WO1995012065A1 - Energieerzeugungseinrichtung - Google Patents

Energieerzeugungseinrichtung Download PDF

Info

Publication number
WO1995012065A1
WO1995012065A1 PCT/DE1994/001252 DE9401252W WO9512065A1 WO 1995012065 A1 WO1995012065 A1 WO 1995012065A1 DE 9401252 W DE9401252 W DE 9401252W WO 9512065 A1 WO9512065 A1 WO 9512065A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy generating
generating device
stirling engines
heat exchanger
energy
Prior art date
Application number
PCT/DE1994/001252
Other languages
English (en)
French (fr)
Inventor
Dietrich Ehrig
Original Assignee
Erno Raumfahrttechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erno Raumfahrttechnik Gmbh filed Critical Erno Raumfahrttechnik Gmbh
Priority to US08/635,939 priority Critical patent/US5735123A/en
Priority to EP94930926A priority patent/EP0725895B1/de
Priority to JP7512351A priority patent/JPH09509711A/ja
Priority to DE59405542T priority patent/DE59405542D1/de
Publication of WO1995012065A1 publication Critical patent/WO1995012065A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/044Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines having at least two working members, e.g. pistons, delivering power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • F02G2244/50Double acting piston machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs
    • F02G2254/20Heat inputs using heat transfer tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs
    • F02G2254/30Heat inputs using solar radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the invention relates to an energy generating device, in particular for satellites and space stations, based on Stirling engines.
  • Stirling engines are generally operated with a constantly burning flame, the most varied of fuels being used. In isolated cases it has already been proposed to operate Stirling engines with solar energy and to use them for desalination, for example. In addition to the mentioned advantage of a usable temperature interval for generating mechanical heat, Stirling engines are distinguished by a high degree of efficiency, a favorable torque curve in the range of the operating speeds and a vibration-free run.
  • REPLACEMENT LEAF Use although the energy yield that can be achieved with them is comparatively low. In particular, the energy requirements of future space stations will be so high that it will hardly be possible to meet them photovoltaically.
  • the object of the invention is to provide an energy generating device based on the Stirling hot-air engine, which is suitable both for terrestrial applications and in particular also for use in orbital stations.
  • the cross-gear transmission with mass balancing provided in the preferred embodiment of the invention enables the arrangement to be constructed extremely lightly. Since no first and second order inertial forces are effective in this transmission, the energy generating device according to the invention has a minimum of vibrations.
  • process gas pressures of usually more than 10 MPa (process gas is preferably helium or hydrogen) need not be sealed off from the environment. There is a pressure in the transmission that lies between the pressure during the compression stroke and the working stroke. Since only the differences that occur between this mean pressure and the compression or working pressure have to be sealed, the one that occurs at the piston rings is
  • 1 is a horizontal section through a Stirling engine with four cylinders
  • FIG. 2 shows a vertical section through part of an energy generating device on the basis of the arrangement shown in FIG. 1,
  • 3 and 4 is a perspective view and a
  • FIG. 5 shows the arrangement according to FIG. 3 with an additional beam trap
  • Fig. 6 shows the same arrangement with an additional solar collector and d
  • FIG. 1 is a schematic illustration of a double-acting Stirling engine with four cylinders 1 to 4, which operates in succession with a phase shift of 90 ° in each case.
  • a piston 5 to 8 is arranged in each of the cylinders 1 to 4 and also works as a displacer for the subsequent cylinder.
  • a heater 9 to 12, a regenerator 13 to 16 and a cooler 17 to 20 are arranged between two successive cylinders.
  • each of the pistons 5 to 8 is connected to a cross gear transmission 25 via a piston rod 21 to 24.
  • the energy required for performing mechanical work is supplied to the process gas, in the case of the exemplary embodiment described here hydrogen or helium, by radiant heat in the area of the heaters 9 to 12, as indicated by arrows in FIG. 1 for the heater 9 is.
  • the side of the cylinders 1 to 4 facing the heater 9 to 12 is the hot side, while the side facing the coolers 17 to 20 is the cold side.
  • the process gas is cyclically pushed back and forth between two successive pistons.
  • regenerators 13 to 16 arranged between each of the coolers 17 to 20 and the associated heaters 9 to 12 serve as short-term heat stores or absorbers which, on the one hand, extract heat from the process gas flowing out of the hot area of the cylinder, so that this is not completely lost as waste heat in the cooler, and on the other hand the stored heat to the hot area
  • regenerators 13 to 16 (or the corresponding regenerators of the arrangement described below) are thermodynamically optimized by minimizing the flow losses and dead volumes and by maximizing their heat storage capacity so that they have high efficiencies enable respective power generation devices.
  • the dissipation of the heat loss from the coolers 17 to 20 takes place via so-called heat pipes, not shown in the figures.
  • FIGS. 2 to 6 The arrangement shown in FIGS. 2 to 6 in different representations has the same basic structure as that which has already been described with reference to FIG. 1, again with four cylinders arranged in a cross shape, of which only the two cylinders 31 and 32 are visible. Pistons 33 and 34 run in these, which act via piston rods 35 and 36, respectively, on a cross-gear transmission arranged in a housing 37.
  • the heaters are combined to form an umbrella-type tubular heat exchanger 38, as can be seen in particular in the perspective representations of FIGS. 3 and 5.
  • a cooler 39, 40 and a regenerator 41, 42 are provided for each cylinder 31, 32 below the tubular heat exchanger 38. Also, is between everyone
  • REPLACEMENT LEAF Cylinder 31, 32 and the associated regenerator 41, 42 are arranged a spherically shaped insulating layer 43, 44, which thermally decouples the cold side of the cylinder 31, 32 from the regenerator 41, 42.
  • FIGS. 3 and 4 a further housing 45 is connected to the housing 37 in which the cross gear transmission is arranged.
  • a generator 46 which is connected via a magnetic coupling 47 to the output shaft 48 of the cross-gear transmission, not shown in the figures.
  • Fig. 4 also shows the modular structure of the entire arrangement.
  • the gas-tight encapsulation of the actual Stirling engine can be seen in this figure, it being possible, of course, to use an electrical clutch instead of the permanent magnet clutch shown here.
  • FIG. 3 in the case of the tubular heat exchanger 38 the contour of the individual tubes is designed in such a way that a swirl is generated with the build-up of a turbulent flow in the process gas, which ensures maximum heat absorption.
  • a radiation trap 49 surrounding the tubular heat exchanger 38 is also provided, as shown in FIG. 5.
  • this has a funnel-shaped opening 50 directed towards the tubular heat exchanger 38, the wall surface 51 of this opening being mirrored.
  • the entire arrangement, as shown in FIG. 6, is held in the center of a spherically curved concentrator 52, which is likewise mirrored on the inside, through which the incident sun rays in
  • FIGS. 7 to 10 show details of a second energy generation system, in which a Stirling engine, again consisting of four cylinders 61 to 64, is combined with disk collectors 77, 78 adsorption of the incident solar radiation.
  • the pistons 65 to 68 of the four cruciformly arranged cylinders 61 to 64 again act in this embodiment on a centrally arranged cross gear 75, which is located in a housing 76.
  • the regenerators 71, 71 and the coolers 69, 70 are constructed analogously to the arrangements described above, the heaters 73, 74 are coupled to the disk collectors 77, 78 already mentioned.
  • the structure of such a disk collector is shown in FIGS. 9 and 10.
  • the incident solar radiation indicated by arrows is adsorbed by the disk-shaped collector surfaces 80 arranged on a tube 79 through which the process gas flows and their energy is transferred to the process gas.
  • a cylindrical melt reservoir 81 which is open on one side.
  • This consists of a plurality of annularly arranged tubes 82 which are filled with a molten salt or with a silver-tin alloy and which act as heat stores.
  • the use of such a melt store is particularly useful in terrestrial solar energy generation systems and in space stations flying in low earth orbit in order to compensate for short-term power fluctuations which are caused by the earth's shadow or by clouds
  • REPLACEMENT LEAF can.
  • An insulating jacket 84 is arranged on the outside of the melt reservoir 81 and below a base plate 83 carrying the tubes 82 in order to further increase the efficiency of the arrangement.
  • a radiation trap 85 which is arranged between the heaters 73, 74, also serves the same purpose here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Bei einer Energieerzeugungseinrichtung, die vorzugsweise für Satelliten und Raumstationen geeignet ist, sind ingesamt vier Stirlingmotoren zu einer kreuzförmig angeordneten Einheit zusammengefaßt, in deren Zentrum ein von den Kolben (5-8) der Stirlingmotoren beaufschlagtes Kreuzrädergetriebe (25) angeordnet ist. Die Erhitzer (9) der Stirlingmotoren werden durch Solarenergie beaufschlagt, wobei die einfallenden Sonnenstrahlen entweder über eine im Zentrum eines Kollektors angeordnete Strahlenfalle auf einen schirmförmigen Rohrheizwärmetauscher (38) gelenkt werden oder aber von Scheibenkollektoren (77, 78) absorbiert werden, die im Inneren eines Schmelzwärmespeichers (81) angeordent sind.

Description

BESCHREIBUNG
Energieerzeugungseinrichtung
Die Erfindung betrifft eine Energieerzeugungsein¬ richtung, insbesondere für Satelliten und Raum¬ stationen, auf der Basis von Stirlingmotoren.
Nach dem Stirling-Kreisprozeß arbeitende Motoren sind seit langem bekannt. Wie bei Diesel- und Ottomotoren beruht auch ihr Arbeitsprinzip darauf, daß ein Proze߬ gas bei niedriger Temperatur komprimiert wird und an¬ schließend bei hoher Temperatur expandiert. Im Gegen¬ satz zu den beiden letztgenannten Motoren wird das Prozeßgas beim Stirlingmotor jedoch nicht durch eine innere Verbrennung erhitzt, sondern die Wärme wird dem Prozeßgas kontinuierlich von außen zugeführt. Deshalb können mit dem Stirlingmotor Temperaturdifferenzen in
ERSATZBLATT nahezu beliebigen Bereichen in mechanische Arbeit umge¬ wandelt werden.
Nachdem der Stirlingmotor ursprünglich als Einzylinder¬ motor mit zwei belasteten Kolben ausgebildet war und später überwiegend in der sogenannten V-Anordnung ver¬ wendet wurde, bei der ein Verdränger in einem und ein Kolben in einem zweiten Zylinder angeordnet war, kommen in jüngerer Zeit sogenannte doppelt wirkende Stirling¬ motoren zum Einsatz, bei denen beispielsweise vier Zylinder in geeigneter Phasenverschiebung hintereinan¬ der arbeiten. Jeder dieser Zylinder besitzt in dieser letztgenannten Anordnung nur einen Kolben, der zugleich als Verdränger für den nachfolgenden Kolben dient. Allen Stirlingmotoren gemeinsam sind die Komponenten Erhitzer, Regenerator und Kühler, die bei der V-Anord¬ nung zwischen dem Verdränger und dem Kolben, beim doppelt wirkenden Stirlingmotor jeweils zwischen den einzelnen Zylindern angeordnet sind.
Stirlingmotoren werden in der Regel mit einer ständig brennenden Flamme betrieben, wobei die unterschied¬ lichsten Brennstoffe Verwendung finden. Vereinzelt wurde auch bereits vorgeschlagen, Stirlingmotoren mit Sonnenenergie zu betreiben und diese beispielsweise zur Meerwasserentsalzung einzusetzen. Neben dem erwähnten Vorteil eines für die Erzeugung mechanischer Wärme be¬ liebigen nutzbaren Temperaturintervalls zeichnen sich Stirlingmotoren durch einen hohen Wirkungsgrad, einen günstigen Drehmomentverlauf im Bereich der Betriebs- drehzahlen sowie einen vibrationsfreien Lauf aus.
Trotz dieser offenkundigen Vorteile ist das Einsatzge¬ biet von Stirlingmotoren noch immer sehr begrenzt. So finden in Satelliten und Raumstationen derzeit in erster Linie fotovoltaische Energieerzeugungsanlagen
ERSATZBLATT Verwendung, obwohl die mit ihnen erzielbare Energieaus¬ beute vergleichsweise gering ist. Insbesondere wird bei künftigen Raumstationen der Energiebedarf so hoch sein, daß er auf fotovoltaischem Wege kaum noch wird gedeckt werden können.
Aufgabe der Erfindung ist es, eine Energieerzeugungs¬ einrichtung auf der Basis des Stirling-Heißluftmotors bereitzustellen, die sowohl für terrestrische Anwen¬ dungen, insbesondere aber auch für einen Einsatz in Orbitalstationen geeignet ist.
Die Erfindung löst diese Aufgabe durch eine Energieer¬ zeugungseinrichtung mit den kennzeichnenden Merkmalen des Patentanspruchs 1. Vorteilhafte Weiterbildungen der erfindungsgemäßen Energieerzeugungseinrichtung sind in den weiteren Ansprüchen angegeben.
So ermöglicht das in der bevorzugten Ausführungsform der Erfindung vorgesehene Kreuzrädergetriebe mit Massenausgleich einen extrem leichten Aufbau der An¬ ordnung. Da bei diesem Getriebe keine Massenkräfte erster und zweiter Ordnung wirksam werden, weist die Energieerzeugungseinrichtung nach der Erfindung ein Minimum an Vibrationen auf.
Da die gesamte Einrichtung überdies vollständig ge¬ kapselt aufgebaut werden kann, brauchen die Prozeßgas¬ drücke von üblicherweise mehr als 10 MPa (Prozeßgas ist dabei vorzugsweise Helium oder Wasserstoff) nicht zur Umgebung hin abgedichtet zu werden. Im Getriebe herrscht dabei ein Druck, der zwischen dem Druck beim Kompressions- und dem Arbeitshub liegt. Da nur die auf¬ tretenden Differenzen zwischen diesem mittleren Druck und dem Kompressions- bzw. Arbeitsdruck abgedichtet werden müssen, ist der an den Kolbenringen auftretende
ERSATZBLATT bzw. der von den Kolbenringen an den Laufflächen her¬ vorgerufene Verschleiß äußerst gering, so daß die erfindungsgemäße Energieerzeugungseinrichtung praktisch wartungsfrei ist und sich durch eine hohe Lebensdauer auszeichnet.
Durch das in weiterer Ausgestaltung der Erfindung vor¬ gesehene Wärmetauschersystem, das aufgrund des in den Heizrohren erzeugten Dralls bzw. angepaßter Strah- lungs-Flächenscheiben mit geringem Abstrahlvolumen thermodynamisch optimiert ist, ist im Heizgasbereich ein nur geringes Totvolumen vorhanden, wodurch ein entsprechend hoher Wirkungsgrad gewährleistet ist.
In der Zeichnung sind Ausführungsbeispiele der Erfin¬ dung schematisch dargestellt. Es zeigen:
Fig. 1 einen Horizontalschnitt durch einen Stirling- otor mit vier Zylindern,
Fig. 2 einen Vertikalschnitt durch einen Teil einer Energieerzeugungseinrichtung auf der Basis der in Fig. 1 gezeigten Anordnung,
Fig. 3 und 4 eine perspektivische Darstellung sowie einen
Vertikalschnitt durch eine vollständige Ener¬ gieerzeugungseinrichtung,
Fig. 5 die Anordnung gemäß Fig. 3 mit einer zusätz¬ lichen Strahlenfalle,
Fig. 6 die gleiche Anordnung mit einem zusätzlichen Solarsammler u n d
Fig.
ERSATZBLATT bis 10 Schnitt- sowie Detaildarstellungen einer weiteren Energieerzeugungsanlage.
Bei der Anordnung gemäß Fig. 1 handelt es sich um die schematische Darstellung eines doppelt wirkenden Stirlingmotors mit vier Zylindern 1 bis 4, die mit einer Phasenverschiebung von jeweils 90° hintereinander arbeitet. In jedem der Zylinder 1 bis 4 ist ein Kolben 5 bis 8 angeordnet, der zugleich als Verdränger für den nachfolgenden Zylinder arbeitet. Zwischen je zwei auf¬ einanderfolgenden Zylindern sind jeweils ein Erhitzer 9 bis 12, ein Regenerator 13 bis 16 und ein Kühler 17 bis 20 angeordnet. Schließlich ist jeder der Kolben 5 bis 8 über eine Kolbenstange 21 bis 24 mit einem Kreuzräder¬ getriebe 25 verbunden.
Die für die Verrichtung mechanischer Arbeit erforder¬ liche Energie wird dem Prozeßgas, im Fall des hier be¬ schriebenen Ausführungsbeispiels Wasserstoff oder Helium, durch Strahlungswärme im Bereich der Erhitzer 9 bis 12 zugeführt, wie dies in Fig. 1 für den Erhitzer 9 durch Pfeile angedeutet ist. Dabei ist jeweils die dem Erhitzer 9 bis 12 zugewandte Seite der Zylinder 1 bis 4 die heiße Seite, während die den Kühlern 17 bis 20 zu¬ gewandte Seite die kalte Seite ist. Das Prozeßgas wird jeweils zwischen zwei aufeinanderfolgenden Kolben zyklisch hin- und hergeschoben.
Die zwischen jedem der Kühler 17 bis 20 und dem zuge¬ ordneten Erhitzer 9 bis 12 jeweils angeordneten Regeneratoren 13 bis 16 dienen als Kurzzeit-Wärme¬ speicher bzw. Absorber, die einerseits dem aus dem heißen Bereich des Zylinders ausströmenden Prozeßgas Wärme entziehen, so daß diese nicht vollständig als Abwärme im Kühler verlorengeht, und die andererseits die gespeicherte Wärme an das in den heißen Bereich
ERSATZBLATT einströmende Prozeßgas abgeben und es damit schon auf¬ heizen, bevor es den Erhitzer erreicht. Bei den hier beschriebenen Ausführungsbeispielen sind die Regene¬ ratoren 13 bis 16 (bzw. die entsprechenden Regenera¬ toren der nachfolgend beschriebenen Anordnung) durch eine Minimierung der Strömungsverluste und Totvolumina sowie durch eine Maximierung ihrer Wärmespeicherkapazi¬ tät thermodynamisch so optimiert, daß sie hohe Wirkungsgrade der jeweiligen Energieerzeugungseinrich¬ tungen ermöglichen. Der Abtransport der Verlustwärme von den Kühlern 17 bis 20 erfolgt über in den Figuren nicht dargestellte Wärmerohre, sogenannte Heat-pipes.
Infolge der kreuzförmigen Anordnung der vier Zylinder 1 bis 4 mit dem Kreuzrädergetriebe 25 ergibt sich ein sinusförmiger Verlauf der rotierenden Massenkräfte mit einem weitgehend gleichförmigen Verlauf des Drehmomen¬ tes bei jeder 360°-Drehung, so daß bei dieser Anordnung auf ein energiezehrendes Schwungrad verzichtet werden kann.
Die in den Figuren 2 bis 6 in verschiedenen Darstellun¬ gen gezeigte Anordnung weist den gleichen prinzipiellen Aufbau auf wie er bereits anhand von Fig. 1 beschrieben wurde, mit wiederum vier kreuzförmig angeordneten Zylindern, von denen in Fig. 2 nur die beiden Zylinder 31 und 32 sichtbar sind. In diesen laufen Kolben 33 und 34, die über Kolbenstangen 35 bzw. 36 auf ein in einem Gehäuse 37 angeordneten Kreuzrädergetriebe wirken. Die Erhitzer sind bei diesem Ausführungsbeispiel zu einem schirmartigen Rohrheizwärmetauscher 38 zusammengefaßt, wie er insbesondere in den perspektivischen Darstellun¬ gen der Figuren 3 und 5 erkennbar ist. Unterhalb des Rohrheizwärmetauschers 38 sind pro Zylinder 31, 32 jeweils ein Kühler 39, 40 sowie ein Regenerator 41, 42 vorgesehen. Außerdem ist jeweils zwischen jedem
ERSATZBLATT Zylinder 31, 32 und dem zugeordneten Regenerator 41, 42 eine sphärisch geformte Isolierschicht 43, 44 angeord¬ net, die die kalte Seite des Zylinders 31, 32 thermisch vom Regenerator 41, 42 entkoppelt.
In den Figuren 3 und 4 ist erkennbar, daß sich an das Gehäuse 37, in dem das Kreuzrädergetriebe angeordnet ist, ein weiteres Gehäuse 45 anschließt. In diesem be¬ findet sich ein Generator 46, der über eine Magnet¬ kupplung 47 mit der Ausgangswelle 48 des in den Figuren nicht dargestellten Kreuzrädergetriebes verbunden ist. Fig. 4 zeigt dabei zugleich den modularen Aufbau der gesamten Anordnung. Ferner ist an dieser Figur die gas¬ dichte Kapselung des eigentlichen Stirlingmotors er¬ kennbar, wobei anstelle der hier gezeigten Permanent- maggnetkupplung selbstverständlich beispielsweise auch eine elektrische Kupplung verwendet werden kann. Schließlich ist insbesondere in Fig. 3 erkennbar, daß beim Rohrheizwärmetauscher 38 die Kontur der einzelnen Rohre so gestaltet ist, daß es zu einer Drallerzeugung mit dem Aufbau eines turbulenten Strömungsverlaufes im Prozeßgas kommt, wodurch eine maximale Wärmeaufnahme gewährleistet ist.
Zur Erhöhung der erzielbaren Energieausbeute ist ferner, wie in Fig. 5 dargestellt, eine den Rohrheiz¬ wärmetauscher 38 umgebende Strahlenfalle 49 vorgesehen. Diese weist bei einem zylindrischen Äußeren in ihrem Inneren eine trichterförmige, auf den Rohrheizwärme- tauscher 38 gerichtete Öffnung 50 auf, wobei die Wand¬ fläche 51 dieser Öffnung verspiegelt ist. Die gesamte Anordnung ist schließlich, wie in Fig. 6 gezeigt, im Zentrum eines sphärisch gewölbten, auf seiner Innen¬ seite ebenfalls verspiegelten Konzentrators 52 ge¬ haltert, durch den die einfallenden Sonnenstrahlen in
ERSATZBLATT Richtung auf den Rohrheizwärmetauscher 38 gebündelt werden.
In den Figuren 7 bis 10 sind Einzelheiten einer zweiten Energieerzeugungsanlage dargestellt, bei der ein wiederum aus vier Zylindern 61 bis 64 bestehender Stirlingmotor mit Scheibenkollektoren 77, 78 Adsorption der einfallenden Sonnenstrahlung kombiniert ist. Die Kolben 65 bis 68 der vier kreuzförmig angeordneten Zylinder 61 bis 64 wirken auch bei diesem Ausführungs- beispiel wieder auf ein zentral angeordnetes Kreuz¬ rädergetriebe 75, das sich in einem Gehäuse 76 befin¬ det. Während die Regeneratoren 71, 71 sowie die Kühler 69, 70 analog zu den vorstehend beschriebenen Anordnun¬ gen aufgebaut sind, sind die Erhitzer 73, 74 mit den bereits erwähnten Scheibenkollektoren 77, 78 gekoppelt. Der Aufbau eines solchen Scheibenkollektors ist dabei in den Figuren 9 und 10 dargestellt.
Wie erkennbar, wird die durch Pfeile gekennzeichnete einfallende Sonnenstrahlung von den auf einem vom Prozeßgas durchströmten Rohr 79 angeordneten scheiben¬ förmigen Kollektorflächen 80 adsorbiert und deren Energie auf das Prozeßgas übertragen.
Die gesamte Anordnung ist schließlich von einem ein¬ seitig offenen zylindrischen Schmelzspeicher 81 umge¬ ben. Dieser besteht aus einer Vielzahl von ringförmig angeordneten Röhren 82, die mit einem Schmelsalz oder mit einer Silber-Zinn-Legierung gefüllt sind und die als Wärmespeicher wirken. Der Einsatz eines derartigen Schmelspeichers ist insbesondere bei terrestrischen Solarenergie-Erzeugungsanlagen und bei im niedrigen Erd-Orbit fliegenden Raumstationen sinnvoll, um kurz¬ fristige Leistungsschwankungen, die durch den Erd¬ schatten oder durch Wolken bedingt sind, ausgleichen zu
ERSATZBLATT können. Auf der Außenseite des Schmelzspeichers 81 sowie unterhalb einer die Röhren 82 tragenden Grund¬ platte 83 ist ein Isoliermantel 84 angeordnet, um den Wirkungsgrad der Anordnung noch weiter zu erhöhen. Dem gleichen Zweck dient schließlich auch hier wieder eine Strahlenfalle 85, die zwischen den Erhitzern 73, 74 angeordnet ist.
In den Figuren nicht dargestellt ist schließlich die Verwendung von Wärmerohren zum Abtransport der bei den vorstehend beschriebenen Anordnungen entstehenden Ver¬ lustwärme der jeweils eingesetzten Stirlingmotoren.
ERSATZBLATT

Claims

P a t e n t a n s p r ü c h e
1. Energieerzeugungseinrichtung, insbesondere für Satelliten und Raumstationen, auf der Basis von Stirlingmotoren, dadurch gekennzeichnet, daß die Stirlingmotoren mit einer Vorrichtung (38, 49, 52, 77, 78, 81, 85) zur Adsorption von Strahlungswärme gekoppelt sind.
2. Energieerzeugungseinrichtung nach Anspruch 1, da¬ durch gekennzeichnet, daß die Erhitzer der Stirling¬ motoren zu einem strahlungsenergiebeaufschlagten Rohrheizwärmetauscher (38) zusammengefaßt sind.
3. Energieerzeugungseinrichtung nach Anspruch 2, da¬ durch gekennzeichnet, daß die einzelnen Rohre des Rohrheizwärmetauschers (38) eine drallerzeugende Anordnung bilden.
ERSATZBLATT
4. Energieerzeugungseinrichtung nach Anspruch 3, da¬ durch gekennzeichnet, daß der Rohrheizwärmetauscher (38) sphärisch ausgebildet ist und die Stirling¬ motoren schirmartig umgibt.
5. Energieerzeugungseinrichtung nach einem der An¬ sprüche 2 bis 4, dadurch gekennzeichnet, daß der
Rohrheizwärmetauscher (38) von einer trichterförmi¬ gen Strahlenfalle (49) beaufschlagbar ist.
6. Energieerzeugungseinrichtung nach einem der An¬ sprüche 2 bis 5, dadurch gekennzeichnet, daß der Rohrheizwärmetauscher (38) im Zentrum eines sphäri¬ schen Konzentrators (52) angeordnet ist.
7. Energieerzeugungseinrichtung nach Anspruch 1, da¬ durch gekennzeichnet, daß die Erhitzer (73, 74) der Stirlingmotoren mit Scheibenkollektoren (77, 78) verbunden sind.
8. Energieerzeugungseinrichtung nach Anspruch 7, da¬ durch gekennzeichnet, daß die Scheibenkollektoren (77, 78) die Stirlingmotoren kegelförmig umgeben.
9. Energieerzeugungseinrichtung nach Anspruch 8, da¬ durch gekennzeichnet, daß die Scheibenkollektoren (77, 78) im Inneren eines Schmelzwärmespeichers (81) angeordnet sind.
10. Energieerzeugungseinrichtung nach einem der An¬ sprüche 1 bis 9, dadurch gekennzeichnet, daß vier Stirlingmotoren kreuzförmig angeordnet sind.
11. Energieerzeugungseinrichtung nach Anspruch 10, da¬ durch gekennzeichnet, daß die Kolben (5-8, 33, 34, 65-68) der Stirlingmotoren mit einem zentrisch
ERSATZBLATT angeordneten Kreuzrädergetriebe (25, 75) verbunden sind.
12. Energieerzeugungseinrichtung nach Anspruch 11, da¬ durch gekennzeichnet, daß das Kreuzrädergetriebe (25, 75) über eine Magnetkupplung (47) mit einem Generator (46) verbunden ist.
13. Energieerzeugungseinrichtung nach einem der An¬ sprüche 1 bis 12, dadurch gekennzeichnet, daß die Anordnung modulförmig aufgebaut ist.
ERSATZBLATT
PCT/DE1994/001252 1993-10-29 1994-10-25 Energieerzeugungseinrichtung WO1995012065A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/635,939 US5735123A (en) 1993-10-29 1994-10-25 Energy generating system
EP94930926A EP0725895B1 (de) 1993-10-29 1994-10-25 Energieerzeugungseinrichtung
JP7512351A JPH09509711A (ja) 1993-10-29 1994-10-25 エネルギー発生装置
DE59405542T DE59405542D1 (de) 1993-10-29 1994-10-25 Energieerzeugungseinrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4336975A DE4336975A1 (de) 1993-10-29 1993-10-29 Energieerzeugungseinrichtung
DEP4336975.8 1993-10-29

Publications (1)

Publication Number Publication Date
WO1995012065A1 true WO1995012065A1 (de) 1995-05-04

Family

ID=6501344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/001252 WO1995012065A1 (de) 1993-10-29 1994-10-25 Energieerzeugungseinrichtung

Country Status (5)

Country Link
US (1) US5735123A (de)
EP (1) EP0725895B1 (de)
JP (1) JPH09509711A (de)
DE (2) DE4336975A1 (de)
WO (1) WO1995012065A1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7011813B2 (en) * 1990-08-09 2006-03-14 Research Triangle Institute Cocaine receptor binding ligands
DE19515106A1 (de) * 1995-04-25 1996-10-31 Bernhard Dietz Einrichtung zur Einstellung eines Senders oder Empfängers in Azimut- und Elevationsrichtung
US6779341B2 (en) * 2002-06-19 2004-08-24 Chin-Kuang Luo Method and apparatus for generating kinetic energy from thermal energy
EP1644630A1 (de) * 2003-07-01 2006-04-12 Philip Morris USA Inc. Prallwärmetauscher für eine stirlingkreislaufmaschine
US7081696B2 (en) 2004-08-12 2006-07-25 Exro Technologies Inc. Polyphasic multi-coil generator
DE102005042744A1 (de) * 2005-08-16 2007-04-26 Enerlyt Potsdam GmbH Energie, Umwelt, Planung und Analytik 4-Zyklen-Universalmaschine
EA201200033A1 (ru) 2006-06-08 2012-05-30 Эксро Технолоджис Инк. Устройство электрического генератора или двигателя
ITMO20070183A1 (it) 2007-05-29 2008-11-30 Kloben S A S Di Turco Adelino Apparato particolarmente per l'ottenimento di energia elettrica da energia solare
DE102007048639A1 (de) * 2007-10-10 2009-04-16 Roland Nagler Wärmekraftmaschine
ITRO20080004A1 (it) * 2008-07-03 2010-01-04 Roberto Brocadello Motore-pompa ad energia solare
EP2258947B1 (de) * 2009-06-03 2012-08-22 Thilo Dr. Ittner Modularer thermoelektrischer Wandler
US8671677B2 (en) * 2009-07-07 2014-03-18 Global Cooling, Inc. Gamma type free-piston stirling machine configuration
US8640454B1 (en) * 2010-02-27 2014-02-04 Jonathan P. Nord Lower costs and increased power density in stirling cycle machines
US8671685B2 (en) * 2010-03-08 2014-03-18 Tma Power, Llc Microturbine Sun Tracker
NL2007048C2 (en) 2011-07-05 2013-01-08 Solfence Holding B V Solar power installation.
EP2808528B1 (de) * 2013-05-27 2020-08-05 Neemat Frem Motor mit Flüssigkeitsausdehnung
MX2019012806A (es) 2017-05-23 2020-01-20 Dpm Tech Inc Configuracion de sistema de control de bobina variable, aparato y metodo.
CA3137550C (en) 2019-04-23 2024-05-21 Dpm Technologies Inc. Fault tolerant rotating electric machine
CN112012846A (zh) * 2019-05-31 2020-12-01 中国科学院理化技术研究所 一种自由活塞斯特林发动机
CA3217299A1 (en) 2021-05-04 2022-11-10 Tung Nguyen Battery control systems and methods
CN117337545A (zh) 2021-05-13 2024-01-02 Exro技术公司 驱动多相电机的线圈的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2151011A (en) * 1983-12-09 1985-07-10 Aisin Seiki Stirling cycle engines
DE3608797A1 (de) * 1986-03-15 1987-10-22 Rudolf Kiesslinger Waermeuebertrager fuer ultraschnelle, verlustarme fluid-aufheizung und -kuehlung, insbesondere in heissgasmotoren, stirlingmotoren und kaeltemaschinen
EP0332267A1 (de) * 1988-03-10 1989-09-13 Stirling Thermal Motors Inc. Solar-Verdampfer
DE3834071A1 (de) * 1988-10-06 1990-04-12 Heidelberg Goetz Waermekraftmaschine nach dem stirling-prinzip oder dem ericsen-prinzip
DE3907768A1 (de) * 1989-03-10 1990-09-13 Man Technologie Gmbh Solarbeheizter waermetauscher fuer hochtemperatur-anwendungen

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE875110C (de) * 1950-12-02 1953-04-30 Harald Schulze Getriebe zur Wandlung einer drehenden in eine geradlinig hin und her gehende Bewegung
US3277743A (en) * 1964-04-20 1966-10-11 Gen Motors Corp Crankshaft with floating crank throws
NL7606301A (nl) * 1976-06-11 1977-12-13 Philips Nv Heetgasmotor.
US4642988A (en) * 1981-08-14 1987-02-17 New Process Industries, Inc. Solar powered free-piston Stirling engine
US4395879A (en) * 1981-09-18 1983-08-02 Kommanditbolaget United Stirling Ab & Co. Hot gas engine heater head
JPH0639943B2 (ja) * 1985-02-25 1994-05-25 三洋電機株式会社 熱ガスエンジン用ヒ−タ−ヘツド
JPS62113851A (ja) * 1985-11-14 1987-05-25 Aisin Seiki Co Ltd スタ−リング機関用燃焼器
US4677825A (en) * 1986-06-12 1987-07-07 Fellows Oscar L Thermomotor
DE3723950A1 (de) * 1987-02-03 1988-08-11 Helmut Prof Dr Krauch Regenerative waermemaschine mit einem hypozykloidischen exzenter-kurbelgetriebe
JP2681076B2 (ja) * 1987-07-31 1997-11-19 尚次 一色 熱放射加熱スターリングエンジン
US5404723A (en) * 1991-03-12 1995-04-11 Solar Reactor Technologies, Inc. Fluid absorption receiver for solar radiation to power a Stirling cycle engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2151011A (en) * 1983-12-09 1985-07-10 Aisin Seiki Stirling cycle engines
DE3608797A1 (de) * 1986-03-15 1987-10-22 Rudolf Kiesslinger Waermeuebertrager fuer ultraschnelle, verlustarme fluid-aufheizung und -kuehlung, insbesondere in heissgasmotoren, stirlingmotoren und kaeltemaschinen
EP0332267A1 (de) * 1988-03-10 1989-09-13 Stirling Thermal Motors Inc. Solar-Verdampfer
DE3834071A1 (de) * 1988-10-06 1990-04-12 Heidelberg Goetz Waermekraftmaschine nach dem stirling-prinzip oder dem ericsen-prinzip
DE3907768A1 (de) * 1989-03-10 1990-09-13 Man Technologie Gmbh Solarbeheizter waermetauscher fuer hochtemperatur-anwendungen

Also Published As

Publication number Publication date
JPH09509711A (ja) 1997-09-30
DE4336975A1 (de) 1995-05-04
DE59405542D1 (de) 1998-04-30
EP0725895A1 (de) 1996-08-14
US5735123A (en) 1998-04-07
EP0725895B1 (de) 1998-03-25

Similar Documents

Publication Publication Date Title
EP0725895A1 (de) Energieerzeugungseinrichtung
DE102005013287B3 (de) Wärmekraftmaschine
DE3015815C2 (de) Heißgasmotor
WO1999017011A1 (de) Vorrichtung und verfahren zum transfer von entropie mit thermodynamischem kreisprozess
EP0725894B1 (de) Energieerzeugungseinrichtung
EP2258947B1 (de) Modularer thermoelektrischer Wandler
EP2657497B1 (de) Thermoelektrischer Wandler mit verbessertem Wärmeüberträger
WO2009071222A2 (de) System zur solarenergienutzung mit vorrichtung zur wärmeabgabe an die umgebung, verfahren zum betreiben des systems sowie verwendung
DE3017641A1 (de) Modul zum aufbau eines doppeltwirkenden stirling-vierzylindermotors
DE3336406A1 (de) Umlaufender fluessigkeitsmotor fuer ein thermodynamisches medium
DE10050715B4 (de) Solarwärme-Rakete
DE10107668B4 (de) Solarwärmerakete
WO2014037582A2 (de) Receiver für konzentrierte sonnenstrahlung
DE4317690A1 (de) Heissgasmotor
DE2917648A1 (de) Einrichtungen zur optimalen nutzung von solarenergie in form von heizwaerme und technischer arbeit
DE19527272C2 (de) Solarer Erhitzer für Stirling-Motoren
WO2003102403A1 (de) Verfahren und einrichtung zur umwandlung von wärmeenergie in kinetische energie
DE102009047946A1 (de) Solarthermisches Kraftwerk
DE19742660A1 (de) Verfahren und Vorrichtung zur Nutzung von Sonnenenergie oder Wärmequellen zur Transformation von Entropie
DE19742640A1 (de) Verfahren und Vorrichtung zur Transformation von Entropie
DE2744970B2 (de) Gasturbinenanlage
DE10035710A1 (de) Fossil beheiztes Kraftwerk
DE3331933A1 (de) Vorrichtung zur umwandlung von sonnenwaerme in mechanische und/oder hydraulische energie
DE2647720A1 (de) Verlustarmer sonnenkollektor mit waermerohr und waermespeicher
Pons et al. A dish-stirling solar-thermal power system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994930926

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08635939

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994930926

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994930926

Country of ref document: EP