WO1994030020A1 - Digital subcarrier regeneration apparatus for use in video signal processing - Google Patents

Digital subcarrier regeneration apparatus for use in video signal processing Download PDF

Info

Publication number
WO1994030020A1
WO1994030020A1 PCT/GB1994/001253 GB9401253W WO9430020A1 WO 1994030020 A1 WO1994030020 A1 WO 1994030020A1 GB 9401253 W GB9401253 W GB 9401253W WO 9430020 A1 WO9430020 A1 WO 9430020A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarrier
frequency
digital
input
samples
Prior art date
Application number
PCT/GB1994/001253
Other languages
French (fr)
Inventor
David Lyon
Stuart Somerville
Original Assignee
Snell & Wilcox Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snell & Wilcox Limited filed Critical Snell & Wilcox Limited
Priority to AU68552/94A priority Critical patent/AU6855294A/en
Publication of WO1994030020A1 publication Critical patent/WO1994030020A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/44Colour synchronisation
    • H04N9/455Generation of colour burst signals; Insertion of colour burst signals in colour picture signals or separation of colour burst signals from colour picture signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/87Regeneration of colour television signals
    • H04N9/8707Regeneration of colour television signals using a demodulator and a remodulator, e.g. for standard conversion

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

Subcarrier is regenerated digitally from a video signal which has a line frequency that cannot be assumed to be constant. Subcarrier samples at the line-locked frequency are compared, using digital or analogue means, with a reference subcarrier derived from a crystal locked oscillator. The frequency of the subcarrier samples is controlled in feedback to produce subcarrier of accurate frequency in the line-locked digital environment.

Description

DIGITAL SUBCARRIER REGENERATION APPARATUS FOR USE IN VIDEO SIGNAL PROCESSING
This invention relates -to digital video processing using colour subcarrier and, in the most important example, to chrominance demodulation.
One object of the present invention is to provide a circuit which allows synchronous demodulation of a composite video signal using a clock which is phase locked to the line rate of the composite signal. It will be understood that in a broadcast quality video signal, there will be a well-defined (albeit complex) relationship between the line frequency and the colour subcarrier frequency. To demodulate a composite signal synchronously, requires a high degree of subcarrier stability to prevent phase demodulation errors. Typically, a crystal oscillator which has been designed to operate at the subcarrier frequency is used for demodulation, because of its high degree of phase stability. It is a wide requirement for demodulation to be conducted on a video signal which is not necessarily of broadcast quality. A decoder may, for example, be required to handle signals from a video recorder. In such a circumstance, the line frequency may depart from its normal value, with the defined relationship between line frequency and colour subcarrier being lost. An oscillator which is locked to the line standard of the composite signal will track the deviations of the line frequency from its normal rate. In some cases, the deviation may be of the order of several percent, for example, when a video recorder is played in shuttle mode. If this clock is subsequently used to generate a subcarrier frequency for synchronous demodulation, the demodulation phase error may be excessive. In one known arrangement, the composite video signal is supplied to a line-locked clock generator which provides clock pulses locked to a multiple of the instantaneous line frequency. Where the line frequency of the video signal varies, the clock of course follows but an additional output is provided which represents the departure of the instantaneous line frequency from a reference value. A subcarrier synthesizer receives both the line- locked clock and the error signal and is able to generate subcarrier at the true frequency. A further control input is provided to enable the phase of the subcarrier to be controlled in burst locking.
Whilst this approach has some merit, it is only applicable in an environment where there is available an error signal representing the deviations of instantaneous line frequency. In many applications, the problem remains of generating in a digital environment locked to a non- standard line frequency, a digital subcarrier at the precise subcarrier frequency and at a phase sufficiently close to avoid excessive phase errors in the demodulation process. Accordingly, the present invention consists in one aspect in digital subcarrier regeneration apparatus for use in the processing of a video signal having a line frequency not assumed to be standard, comprising a subcarrier synthesizer having a control signal input and capable of providing subcarrier samples at a frequency determined by said control signal at a sample rate locked to said line frequency; comparator means for comparing said subcarrier samples with a reference at a stable frequency and means for applying the result of said comparison as the control signal to said subcarrier synthesizer, thereby to produce digital subcarrier at the appropriate fixed frequency.
In a further aspect, the present invention consists in a method 'of generating a digital subcarrier signal for synchronous demodulation of a composite video signal, comprising the steps of providing subcarrier samples at a controllable frequency and at a sample rate locked to the line frequency of said video signal; providing a reference at a stable frequency; comparing the subcarrier samples with said reference and controlling the frequency of said subcarrier samples in dependence upon the results of the said comparison.
The invention will now be described by way of example with reference to the accompanying drawings in which:-
Figure 1 is a diagram of a subcarrier regeneration circuit according to one embodiment of the present invention; Figure 2 is a diagram of a subcarrier regeneration circuit according to a second embodiment of the present invention; and
Figure 3 is a block diagram illustrating a decoder utilising subcarrier regeneration according to the present invention. Referring to Figure 1 , two digital synthesizers (10) and (12) generate the demodulator subcarrier frequency. For example, with a PAL video input, the synthesizers will be programmed to generate 4.43361875 MHz. The reference synthesizer (10) is clocked by a stable crystal source (14) at a nominal frequency which is greater than twice the subcarrier frequency, to satisfy Nyquist criteria. In one example, a reference frequency of 32 MHz is used. The subcarrier frequency which is generated in digital form by the reference synthesizer (10), has the same stability as the reference crystal which is used to clock the reference synthesizer.
Note, in theory any frequency could be synthesized and used for phase comparison. The subcarrier frequency is chosen because it can be used directly for demodulation of the composite waveform and therefore minimises the amount of circuitry required.
The second synthesizer (12) is clocked by an oscillator which is locked to the line rate of input video waveform at input terminal (16). A typical oscillator and phase lock mechanism is used to lock this oscillator to the input composite video. In one example, the oscillator frequency is 27 MHz which is an integral multiple of the input line rate (1728 X line rate for 625 line standards and 1716 X line rate for 525 line standards). Each output of the two synthesizers is converted to an analogue signal by an 8-bit digital to analogue converter (18), which is then low pass filtered in respective filters (20) to remove alias energy at the output. The two analogue signals are then mixed by an analogue mixer (22) to generate a low frequency product which is the instantaneous phase error between the two signals. The phase error signal passes to an amplifier (24) and a low pass filter (26) before being converted to an 8-bit digital signal using an analogue to digital converter (28) with a sample rate which is locked to line frequency. In the present example, the sample frequency is 3.375 MHz which is one eighth of the 27 MHz frequency of the oscillator for the second synthesizer (12).
Accordingly, any change in frequency of the line-locked oscillator which has been caused by deviations in line frequency, will cause an instantaneous phase error to be generated at the output of the analogue to digital converter (28). Effectively, the inherent stability of the free running reference crystal (14) has been used for comparison with the line locked oscillator. A digital processing block (30) converts the instantaneous phase error to a frequency offset value using proportional and integrated contributions from the instantaneous phase sample. In the present example, the phase error is sampled approximately every 300 nsec. The frequency offset value, which is formatted into two 16-bit words, is written to the subcarrier synthesizer (12) once every 600 nsec. Hence, in this example, the update rate is one sixteenth of the frequency of the line-locked oscillator which is approximately 1.7 MHz.
To complete the process of generating a subcarrier at the correct frequency and phase for accurate demodulation, a burst phase error signal, which is generated when the subcarrier frequency is mixed with the composite waveform during the period of the burst, is used to control the phase of the synthesized subcarrier.
The burst phase error which has been converted to a frequency offset error by taking proportional and integrated contributions from each phase error measurement, is sent to the reference synthesizer once per line. The reference synthesizer then produces a subcarrier frequency which is phase- locked to the subcarrier frequency from the input composite signal.
The mechanism of phase tracking between the reference and subcarrier synthesizers which has been described above, then adjusts the subcarrier synthesizer so that it also is phase-locked to the input. An output can be taken from the subcarrier synthesizer as shown at an output terminal (32). ln summary, the circuit described above will compare a stable crystal frequency with that generated by an oscillator which is locked to the line rate of a composite input signal. The error signal is then used to adjust the synthesised subcarrier frequency to maintain a constant subcarrier frequency which is independent of line rate deviations.
The secondary step of ensuring phase locking between regenerated subcarrier and incoming chrominance need not necessarily be conducted by controlling the phase of the reference; a separate phase shifter could as an alternative be added at the subcarrier output of the described apparatus. Also, the phase locking could be combined in the phase and frequency correction steps previously described.
A further embodiment of the present invention will now be described with reference to Figure 2. This embodiment employs digital rather than analogue techniques for comparing two signals and is therefore better suited to integrated circuit implementation.
A digital subcarrier generator (50) receives at input (52) a clock locked to the line syncs of the input video and generates a sequence of subcarrier samples. These subcarrier samples are compared in phase discriminator (54) with samples from a stable, crystal locked subcarrier frequency oscillator (56). These samples are provided through analogue to digital converter (58), again clocked by the line-locked clock derived from the input video. The phase discriminator (54) includes a loop filter and provides an error signal to the digital subcarrier generator (50) to enable it to provide at output terminal (60) digital subcarrier samples at the subcarrier frequency set by the stable oscillator (56), at the required sample rate locked to line frequency. More specifically, a phase accumulator in subcarrier generator (50) is incremented once per sample clock with the size of the increment is modified by the error signal from the phase discriminator (54). The output of the phase accumulator is used to address a look-up table which provides the subcarrier samples.
It will be observed that the characteristics of the feedback loop through phase discriminator (54) can be chosen to provide a resilience to quantisation or other errors in the ADC (68) whilst preserving sufficient bandwidth to track instabilities in the line-locked clock.
The stable, subcarrier frequency oscillator (56) is provided at input terminal (62) with a chrominance signal from the input video signal to enable the subcarrier to be burst locked to the input video.
The error signal from the phase discriminator (54) can be made available on a line (64) for subsequent use in the video processing. Thus, for example, where demodulation is conducted at an early stage in the decoding of a composite signal, what is demodulated will include not only chrominance but also high frequency luminance. After separation in a comb filter with line and perhaps field delays, the "demodulated" high frequency luminance will require to be "modulated" before combination with low frequency luminance. In the case where the signal has been delayed in the comb by one or more fields, there may be a significant difference between subcarrier as it is currently being regenerated and the regenerated subcarrier that was used to "demodulate" the high frequency luminance. By keeping track of the error signal on line (64) the "re-modulation" of high frequency luminance can be conducted using the historically correct subcarrier. This approach can be described in more detail with reference to
Figure 3, which is a block diagram illustrating a decoder which makes use of subcarrier regeneration according to the present invention.
A composite video signal at input terminal (100) is taken to high and low pass filters (102, 104) respectively. The output of the high pass filter (102), being chrominance and high frequency luminance, is taken to a demodulator (106). This receives subcarrier from a subcarrier regeneration unit (108) which is in accordance with, for example, Figure 2. Thus, the subcarrier regenerator (108) receives as inputs a line-locked clock and a colour burst signal and produces as outputs, the subcarrier and an error signal.
The outputs of the demodulator (106) (broadly U and V but including in both cases high frequency luminance) are taken to a Y, UV separator (110) which outputs U, V and "demodulated" Y. This latter signal is passed to a modulator (112) receiving subcarrier from a further subcarrier regenerator (114) in accordance with the present invention. This subcarrier regenerator is broadly in accordance with the Figure 2 embodiment but has a further input terminal receiving the error signal from subcarrier regenerator
(108), through a matching delay (116). This delayed error signal is used in subcarrier regenerator (114) to ensure that the subcarrier supplied to modulator (112) corresponds with that used at the relevant time for demodulation. If appropriate, colour burst information can be included in the error signal to remove the need for a colour burst input in the second subcarrier regenerator.
The output from modulator (112) is combined in adder (118) with the output of low pass filter (104) through a further matching delay (120).
It was noted above, in relation to the first embodiment, that operating at the subcarrier frequency offers economy of processing but is not an essential requirement. In a specific example of a multi-standard decoder, a common frequency can be chosen for the stable reference which is used, as appropriate, to derive the PAL or NTSC subcarrier frequency.
Whilst the specific description given above has concentrated on chrominance demodulation, there are other applications in which it is necessary to regenerate subcarrier. Examples are colour correction, special effects and the correction of phase errors.

Claims

1. Digital subcarrier regeneration apparatus for use in the processing of a video signal having a line frequency not assumed to be standard, comprising a subcarrier synthesizer having a control signal input and capable of providing subcarrier samples at a frequency determined by said control signal at a sample rate locked to said line frequency; comparator means for comparing said subcarrier samples with a reference at a stable frequency and means for applying the result of said comparison as the control signal to said subcarrier synthesizer, thereby to produce digital subcarrier at the appropriate fixed frequency.
2. Apparatus according to Claim 1 , further comprising an input for said reference subcarrier connected with an analogue to digital converter clocked at said line frequency, the comparator means comprising a phase discriminator operating on said subcarrier samples and said digitised reference subcarrier.
3. Apparatus according to Claim 1 or Claim 2, further comprising means for burst locking the phase of said reference subcarrier to the input video signal.
4. Apparatus according to Claim 1 , wherein said comparator means comprises a digital to analogue converter operating on said subcarrier samples, and means for non-linear mixing the converted analogue signal with the reference subcarrier in analogue form.
5. Apparatus according to Claim 4, wherein the means for applying the result of said comparison comprises a digital processor.
6. Apparatus according to any one of the preceding claims, for use in chrominance demodulation.
7. A method of generating a digital subcarrier signal comprising the steps of providing subcarrier samples at a controllable frequency and at a sample rate locked to the line frequency of said video signal; providing a reference at a stable frequency; comparing the subcarrier samples with said reference and controlling the frequency of said subcarrier samples in dependence upon the results of the said comparison.
8. A method according to Claim 8, for synchronous chrominance demodulation of a composite video signal.
9. A method according to Claim 9, further comprising the step of making the results of said comparison available as an error signal for subsequent re-modulation.
10. A digital video colour decoder including a chrominance demodulator having a subcarrier input and digital subcarrier regeneration apparatus according to any one of Claims 1 to 6, connected with said subcarrier input.
11. A decoder according to Claim 10, further comprising a luminance/chrominance separator receiving an output from said demodulator and providing luminance and chrominance information; a modulator operating on said luminance information and having a subcarrier input and a second digital subcarrier regeneration apparatus according to any one of Claims 1 to 6 connected with said subcarrier input of the modulator.
12. A decoder according to Claim 11 , wherein said first digital subcarrier regeneration apparatus outputs an error signal received after appropriate delay as an input to the second digital subcarrier regeneration apparatus.
PCT/GB1994/001253 1993-06-10 1994-06-10 Digital subcarrier regeneration apparatus for use in video signal processing WO1994030020A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU68552/94A AU6855294A (en) 1993-06-10 1994-06-10 Digital subcarrier regeneration apparatus for use in video signal processing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9311953.5 1993-06-10
GB939311953A GB9311953D0 (en) 1993-06-10 1993-06-10 Demodulation

Publications (1)

Publication Number Publication Date
WO1994030020A1 true WO1994030020A1 (en) 1994-12-22

Family

ID=10736923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1994/001253 WO1994030020A1 (en) 1993-06-10 1994-06-10 Digital subcarrier regeneration apparatus for use in video signal processing

Country Status (3)

Country Link
AU (1) AU6855294A (en)
GB (1) GB9311953D0 (en)
WO (1) WO1994030020A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0716550A3 (en) * 1994-12-09 1997-06-11 Plessey Semiconductors Ltd Oscillatory signal generator arrangement
KR100477646B1 (en) * 2002-05-29 2005-03-23 삼성전자주식회사 Apparatus for compensating color carrier of image signal and method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0111981A1 (en) * 1982-12-22 1984-06-27 Koninklijke Philips Electronics N.V. Demodulation circuit for a digitized chrominance signal
US4689664A (en) * 1984-09-03 1987-08-25 U.S. Philips Corporation Circuit arrangement for deriving digital color signals from an analog television signal
EP0239413A2 (en) * 1986-03-28 1987-09-30 RCA Thomson Licensing Corporation Phase locked loop stabilization circuitry
EP0328207A1 (en) * 1988-02-10 1989-08-16 Koninklijke Philips Electronics N.V. Color television signal decoding circuit
US5025310A (en) * 1989-03-23 1991-06-18 Hitachi, Ltd. Clock pulse generator capable of being switched to process both standard and non-standard television signals
EP0535945A2 (en) * 1991-09-30 1993-04-07 Kabushiki Kaisha Toshiba Digital oscillator and color subcarrier demodulation circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0111981A1 (en) * 1982-12-22 1984-06-27 Koninklijke Philips Electronics N.V. Demodulation circuit for a digitized chrominance signal
US4689664A (en) * 1984-09-03 1987-08-25 U.S. Philips Corporation Circuit arrangement for deriving digital color signals from an analog television signal
EP0239413A2 (en) * 1986-03-28 1987-09-30 RCA Thomson Licensing Corporation Phase locked loop stabilization circuitry
EP0328207A1 (en) * 1988-02-10 1989-08-16 Koninklijke Philips Electronics N.V. Color television signal decoding circuit
US5025310A (en) * 1989-03-23 1991-06-18 Hitachi, Ltd. Clock pulse generator capable of being switched to process both standard and non-standard television signals
EP0535945A2 (en) * 1991-09-30 1993-04-07 Kabushiki Kaisha Toshiba Digital oscillator and color subcarrier demodulation circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0716550A3 (en) * 1994-12-09 1997-06-11 Plessey Semiconductors Ltd Oscillatory signal generator arrangement
US5815214A (en) * 1994-12-09 1998-09-29 Plessey Semiconductors Limited Oscillatory signal generator arrangement
KR100477646B1 (en) * 2002-05-29 2005-03-23 삼성전자주식회사 Apparatus for compensating color carrier of image signal and method therefor

Also Published As

Publication number Publication date
GB9311953D0 (en) 1993-07-28
AU6855294A (en) 1995-01-03

Similar Documents

Publication Publication Date Title
CA1305787C (en) Digital phase locked loop stabilization circuitry
KR950012955B1 (en) Phase locked loop stabilization circuitry
US6014176A (en) Automatic phase control apparatus for phase locking the chroma burst of analog and digital video data using a numerically controlled oscillator
CA1257381A (en) Phase locked loop system
US4745463A (en) Generalized chrominance signal demodulator for a sampled data television signal processing system
US4689664A (en) Circuit arrangement for deriving digital color signals from an analog television signal
US5243412A (en) Circuit for generating a clock signal which is locked to a specific phase of a color burst signal in a color video signal
AU597969B2 (en) Frequency division multiplexed analog to digital converter
KR930011590B1 (en) Phase locked loop system
JPH0591522A (en) Digital oscillator and chrominance subcarrier reproducing circuit using same
US5303061A (en) Apparatus for rejecting time base error of video signal
US6034735A (en) Clock generator for digital video signal processing apparatus
WO1994030020A1 (en) Digital subcarrier regeneration apparatus for use in video signal processing
US5644606A (en) Receiver with two synchronization loops
EP0777391B1 (en) Apparatus with A/D converter for processing television signal
US4633298A (en) Digitally controlled phase locked loop system having coarse and fine locking modes
JP3249363B2 (en) Clock recovery circuit
JP3081350B2 (en) Time base collector circuit for color signal
JP3249365B2 (en) Sampling clock recovery circuit
JP3152929B2 (en) FM signal demodulation method and FM detector
JP2659464B2 (en) Magnetic recording / reproducing device
JPS647556B2 (en)
JPH09154040A (en) Dc restoration circuit
JP3249364B2 (en) Clock recovery circuit
JPH0946720A (en) Digital chroma decoder

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 454354

Date of ref document: 19950929

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase