  • a programmable logic controller with lower operating speed can therefore be used.
  • the central programmable logic controller can also take on other tasks.
  • An arrangement for carrying out the method measures described above is designed according to the invention in such a way that a central programmable logic controller in which the path points for the path to be covered by different injection molds are stored digitally at predetermined intervals and / or are determined by rough interpolation from stored path points a serial bus is connected to position registers, each of which is assigned to an axis of movement of at least one injection mold or a group of injection molds and contains at least one microprocessor or a microcomputer, which uses fine interpolation to determine path points from the path points transmitted via the bus, which are used as setpoints for the position control be placed.
  • the position controller carries out a position and speed control.
  • an actual value transmitter is provided in the usual way on the drive of the injection mold for the respective movement axis.
  • the actual value transmitter can be a digital, e.g.
  • an incremental scale can be provided which already supplies the actual values to the computer or processor in a form suitable for digital processing.
  • Fig. 1 shows schematically a painting station for motor vehicle bodies in front view
  • Fig. 2 is a block diagram of a controller for the painting station acc. Fig. 1;
  • a painting station for the coating of vehicle bodies 1, which are transported on a carrier 2 through the painting station, contains two electrostatically working spraying tools 3, 4 and 5, 6 for each side of the body 1 and two electrostatically working spraying tools 7, 8 for the Hood, roof and rear of the vehicle body 1.
  • the injection molds 3, 4, 5, 6 are each attached to supports 9, 10, 11, 12, which can approach three-dimensional points in space.
  • the two injection molds 7, 8 are fastened on a common carrier 13, which can also be moved three-dimensionally in space.
  • three drives are provided, which are not shown.
  • Each drive is designed for movement in an axis of a Cartesian coordinate system.
  • the possibility of displacement of the supports 9 to 13 in two directions of the coordinate system is shown in FIG. 1 by arrows 14. In many cases, however, there is also a possibility of movement in the third direction of the coordinate system.
  • the injection molds 9 to 13 are often designed to be pivotable about one or more axes.
  • a control for the injection molds 9 to 13 is shown in the block diagram.
  • the controller contains a programmable logic controller 15, that is to say a controller which has a freely programmable digital computer which can be designed as a microprocessor or microcomputer.
  • the controller 15 is connected to a bus 16 parent control unit in connection.
  • the painting station shown in Fig. 1 is namely only part of a painting line, the other processing stations, for. B. for cleaning and coating other surfaces of the interior of the body contains.
  • the higher-level control unit coordinates the operation of the various stations on the painting line.
  • the programmable logic controller 15 is connected to position controllers 19, 20, 21 via a serial bus 18.
  • the transmission on the bus is carried out by a bus expert 15a. 2 shows only three such position controllers, which are assigned to the drives, for example the injection molding tool 3.
  • the position controller 19 usually contains a servo motor 22 as an actuator, the carrier 9 z. B. drives in the direction of the X axis of a Cartesian coordinate system.
  • a servo motor 23 is provided which drives the carrier 9 in the direction of the Y axis of the Cartesian coordinate system.
  • a servo motor 24 is present which drives the carrier 9 in the direction of the Z axis of the Cartesian coordinate system.
  • the carriers 10, 11, 12 and 13 are connected to servomotors for movement in three axial directions.
  • the servomotors for driving the carriers 10, 11, 12, 13 are arranged in control loops with position controllers in the manner described above in connection with the carrier 9.
  • the position controller 19 to 21 contain digital computers, for. B. each a microprocessor or microprocessor with an interface to the serial bus 18.
  • speed controllers with speed and current control for the electric motors 22 to 24 are provided in the position controllers.
  • Actual position sensors 25, 26, 27 are connected to the motors 22, 23, 24.
  • the programmable logic controller 15, hereinafter also called the PLC 15, is connected to a speed sensor 28 which measures the transport speed of the body 2.
  • the encoder for indicating the start is otherwise arranged in such a position that the injection molds can be moved from their rest positions into the working positions before the body 2 reaches the area of the injection molds 9 to 8.
  • the paths to be covered by the injection molds 3 to 8 for coating the body 2 are stored in the PLC 15 in the form of path points in the respective axes of the coordinate system.
  • the path points are preferably stored in lists in the PLC 15 memory.
  • 3 shows several path points 29, 30, 32, 33, 34, 35 of a path to be covered by the injection mold 3 in the X-Y direction.
  • the web points 29 to 35 each define the start and end of prominent web sections and can be at different distances from one another not only in the X direction but also in the Y direction.
  • the X direction shown in Fig. 3 corresponds to z. B. the conveying direction of the body 2.
  • the PLC 15 determines, by rough interpolation in the X direction, equidistant path points, the coordinates of which are output as setpoints to the slave controller 22 or 23.
  • the path points obtained by coarse interpolation and the path points 29 to 31 are transmitted to the position controllers 19, 20 in accordance with the bus protocol of the serial bus 18.
  • the PLC 15 determines predetermined path points for the position controller of the injection molds 4 to 8 by coarse interpolation and transmits them to the slave controllers in a time-multiplexed manner in accordance with the bus protocol.
  • the transfer is asynchronous.
  • the position controllers adopt the setpoints addressed to them and correspond to a rough interpolation, save them and form further setpoints between successive setpoints of a path by fine interpolation using known interpolation methods. In this way relieve the PLC 15 of the computing effort and the bus from a high data throughput, as would be necessary for a high-quality coating at high transport and injection mold speeds.
  • FIG. 4 shows for the position controller 19 the roughly interpolated nominal values between a path section given by a path point S1 and a path point Sn.
  • the path sections S1, Sn apply to the X direction. 4 shows the time generation of the setpoints S2, S3, S4, S5, S6, S7 and S8.
  • a setpoint S1... Sn is given to the position controller, which carries out the fine interpolation on the basis of the actual value measured with the position encoder 25 and tracks the carrier 9 to reduce the control deviation.
  • the position controller 19 contains a subordinate speed control loop, the speed of which is determined from the time interval between successively transmitted setpoints, via bus 18 the setpoints are transmitted successively in time.
  • the setpoints obtained by rough interpolation can change within the grid, but do not have to.
  • the position controller 19 calculates a difference from two successive target values, from which it is determined by dividing the speed or speed of the drive motor 22 by the time interval between the target values.
  • the fine interpolation is carried out according to a known interpolation method.
  • RS 485 interfaces are used for the bus 18, and transmission rates of up to approximately 2 MBd can be provided.
  • the PLC 15 contains in particular only one microprocessor for control and computing tasks, e.g. B. an Intel 80486 processor.
  • the carriers 9 to 13 with the associated drives are each preferably designed for speeds of 2 to 4 m / min.
  • the roughly interpolated setpoints relate to web sections of approximately 1 to 2 cm.
  • a commercially available automation device with the above-mentioned properties can be used as the PLC 15, a storage capacity of approximately 4 MB of the memory of the automation device being sufficient.
  • electrostatically operating spraying tools are moved in the body coating in strokes of 2-3 m.
  • the position controllers 22 to 24 contain a drive computer for fine interpolation as well as position and speed control.
  • the speed control loop is subordinate to the position control loop.
  • Direct current or alternating current motors can be used as drive motors 22, 23, 24.
  • the drive computer can take over monitoring and diagnostic tasks and send corresponding avoidances to the PLC 15.
  • One of the main tasks of the SPS 15 is the specification of setting values that determine the paint flow of the spraying tools. These setting values change little compared to the target values.
  • the painting is influenced by a number of parameters such as the geometry of the spraying tools, the spraying tool path and the body, the paint flow rate, the paint flow rate per unit of time, the atomizing and horn air, the electric field strength, the viscosity and the climatic conditions of the painting station .
  • the setting values for the injection mold are determined in advance for the respective object and saved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Spray Control Apparatus (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

Gegenstand der Erfindung ist ein Verfahren zum Steuern einer Vielzahl von Spritzwerkzeugen für die Oberflächenbeschichtung von Fahrzeugen oder deren Teile. Mit einer speicherprogrammierbaren Steuerung werden zentral für die Vielzahl von Spritzwerkzeugen die Einstellgrößen, die den Lackdurchfluß jedes Spritzwerkzeugs bestimmen, an Stellglieder für die Spritzwerkzeuge ausgegeben. Von den Spritzwerkzeugen anzufahrende Bahnpunkte, die mit grober Teilung gespeichert sind oder durch Grobinterpolation aus gespeicherten Bahnpunkten gewonnen werden, werden als Sollwerte an jeweils für die Spritzwerkzeuge vorgesehene Lageregler übertragen, von denen weitere Bahnpunkte durch Feininterpolation zwischen den übertragenen Bahnpunkten bestimmt und im Lageregler mit Lageistwerten verarbeitet werden.

Description

Licentia Patent-Verwaltungs-GmbH
Verfahren und Anordnung zum Steuern einer Vielzahl von Spritzwerkzeugen für die Oberflächenbeschichtung von Fahrzeugen oder deren Teile
Beschreibung
Die Erfindung bezieht sich auf ein Verfahren und eine Anordnung zum Steuern einer Vielzahl von Spritzwerkzeugen für die Oberflächenbeschich- tung von Fahrzeugen oder deren Teile.
Bei Autokarosserien weisen viele Teile, z. B. die Auβenseiten des Dachs, der Türen, der Haube und des Hecks, gleichförmige Teilgeometrien auf. Diese Teile werden mit Lackierautomaten, insbesondere durch elektrostati- sches Sprühen, beschichtet. Die Lackierautomaten besitzen eine Vielzahl von Spritzwerkzeugen, an denen die Autokarosserien vorbeibewegt werden. Um die Spritzwerkzeuge in für die Beschichtung geeigneten Abständen und Winkeln anzuordnen, werden vielfach Antriebs- und Steuereinrichtungen mit mehreren Achsen verwendet. Die Spritzwerkzeuge werden längs vor- gegebenen Bahnen bewegt, die von der Form und der Geschwindigkeit der zu beschichtenden Teile abhängen.
Zum Oberflächenbeschichten können pneumatische oder elektrostatische Lackierverfahren eingesetzt werden. Bei den pneumatischen Spritz verfahren erfolgt die Zerstäubung des Lackmaterials in Spritzpistolen. Bei elektro¬ statischen Spritzverfahren wird zwischen dem Spritzwerkzeug und dem zu lackierenden Gegenstand ein elektrostatisches Feld mit hoher Gleichspan¬ nung erzeugt.
Bei der Bewegung der Karosserie in der Lackierstation sind im allgemeinen Spritzwerkzeuge für die oberen Flächen und die seitlichen Flächen der Karosserien gleichzeitig in Betrieb. Die oberen Flächen und die seitlichen Flächen unterscheiden sich in der Geometrie. Darüber hinaus haben die oberen und seitlichen Flächen verschiedene Neigungen gegenüber der Horizontalen bzw. Vertikalen. Um die oberen und seitlichen Flächen richtig zu beschichten, müssen die Spritzwerkzeuge daher mit verschiedenen Geschwindigkeiten bewegt und längs unterschiedlichen Bahnen geführt werden. Auch andere Parameter, z. B. der Lackverbrauch pro Zeiteinheit, können von Spritzwerkzeug zu Spritzwerkzeug unterschiedlich sein.
Aus wirtschaftlichen Gründen werden Lackierautomaten mit einer Vielzahl von Spritzwerkzeugen benutzt, die alle oder größtenteils zugleich in Betrieb sind. Die Spritzwerkzeuge müssen in möglichst optimalen Abständen und Winkelpositionen gegenüber dem jeweils zu beschichtenden Oberflä¬ chenteil positioniert werden, um einen gleichmäßigen Lackauftrag zu erreichen. Daher ist es notwendig, wenigstens einen Teil der Spritzwerk¬ zeuge unabhängig voneinander im Raum läge- und winkelmäßig zu positio- nieren bzw. zu bewegen. Die Spritzwerkzeuge werden z. B. senkrecht auf die jeweils zu beschichtende Oberfläche in gleichbleibenden Abständen ausgerichtet.
Die Steuerungen für die Spritzwerkzeuge bzw. deren Antriebe enthalten Daten für Beschichtungsmuster, die verschieden geformten Oberflächen zugeordnet sind. Diese Daten beziehen sich auf die Einstellungen der Spritzwerkzeuge und der von diesen zu durchlaufenden Bahnen bei den Relativbewegungen zwischen den Spritzwerkzeugen und den zu beschichten¬ den Oberflächen. Die Programmierung der Steuerungen erfolgt z. B. vor Ort oder in einer separaten Lackierstation mit Hilfe des "Teach-In "-Verfahrens. Auch eine "Off-line"-Programmierung ist zumindest für die Gewinnung grober Bahndaten möglich, die dann z. B. im "Teach-In "-Verfahren korrigiert werden können.
Der Erfindung liegt nun die Aufgabe zugrunde, ein Verfahren und eine Anordnung zum Steuern einer Vielzahl von Spritzwerkzeugen für die Oberflächenbeschichtung von Fahrzeugen oder deren Teile zu entwickeln, wobei der Aufwand für die Steuerung trotz des gleichzeitigen Betriebs mehrerer Spritzwerkzeuge und genauer Positionierung der Spritzwerkzeuge während des Beschichtens gering ist.
Die Aufgabe wird für das Verfahren erfindungsgemäß dadurch gelöst, daß mit einer speicherprogrammierbaren Steuerung zentral für die Vielzahl von Spritzwerkzeugen die Einsteligrößen, die den Lackdurchfluß jedes Spritz¬ werkzeugs bestimmen, an Stellglieder für die Spritzwerkzeuge ausgegeben werden und daß von den Spritzwerkzeugen anzufahrende Bahnpunkte, die mit grober Teilung gespeichert sind oder durch Grobinterpolation aus gespeicherten Bahnpunkten gewonnen werden, als Sollwerte an jeweils für die Bewegungsachsen der Spritzwerkzeuge vorgesehene Lageregler übertra¬ gen werden, von denen Bahnpunkte durch Feininterpolation zwischen den übertragenen Bahnpunkten bestimmt und als Sollwerte im Lageregler mit Lageistwerten verarbeitet werden. Die Sollwerterzeugung für die Lageregier bzw. Folgeregler werden in grober Form digital zentral erzeugt, wofür eine speicherprogrammierbare Steuerung ausreicht, die insbesondere einen Mikroprozessor enthält. Durch die Erzeugung grober Sollwerte wird an zentraler Stelle der Rechenaufwand reduziert. Die Feininterpolation wird von den Lagereglern selbst durchgeführt. Hierfür sind die Lage- oder Foigeregler insbesondere mit eigenen Mikroprozessoren ausgestattet. Die Feininterpolation kann in einer gewünschten dichten Reihenfolge der Bahnpunkte erfolgen.
Vorzugsweise werden die grob interpolierten Bahn- und Geschwindigkeits- daten, die auf diese Bahnpunkte bezogen sind, an die einzelnen Lageregler übertragen, in denen die grob interpolierten Bahndaten und Geschwindig¬ keitsdaten zwischengespeichert werden. Die zentrale speicherprogrammier¬ bare Steuerung und die Prozessoren in den Folgereglern können hierbei ohne zeitliche Unterbrechungen arbeiten, so daß eine optimale Ausnutzung der Steurungskomponenten stattfindet.
Besonders günstig ist die Bewegung von Spritzwerkzeugen mit Bahnge¬ schwindigkeiten von 2 bis 4 m/min nach dem oben beschriebenen Verfah¬ ren. Es handelt sich dabei zweckmäßigerweise um elektrostatisch arbei- tende Spritzwerkzeuge. Bei diesen Geschwindigkeiten werden die in Form einer Liste abgespeicherten bzw. grob interpolierten Bahndaten vorzugs¬ weise in zeitlichen Abständen von 100 bis 200 msec an einen Buscontroller ausgegeben. Eine Übertragung neuer Bahnpunkte kann an den jeweiligen Lageregier zweckmäßigerweise in zeitlichen Abständen von ca. 10 msec erfolgen. Es hat sich gezeigt, daß beim Arbeiten in den vorstehend beschriebenen Bereichen mit minimalem steuerungstechnischem Aufwand eine qualitativ hochwertige elektrosta¬ tische Beschichtung mit geringem Materialverbrauch erreichen wird. Besonders vorteilhaft ist es, wenn für zu beschichtende Objekte, die sich im wesentlichen nur in der Kontur unterscheiden, vorhandene Bewegungs¬ programme für die zu durchlaufenden Bahnen ausgenutzt werden. Die vom jeweiligen Spritzwerkzeug anzufahrenden, grob angegebenen Bahnpunkte sind dabei in wenigstens einer Richtung, in denen die Objekte gleiche Form habe, in Abhängigkeit von der Objektlänge abgespeichert, während die Koordinaten in der anderen Richtung den unterschiedlichen Abmessun¬ gen der Objekte angepaßt werden. Es ist dabei nicht notwendig, für jedes Objekt ein eigenes Bewegungsprogramm aufzustellen. Außerdem lassen sich Symmetrieeigenschaften der Objekte insofern ausnutzen, als z. B. für die rechten und linken Seitenflächen an die symmetrische Form angepaßte Bahndaten verwendet werden. Hierdurch läßt sich der Rechenaufwand in der zentralen speicherprogrammierbaren Steuerung wesentlich reduzieren. Es kann daher eine speicherprogrammierbare Steuerung mit geringerer Arbeitsgeschwindigkeit verwendet werden. Alternativ hierzu kann die zentrale speicherprogrammierbare Steuerung auch noch andere Aufgaben übernehmen.
Eine Anordnung zur Durchführung der oben beschriebenen Verfahrens- maßnahmen ist erfindungsgemäß derart ausgebildet, daß eine zentrale speicherprogrammierbare Steuerung, in der die Bahnpunkte für von verschiedenen Spritzwerkzeugen zurückzulegende Bahn in vorgegebeen Abständen digital gespeichert sind und/oder durch grobe Interpolation aus gespeicherten Bahnpunkten bestimmt werden, über einen seriellen Bus mit Lageregiern verbunden sind, die jeweils einer Bewegungsachse mindestens eines Spritzwerkzeugs oder einer Gruppe von Spritzwerkzeugen zugeordnet sind und wenigstens einen Mikroprozessor oder einen Mikrorechner enthalten, der aus den über den Bus übertragenen Bahnpunkten durch Feininterpolation Bahnpunkte bestimmt, die als Sollwerte der Lageregelung zugrunde gelegt werden. Der Lageregler führt eine Lage- und Geschwindig¬ keitsregelung durch. Hierzu ist in üblicher Weise ein Istwertgeber am Antrieb des Spritzwerkzeugs für die jeweilige Bewegungsachse vorgesehen. Der Istwertgeber kann als digitaler, z. B. inkrementaler Maßstab ausgebil¬ det sein, der die Istwerte in einer für die digitale Verarbeitung geeigneten Form bereits dem Rechner bzw. Prozessor liefert.
Die Erfindung wird im folgenden anhand eines in einer Zeichnung darge¬ stellten Ausführungsbeispiels näher beschrieben, aus dem sich weitere Einzelheiten, Merkmale und Vorteile ergeben.
Es zeigen:
Fig. 1 schematisch eine Lackierstation für Kraftfahrzeugkarosserien in Vorderansicht;
Fig. 2 ein Blockschaltbild einer Steuerung für die Lackierstation gem. Fig. 1 ;
Fig. 3 in einer Zentraleinheit der Steuerung gespeicherte oder inter¬ polierte Bahnpunkte als Sollwerte einer Bahn, in der ein Spritz- Werkzeug mit dem Antrieb für eine Achse bewegt wird und
Fig. 4 die an einen Lageregler aus der zentralen Einheit übertrage¬ nen Sollwerte, aus denen durch Feininterpolation Soliwerte von Bahnpunkten für den Antrieb einer Achse erzeugt werden.
Eine Lackierstation für die Beschichtung von Fahrzeugkarosserien 1 , die auf einem Träger 2 durch die Lackierstation transportiert werden, enthält je zwei elektrostatisch arbeitende Spritzwerkzeuge 3, 4 bzw. 5, 6 für jede Seite der Karosserie 1 und zwei elektrostatisch arbeitende Spritzwerkzeuge 7, 8 für die Haube, das Dach und das Heck der Fahrzeugkarosserie 1.
Die Spritzwerkzeuge 3, 4, 5, 6 sind jeweils auf Trägern 9, 10, 11 , 12 befestigt, die im Raum dreidimensionale Punkte anfahren können. Die beiden Spritzwerkzeuge 7, 8 sind auf einem gemeinsamen Träger 13 befestigt, der im Raum ebenfalls dreidimensional bewegt werden kann. Für die Bewegung der Träger 9 bis 13 sind jeweils drei Antriebe vorgesehen, die nicht dargestellt sind. Jeder Antrieb ist für die Bewegung in einer Achse eines kartesischen Koordinatensystems bestimmt. Die Verschiebungs¬ möglichkeit der Träger 9 bis 13 in zwei Richtungen des Koordinatensystems ist in Fig. 1 durch Pfeile 14 dargestellt. Eine Bewegungsmöglichkeit in der dritten Richtung des Koordinatensystems ist aber in vielen Fällen ebenfalls vorhanden. Darüber hinaus sind die Spritzwerkzeuge 9 bis 13 häufig um eine oder mehrere Achsen schwenkbar ausgebildet.
In Fig. 2 ist eine Steuerung für die Spritzwerkzeuge 9 bis 13 im Block- Schaltbild dargestellt. Die Steuerung enthält eine speicheprogrammierbare Steuerung 15, also eine Steuerung, die einen freiprogrammierbaren Digitalrechner aufweist, der als Mikroprozessor oder Mikrorechner ausgebildet sein kann. Die Steuerung 15 steht über einen Bus 16 mit einer übergeordneten Steuereinheit in Verbindung. Die in Fig. 1 dargestellte Lackierstation stellt nämlich nur einen Teil einer Lackierstraße dar, die weitere Bearbeitungsstationen, z. B. für die Reinigung und die Beschichtung anderer Flächen des Innenraums der Karosserie, enthält. Durch die übergeordnete Steuereinheit wird die Arbeitsweise der verschiedenen Stationen der Lackierstraße koordiniert.
Die speicherprogrammierbare Steuerung 15 ist über einen seriellen Bus 18 mit Lagereglern 19, 20, 21 verbunden. Die Übertragung auf dem Bus wird durch einen Bus-Experten 15a ausgeführt. In Fig. 2 sind nur drei derartige Lageregler dargestellt, die den Antrieben, beispielsweise des Spritzwerk¬ zeugs 3, zugeordnet sind. Der Lageregler 19 enthält im Regel kreis als Stellglied einen Servomotor 22, der den Träger 9 z. B. in Richtung der X- Achse eines kartesischen Koordinatensystems antreibt. Im Regel kreis mit dem Lageregler 20 ist ein Servomotor 23 vorgesehen, der den Träger 9 in richtung der Y-Achse des kartesischen Koordinatensystems antreibt. Im Regel kreis des Lagereglers 21 ist ein Servomotor 24 vorhanden, der den Träger 9 in Richtung der Z-Achse des kartesischen Koordinatensystems antreibt. In entsprechender Weise sind die Träger 10, 11 , 12 und 13 mit Servomotoren für die Bewegung in drei Achsrichtungen verbunden. Die Servomotoren für den Antrieb der Träger 10, 11 , 12, 13 sind in Regel¬ kreisen mit Lagereglern auf die oben in Verbindung mit dem Träger 9 beschriebene Art angeordnet. Für manche Anwendungsfälle reichen auch Bewegungen nur in zwei Achsrichtungen des kartesischen Koordinatensy- stems aus. In diesem Fall genügen je zwei Motoren für den Antrieb eines Trägers. Die Lageregler 19 bis 21 enthalten digitale Rechner, z. B. jeweils einen Mi kroprozessor oder Mi krorechner mit einer Schnittstelle zum seriellen Bus 18. Weiterhin sind in den Lagereglern jeweils Geschwindig¬ keitsregler mit einer Drezahl- und Stromregelung für die elektrischen Motore 22 bis 24 vorgesehen. Mit den Motoren 22, 23, 24 sind jeweils Lageistwertgeber 25, 26, 27 verbunden.
Die speicherprogrammierbare Steuerung 15, im folgenden auch SPS 15 genannt, ist mit einem Geschwindigkeitsgeber 28 verbunden, der die Transportgeschwindigkeit der Karosserie 2 mißt.
Weitere, nicht näher dargestellte Geber zeigen der SPS 15 Positionen der Karosserie 2 an, die für den Beginn und das Ende des Beschichtungsar- beitsgangs maßgebend sind. Der Geber für die Anzeige des Beginns ist im übrigen in einer solchen Position angeordnet, daß die Spritzwerkzeuge aus ihren Ruhelagen bis in die Arbeitspositionen bewegt werden können, bevor die Karosserie 2 in den Bereich der Spritzwerkzeuge 9 bis 8 gelangt.
In der SPS 15 sind die von den Spritzwerkzeugen 3 bis 8 für die Beschich¬ tung der Karosserie 2 zurückzulegenden Bahnen in Form von Bahnpunkten in den jeweiligen Achsen des Koordinatensystems gespeichert. Die Bahnpunkte sind vorzugsweise in Listen im Speicher der SPS 15 abge- legt. Die Fig. 3 zeigt mehrere Bahnpunkte 29, 30, 32, 33, 34, 35 einer in X-Y-Richtung vom Spritzwerkzeug 3 zurückzulegenden Bahn. Die Bahn¬ punkte 29 bis 35 legen jeweils Beginn bzw. Ende markanter Bahnab¬ schnitte fest und können nicht nur in X-Richtung sondern auch in Y- Richtung unterschiedlich weit voneinander entfernt sein. Die in Fig. 3 dargestellte X-Richtung entspricht z. B. der Förderrichtung der Karosserie 2.
Aus den beispielsweise von Hand oder von einer übergeordneten Einheit vorgegebenen Bahnpunkten 29 bis 35 bestimmt die SPS 15 durch Grobinter- polation in X-Richtung äquidistante Bahnpunkte, deren Koordinaten werte als Sollwerte an den Folgeregler 22 bzw. 23 ausgegeben werden.
In Fig. 3 sind nur die von der SPS 15 zwischen den Bahnpunkten 29 und 30 zusätzlich durch Grobinterpoiation nach bekannten Interpolations- verfahren berechneten Bahnpunkte 36, 37, 38 und 39 bezeichnet.
Die durch Grobinterpolation gewonnenen Bahnpunkte und die Bahnpun kte 29 bis 31 werden in Übereinstimmung mit dem Busprotokoll des seriellen Busses 18 an die Lageregler 19, 20 übertragen. In gleicher Weise bestimmt die SPS 15 aus vorgegebenen Bahnpunkten für die Lageregler der Spritz¬ werkzeuge 4 bis 8 durch Grobinterpolation weitere Bahnpunkte und überträgt sie zeitmultiplex entsprechend dem Busprotokoll an die Fol¬ geregler. Die Übertragung erfolgt asynchron.
Die Lageregler übernehmen die an sie adressierten, einer Grobinterpola¬ tion entsprechenden Sollwerte, speichern sie ab und bilden zwischen aufeinanderfolgenden Sollwerten einer Bahn durch Feininterpolation nach bekannten Interpolationsverfahren weitere Sollwerte. Auf diese Weise entlasten sie die SPS 15 vom Rechenaufwand und den Bus vor einem hohen Datendurchsatz, wie er bei Vorgabe der für eine qualitativ hochwertige Beschichtung bei hohen Transport- und Spritzwerkzeuggeschwindigkeiten notwendig wäre.
Die Fig. 4 zeigt für den Lageregler 19 die grob interpolierten Sollwerte zwischen einem durch einen Bahnpunkt S1 und einem Bahnpunkt Sn gegebenen Bahnabschnitt. Die Bahnabschnitte S1 , Sn gelten hierbei für die X-Richtung. In Fig. 4 ist die zeitliche Erzeugung der Sollwerte S2, S3, S4, S5, S6, S7 und S8 dargestellt. Es wird jeweils ein Sollwert S1...Sn dem Lageregler vorgegeben, der anhand des mit dem Lagegeber 25 gemessenen Istwerts die Feininterpolation ausführt und den Träger 9 zur Verminderung der Regelabweichung nachführt.
Der Lageregler 19 enthält einen unterlagerten Drehzahlregelkreis, dessen Drehzahl aus dem zeitlichen Abstand von aufeinanderfolgend übertragenen Sollwerten bestimmt wird, über den Bus 18 werden die Sollwerte zeitlich nacheinander übertragen. Innerhalb des Rasters können sich die durch Grobinterpolation erhaltenen Sollwerte ändern, müssen dies aber nicht. Der Lageregler 19 berechnet aus jeweils zwei aufeinanderfolgenden Sollwerten eine Differenz, aus der er durch Division mit dem zeitlichen Abstand der Sollwerte die Geschwindigkeit bzw. Drehzahl des Antriebsmotors 22 bestimmt wird. Die Feininterpolation wird nach einem bekannten Inter¬ polationsverfahren durchgeführt.
Für den Bus 18 werden RS 485-Schnittstellen verwendet, wobei Übertra¬ gungsraten bis etwa 2 MBd vorgesehen werden können. Die SPS 15 enthält insbesondere nur einen Mikroprozessor für Steuer- und Rechen¬ aufgaben, z. B. einen Prozessor des Typs Intel 80486.
Die Träger 9 bis 13 mit den zugehörigen Antrieben sind jeweils vorzugs¬ weise für Geschwindigkeiten von 2 bis 4 m/min ausgelegt. Die grob inter¬ polierten Sollwerte sind auf Bahnabschnitte von etwa 1 bis 2 cm bezogen.
Es reicht für eine genaue Bahnführung der Spritzwerkzeuge aus, wenn neue Sollwerte in Abständen von 100 bis 200 msec interpoliert undauf dem Bus 18 übertragen werden und die Zahl der Spritzwerkzeuge etwa 12 - 16 (30 Achsen) nicht überschreitet. Der Bus-Experte benötigt für die Übertragung weniger als 100 bis 200 msec, z. B. nur ca. 10 msec, und überträgt daher mehrfach synchron nacheinander die gleichen grob interpolierten Werte.
Als SPS 15 kann ein handelsübliches Automatisierungsgerät mit den oben erwähnten Eigenschaften verwendet werden, wobei eine Speicherkapazität von etwa 4 MB des Speichers des Automatisierungsgeräts ausreichend ist. Mit den vorstehend erwähnten Bahngeschwindigkeiten werden bei Hüben von 2 - 3 m insbesondere elektrostatisch arbeitende Spritzwerkzeuge bei der Karosseriebeschichtung bewegt.
Die Lageregler 22 bis 24 enthalten, wie bereits erwähnt, einen Antriebs¬ rechner für die Feininterpoiation sowie Lage- und Geschwindigkeits¬ regelung. Der Geschwindigkeitsregelkreis ist dem Lageregel kreis unterlagert. Als Antriebsmotore 22, 23, 24 können Gleichstrom- oder Wechselstrom- motore verwendet werden. Der Antriebsrechner kann uberwachungs- und Diagnoseaufgaben übernehmen und entsprechende Meidungen an die SPS 15 senden.
Zu den wesentlichen Aufgaben der SPS 15 gehört auch die Vorgabe von Einstellwerten, die den Lackdurchfluß der Spritzwerkzeuge bestimmen. Diese Einstellwerte ändern sich im Vergleich zu den Sollwerten wenig. Die Lackierung wird von einer Reihe von Parametern wie Geometrie der Spritz¬ werkzeuge, der Spritzwerkzeugbahn und der Karosserie, der Lackdurchflu߬ geschwindigkeit, der Lackdurchflußmenge pro Zeiteinheit, der Zerstäubungs- und Hörnerluft, der elektrischen Feldstärke, der Viskosität sowie den klimatischen Bedingungen der Lackierstation beeinflußt. Die Einstellwerte für das Spritzwerkzeug werden für den jeweil igen Gegenstand vorab ermittelt und gespeichert.

Claims

Patentansprüche
1. Verfahren zum Steuern einer Vielzahl von Spritzwerkzeugen für die Oberflächenbeschichtung von Fahrzeugen oder deren Teile, dadurch gekennzeichnet, daß mit einer speicherprogrammierbaren Steuerung zentral für die Vielzahl von Spritzwerkzeugen die Einstell großen, die den Lack¬ durchfluß jedes Spritzwerkzeugs bestimmen, an Stellglieder für die Spritzwerkzeuge ausgegeben werden, und daß von den Spritzwerkzeugen anzufahrende Bahnpunkte, die mit grober Teilung gespeichert sind oder durch Grobinterpolation aus gespeicherten Bahnpunkten gewonnen werden, als Sollwerte an jeweils für die Spritzwerkzeuge vorgesehene
Lageregler übertragen werden, von denen weitere Bahnpunkte durch Feininterpolation zwischen den übertragenen Bahnpunkten bestimmt und im Lageregler mit Lageistwerten verarbeitet werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die grob interpolierten Bahnpunkte und Geschwindigkeitsdaten, die auf die Bahnpunkte bezogen sind, an die Lageregler übertragen werden, die unterlagerte Geschwindigkeitsregler aufweisen.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Geschwindigkeit für den Geschwindigkeitsregler jeweils aus der Differenz aufeinanderfolgend übertragener Sollwerte und dem zeitlichen Abstand zwischen diesen Sollwerten bestimmt wird.
4. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Spritzwerkzeuge mit Geschwindigkeit von 2 bis 4 m/min bewegt werden und daß die grob interpolierten Werte in Bahnabständen in einem Zeitraster von 100 bis 200 msec erzeugt werden.
5. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die grob interpolierten Bahnpunkte an die Lageregler in zeitlichen Abständen von 10 msec synchron übertragen werden.
6. Anordnung zur Durchführung des Verfahrens nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine zentrale speicherprogrammierbare Steuerung (15), in der
Bahnpunkte (29, 30, 31 , 32, 33, 34) für die von den verschiedenen Spritzwerkzeugen (3, 4, 5, 6, 7, 8) zurückzulegende Bahnen in vorgegebenen Abständen digital gespeichert sind und/oder durch Grobinterpolation aus den gespeicherten Bahnpunkten bestimmt werden, über einen seriellen Bus (18) mit Lagereglern (19, 20, 21 ) verbunden sind, die jeweils einer Bewegungsachse mindestens eines Spritzwerk¬ zeugs (3, 4, 5, 6, 7, 8) oder einer Gruppe von Spritzwerkzeugen zugeordnet sind und wenigstens einen Mikroprozessor enthalten, der aus den auf dem Bus (18) übertragenen Bahnpunkten durch Feininter- polation Bahnpunkte bestimmt, die als Sollwerte der Lageregelung zugrunde gelegt werden.
PCT/EP1994/003844 1993-11-22 1994-11-21 Verfahren und anordnung zum steuern einer vielzhal von spritzwerkzeugen für die oberflächenbeschichtung von fahrzeugen oder deren teile WO1995014961A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES95901403T ES2138179T3 (es) 1993-11-22 1994-11-21 Procedimiento y disposicion para el control de una pluralidad de herramientas de pulverizacion para el recubrimiento de superficies de vehiculos o de partes de los mismos.
DE59408595T DE59408595D1 (de) 1993-11-22 1994-11-21 Verfahren und anordnung zum steuern einer vielzhal von spritzwerkzeugen für die oberflächenbeschichtung von fahrzeugen oder deren teile
EP95901403A EP0730759B1 (de) 1993-11-22 1994-11-21 Verfahren und anordnung zum steuern einer vielzhal von spritzwerkzeugen für die oberflächenbeschichtung von fahrzeugen oder deren teile
US08/648,161 US5876803A (en) 1993-11-22 1994-11-21 Process and device for controlling a multiplicity of spray tools used in surface coating of vehicles or parts thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4339748A DE4339748A1 (de) 1993-11-22 1993-11-22 Verfahren und Anordnung zum Steuern einer Vielzahl von Spritzwerkzeugen für die Oberflächenbeschichtung von Fahrzeugen oder deren Teile
DEP4339748.4 1993-11-22

Publications (1)

Publication Number Publication Date
WO1995014961A1 true WO1995014961A1 (de) 1995-06-01

Family

ID=6503134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1994/003844 WO1995014961A1 (de) 1993-11-22 1994-11-21 Verfahren und anordnung zum steuern einer vielzhal von spritzwerkzeugen für die oberflächenbeschichtung von fahrzeugen oder deren teile

Country Status (5)

Country Link
US (1) US5876803A (de)
EP (1) EP0730759B1 (de)
DE (2) DE4339748A1 (de)
ES (1) ES2138179T3 (de)
WO (1) WO1995014961A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19637730C1 (de) * 1996-09-16 1998-01-29 Duerr Systems Gmbh Verfahren zum automatischen Beschichten von Werkstücken
DE19738141C2 (de) * 1997-09-01 2003-06-05 Wagner Int Steuersystem einer Beschichtungsanlage mit einer LON-Busstruktur
FR2779539B1 (fr) * 1998-06-09 2006-06-16 Thomson Csf Procede de commande en position d'un solide mu par des actionneurs selon au moins deux degres de liberte en rotation, et plate-forme mobile mettant en oeuvre un tel procede
DE19845657A1 (de) * 1998-10-05 2000-04-27 Daimler Chrysler Ag Einrichtung zum dynamischen Regeln einer Anlage
US6977013B2 (en) 1999-09-17 2005-12-20 Nordson Corporation Powder coating system central controller
US6378220B1 (en) * 2000-04-11 2002-04-30 Daimlerchrysler Corporation Measuring tool usable with a paint applicator
DE10150826A1 (de) 2001-10-15 2003-04-17 Duerr Systems Gmbh Verfahren und Programmsteuersystem zur Steuerung einer Beschichtungsanlage
DE202004021737U1 (de) * 2003-07-18 2010-07-22 Abb As Farbauftragssystem
DE102004049471A1 (de) * 2004-10-11 2006-04-20 Bayerische Motoren Werke Ag Vorrichtung zum Auftragen einer Konservierungsschicht und Verfahren zum Auftragen derselben
DE102006032645B4 (de) * 2006-07-13 2008-06-12 J. Wagner Ag Vorrichtung zur Erfassung des Profils eines mit Pulver oder Nasslack zu beschichtenden Werkstücks
US20140295095A1 (en) * 2013-04-02 2014-10-02 Robert Langlois In-Line Powder Coating of Non-Conductive Profiles Produced in a Continuous Forming Process such as Pultrusion and Extrusion
JP6500852B2 (ja) * 2016-07-11 2019-04-17 株式会社安川電機 ロボットシステム、ロボットの制御方法、ロボットコントローラ
CN108563250B (zh) * 2018-04-13 2020-12-08 武汉理工大学 一种用于对称旋转体的热喷涂机器人轨迹规划方法
CN114798255A (zh) * 2022-05-25 2022-07-29 湖南恒岳重钢钢结构工程有限公司 一种变直径管道内壁连续均匀喷涂方法及系统
CN116128878B (zh) * 2023-04-14 2023-06-23 中铭谷智能机器人(广东)有限公司 一种基于汽车钣金的智能喷涂轨迹生成方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1556013A (en) * 1978-04-19 1979-11-14 Carrier Drysys Ltd Paint spraying apparatus
DE2945660A1 (de) * 1979-03-21 1980-10-02 Guettinger Ag Verfahren und vorrichtung zum ermitteln der bewegungsbahn eines verfahrbaren elementes, z.b. eines werkzeuges oder eines werkstueckes
US4262336A (en) * 1979-04-27 1981-04-14 Pritchard Eric K Multi-axis contouring control system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1263015C (en) * 1985-07-31 1989-11-21 PAINTING OF INTERIOR SURFACES OF AUTOMOTIVE BODYWORK, AND INSTALLATIONS FOR THE PURPOSES
JPS6245371A (ja) * 1985-08-24 1987-02-27 Toyota Motor Corp 車両ボデ−外板の塗装方法およびその装置
JPH06226B2 (ja) * 1988-09-22 1994-01-05 本田技研工業株式会社 塗装方法
JPH0736989B2 (ja) * 1990-01-19 1995-04-26 トキコ株式会社 工業用ロボットの制御方法
US5372856A (en) * 1991-06-12 1994-12-13 Mazda Motor Corporation Coating method and coating system using varying speed
DE4209279C3 (de) * 1992-03-21 2000-09-14 Cegelec Aeg Anlagen Und Automa Verfahren und Vorrichtung zum automatischen Beschichten von Gegenständen
US5427822A (en) * 1993-05-17 1995-06-27 General Motors Corporation Method and apparatus for coating vehicle panels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1556013A (en) * 1978-04-19 1979-11-14 Carrier Drysys Ltd Paint spraying apparatus
DE2945660A1 (de) * 1979-03-21 1980-10-02 Guettinger Ag Verfahren und vorrichtung zum ermitteln der bewegungsbahn eines verfahrbaren elementes, z.b. eines werkzeuges oder eines werkstueckes
US4262336A (en) * 1979-04-27 1981-04-14 Pritchard Eric K Multi-axis contouring control system

Also Published As

Publication number Publication date
EP0730759A1 (de) 1996-09-11
EP0730759B1 (de) 1999-08-04
ES2138179T3 (es) 2000-01-01
US5876803A (en) 1999-03-02
DE4339748A1 (de) 1995-05-24
DE59408595D1 (de) 1999-09-09

Similar Documents

Publication Publication Date Title
DE4209279C2 (de) Verfahren und Vorrichtung zum automatischen Beschichten von Gegenständen
EP0730759B1 (de) Verfahren und anordnung zum steuern einer vielzhal von spritzwerkzeugen für die oberflächenbeschichtung von fahrzeugen oder deren teile
DE3430114C2 (de) Vorrichtung zum Aufbauen eines Werkstücks durch Auftragschweißen
DE102011108282B4 (de) Numerische Steuerung für eine Mehrachsenmaschine zum Bearbeiten einer geneigten Bearbeitungsebene
DD271283A5 (de) Verfahren und anlage zum serienweisen beschichten von werkstuecken
DE10255037A1 (de) Verfahren und Vorrichtung zum Bearbeiten eines Werkstücks
WO2004026537A2 (de) Verfahren und vorrichtung zum herstellen eines verbindungsbereichs auf einem werkstück
EP1591209A2 (de) Verfahren zum Steuern einer Maschine, insbesondere eines Industrieroboters
EP3509802B1 (de) Optimierungsverfahren für einen beschichtungsroboter und entsprechende beschichtungsanlage
EP0249171B1 (de) Verfahren zur Programmsteuerung insbesondere eines Industrieroboters für die selbsttätige Beschichtung von Werkstücken
EP3953113B1 (de) Beschichtungsverfahren und entsprechende beschichtungsanlage
DE102015223258A1 (de) Verfahren zum Bearbeiten der Oberfläche eines dreidimensionalen Objekts
WO1994007191A1 (de) Verfahren zur eingabe und anzeige der einstellungsparameter einer vorrichtung zum beschichten von gegenständen
EP2021887B1 (de) Verfahren zum steuern einer schleifmaschine und numerisch gesteuerte schleifmaschine
DE60104666T2 (de) Steuerungsvorrichtung einer oberflächen-behandlungsanlage, insbesondere für die automobilindustrie
EP0829788A2 (de) Verfahren zum automatischen Beschichten von Werkstücken wie z.B. Kraftfahrzeugkarossen
DE102015109708B3 (de) Verfahren zur Steuerung des Bewegungsablaufs einer motorisch angetriebenen Maschinen- oder Werkzeugkomponente
EP3507096A1 (de) Bearbeitungsmaschine mit mehreren bearbeitungsstationen zum bearbeiten von körpern
DE102017214073A1 (de) Bearbeitungsmaschine mit mehreren Bearbeitungsstationen zum Bearbeiten von Körpern
DE102016217376B4 (de) Bearbeitungsmaschine mit mehreren Bearbeitungsstationen zum Bearbeiten von Körpern
DE102018111602B4 (de) Vorrichtung und Verfahren zum drei-dimensionalen Bedrucken von Druckobjekten mit einem Tintenstrahl-Druckkopf
DE19827155A1 (de) Verfahren und Vorrichtung zum Bearbeiten von Bauteilen
DD222186A3 (de) Verfahren und einrichtung zur steuerung von industrierobotern
DE102012017099B4 (de) Verfahren zum Betreiben einer Anlage mit mehreren Robotern zum Behandeln von Gegenständen
DE2415535A1 (de) Bahnsteuerung fuer industrie-handhabungsautomaten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995901403

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08648161

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995901403

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995901403

Country of ref document: EP