WO1994029747A1 - Dispositif de reduction du flux d'un rayonnement, notamment gamma, et ensemble de detection du rayonnement utilisant ce dispositif - Google Patents

Dispositif de reduction du flux d'un rayonnement, notamment gamma, et ensemble de detection du rayonnement utilisant ce dispositif Download PDF

Info

Publication number
WO1994029747A1
WO1994029747A1 PCT/FR1994/000707 FR9400707W WO9429747A1 WO 1994029747 A1 WO1994029747 A1 WO 1994029747A1 FR 9400707 W FR9400707 W FR 9400707W WO 9429747 A1 WO9429747 A1 WO 9429747A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
axis
angle
opening
rotation
Prior art date
Application number
PCT/FR1994/000707
Other languages
English (en)
Inventor
Jean-Baptiste Porcher
Hugues Haedrich
Original Assignee
S.T.M.I. - Societe Des Techniques En Milieu Ionisant
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S.T.M.I. - Societe Des Techniques En Milieu Ionisant filed Critical S.T.M.I. - Societe Des Techniques En Milieu Ionisant
Publication of WO1994029747A1 publication Critical patent/WO1994029747A1/fr

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation

Definitions

  • the present invention relates to a device for reducing the flux of radiation, in particular ⁇ , and a radiation detection assembly using this device.
  • the object of the present invention is to remedy this drawback by proposing a device which makes it possible to reduce the flux of radiation without modifying the geometry of the measurement and in particular by retaining exploitable information in the low energy field.
  • This device is particularly useful in the case of the measurement of high counting rates, in order not to saturate the detection chain used for the measurement.
  • the subject of the present invention is a device for reducing the flux of a radiation which it is desired to detect in a solid angle called the solid detection angle, this device being characterized in that it comprises: - a part able to attenuate the radiation and provided with an opening extending from the edge of the part to the center of the latter, and
  • the opening of the part is preferably delimited by rectilinear edges containing the axis of rotation.
  • the part comprises two half-discs which have the same diameter and the same axis, the latter forming the axis of rotation, the one of these half-discs partially covering the other, so that the respective edges of the opening are in diametrical planes of the half-discs, which defines four sectors, namely a sector corresponding to the opening, a other sector corresponding to the overlapping of the half-discs and two other sectors each corresponding to a part of a half-disc not covered by the other half-disc.
  • this device further comprises means for varying the angle delimited by the edges of the opening of the part, in order to be able to adjust this angle to a desired value.
  • the respective faces of the half-discs, faces which do not partially overlap have a convexity such that, in each sector, the thickness of the part traversed by the radiation is constant, whatever the angle of incidence of the radiation with respect to the axis of rotation.
  • the present invention is particularly useful for reducing the flux of ⁇ radiation. Said part is then able to attenuate this ⁇ radiation.
  • the invention can also be used to reduce the flux of X-radiation or of radiation located in the far ultraviolet or else of high energy ⁇ radiation.
  • the present invention also relates to a radiation detection assembly, this assembly comprising: - a radiation detector, - a collimator which delimits a solid angle for detecting radiation, and a device for reducing the flux of radiation, which is placed opposite this collimator, this assembly being characterized in that the device is that which is the subject of the present invention, in that the axis of rotation of the part that the device comprises is coincident with the axis of the solid detection angle and in that this part is placed so that all of the radiation included in the solid detection angle crosses this room and the opening of it.
  • FIG. 1 is a schematic and partial view of a radiation detection assembly using a device according to the invention.
  • FIG. 2 is a schematic sectional view of a device according to the invention usable in the assembly shown in Figure 1.
  • the assembly according to the invention which is schematically shown in Figure 1, is intended to the measurement of a ⁇ radiation coming from an extended source 2 of ⁇ radiation, that is to say a source distributed in space (volume or surface ⁇ source).
  • This set includes:
  • a cone-shaped collimator 8 the axis of which bears the reference X and which delimits a solid angle for detecting ⁇ radiation, the axis of the solid angle being the axis X, and a device 10 for reducing the flux ⁇ radiation according to the invention, which is placed opposite this collimator 8.
  • This device 10 makes it possible to reduce the flux of the ⁇ radiation which comes from the source 2 (for example constituted by a package) and which arrives on the collimated detector 4, without modifying the geometry of the measurement.
  • This device 10 which is schematically represented in section in FIG. 2, comprises a part made up of two half-discs 12 and 14 which can be seen in FIG. 1.
  • These two half-discs 12 and 14 are made of a high density material, for example tungsten, so as to be able to attenuate the radiation there.
  • the thickness of the half-discs is sufficient for the attenuation of ⁇ radiation of energies below 2500 keV to be at least equal to 100.
  • This thickness can be chosen so that the attenuation of the ⁇ radiation of 2100 keV is greater than 500.
  • the half-discs 12 and 14 have the same diameter and the same axis (by "axis of a half-disc” means the axis of the corresponding complete disc), this axis forming l axis of the part and being coincident with the axis X of the solid detection angle.
  • one of the half-discs, referenced 12 partially covers the other half-disc 14 and is thus located opposite the detector 4 while the other half-disc 14 is between the half-disc 12 and the source 2 of ⁇ radiation.
  • the part constituted by these two half-discs has an opening, the respective edges are in diametrical planes 12a, 14a of the half-discs, these diametrical planes containing the axis X.
  • the device according to the invention comprises means for varying the angle ⁇ , means which will be described with reference to FIG. 2.
  • This device according to the invention also includes means for rotating the assembly two half-discs 12 and 14 around the axis X which also constitutes the axis of the part, these means also being described in more detail below with reference to FIG. 2.
  • the means for adjusting this angle ⁇ make it possible to vary it between 0 ° and 180 °.
  • the assembly of the two half-discs 12 and 14 is placed by relative to the detector 4 of ⁇ radiation, so that all of the ⁇ radiation included in the solid detection angle passes through the two half-discs and the opening delimited by them.
  • this circle surrounds the cone which defines the solid angle of detection. Under these conditions, this solid detection angle is scanned entirely after one revolution of the part constituted by the half-discs 12 and 14.
  • the direct flux ⁇ (E) (corresponding to the non-scattered ⁇ radiation), "seen” by the detector 4, for an energy E of the ⁇ radiation, can be defined as follows :
  • ⁇ o (E) represents the flux at the level of the detector 4 without the device according to the invention which makes it possible to reduce the flux of the radiation ⁇ of energy E
  • a (E) represents the attenuation of each half-disc for ⁇ radiation of energy E, this attenuation being determined before the measurement of the ⁇ radiation and taken into account in the calculation of the flux.
  • the above formula allows, from the measured flux ⁇ (E), to determine the flux ⁇ o (E) and therefore to use the transfer function calculated without the device.
  • the device 10 according to the invention is schematically represented in section in FIG. 2, along a plane containing the axis X.
  • This device comprises a first toothed ring 16 which surrounds and holds the half-disc 12 and a second toothed ring 18 which surrounds and holds the half-disc 14.
  • the first toothed ring 16 is mounted to rotate on the second toothed ring 18 by means of a ball bearing 20, while this second toothed ring 18 is mounted to rotate on a support 22, forming the support of the device, thanks to another ball bearing. 24.
  • FIG. 2 also shows means 26 for adjusting the angle ⁇ defined above and for immobilizing the half-disc 12 relative to the half-disc 14 when the angle ⁇ has been set to the desired value.
  • These means 26, which can be produced by a person skilled in the art, comprise a knurled button 28 which is rigidly secured to a pinion 30 whose axis of rotation Y is parallel to the axis X and whose rotation causes the toothed ring 16 in rotation about the axis X.
  • the pinion 30 is provided with a mechanism not shown making it possible to block the rotation of this pinion 30 and therefore to block the rotation of the toothed ring 16 relative to the toothed ring 18, when the desired ⁇ value is obtained.
  • FIG. 2 also shows means 32 for rotating all of the half-discs 12 and 14 around the axis X.
  • These rotation means 32 comprise a motor 34 which is mounted on the support 22 and which drives in rotation about an axis Z parallel to the X axis, thanks to a belt 36, another pinion 38 which in turn drives the toothed ring 18.
  • the upper face of the half-disc 12, which is closest to the detector 4, and the underside of the half-disc 14, which is the farthest from this detector 4 are convex, the convexity of these faces being calculated in such a way that, in each of the sectors I to IV, the thickness of the part constituted by the two half-discs 12 and 14, thickness traversed by the ⁇ radiation included in the solid detection angle and reaching the detector 4, is constant, whatever the angle of incidence of this ⁇ radiation relative to the X axis of the part.
  • Such convexity of these faces is very important when the collimator has a large opening angle.
  • this convexity imposes a well-determined position of the device 10 for reducing flux relative to the detector 4.
  • this rotation speed is low, that is to say if the number of revolutions carried out during the counting time set by the users is low, this number of revolutions should be integer to have good accuracy of measurement.
  • the distance between the detector 4 and all of the two half-discs 12 should be and 14 is such that the side effects on the half-discs can be considered negligible.
  • This device is simple and makes it possible to reduce the flow of direct ⁇ radiation "seen" by a significantly collimated ⁇ spectrometry detector.
  • a ratio ⁇ (E) / rapporto (E) little different from 1/36 for an angle ⁇ of the order of 10 ° and a thickness thousandth attenuation, or little different from 1/26 for this same angle ⁇ but a hundredth thickness of attenuation.
  • the attenuation of the device can be established with great precision.
  • the mechanical adjustment of the angle ⁇ can be obtained with great precision.
  • the detector can be considered as punctual the edge effects are negligible.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Measurement Of Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Ce dispositif comprend une pièce (12, 14) atténuant le rayonnement et pourvue d'une ouverture s'étendant du bord de la pièce jusqu'au centre de celle-ci, et des moyens de rotation de la pièce autour d'un axe qui passe par le centre de celle-ci. En faisant coïncider cet axe avec l'axe (X) de l'angle solide de détection, en plaçant la pièce de façon que la totalité du rayonnement compris dans cet angle solide traverse la pièce et l'ouverture de celle-ci et en faisant tourner la pièce, l'angle solide de détection est balayé en totalité au bout d'un tour de la pièce. L'ensemble de détection comprend ce dispositif (10), un détecteur (4) du rayonnement et un collimateur (8) du rayonnement.

Description

DISPOSITIF DE REDUCTION DU FLUX D'UN RAYONNEMENT,
NOTAMMENT GAMMA, ET ENSEMBLE DE DETECTION DU
RAYONNEMENT UTILISANT CE DISPOSITIF La présente invention concerne un dispositif de réduction du flux d'un rayonnement, notamment γ, et un ensemble de détection du rayonnement utilisant ce dispositif.
Lorsqu'on mesure l'activité d'une source de rayonnement, et en particulier l'activité d'une source intense, il est connu de réduire le flux du rayonnement issu de la source avant de détecter celui-ci.
Pour ce faire, il est connu, notamment dans l'e domaine de la spectrométrie γ, d'interposer des écrans fixes entre la source de rayonnement et un détecteur de ce rayonnement.
Ceci présente toutefois l'inconvénient de modifier la "géométrie de la mesure" et notamment de dégrader le spectre en énergie de la source de rayonnement surtout pour les faibles énergies, une conséquence de ce phénomène étant la perte totale d'information sur certains radioéléments émetteurs de faible énergie.
La présente invention a pour but de remédier à cet inconvénient en proposant un dispositif qui permet de réduire le flux d'un rayonnement sans modifier la géométrie de la mesure et en particulier en conservant une information exploitable dans le domaine des faibles énergies. Ceci signifie que la même fonction de transfert (que l'on calcule et qui permet de trouver l'activité de la source de rayonnement à partir de l'information fournie par le détecteur) est utilisable avec le dispositif de l'invention ou sans ce dispositif. Ce dispositif est particulièrement utile dans le cas de la mesure de forts taux de comptage, afin de ne pas saturer la chaîne de détection utilisée pour la mesure. De façon précise, la présente invention a pour objet un dispositif de réduction du flux d'un rayonnement que l'on veut détecter dans un angle solide appelé angle solide de détection, ce dispositif étant caractérisé en ce qu'il comprend : - une pièce apte à atténuer le rayonnement et pourvue d'une ouverture s'étendant du bord de la pièce jusqu'au centre de celle-ci, et
- des moyens de rotation de la pièce autour d'un axe qui est appelé axe de la rotation et qui passe par le centre de celle-ci, de sorte qu'en faisant coïncider cet axe avec l'axe de l'angle solide de détection, en plaçant la pièce de façon que la totalité du rayonnement compris dans cet angle solide traverse la pièce et l'ouverture de celle- ci et en faisant tourner la pièce autour de l'axe de rotation, l'angle solide de détection est balayé en totalité au bout d'un tour de la pièce.
Afin de simplifier la réalisation de ce dispositif, l'ouverture de la pièce est de préférence délimitée par des bords rectilignes contenant l'axe de rotation.
Selon un-mode de réalisation particulier du dispositif objet de l'invention, dont la réalisation est simple, la pièce comprend deux demi-disques qui ont le même diamètre et le même axe, celui-ci formant l'axe de rotation, l'un de ces demi-disques recouvrant l'autre en partie, de sorte que les bords respectifs de l'ouverture sont dans des plans diamétraux des demi- disques, ce qui définit quatre secteurs, à savoir un secteur correspondant à l'ouverture, un autre secteur correspondant au recouvrement des demi-disques et deux autres secteurs correspondant chacun à une partie d'un demi-disque non recouverte par l'autre demi-disque.
De préférence, ce dispositif comprend en outre des moyens de variation de l'angle délimité par les bords de l'ouverture de la pièce, afin de pouvoir régler cet angle à une valeur souhaitée.
Selon un mode de réalisation préféré du dispositif objet de l'invention, les faces respectives des demi-disques, faces qui ne se recouvrent pas en partie, ont une convexité telle que, dans chaque secteur, l'épaisseur de pièce traversée par le rayonnement est constante, quel que soit l'angle d'incidence du rayonnement par rapport à 1'axe de rotation.
Ceci permet de réduire les incertitudes relatives à la mesure de l'intensité du rayonnement.
La présente invention est particulièrement utile pour la réduction du flux d'un rayonnement γ. Ladite pièce est alors apte à atténuer ce rayonnement γ.
Cependant, l'invention est également utilisable pour réduire le flux d'un rayonnement X ou d'un rayonnement situé dans l'ultraviolet lointain ou encore d'un rayonnement β de forte énergie.
La présente invention a également pour objet un ensemble de détection d'un rayonnement, cet ensemble comprenant : - un détecteur du rayonnement, - un collimateur qui délimite un angle solide de détection du rayonnement, et un dispositif de réduction du flux du rayonnement, qui est placé en face de ce collimateur, cet ensemble étant caractérisé en ce que le dispositif est celui qui fait l'objet de la présente invention, en ce que l'axe de rotation de la pièce que comprend le dispositif est confondu avec l'axe de l'angle solide de détection et en ce que cette pièce est placée de façon que la totalité du rayonnement compris dans l'angle solide de détection traverse cette pièce et l'ouverture de celle-ci.
La présente invention sera mieux comprise à la lecture de la description d'un exemple de réalisation donné ci-après à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels : la figure 1 est une vue schématique et partielle d'un ensemble de détection de rayonnement utilisant un dispositif conforme à l'invention, et
- la figure 2 est une vue en coupe schématique d'un dispositif conforme à l'invention utilisable dans l'ensemble représenté sur la figure 1. L'ensemble conforme à l'invention, qui est schématiquement représenté sur la figure 1, est destiné à la mesure d'un rayonnement γ issu d'une source étendue 2 de rayonnement γ, c'est-à-dire une source distribuée dans l'espace (source γ volumique ou surfacique) .
Cet ensemble comprend :
- un détecteur 4 de rayonnement γ associé à une chaîne 6 de spectrométrie γ,
- un collimateur 8 en forme de cône dont l'axe porte la référence X et qui délimite un angle solide de détection du rayonnement γ, l'axe de l'angle solide étant l'axe X, et un dispositif 10 de réduction du flux du rayonnement γ conforme à l'invention, qui est placé en face de ce collimateur 8. Ce dispositif 10 permet de réduire le flux du rayonnement γ qui est issu de la source 2 (par exemple constituée par un colis) et qui arrive sur le détecteur 4 collimaté, sans modifier la géométrie de la mesure.
Ce dispositif 10, qui est schématiquement représenté en coupe sur la figure 2, comprend une pièce constituée de deux demi-disques 12 et 14 que l'on voit sur la figure 1. Ces deux demi-disques 12 et 14 sont faits d'un matériau de forte densité, par exemple J-e tungstène, de manière à pouvoir atténuer le rayonnement y.
Dans l'exemple représenté, l'épaisseur des demi-disques est suffisante pour que l'atténuation des rayonnements γ d'énergies inférieures à 2500 keV soit au moins égale à 100.
Cette épaisseur peut être choisie de façon que l'atténuation des rayonnements γ de 2100 keV soit supérieure à 500.
Comme on le voit sur la figure 1, les demi- disques 12 et 14 ont le même diamètre et le même axe (par "axe d'un demi-disque" on entend l'axe du disque complet correspondant), cet axe formant l'axe de la pièce et étant confondu avec l'axe X de l'angle solide de détection.
Comme on le voit sur la figure 1, l'un des demi-disques, référencé 12, recouvre partiellement l'autre demi-disque 14 est se trouve ainsi en regard du détecteur 4 tandis que l'autre demi-disque 14 est compris entre le demi-disque 12 et la source 2 de rayonnement γ.
Du fait de ce recouvrement partiel d'un demi-disque par rapport à l'autre, la pièce constituée par ces deux demi-disques comporte une ouverture dont les bords respectifs sont dans des plans diamétraux 12a, 14a des demi-disques, ces plans diamétraux contenant l'axe X.
On définit ainsi quatre secteurs, à savoir un secteur I qui correspond à l'ouverture et dont l'angle est noté α, un autre secteur II qui correspond au recouvrement des demi-disques et dont l'angle vaut également α, un secteur III correspondant à une partie du demi-disque 12 non recouverte par le demi-disque 14 et un secteur IV correspondant à une partie du demi- disque 14 non recouverte par le demi-disque 12.
On voit sur la figure 1 que la face inférieure (plane) du demi-disque 12 est dans le même plan que la face supérieure (également plane) du demi- disque 14.
De plus, le dispositif conforme à l'invention comprend des moyens de variation de l'angle α, moyens qui seront décrits en faisant référence à la figure 2. Ce dispositif conforme à l'invention comprend aussi des moyens de rotation de l'ensemble des deux demi-disques 12 et 14 autour de l'axe X qui constitue également l'axe de la pièce, ces moyens étant également décrits plus en détail par la suite en faisant référence à la figure 2.
Au cours de cette rotation, l'angle α (écart angulaire entre les deux demi-disques) reste constant.
Les moyens de réglage de cet angle α permettent de faire varier celui-ci entre 0° et 180°.
Ainsi, il est possible de faire varier l'obturation de l'angle solide de détection de la moitié de cet angle solide jusqu'à sa totalité.
En outre, comme on le voit sur la figure 1, l'ensemble des deux demi-disques 12 et 14 est placé par rapport au détecteur 4 de rayonnement γ, de façon que la totalité du rayonnement γ compris dans l'angle solide de détection traverse les deux demi-disques et l'ouverture délimitée par ceux-ci. Ainsi, en considérant un cercle qui est situé au niveau des demi-disques 12 et 14, dont l'axe est l'axe X et dont le diamètre est égal au diamètre de ces demi-disques 12 et 14, ce cercle entoure le cône qui délimite l'angle solide de détection. Dans ces conditions, cet angle solide de détection est balayé en totalité au bout d'un tour de la pièce constituée par les demi-disques 12 et 14.
Au bout d'un tour de l'ensemble des demi- disques, le flux direct Φ(E) (correspondant au rayonnement γ non diffusé) , "vu" par le détecteur 4, pour une énergie E du rayonnement γ, peut être défini de la façon suivante :
Φθ(E). (A(E))2
Figure imgf000009_0001
où Φo(E) représente le flux au niveau du détecteur 4 sans le dispositif conforme à l'invention qui permet de réduire le flux du rayonnement γ d'énergie E, et A(E) représente l'atténuation de chaque demi-disque pour des rayonnements γ d'énergie E, cette atténuation étant déterminée avant la mesure du rayonnement γ et prise en compte dans le calcul du flux. La formule ci-dessus permet, à partir du flux mesuré Φ(E), de déterminer le flux Φo(E) et donc d'utiliser la fonction de transfert calculée sans le dispositif. Le dispositif 10 conforme à l'invention est schématiquement représenté en coupe sur la figure 2, suivant un plan contenant l'axe X.
Ce dispositif comprend une première bague dentée 16 qui entoure et maintient le demi-disque 12 et une deuxième bague dentée 18 qui entoure et maintient le demi-disque 14.
La première bague dentée 16 est montée tournante sur la deuxième bague dentée 18 grâce à un roulement à billes 20, tandis que cette deuxième bague dentée 18 est montée tournante sur un support 22, formant le support du dispositif, grâce à un autre roulement à billes 24.
On voit également sur la figure 2 des moyens 26 de réglage de l'angle α défini plus haut et d'immobilisation du demi-disque 12 par rapport au demi- disque 14 lorsque l'angle α a été réglé à la valeur souhaitée.
Ces moyens 26, qui sont réalisables par l'homme du métier, comprennent un bouton moleté 28 qui est rigidement solidaire d'un pignon 30 dont l'axe de rotation Y est parallèle à l'axe X et dont là rotation entraîne la bague dentée 16 en rotation autour de l'axe X. Le pignon 30 est muni d'un mécanisme non représenté permettant de bloquer la rotation de ce pignon 30 et donc de bloquer la rotation de la bague dentée 16 par rapport à la bague dentée 18, lorsque la valeur α souhaitée est obtenue. On voit également sur la figure 2 des moyens 32 de rotation de l'ensemble des demi-disques 12 et 14 autour de l'axe X.
Ces moyens de rotation 32 comprennent un moteur 34 qui est monté sur le support 22 et qui entraîne en rotation, autour d'un axe Z parallèle à l'axe X, grâce à une courroie 36, un autre pignon 38 qui entraîne à son tour en rotation la bague dentée 18. Dans l'exemple représenté sur les figures 1 et 2, la face supérieure du demi-disque 12, qui est le plus proche du détecteur 4, et la face inférieure du demi-disque 14, qui est le plus éloigné de ce détecteur 4, sont convexes, la convexité de ces faces étant calculée de telle façon que, dans chacun des secteurs I à IV, l'épaisseur de la pièce constituée par les deux demi-disques 12 et 14, épaisseur traversée par le rayonnement γ compris dans l'angle solide de détection et atteignant le détecteur 4, soit constante, quel que soit l'angle d'incidence de ce rayonnement γ par rapport à l'axe X de la pièce. Une telle convexité de ces faces est très importante lorsque le collimateur a un grand angle d'ouverture.
De plus, cette convexité impose une position bien déterminée du dispositif 10 de réduction de flux par rapport au détecteur 4.
En ce qui concerne la précision sur la mesure (qui est fixée par les utilisateurs du dispositif) , on ajoute que, si la vitesse de rotation de l'ensemble des deux demi-disques est grande, c'est- à-dire si le nombre de tours effectués pendant un temps donné (temps de comptage) est important, ce nombre de tours peut être entier ou non.
Au contraire, si cette vitesse de rotation est faible, c'est-à-dire si le nombre de tours effectués pendant le temps de comptage fixé par les utilisateurs est faible, il convient que ce nombre de tours soit entier pour avoir une bonne précision de mesure.
De plus, il convient que la distance entre le détecteur 4 et l'ensemble des deux demi-disques 12 et 14 soit telle que les effets de bord sur les demi- disques puissent être considérés comme négligeables.
Il est à noter que l'utilisation d'un détecteur 4 "ponctuel" permet de négliger ces effets de bord sur les demi-disques.
Ce dispositif conforme à l'invention est simple et permet de réduire le flux de rayonnement γ direct "vu" par un détecteur de spectrométrie γ collimaté de façon importante. A titre purement indicatif et nullement limitatif, on obtient un rapport Φ(E)/Φo(E) peu différent de 1/36 pour un angle α de l'ordre de 10° et une épaisseur millième d'atténuation, ou peu différent de 1/26 pour ce même angle α mais une épaisseur centième d'atténuation.
Cette réduction du flux direct est réalisée sans modifier la géométrie de mesure et sans induire un flux important de rayonnement diffusé, du fait de l'emploi d'un matériau dense tel que le tungstène. De plus, les corrections à apporter au flux lors du dépouillement du spectre obtenu avec la chaîne de mesure 6 sont simples (aucun calcul théorique nécessitant l'emploi de code de calcul n'a besoin d'être effectué) et n'induit que de très faibles incertitudes.
On peut établir avec une grande précision l'atténuation du dispositif.
Le réglage mécanique de l'angle α peut être obtenu avec une grande précision. Lorsque le détecteur peut être considéré comme ponctuel les effets de bord sont négligeables.

Claims

REVENDICATIONS
1. Dispositif de réduction du flux d'un rayonnement que l'on veut détecter dans un angle solide appelé angle solide de détection, ce dispositif étant caractérisé en ce qu'il comprend :
- une pièce (12, 14) apte à atténuer le rayonnement et pourvue d'une ouverture s'étendant du bord de la pièce jusqu'au centre de celle-ci, et des moyens (32) de rotation de la pièce autour d'un axe qui est appelé axe de rotation et qui passe par le centre de celle-ci, de sorte qu'en faisant coïncider cet axe avec l'axe (X) de l'angle solide de détection, en plaçant la pièce de façon que la totalité du rayonnement compris dans cet angle solide traverse la pièce et l'ouverture de celle- ci et en faisant tourner la pièce autour de l'axe de rotation, l'angle solide de détection est balayé en totalité au bout d'un tour de la pièce.
2. Dispositif selon la revendication 1, caractérisé en ce que l'ouverture de la pièce (12, 14) est délimitée par des bords rectilignes contenant l'axe de rotation.
3. Dispositif selon la revendication 2, caractérisé en ce que la pièce comprend deux demi- disques (12, 14) qui ont le même diamètre et le même axe, celui-ci formant l'axe de rotation, l'un de ces demi-disques recouvrant l'autre en partie, de sorte que les bords respectifs de l'ouverture sont dans des plans diamétraux des demi-disques, ce qui définit quatre secteurs, à savoir un secteur (I) correspondant à l'ouverture, un autre secteur (II) correspondant au recouvrement des demi-disques et deux autres secteurs (III, IV) correspondant chacun à une partie d'un demi- disque non recouverte par l'autre demi-disque.
4. Dispositif selon la revendication 3, caractérisé en ce qu'il comprend en outre des moyens (26) de variation de l'angle (α) délimité par les bords de l'ouverture de la pièce.
5. Dispositif selon l'une quelconque des revendications 3 et 4, caractérisé en ce que les faces respectives des demi-disques, faces qui ne se recouvrent pas en partie, ont une convexité telle que, dans chaque secteur (I à III), l'épaisseur de pièce traversée par le rayonnement est constante, quel que soit l'angle d'incidence du rayonnement par rapport à l'axe de rotation.
6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la pièce (12, 14) est apte à atténuer le rayonnement γ.
7. Ensemble de détection d'un rayonnement, cet ensemble comprenant :
- un détecteur (4) du rayonnement,
- un collimateur (8) qui délimite un angle solide de détection du rayonnement, et
- un dispositif (10) de réduction du flux du rayonnement, qui est placé en face de ce collimateur (8), cet ensemble étant caractérisé en ce que le dispositif (10) est conforme à l'une quelconque des revendications 1 à 6, en ce que l'axe de rotation de la pièce que comprend le dispositif est confondu avec l'axe (X) de l'angle solide de détection et en ce que cette pièce (12, 14) est placée de façon que la totalité du rayonnement compris dans l'angle solide de détection traverse cette pièce et l'ouverture de celle-ci.
PCT/FR1994/000707 1993-06-15 1994-06-14 Dispositif de reduction du flux d'un rayonnement, notamment gamma, et ensemble de detection du rayonnement utilisant ce dispositif WO1994029747A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9307181A FR2706627B1 (fr) 1993-06-15 1993-06-15 Dispositif de réduction du flux d'un rayonnement, notamment gamma, et ensemble de détection du rayonnement utilisant ce dispositif.
FR93/07181 1993-06-15

Publications (1)

Publication Number Publication Date
WO1994029747A1 true WO1994029747A1 (fr) 1994-12-22

Family

ID=9448134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1994/000707 WO1994029747A1 (fr) 1993-06-15 1994-06-14 Dispositif de reduction du flux d'un rayonnement, notamment gamma, et ensemble de detection du rayonnement utilisant ce dispositif

Country Status (2)

Country Link
FR (1) FR2706627B1 (fr)
WO (1) WO1994029747A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108351425A (zh) * 2015-07-09 2018-07-31 皇家飞利浦有限公司 用于利用堆叠式探测器同时进行x射线成像和伽马光子成像的设备和方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9922754D0 (en) 1999-09-27 1999-11-24 British Nuclear Fuels Plc Improvements in and relating to methods and apparatus for investigating emissions
DE102022105906A1 (de) 2022-03-14 2023-09-14 Safetec Gmbh Erfassungsvorrichtung, Erfassungsverfahren und Computerprogrammprodukt

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4591231A (en) * 1982-06-26 1986-05-27 International Standard Electric Corporation Variable optical attenuator
US5107529A (en) * 1990-10-03 1992-04-21 Thomas Jefferson University Radiographic equalization apparatus and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4591231A (en) * 1982-06-26 1986-05-27 International Standard Electric Corporation Variable optical attenuator
US5107529A (en) * 1990-10-03 1992-04-21 Thomas Jefferson University Radiographic equalization apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108351425A (zh) * 2015-07-09 2018-07-31 皇家飞利浦有限公司 用于利用堆叠式探测器同时进行x射线成像和伽马光子成像的设备和方法
CN108351425B (zh) * 2015-07-09 2021-09-24 皇家飞利浦有限公司 用于利用堆叠式探测器同时进行x射线成像和伽马光子成像的设备和方法

Also Published As

Publication number Publication date
FR2706627B1 (fr) 1995-08-04
FR2706627A1 (fr) 1994-12-23

Similar Documents

Publication Publication Date Title
FR2713786A1 (fr) Codeur à roue de mise en forme d'une lumière émise.
FR2506007A1 (fr) Dispositif pour la mesure des coordonnees d'une sphere tournante et procede de fabrication d'une partie dudit dispositif
LU87933A1 (fr) Procede et dispositif d'etalonnage d'un pyrometre optique et plaquettes etalons correspondantes
Cruvellier Applications des méthodes interfàrentielles photographiques et photoélectriques à l'étude des régions H II
FR2801671A1 (fr) Dispositif de mesure, par diffraction, de tailles de particules sensiblement spheriques, notamment de gouttes opaques
EP0499319B1 (fr) Procédé de mesure de la position précise du centre énergétique d'une tache image d'un objet lumineux sur une détecteur photosensible
FR2753278A1 (fr) Dosimetre x-gamma sensible aux basses energies
WO1994029747A1 (fr) Dispositif de reduction du flux d'un rayonnement, notamment gamma, et ensemble de detection du rayonnement utilisant ce dispositif
WO2010149661A1 (fr) Procédé apte a discriminer une composante gamma et une composante neutronique dans un signal electronique
EP0405678B1 (fr) Senseur d'horizon terrestre à précision améliorée
EP0337831A1 (fr) Procédé et dispositif pour déterminer la masse volumique d'un volume élémentaire de matière
EP0763752B1 (fr) Système, dispositif et procédé de contrôle d'une paroi d'absorption de neutrons thermiques
FR2533883A1 (fr) Senseur d'horizon terrestre utilisant des photodetecteurs a transfert de charges
EP3671135B1 (fr) Systeme et procede de determination d'au moins un parametre relatif a un mouvement angulaire d'un axe
BE486296A (fr)
EP0161992B1 (fr) Appareil d'analyse de phases par diffraction de rayons X sur échantillon texturé ou non, utilisant un détecteur électronique de photons
EP0102282B1 (fr) Procédé et dispositif de dosage de faible teneur de composants gazeux
FR2615632A1 (fr) Systeme d'analyse optico-mecanique n'utilisant qu'un seul polygone tournant
BE1012511A3 (fr) Examen de l'orientation du reseau d'un cristal.
CH710084A1 (fr) Mécanisme d'entraînement d'au moins un élément mobile.
EP0545780B1 (fr) Appareil de mesure de l'activité alpha d'une solution
FR2579752A1 (fr) Spectrometre de fluorescence x comprenant au moins un monochromateur toroidal a spirale logarithmique
EP0075517A1 (fr) Dispositif de mesure non destructif de l'épaisseur de la paroi d'une pièce creuse
EP0235023B1 (fr) Procédé et appareil d'analyse des variations de densité d'un produit en forme de cigarette
EP0124448B1 (fr) Commande de la rotation du système dispersif d'un monochromateur

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA